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Abstract

Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology,

leading to clinical benefit for cancer patients. Among the growing family of inhibitory recep-

tors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry

mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell pro-

liferation and cytokine production. The crystal structure of the BTLA/HVEM complex has

shown that the HVEM(26–38) fragment is directly involved in protein binding. We designed

and analyzed the capacity of several analogs of this fragment to block the ligation between

BTLA and HVEM, using competitive ELISA and cellular assay. We found that the HVEM

(23–39) peptide can block BTLA/HVEM ligation. However, the blocking ability was due to

the Cys encompassed in this peptide and that even free cysteine targeted the BTLA protein

and blocked its interaction with HVEM. These data highlight a Cys-related artefact in vitro,

which should be taken in consideration for future development of BTLA/HVEM blocking

compounds.

Introduction

T lymphocytes are central players of the adaptive anti-tumor immune response. Activation of

T lymphocytes requires two signals: the first one is originating from the T-cell receptor after

interaction with an antigen-derived peptide presented by major histocompatibility complex,

while the second is delivered upon interactions between co-receptors on T cells and their

ligands on antigen-presenting cells (APCs) or target cells [1]. Co-receptors, also called

PLOS ONE | https://doi.org/10.1371/journal.pone.0179201 June 8, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Spodzieja M, Lach S, Iwaszkiewicz J,

Cesson V, Kalejta K, Olive D, et al. (2017) Design of

short peptides to block BTLA/HVEM interactions

for promoting anticancer T-cell responses. PLoS

ONE 12(6): e0179201. https://doi.org/10.1371/

journal.pone.0179201

Editor: Hendrik W. van Veen, University of

Cambridge, UNITED KINGDOM

Received: January 3, 2017

Accepted: May 25, 2017

Published: June 8, 2017

Copyright: © 2017 Spodzieja et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by Grant

project no. PSPB-070/2010 “Design of BTLA

inhibitors as new drugs against melanoma”

financed by a grant from Switzerland through the

Swiss Contribution to the enlarged European

Union; and by the Interdisciplinary Fund from the

Faculty of Biology and Medicine (FBM) of

Lausanne.

https://doi.org/10.1371/journal.pone.0179201
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179201&domain=pdf&date_stamp=2017-06-08
https://doi.org/10.1371/journal.pone.0179201
https://doi.org/10.1371/journal.pone.0179201
http://creativecommons.org/licenses/by/4.0/


immune checkpoints, can be divided into stimulatory and inhibitory molecules. The CD28

was the first identified co-stimulatory molecule and the interaction between CD28 and B7.1/

B7.2 is one of the dominant pathways required for full activation of naive lymphocytes [2, 3].

In contrast, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell

death 1 protein (PD-1), when interacting with their ligands B7.1/B7.2 and PDL-1/PDL-2

respectively, restrain the activation of lymphocytes T and are thus considered as co-inhibi-

tory molecules [4–7].

It is known that manipulation of checkpoint cell-surface signaling molecules can exert

potent anticancer effects. Immune checkpoint therapy has recently reached important clinical

advances [8, 9]. Indeed, it has been reported that cancer patients treated with anti-CTLA-4

(Ipilimumab) or anti-PD-1 (Nivolumab or Pembrolizumab) blocking antibodies showed an

increase of the antitumor T-cell response and a higher rate of disease free survival [10–13].

Additionally, antibodies blocking PD-L1 were shown to be superior to Ipilimumab by having a

better safety profile. Therapies combining both Ipilimumab and Nivolumab in patients with

metastatic melanoma, have shown significant increase of the progression-free survival rate.

However, this combination was also associated with substantial immune related toxicities [12,

14–17].

Alternative non-antibody based therapies constitute also a promising approach to target

immune checkpoints [18, 19]. Indeed, several examples of small compounds such as sulphona-

mide derivatives [20], tri-aromatic structures [18, 21], linear, cyclic macrocyclic peptides [18,

22], hydrolysis-resistant D-peptide [23], peptidomimetics and cyclic peptidomimetics [22], as

antagonist of PD-1/PD-L1 have already been reported. Some of these compounds are highly

effective in antagonizing PD-1 signaling and inhibiting tumor growth and metastasis in pre-

clinical models of cancer. Moreover, those compounds are well tolerated with no obvious tox-

icity [15, 18].

Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator

(BTLA), which interacts with herpes virus entry mediator (HVEM), inhibits T-cell prolifera-

tion and cytokine production [24, 25], suggesting that BTLA might be an interesting target in

immunotherapy [26]. Naive human CD8+ T cells express high levels of BTLA, which is down-

regulated upon CD8 differentiation. However, BTLA is not downregulated in melanoma spe-

cific CD8+ T cells and remains susceptible to functional inhibition upon HVEM ligation.

HVEM is frequently expressed on melanoma cells, suggesting that the BTLA/HVEM pathway

might play a role in the inhibition of efficient immune responses against cancer. Preventing/

targeting the BTLA/HVEM interaction can reverse the inhibitory functions of BTLA, thus trig-

gering the immune response against cancer. Additionally, in vitro studies using antibodies to

block binding of BTLA to HVEM led to increased melanoma specific CD8+ effector T-cells

proliferation and enhanced cytokines production [27–29].

The crystal structure of BTLA/HVEM complex shows specific details of the proteins inter-

action. BTLA binds to a fragment of HVEM(26–33) which is located in the Cysteine Rich

Domain 1 (CRD1) [30]. We used that information to design and characterize peptide-based

inhibitors of BTLA/HVEM complex formation. We confirmed that the short fragment of

HVEM(23–39) binds to BTLA and blocks the BTLA/HVEM interactions. Further evaluation

of individual contribution of each residue from the HVEM(23–39) fragment by a single ala-

nine substitution approach showed that cysteine residues have a key role in the binding to

BTLA. Finally, we showed that free cysteine amino acid can disrupt the BTLA/HVEM complex

formation, highlighting a cysteine-related artefact in vitro. Overall, these results might be help-

ful for the design of new compounds targeting BTLA protein.

Characterization of small peptides inhibiting BTLA/HVEM binding
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Materials and methods

Recombinant molecules and antibodies

The recombinant human BTLA protein used in affinity tests was purchased form Novoprotein

(Company product code: C563). For ELISA, recombinant human BTLA-Fc, HVEM-Fc as well

as anti-human BTLA (#7.1) blocking monoclonal antibody (mAb) and anti-human HVEM

(#11.8) non-blocking mAb were described previously [31]. Anti-HVEM mAb was biotinylated

using the Biotin Labeling Kit-NH2 (Abnova, #KA0003), according manufacturer’s instruction.

Molecular modeling

The crystal structure of BTLA/HVEM complex (A and B chains) served as a starting point

for the modeling (Protein Data Bank ID 2AW2) [30]. The atoms of the HVEM B chain were

removed, except for residues 23–39. The protonation state of the histidines was set depending

on the environment, to optimize hydrogen bonds. All simulations were carried out using

GROMACS 4.5 molecular modeling package [32] using the CHARMM22 force field [33]. The

structure was located in the center of a TIP3P water box in which the distance between the

solute and the edges was 1.4 nm. Na+ and Cl- ions were added to neutralize the system. Subse-

quently the system was subjected to 1000 steps of steepest descent minimization. The struc-

tures were then equilibrated according to standard equilibration procedures. The system

heating was performed using simulated annealing method by increasing the temperature in

four steps: from 0K to 50K, then from 50K to 100K, from100K to 200K and finally from 200K

to 300K. Every step took 100ps and at the end of the procedure the system was additionally

coupled to the target 300K temperature for 100ps. The force constant of 1000kJ/mol�nm was

applied to keep the atoms in their positions during the heating procedure. The same force con-

stant was kept also during the first constant volume equilibration simulation during 100ps,

followed by another 100ps simulation in the NVT scheme with lowered force constant for

position restraint to 300kJ/mol�nm. The final step of equilibration consisted in a simulation in

the NPT scheme with Nose-Hoover thermostat and Parinello-Rahman barostat with 300K and

1Pa for 500ps and no position restraints imposed on atoms.

The production molecular dynamics simulations were done using the NPT scheme with no

restraints on the atoms. For the production molecular dynamics simulation, the Verlet leap

frog integrator was used. A 12Å cutoff was applied on non-bonded interactions. The bond

length was constraint. A time step of 2fs was used with a length of the simulation of 10ns. For

the hydrogen bonds analysis, we used 250 structures extracted every 40ps from the molecular

dynamics simulation trajectory.

Molecular graphics images were produced using the UCSF Chimera package from the

Computer Graphics Laboratory, University of California, San Francisco (supported by NIH

P41 RR-01081) [34].

Peptide synthesis

Peptides were synthesized by solid phase peptide synthesis (SPPS) using semiautomated pep-

tide synthesizer Millipore 9050 Plus PepSynthesizer (Millipore Corporation, Burlington, VT,

USA) and general conditions of solid-phase synthesis [35]. Synthesis was performed on a Ten-

taGel R RAM resin (0.19 mmol/g), using 9-fluorenylmethoxycarbonyl/tert-butyl (Fmoc/tBu)

chemistry with the following side chain protected amino acid derivatives: Fmoc-Pro-OH,

Fmoc-Glu(OtBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Val-OH, Fmoc-Ala-OH, Fmoc-Gly-OH,

Fmoc-Thr(tBu)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Arg(Pbf)-OH and Fmoc-Tyr

(tBu)-OH. Acetylation of the N-terminal amino group was performed using 1-acetylimidazole
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(1.10 g/1 g of resin at room temperature for 24 h). The peptide was cleaved from the resin for 2

h using a mixture of 88% TFA, 5% fenol, 5% deionized water and 2% triisopropylsilane (10 ml/

1 g of resin at room temperature for 2 h). After filtration of the exhausted resin, solution was

concentrated in vacuum, and the residue was triturated with Et2O. The precipitated peptide

was centrifuged for 15 min, 4000 rpm, followed by decantation of the ether phase from the

crude peptide (process was repeated three times). After evaporation of Et2O, the peptide was

dissolved in H2O and lyophilized.

Peptide purifications

Before the purification the peptides were dissolved in H2O, DTT was added (6-fold excess with

respect to purified peptide) and the mixture was sonified for 30 min in 60˚C. Purification of

the crude peptide was carried out by using RP-HPLC on a semi-preparative Phenomenex

Luna C8(2) (250 mm x 20 mm, 5 μm) column. A linear gradient from 5% B to 50% B in A in

150 min was used. The aqueous system (A) consisted of 0.1% (v/v) TFA solution in water,

whereas the organic phase (B) was 80% acetonitrile in water, containing 0.08% (v/v) TFA.

Purification was monitored by UV absorption at a wavelength of 222 and 254 nm. The purity

of the peptide was verified by LC-ESI-IT-TOF/MS (Shimadzu, Shimpol, Warsaw, Poland), and

by using RP-HPLC with a Kromasil C8 analytical column (250mm x 4.6 mm, 5 μm), where a

gradient of 5% to 100% B in A in 60 min was employed, with A and B as described above.

Disulfide bond formation

The formation of the disulfide bond in peptide HVEM(23–39) was performed after purifica-

tion. The peptide was dissolved in a mixture of H2O and methanol (1:9, v:v), the final volume

was 1.5 l and the concentration of the peptide was established at 40 mg/l. The pH was adjusted

and kept between 8 and 9 by using ammonia whilst stirring the solution at room temperature

for 3 days in the presence of atmospheric oxygen. Reaction progress was monitored by analyti-

cal RP-HPLC in a gradient of 5% to 100% B in A in 60 min. When the reaction of oxidation

was completed the solvents were evaporated and the peptide was lyophilized.

ELISA

96-well round bottom plates (medium binding; Greiner Bio-One) were coated with 400 ng/

well of recombinant BTLA-Fc protein in PBS (50 μL/well) and incubated overnight at 4˚C.

Wells were washed twice with PBS-T (phosphate buffer saline with 0.1% Tween-20, pH 7.4)

and blocked with 1% milk in PBS-T for 1 hour at 37˚C. After 2 washes with PBS-T, the pep-

tides were titrated down in triplicates from 10 to 0.1 mg/well in 1% milk/PBS-T and incubated

for 2 hours at 37˚C. Maximum binding of HVEM to BTLA was controlled by adding 1% milk/

PBS-T to negative control wells, whereas maximum inhibition was monitored by adding anti-

BTLA 7.1 mAb (0.1 μg/well). Next, the plate was washed and incubated with recombinant

HVEM-Fc protein at 400 ng/well in 1% milk/PBS-T for 1 hour at 37˚C. Biotinylated anti-

HVEM 11.8 antibody was then added (biotinylated preparation diluted at 1/10 000 in 1%

milk/PBS-T) and incubated for 1 hour at 37˚C. Streptavidin horseradish peroxidase (Dako)

was finally added at a 1/8000 dilution in 1% BSA/PBS-T for 30 min at 37˚C and detected with

TMB (Biorad). The substrate reaction was blocked with 0.2 M H2SO4 and the absorbance was

read at 450 nm and 630 nm. The percent of inhibition was calculated assuming that the anti-

BTLA 7.1 antibody inhibit the complex at 100% and milk/PBS-T in 0%. Statistical analysis of

the results was performed using the one-way analysis of variance (one-way ANOVA).
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Preparation of microcolumn

The immobilization of BTLA protein in a microcolumn was performed using the NHS-acti-

vated acid-coupled Sepharose 4B (Sigma Aldrich). BTLA protein was dissolved in 100 μl of

coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3) and was added to 0.06 g NHS-activated

Sepharose in 100 μl of coupling buffer. The coupling reaction was performed for 1 hour in

25˚C and the mixture was transferred into the microcolumn (MoBiTec, Goettingen, Ger-

many). The microcolumn with immobilized protein was washed alternately with 10 ml of solu-

tion blocking buffer (0.1 M amino ethanol, 0.5 M NaCl, pH 8.3) and washing buffer (0.1 M

CH3COONa, 0.5 M NaCl, pH 4). This step was repeated 4 times. The microcolumn was stored

in PBS (pH 7.4).

Affinity tests

Peptide affinity assay using NHS-activated Sepharose microcolumn was already described else-

where [36, 37]. The peptides were added onto BTLA-Sepharose column equilibrated in ammo-

nium hydrogen carbonate (NH4HCO3, pH 7.4) and incubated for 2 h at 25˚C with gentle

shaking. After this time the unbound peptide was removed and the column was washed with

100 ml NH4HCO3 and 20 ml of H2O. Dissociation of the protein—peptide complex was per-

formed using 0.1% TFA in H2O (2 x 0.5 ml) by 15 minutes. All fractions were analyzed using

mass spectrometry (MALDI TOF/TOF™ 5800, AB SCIEX).

Ellman’s assay

The presence of free thiols was investigated using Ellman’s assay. DTNB (Sigma Aldrich) was

first dissolved in reaction buffer (0.1 M sodium phosphate, pH 7.4, containing 1 mM EDTA)

at a concentration of 4 mg/ml. Then peptides and recombinant BTLA-Fc, alone or mixed

together (ratio 1:1) were added in DTNB reaction buffer. After 15 minutes of incubation, the

SH content of protein samples was then assessed by the measurement of absorbance at 412

nm. For each sample, the absorbance value from the blank was subtracted.

BTLA/HVEM interaction—Cell line assay

293T cells expressing BTLA (generous gift from Dr. C. Krummenacher, University of Pennsyl-

vania, USA) were maintained in culture with RPMI 10% FCS supplemented with 0.2 mg/ml

hygromycin B. 2x105 293T cells expressing BTLA were incubated with rhHVEM-Fc at 8μg/ml

in PBS 0.5% BSA for 30min at 4˚C. Cells were then washed and incubated with goat anti-

human Fc conjugated with AF647 for 20min at 4˚C (Jackson ImmunoResearch, #109-606-

170). Inhibition of HVEM-BTLA binding by different peptides was assessed by pre-incubating

the cells with the different peptides at 5 mg/ml for 1h at 4˚C. BTLA expression was controlled

by anti-BTLA APC-conjugated antibody (Biolegend, #344510). Maximum inhibition of bind-

ing was determined by adding anti-BTLA7.1 antibody for 1h at 4˚C at 2μg/ml before adding

rhHVEM-Fc. Sample acquisition was performed on the Gallios Flow-Cytometer (Beckman

Coulter) and data were analyzed using the FlowJo Software (TreeStar).

Results

Design of peptides targeting BTLA protein

The crystal structure of BTLA/HVEM complex is stored under ID 2AW2 in the Protein Data

Bank [30]. The structure indicates that only the first CRD1 part of human HVEM interacts with

BTLA. The domain contains four short β-strands, that are connected by three disulfide bonds,

formed between cysteine residues 4–15, 16–29 and 19–37. The fragment of the CRD1 domain
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of HVEM comprising residues 23–39 forms a β-hairpin structure and the 35–39 fragment

builds an anti-parallel inter-molecular β-sheet with G˚ strand of BTLA in the center of the inter-

action interface [30]. Moreover, the HVEM(23–39) fragment comprises two hot-spots of the

BTLA/HVEM interaction: Tyr23 and Val36. We sought to determine whether the HVEM(23–

39) fragment could bind BTLA. We therefore performed the molecular dynamics simulation of

the BTLA structure and the HVEM(23–39) fragment (Ac-YRVKEACGELTGTVCEP-NH2).

The simulation starting point was a native-like conformation of HVEM fragment, bound to

BTLA as in the BTLA/HVEM complex structure (Fig 1). The complex was stable during the

10ns long molecular dynamics simulation. The averaged RMSD calculated for the backbone

atoms of the superimposed over carbons alpha structures was 1.2Å. Besides, the hydrogen

Fig 1. Structure of the BTLA/HVEM(23–39) peptide complex. HVEM(23–39) peptide is shown in dark blue ribbon, BTLA

in beige and the side chains of residues involved in the inter-molecular hydrogen bonds in stick representation with nitrogen

atoms colored in blue, oxygen colored in red and hydrogen atoms in white. Hydrogen bonds are represented by light blue

lines.

https://doi.org/10.1371/journal.pone.0179201.g001
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bonds interactions observed in the starting structure were almost all preserved during the simu-

lation (S1 Table). This computational results suggests that the HVEM(23–39) may stably inter-

act with BTLA.

Study of the interactions between BTLA protein and HVEM(23–39)

fragment

The designed HVEM(23–39) peptide was synthesized and an affinity test was performed using

microcolumn with the immobilized BTLA protein. Three fractions were analyzed: superna-

tant, last wash and elution by using mass spectrometry techniques. In the supernatant fraction

the signal m/z corresponding to the excess of the HVEM(23–39) peptide was observed (Fig

2A). In the last wash fraction, no signal was observed confirming that the excess of peptide was

removed (Fig 2B). The presence of m/z signal in elution fraction indicated that the complex

between BTLA and HVEM(23–39) was formed (Fig 2C).

Next, HVEM(23–39) was analyzed in an competitive ELISA test, in order to determine

whether this fragment may bind to BTLA and inhibit BTLA/HVEM interaction. Fig 3 shows

that the HVEM(23–39) can partially prevent the ligation of HVEM to BTLA, in a dose depen-

dent manner, while scrambled peptide (Ac-ELCAGPVTRKVECTYGE-NH2) has no effect.

Moreover, the scrambled peptide (named Ctrl peptide in figures) did not interact with BTLA

immobilized in microcolumn (Table 1).

Assessment of amino acid residues from HVEM(23–39) peptide crucial

for inhibition of the BTLA/HVEM complex formation

To assess the importance of each amino acid residues in HVEM(23–39) interaction with

BTLA protein, single alanine-substituted HVEM(23–39) variants were synthesized [38, 39]

and tested in the BTLA/HVEM ELISA. While no or minor diminution in the inhibition of

BTLA/HVEM binding was found with the majority of alanine-substituted fragments com-

pared to the native HVEM(23–39), we observed a significant reduction of the inhibition, in a

dose depend manner, for the two peptides where cysteine in position 29 (C29A) or 37 (C37A)

was replaced by an alanine (Fig 4). This suggests the possible importance of cysteine residues

in inhibition BTLA/HVEM complex formation by the HVEM(23–39) peptide.

The role of cysteine residues in targeting BTLA protein

To further determine the role of cysteine residues from HVEM(23–39) peptide in the inhibi-

tion of BTLA/VEM interaction, several HVEM(23–39) analogues were designed and synthe-

sized (Table 2). Initially, we aimed to test, if the Cys29 residue could be replaced with aromatic

residue that could interact with His127 residue of BTLA to improve the interaction of the pep-

tide. To test this, we synthesized the HVEM(23–39) C29Y peptide. To additionally probe the

importance of the cysteine interactions, we replaced the Cys29 residue with the serine residue,

which is of similar size and polarity. We assumed that the C29S analog could mimic the cyste-

ine interactions but bears no free sulfhydryl group that could interact non-specifically with

BTLA. We were also wondering, if even shorter HVEM-derived peptide could inhibit the

interactions between BTLA and HVEM. We synthesized therefore 9 amino acid-long peptides

comprising the 1-strand interface of HVEM, HVEM (31–39) fragment.

The analogs (Table 2) were tested in the ELISA tests and compared to the HVEM(23–39)

and scrambled peptide (Fig 5). We found that both substitutions of Cys29 significantly abro-

gated the blocking capacity of the HVEM(23–39) peptide. This could indicate the lack of spe-

cific interactions of Cys29 residue and point to the importance of the free sulfhydryl group for
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Fig 2. Microcolumn affinity test. Microcolumn affinity test results for binding of HVEM(23–39) fragment to

BTLA: (A) supernatant, (B) last wash and (C) elution fractions. The MS measurements were done with the

use of MALDI TOF/TOF 5800 (ABSciex, Germany). As a matrix α-cyano-4-hydroxycinnamic acid (CHCA, 10

mg/ml, Sigma-Aldrich) was used. The measurements were done in reflector positive mass mode with

previous mass calibration with commercial standard peptide mixture (The Peptide Mass Standards Kit for

Calibration of AB SCIEX MALDI-TOF™ Instruments).

https://doi.org/10.1371/journal.pone.0179201.g002
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Fig 3. HVEM(23–39) peptide partially blocks the BTLA/HVEM binding. Inhibition of the BTLA/HVEM

interaction was assessed by ELISA (at least two experiments in triplicate). The graph shows percentages of

inhibition of the BTLA/HVEM ligation, relative to the negative control (PBS), in the presence of different

concentrations (5, 1 and 0.1 mg/mL) of HVEM(23–39) and corresponding scrambled peptide (Ctrl peptide).

The gray and dotted back lines correspond to the percentages of inhibition observed with an anti-BTLA

blocking antibody (Mean +/-SEM). *: p< 0.05 following non-parametric One-way ANOVA and Dunn’s post-

test.

https://doi.org/10.1371/journal.pone.0179201.g003
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the binding of peptides. Moreover, albeit not significant, the shorter synthesized peptide:

HVEM(31–39) that lacks the Cys29, showed a lower percentage of inhibition than the HVEM

(23–39). To further test the importance of Cys37, we synthesized and tested the its analog

(HVEM(31–39) C37S). We found that this peptide had no blocking capacity. Finally, the cyclic

peptide HVEM(23–39) (C29-C37), encompassing blocked sulfhydryl groups, was also tested,

but no blocking of BTLA/HVEM interaction was observed (Fig 5). Of note, in CD spectrum,

formation of the disulfide bridge in HVEM(23–39) peptide did not significantly change the

peptide structure (S1 Fig).

Then those analogs were tested in affinity test. We observed that peptides, which could

inhibit the BTLA/HVEM interactions in ELISA tests (Fig 5), were also bound by BTLA protein

immobilized in microcolumn (Table 1). The exception was cyclic peptide HVEM(23–39)

(C29-C37) which interacted with BTLA in affinity test but in ELISA test its inhibitory effect

was not observed. The results suggest that the binding site of cyclic peptides and HVEM(23–

39) on the BTLA surface is different.

Overall, our results confirm the prominent role of free cysteine residues in the BTLA/

HVEM interaction blocking capacity of the HVEM(23–39) peptide.

Since the cyclic peptide C29-C37, where cysteine residues were oxidized, does not block the

BTLA/HVEM binding, we wondered whether the blocking ability of HVEM(23–39) fragment

may be due to the capacity of HVEM-based peptide cysteines to reduce the cysteine disulfide

bridges present on the BTLA surface, or possibly make disulfide bridges with these BTLA

cysteines instead. Therefore, the effect of free cysteine and methionine amino acids or oxidized

dimer of cysteine (cystine) on the BTLA-HVEM binding was analyzed. Results showed that

cysteine with free sulfhydryl group targeted BTLA protein and prevented partially the binding

of HVEM, whereas for the methionine and cystine, the inhibitory properties were not

observed (Fig 6A). An Ellman’s assay was then performed on both HVEM(23–39) peptide and

recombinant BTLA-Fc in order to quantify free thiol groups. In contrast to BTLA-Fc, we

observed free thiol groups in the HVEM(23–39) peptide. However, after 2 hours of incubation,

the concentration of free thiol groups in HVEM(23–39) peptide was lower, suggesting that a

fraction of the peptide is oxidized. Besides, when the HVEM(23–39) peptide was incubated

with BTLA-Fc, we also observed a decrease in the concentration of free thiol groups over time,

which was more pronounced than in the condition where the peptide was alone (Fig 6B).

These results suggest that BTLA protein may form disulfide bonds with the HVEM(23–39)

peptide, lowering the amount of free thiol groups in the peptide.

In order to be in a more physiological setting, we developed a cellular assay, where 293T

cells expressing BTLA were stained with rhHVEM-Fc followed by AF647-conjugated anti-

human IgG antibody. Using this assay, we tested HVEM(23–39) fragment as well as HVEM

(23–39) (C29-C37), scrambled peptide (Ctrl), cysteine and methionine amino acids. Surpris-

ingly, in contrast to ELISA tests, almost no blocking of the BTLA/HVEM binding was

Table 1. Microcolumn affinity test.

Peptides Supernatant [M+H]+1 Last wash Elution [M+H]+1 Mtheoric

HVEM(23–39) 1893.6 - 1893.6 1894.9

HVEM(23–39) C29S 1879.7 - 1879.7 1880.1

HVEM(23–39) C29Y 1955.7 - 1955.7 1956.2

HVEM(31–39) 989.5 - 989.3 988.4

HVEM(31–39) C37S 995.5 [M+Na] - - 973.0

Scrambled peptide 1893.6 - - 1894.9

HVEM(23–39) (C29-C37) 1893.9 - 1893.9 1892.9

https://doi.org/10.1371/journal.pone.0179201.t001

Characterization of small peptides inhibiting BTLA/HVEM binding

PLOS ONE | https://doi.org/10.1371/journal.pone.0179201 June 8, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0179201.t001
https://doi.org/10.1371/journal.pone.0179201


Fig 4. Contribution of individual HVEM(23–39) amino acid residues to the inhibition of BTLA/HVEM

interaction. The relative involvement of alanine-substituted HVEM(23–39) peptide analogs was assessed by

ELISA (at least two experiments in triplicate) in the presence of graded peptide concentrations (5, 1 and 0.1

mg/mL). The percentage of inhibition of the BTLA/HVEM binding was calculated in relation to the negative

control (PBS). The gray and dotted back lines correspond to the percentages of inhibition observed with an

anti-BTLA blocking antibody (Mean +/-SEM). Statistical analysis was performed by comparing each

concentration of modified peptide to the same concentration of wild-type peptide HVEM(23–39). **: p< 0.01

following non-parametric One-way ANOVA and Dunn’s post-test.

https://doi.org/10.1371/journal.pone.0179201.g004
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observed with HVEM(23–39) peptides. However, the free cysteine amino acid blocked BTLA/

HVEM complex formation (Fig 7).

Discussion

Recently, activatory and inhibitory immune receptors and their ligands emerged as promising

targets for cancer immunotherapies. Indeed, treatment based on the blockade of immune

Table 2. Sequences of tested peptides.

Peptides Amino acid sequence

HVEM(23–39) Ac-YRVKEACGELTGTVCEP-NH2

Scrambled peptide Ac-ELCAGPVTRKVECTYGE-NH2

HVEM(23–39) C29S Ac-YRVKEAS29GELTGTVCEP-NH2

HVEM(23–39) C29Y Ac-YRVKEAY29GELTGTVCEP-NH2

HVEM(31–39) Ac-ELTGTVCEP-NH2

HVEM(31–39) C37S Ac-ELTGTVS37EP-NH2

HVEM(23–39) (C29-C37) Ac-YRVKEACGELTGTVCEP-NH2

https://doi.org/10.1371/journal.pone.0179201.t002

Fig 5. Cysteines from HVEM(23–39) are the main amino acid residues involved in the inhibition of

BTLA/HVEM interaction. Increasing concentrations of HVEM(23–39) or HVEM(31–39) modified peptides,

where one or both cysteines were substituted, were tested in ELISA and compared to corresponding wild-type

and scrambled (Ctrl peptide) peptides (at least two experiments in triplicate). The percentage of inhibition of

the BTLA/HVEM binding was calculated in relation to the negative control (PBS). Statistical analysis was

performed by comparing each concentration of each peptide to the same concentration of wild-type peptide

HVEM(23–39). **: p< 0.01 following non-parametric One-way ANOVA and Dunn’s post-test.

https://doi.org/10.1371/journal.pone.0179201.g005
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checkpoints such as PD-1 or CTLA-4, have demonstrated major clinical benefit for cancer

patients [40–42]. It is known that BTLA is involved in the negative regulation of T-cell

responses by interacting with HVEM [27, 43], highlighting BTLA as a potential target for can-

cer immunotherapy. Our study focused on the design of blocking peptides of the interaction

between BTLA and HVEM, based on the amino acid sequence of HVEM binding fragment.

The crystal structure of BTLA/HVEM complex indicated that in the interaction between the

two proteins, two fragments of BTLA: (35–43) and (118–128) bind with HVEM: (26–33) and

(33–38) respectively. Therefore, HVEM(23–39) fragment was synthesized and its interaction

between BTLA and HVEM(23–39) was confirmed by using affinity chromatography. The

competitive ELISA tests showed also that the peptide could inhibit the proteins binding. How-

ever, we showed using competitive ELISA and cellular assay that this blocking capacity was

mainly due to cysteine residues present in the peptide sequence or in solution. Compaan and

co-workers showed that the interactions between BTLA and HVEM proteins are primarily sta-

bilized by main chain hydrogen bonds and includes relatively few side chain contacts [30]. The

conformation of the HVEM(23–39) peptide is significantly different than the conformation of

the same fragment in the native protein due to the fact that it is not stabilized by disulfide brid-

ges and the peptide poses two cysteine residues with free sulfhydryl groups. In the monomeric

crystal structure of the extracellular domain of BTLA protein, six cysteine residues form three

disulfide bonds between residues 72–79, 34–63, and 58–115. The Cys58–Cys115 disulfide

bond is completely buried (solvent accessible surface is 0% for both cysteine) in the hydropho-

bic core of BTLA [30]. The Cys58–Cys115 (solvent accessible surface is 2,9% and 17,9%) and

more Cys34–Cys63 (solvent accessible surface is 45,1% and 33,3%) disulfide bonds are exposed

to the solvent and could be sensitive for the other, free or high reactive sulfhydryl group.

Therefore, we propose that free sulfhydryl groups of HVEM(23–39) peptide or free cysteine

Fig 6. Free cysteine blocks the ligation between BTLA and HVEM. (A) The effect of increasing concentrations (5, 1 and 0.1 mg/mL) of free

amino acids were tested in BTLA/HVEM ELISA (three experiments in triplicate). The percentage of inhibition was calculated in relation to the

negative control (PBS). The gray and dotted back lines correspond to the percentages of inhibition observed with an anti-BTLA blocking antibody

(Mean +/-SEM). Statistical analysis was performed by comparing each concentration of residue or peptide to the same concentration of Cys. (B)

Assessment of free thiol groups over time in rhBTLA-Fc protein and HVEM(23–39) peptide alone or mixed together. **: p< 0.01 and ***: p< 0.001

following One-way ANOVA and Dunn’s (A) or Dunnett’s (B) post-test.

https://doi.org/10.1371/journal.pone.0179201.g006
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amino acid compete, in our in vitro assays, with disulfide bridges (Cys58–Cys115 or Cys34–

Cys63) of the BTLA protein to form covalent S-S bond between HVEM(23–39) peptide or

cysteine amino acid and BTLA protein. This may most likely change the structure of BTLA,

thus hindering the binding of HVEM. Yet, we observed that the scrambled peptide, which also

contains free thiol groups as confirmed by Ellman’s assay (S2 Fig), lacks blocking activity. In

order to reduce the disulfide bonds on BTLA, peptides have to pre-dock to the surface of the

protein. We hypothesize that scrambled peptide may have a lower affinity to BTLA, compared

to HVEM(23–39) peptide. As a consequence of the weaker binding to BTLA the scrambled

peptide may not be able to reduce the exposed disulfide bonds of BTLA and form disulfide

bonds with the protein.

Finally, the fact that this phenomenon was not observed in the cellular assay might be

caused by a spatial arrangement of the BTLA protein on the cell surface making the disulfide

bridges on the BTLA surface less accessible for the tested peptides. We hypothesize that the

Fig 7. Blocking capacity of HVEM(23–39) fragment and free amino acids in a cellular assay. 293T cells

expressing human BTLA were incubated with peptides or free amino acids (5mg/mL) prior labeling with

rhHVEM-Fc and AF647-conjugated anti-human IgG antibody (at least two experiments in triplicate). The graph

shows the Geometric Fluorescence Intensity (GMFI). *: p< 0.05 and ***: p< 0.001 following non-parametric One-

way ANOVA and Dunn’s post-test.

https://doi.org/10.1371/journal.pone.0179201.g007
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small, compared with peptides, cysteine amino acid could reach the BTLA surface despite

the spatial hindrance, hence only activity of cysteine amino acid was observed in the cellular

test.

Overall, these data highlight a cysteine-related artefact in vitro, which should be taken in

consideration when designing blocking compounds targeting BTLA/HVEM interaction.
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