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ABSTRACT Many population genetic activities, ranging from evolutionary studies to association mapping, to forensic identification,
rely on appropriate estimates of population structure or relatedness. All applications require recognition that quantities with an
underlying meaning of allelic dependence are not defined in an absolute sense, but instead are made “relative to” some set of alleles
other than the target set. The 1984 Weir and Cockerham FST estimate made explicit that the reference set of alleles was across
populations, whereas standard kinship estimates do not make the reference explicit. Weir and Cockerham stated that their FST
estimates were for independent populations, and standard kinship estimates have an implicit assumption that pairs of individuals in
a study sample, other than the target pair, are unrelated or are not inbred. However, populations lose independence when there is
migration between them, and dependencies between pairs of individuals in a population exist for more than one target pair. We have
therefore recast our treatments of population structure, relatedness, and inbreeding to make explicit that the parameters of interest
involve the differences in degrees of allelic dependence between the target and the reference sets of alleles, and so can be negative.
We take the reference set to be the population from which study individuals have been sampled. We provide simple moment estimates
of these parameters, phrased in terms of allelic matching within and between individuals for relatedness and inbreeding, or within and
between populations for population structure. A multi-level hierarchy of alleles within individuals, alleles between individuals within
populations, and alleles between populations, allows a unified treatment of relatedness and population structure. We expect our new
measures to have a wide range of applications, but we note that their estimates are sensitive to rare or private variants: some
population-characterization applications suggest exploiting those sensitivities, whereas estimation of relatedness may best use all
genetic markers without filtering on minor allele frequency.
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WE offer here a unified treatment of relatedness and
population structure with an underlying framework of

allelic dependence, where the degree of dependence can be
quantified as the probability the alleles are identical by de-
scent (ibd) or as the correlation of allelic-state indicators. We
follow Thompson (2013) in regarding ibd for a set of alleles
as being relative to some other, reference, set: “There is no

absolute measure of ibd: ibd is always relative to some refer-
ence population.” In other words, ibd implies a reference
point, and ibd status for different alleles at this point is often
implicitly assumed to be zero. The need for a reference set
for allelic-state correlations was made explicitly by Wright
(1951): “the correlation between random gametes, drawn
from the same subpopulation, relative to the total, is given
by . . .” (emphasis added), and for inbreeding by Wright
(1943): “The inbreeding coefficient is zero relative to the unit
groups, Fi relative to the intermediate groups and Ft relative
to the total.”

A function of allelic dependence of particular interest to us
is FST; which we will show below can be expressed as the
probability of ibd of pairs of alleles within populations rela-
tive to that for pairs of alleles from different populations. The
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uses of estimates of this quantity arewidespread, and herewe
note, for instance, a recent discussion by McTavish and Hillis
(2015) who used “pairwise FST for all pairs of populations
using Weir and Cockerham’s method.”We suggest that a more
informative analysismay result fromour population-specific FST
estimates (Weir and Hill 2002; Weir et al. 2005; Browning and
Weir 2010). Other authors (e.g., Balding and Nichols 1995;
Beaumont and Balding 2004; Shriver et al. 2004; Gaggiotti
and Foll 2010) have also discussed the advantages of working
with population-specific FST values instead of single values for
a set of populations, or of values for each pair of populations,
and our recognition of allele frequency correlations among pop-
ulations extends their work. Interpopulation correlations have
also been considered by Fu et al. (2003), and in the Bayesian
treatments of Fu et al. (2005), Song et al. (2006), Karhunen and
Ovaskainen (2012) and Günther and Coop (2013). Here we
allow for correlations in providing explicit moment estimates
that apply to both populations and individuals.

The usual global FST measure can be regarded as an un-
weighted average of population-specific values, and, because
it is an average, it masks the variation among populations
that can indicate the effects of past selection (Beaumont
and Balding 2004; Weir et al. 2005). The global measure
can diminish signals of population history, and this diminu-
tion has become more pronounced as genetic marker data
have become richer, and real differences among populations
have become more evident.

As Astle and Balding (2009) noted “population structure
and [cryptic] relatedness are different aspects of a single con-
founder: the unobserved pedigree defining the (often distant)
relationships among the study subjects.” A similar point was
madebyKang et al. (2010): “Thepresence of related individuals
within a study sample results in sample structure, a term that
encompasses population stratification and hidden relatedness.”
Our goal is to provide a unified approach to characterizing
population structure and individual relatedness and inbreeding,
in terms of both the underlying parameters and the methods of
estimation. By working with proportions of pairs of alleles that
match, or are the same type, we can give a single estimator for
FST;where the pairs are from the same or different populations,
and for inbreeding or coancestry, where the pairs are from the
target individual(s) or from all pairs of individuals in a study.
Measures of population structure are seen to be averages of
coancestry measures for individuals within those populations
as has been noted by Karhunen and Ovaskainen (2012).

Ibd refers to the history of pairs of alleles, and a consider-
ation of historical “genetic sampling” (Weir 1996) shows that
ibd measures allow quantification of the variance of allele
frequencies among evolutionary replicates of these histories.
Data from a single population or a single individual have no
information about this variance, and so do not allow estimation
of ibd probabilities. We might regard multiple loci as providing
replication of the genetic sampling process, or we might collect
data from multiple populations. An exception is when allele
frequencies and ibd status in the reference population are as-
sumedknown, as is implied for standardmethods for estimating

relatedness and inbreeding (e.g., Ritland 1996; Purcell et al.
2007; Yang et al. 2011; Wang 2014) or in forensic science if
the frequencies are taken from databases (e.g., Balding 2003).
If, instead, estimation methods make use of frequencies from
a sample of individuals, they are providing estimates of the in-
breeding or relatedness ibdmeasures relative to thosemeasures
for all individuals in the sample. This point was alsomade by Yu
et al. (2006), who spoke of “adjusting the probability of identity
by state between two individualswith the average probability of
identity by state between random individuals” in order to ad-
dress ibd. Existing relatedness estimation methods that do not
use allele frequencies (e.g., KING-robust, Manichaikul et al.
2010) estimate ibd between individuals (coancestry) relative
to that within individuals (inbreeding).

For both population structure and relatedness, we propose
the use of allelic matching proportions within and between
individuals or populations in order to characterize ibd for an
individual or a population relative to a reference set of ibd
values. We use allele matching, equivalent to homozygosity
and complementary to heterozygosity as used by Nei (1973),
rather than components of variance (Weir and Cockerham
1984: hereafter WC84). Although our matching proportions
can be translated into the sums of squares used by WC84 we
believe they may have more intuitive appeal. Our present
treatment also differs from that in WC84 by using un-
weighted averages of statistics over populations instead of
the weighted averages that were more appropriate for the
WC84 model of independent populations. We return to this
aspect in the Discussion.

The size of current genetic studies requires computation-
ally feasible methods for estimating relatedness between all
pairs of individuals, potentially 5 billion pairs for the TOPMed
project (http://www.nhlbiwgs.org). The scale of the task may
well rule out maximum likelihood approaches (e.g., Thompson
1975; Ritland 1996; Milligan 2003) and Bayesian methods
(e.g., Gaggiotti and Foll 2010), and Karhunen and Ovaskainen
(2012) have reviewed the challenges of selecting the allele
frequency distributions needed for likelihood- and Bayesian-
based methods. Moment estimates seem still to be relevant,
therefore, and will be presented here.

Materials and Methods

Allele-pair dependencies

Our discussion involves two dualities: the dependencies be-
tween pairs of alleles expressed either as correlations or as
probabilities of ibd; and the identification of allele pairs either
by the individuals or the populations from which they are
drawn. Although we generally sample individuals and score
genotypes, we begin with allelic descriptors: for a locus of
interest, and allele A identified by individual and population
(see Table 1), we assign the allelic indicator xu the value 1 if A
is of type u, and the value 0 if it is of not of type u. We will
assume alleles within diploids are defined unambiguously,
although we have previously (Hill and Weir 2004) discussed
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the situation when they are not, as have others (e.g.,
Holsinger et al. 2002). We write the dosage Xu of allele u
for a diploid individual as the sum of the x’s for the two alleles
carried by the individual, and for haploids the dosage is
Xu ¼ xu: For SNPs, we write X as the dosage of the reference
allele.

We stipulate that the expected value of xu; where expec-
tation is over replicates of the evolutionary history of that
allele, is pu; the probability a random allele is of type u, re-
gardless of which individual carries that allele or which pop-
ulation contains that individual. The essence of our treatment
rests on the expectation of the products of two xu’s, or the
probabilities that pairs of alleles are both of type u. For alleles
A and A9; with indicators xu and x9u; we stipulate the expec-
tation to be

E�xux9u�¼p2
u þ pu

�
12pu

�
u: (1)

As ℰðx2uÞ is also pu; we see that the variance of xu is
puð12puÞ for any allele at the locus of interest. We also
see, from Equation 1, that the covariance of xu and x9u is
puð12puÞu; and it follows that the quantity u is the correla-
tion of the indicators for pairs of alleles as in the writing of
Cockerham (e.g., Cockerham 1969). There is no requirement
in Equation 1 for u to be positive, and, for example, negative
values are expected for the two alleles carried by one indi-
vidual in populations for which there is avoidance of mating
between relatives. We add individual and population identi-
fiers to u in Table 1.

Following the work of Malécot (see review by Epperson
1999), we can also interpret Equation 1with u defined as the
probability that alleles A;A9 are ibd. It is then the case that u
cannot be negative. Either of the two alleles has probability
pu of being of type u. The other allele has probability u of
being ibd to the first, and so is also of type u, and it has
probability ð12 uÞ of not being ibd to the first, and so is of
type u with probability pu: If we follow Thompson (2013),

and regard ibd alleles as those that descend from a single
allele in a reference population, the allele probability pu

refers to the reference population. We distinguish the
expected value pu from the actual allele frequency pu in
a population, and from the frequency ~pu in a sample from
the population, as listed in Table 1.

Wewill phrasemuch of our subsequent discussion in terms
of ibd probabilities, but will return to the allelic indicator
correlations on occasion. Our estimation procedures rest on
Equation 1 and so will hold for both interpretations. We turn
first, however, to some predictions of ibd probabilities.

Predicted ibd probabilities

Individuals: For a single diploid individual j, the inbreeding
coefficient Fj is the probability its two alleles are ibd. The
coancestry, or kinship, coefficient ujj9 for individuals j; j9 is
defined here as the average of the four ibd probabilities
for one allele from each individual. It follows that the coan-
cestry of individual j with itself is ð1þ FjÞ=2: Generally,
however, we will follow WC84 and reserve the term coan-
cestry for distinct individuals. For haploids, inbreeding
coefficients are not needed, and kinship is the ibd proba-
bility of the allele in individual j with the allele in individ-
ual j9: We will have occasion to use uS; the average over
pairs of individuals of the coancestries for (samples from)
a population. In Table 1, we have added superscripts to
indicate the populations from which the individuals are
drawn.

If diploid individual J is ancestral to both j and j9; and if
there are n individuals in the pedigree path joining j to j9
through J, including j and j9; then ujj9¼

P ð0:5Þnð1þ FJÞ;
where FJ is the inbreeding coefficient of J, and the sum is
over all ancestors J and all paths joining j to j9 through J
(Wright 1922). The coancestry ujj9 is also the inbreeding co-
efficient for an individual with parents j; j9: If ancestor J is
further back in time than the reference time, then it does not
contribute to the relatedness of individuals j and j9:

Table 1 Notation

Quantity Notation

Allele Ai
jk for allele k 2 f1;2g; individual j 2 f1; 2; . . . :nig; population i 2 f1; 2; . . . rg

Allelic indicator xijku for allele Ai
jk being of type u

Allele frequency pu expected value of xijku for all i; j; k
piu actual frequency for allele type u in population i
~piu observed frequency for allele type u in sample from population i

Theta uii9jk; j9k9 is probability of ibd between allele k in individual j from population i and allele k9 in individual j9 from population i9

Inbreeding coefficient Fij is the ibd probability for the two alleles for individual j in population i: Fij ¼ 1
2

P2
k¼1

P2
k9¼1;k9 6¼ku

ii
jk;jk9

Coancestry coefficient Coancestry ujj9
i is the ibd probability for a pair of alleles drawn from individuals j; j9 in population i:

uijj9 ¼ 1
4

P2
k¼1

P2
k9¼1u

ii
jk; j9k9: uS

i is the average of uijj9 for all pairs j; j9: u
S is the average over populations of uSi : For any two

distinct alleles drawn from population i, the ibd probability is u iW : The average over populations of u iW is uW: uB is the
average of ibd probabilities for alleles from different populations

Relative inbreeding The relative inbreeding coefficient for individual j in population i is bi
j ¼ ðFij 2 uRÞ=ð12 uRÞ : reference uR is uiS or uB

Relative coancestry The relative coancestry coefficient for individuals j; j9 in population i is bi
jj9 ¼ ðuijj9 2 uRÞ=ð12 uRÞ : reference uR is uiS or uB

Population-specific FST bi
WT ¼ ðuiW 2 uBÞ=ð12 uBÞ is probability two alleles drawn from population i are ibd, relative to the probability an allele
drawn from one population is ibd to an allele drawn from another population. bi

ST ¼ ðuiS 2 uBÞ=ð12 uBÞ is for alleles
drawn from two individuals in population i
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Populations: For a single population, the average coancestry
coefficient uS will refer to pairs of distinct alleles, one in each
of two distinct individuals. For populations in which there is
random union of gametes Fj ¼ ujj9 for all j and j9 6¼ j and uwill
refer to a random pair of distinct alleles in the population
regardless of the individuals in which they are carried. If
we wish to distinguish this allele-based quantity from genotype-
based uS; as we do below, then we write it as uW : In Table 1,
we show superscripts to denote population, and we adopt
that convention now to describe the accrual of ibd in
random-mating population i with constant population size
Ni: Without mutation, ui [ uiW values for t discrete genera-
tions after the time when the population had ibd probability
uið0Þ; satisfy

uiðtÞ¼12
�
12uið0Þ��12 1

2Ni

�t

: (2)

This result was discussed by Wright (1931), although not
quite in this form, with uið0Þ shown explicitly. We plot u from
Equation 2 in the first row of Figure 1.

As for pairs of individuals, the coancestry for pairs of
populations is defined here as the average ibd probability
for pairs of alleles, one in each population. For populations i; i9
the quantity uii9B is the average over all such pairs of alleles and
it does not matter whether or not there is random mating
within each population. If there is random mating within
each of two populations i ¼ 1; 2 with constant population
sizes N1;N2; however, then genetic drift in the t distinct gen-
erations since they diverged from a common ancestral pop-
ulation where u12ð0Þ was the ibd probability provides

uiðtÞ¼12
�
12u12ð0Þ��12 1

2Ni

�t

; i ¼ 1; 2:

u12ðtÞ¼u12ð0Þ

In the absence of mutation and migration, the between-
population ibd probability u12ðtÞ at present time t is the same
as it was, u12ð0Þ; in the common ancestral population. To
avoid having to specify the ancestral value u12ð0Þ; we define
the relative coancestries within populations as biðtÞ ¼
½uiðtÞ2 u12ðtÞ�½12 u12ðtÞ� for i ¼ 1; 2: It is pairs of alleles,

Figure 1 Effects of Drift, Muta-
tion and Migration on u and b as
a function of generation. For all pan-
els, N1 ¼ 10;000 and N2 ¼ 100:
Left column (A, C, E) u1 in red,
u2 in blue, u12 in orange. Right
column (B, D, F) b1

WT in red, b2
WT

in blue, bWT in orange. (A, B) Drift
only (no mutation nor migration).
u1; u2 and b tend to 1, u12 ¼
0:000: (C, D) Drift and Mutation
m ¼ 1023;m1 ¼ m2 ¼ 0: u and
b have positive limits,1. At equi-
librium, u1 ¼ 0:024; u2 ¼ 0:714;
u12¼ 0:000; b1

WT¼ 0:024; b2
WT ¼

0:714; bWT ¼ 0:369: (E, F) Drift,
Mutation and Migration. m ¼
1023;m1 ¼ 1022;m2 ¼ 0: u pos-
itive and ,1, bWT is positive but
b1
WT is negative. At equilibrium,

u1 ¼ 0:543; u2 ¼ 0:714; u12 ¼
0:596; b1

WT ¼ 20:131; b2
WT ¼

0:292;bWT ¼ 0:080:
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one from each of populations 1 and 2, that serve as a refer-
ence for describing the ibd status for alleles within each of
populations 1 and 2, and there is zero ibd between the
two populations relative to this reference. For a study in
which there are only these two populations, we write
uW ¼ ðu1 þ u2Þ=2 and bW ¼ ðb1 þ b2Þ=2: We also write
uB ¼ u12; and we could write bB ¼ ðuB 2 u12Þ=ð12 u12Þ but
this is zero for two populations.

For a set of r populations, wemake use of the average over
populations of the between-individual, within-population,
coancestries, uS ¼ Pr

i¼1u
i
S=r; and the average over pairs

of populations of the population-pair coancestries, uB ¼Pr
i¼1

Pr
i9¼1;i9 6¼iu

ii9
B =½rðr2 1Þ�:We now have two possible refer-

ence sets for within-population coancestries. Relative to all
pairs of individuals in population i, the coancestry for indi-
viduals j; j9 is ðuijj9 2 uiSÞ=ð12 uiSÞ; and this has an average
value of zero. Relative to all pairs of alleles, one in each of
two distinct populations, the coancestry is ðuijj9 2 uBÞ=ð12 uBÞ;
and we write the average of these quantities over all pairs of
individuals as bi

ST ¼ ðuiS 2 uBÞ=ð12 uBÞ; the “population-
specific FST.” Averaging over populations gives the usual
“population-average FST,” now written as

FST ¼ bST ¼ uS2 uB

12 uB
; (3)

to stress it is the within-population coancestry relative to the
between population-pair coancestry. Recall that our use of
uiS; u

S for within-population pairs of alleles indicates that we
are referring to genotypes, whereas, if we work only with
alleles, we write uiW ; uW ¼ P

iu
i
W=r and allele-based FST is

FST ¼ bWT ¼ uW 2 uB

12 uB
: (4)

This is the average over populations of the bi
WT ¼ ðuiW 2 uBÞ=

ð12 uBÞ: This expression has been given previously (e.g.,
Karhunen and Ovaskainen 2012). For random-mating popu-
lations, there will be no need for this distinction between bST
and bWT:

We acknowledge a notational difficulty in our use of
superscript B rather than T and the loss of an immediate
similarity to the work of Sewall Wright (e.g., Wright 1951).
We use B to stress that our reference set of alleles is between
pairs of populations or individuals, whereas T would suggest
a total of all pairs, including those within populations or
individuals, and the subsequent need to specify population
size for the proportion of pairs from the same allele in one
individual. Our formulation is simpler by having a reference
be “between” rather than “total.”

In WC84, we had set uB to zero but we do not need that
restriction to extend the result of Reynolds et al. (1983)
that FST for a set of populations provides a measure of the
time since those populations separated from an ancestral
population under a pure drift model. Population-specific
and population-average FST values are defined for a set of
populations, and are not defined when the set has a single

population. For a single population i, we still have the ibd
probability ui; and we note that Balding (2003) refers to
this as FST:

This development with the u values regarded as ibd prob-
abilities can be replicated with u regarded as a correlation of
allelic state indicators. Transition equations can be estab-
lished for Pii9u;u; the probability a random pair of alleles, one
from population i and one from population i9; are both of type
u. Adding over allele types leads to the same transition equa-
tion for correlations as for ibd probabilities, so that Equa-
tion 4 applies to correlations, and brings us back to
Wright’s original definition of FST (Wright 1951).

F-statistics: The quantity FST is one of a set of three functions
of allelic-state correlations introduced by Wright (1951) for
alleles within individuals I within subpopulations S of a total
population T. The three quantities FIS; FST; and FIT are col-
lectively referred to in population genetics as F-statistics.
Reich et al. (2009) worked with functions of allele frequen-
cies in two, three, or four populations. For a SNP reference
allele, their two-population functions involved the squared
difference of allele frequencies in the two populations, and
were termed f-statistics. Subsequently, Peter (2016) defined
“F-statistics” with, for example, F2ði; i9Þ ¼ Eðpi2pi9Þ2 where p
is the actual allele frequency in population i. In our notation,
omitting W subscripts, F2ð1; 2Þ ¼ pð12pÞðu1 þ u2 2 2u12Þ:

Drift, mutation, and migration: Nontrivial equilibria for
populations drifting apart are obtained when there is muta-
tion and migration, and we illustrate some aspects of our
population-specific approach by considering the case of two
randomly mating populations exchanging alleles each gen-
eration when there is infinite-alleles mutation. A similar
treatment (Rousset 1996) allows for symmetric mutation
rates among a fixed finite set of alleles. The ibd probability
transition equations for an arbitrary number of popula-
tions, but with equal population sizes and equal migration
rates between all pairs of populations, were given by
Maruyama (1970). In our case of two unequal population
sizes and unequal migration rates, they are, omitting W
subscripts,

u1ðt þ 1Þ ¼ ð12mÞ2
h
ð12m1Þ2f1ðtÞ þ 2m1ð12m1Þu12ðtÞ

þm2
1f

2ðtÞ
i

u2ðt þ 1Þ ¼ ð12mÞ2
h
m2

2f
1ðtÞ þ 2m2ð12m2Þu12ðtÞ

þ ð12m2Þ2f2ðtÞ
i

u12ðt þ 1Þ ¼ ð12mÞ2�ð12m1Þm2f
1ðtÞ þ ½ð12m1Þð12m2Þ

þm1m2�u12ðtÞ þm1ð12m2Þf2ðtÞ�;
(5)

where fiðtÞ ¼ 1=ð2NiÞ þ ð2Ni 2 1ÞuiðtÞ=ð2NiÞ; the mutation
rate is m, and population i : i ¼ 1; 2 receives a fraction mi of
its alleles each generation from population i9 : i9 6¼ i: A
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consequence of these equations is that u1ðtÞ þ u2ðtÞ$ 2u12ðtÞ;
or that uW $ uB and bWT ¼ FST is positive. However, it is not
necessary that each of u1; u2 exceeds u12: In Figure 1, second
row, we show that mutation leads to equilibrium values of ui

different from 1, and, in the third row, that migration can lead
to cases where u1 . u12 . u2: In the absence of migration,
mutation drives u12 to zero, so that bi

WT ¼ ðui 2 u12Þ=
ð12 u12Þ ¼ ui are both positive. For two populations, b12

WT
is always zero.

We used numerical methods to find the equilibria for
Equation 5, and in Figure 2 we show the region in the
space of N1;m1 values where b1

WT # 0#b2
WT for fixed

N2;m2; and m: Averaging over the two bi
WT to work with

FST hides any difference in the sign of bi
WT. We note that, in

this model, migrants do not come from a “unique and com-
mon migrant pool,” as is assumed in the F-model of Balding
(2003), Beaumont (2005) and Gaggiotti and Foll (2010).

Actual vs. predicted u: The probabilities of ibd calculated
from path-counting methods for pedigrees of individuals, or
from transition equations for populations, can be regarded as
theexpected values, over evolutionary replicates, of the actual
identity status of a pair of alleles. We have previously dis-
cussed the variation of actual identity about the predicted
value (Hill and Weir 2011, 2012), as did Speed and Balding
(2015). The variance of an actual ibdmeasure for two alleles,
whose predicted value is u, is D2 u2 (Cockerham and Weir
1983), where D is the joint probability of ibd for each of two
pairs of alleles. The coefficient of variation of the actual coan-
cestry for two individuals is.1 for individuals with predicted
coancestry u ,0.125, and it increases as the degree of re-
lationship decreases. The implication of this is that, for a par-
ticular pair of populations or individuals, estimated values
may not match those expected from pedigrees or transition
equations. Evaluation of estimation procedures should,
therefore, be performed over many replicates.

Estimation

Allelic matching: We find intuitive appeal in working with
proportions of pairs of alleles that are identical by state (ibs).
The matching (allele sharing) proportion for pairs of distinct
alleles k; k9 drawn from individual j in a sample from popu-
lation i is eMi

jj ¼
P

u
P2

k¼1
P2

k9¼1;k9 6¼kx
i
jkux

i
jk9u=2; using the nota-

tion in Table 1. From Equation 1 this matching proportion
has expected value M þ ð12MÞFij where M ¼ P

up
2
u: Simi-

larly, the matching proportion for pairs of alleles k; k9 drawn
from distinct individuals j; j9 respectively in population i iseMi

jj9 ¼
P

u
P2

k¼1
P2

k9¼1x
i
jkux

i
j9k9u=4; and this has expectation

M þ ð12MÞuijj9: In Table 2 we display all the matching pro-
portions needed for data consisting of genotypes from ni
individuals drawn from the ith of r populations, along with

Figure 2 Contour plots for b1
WT at equilibrium obtained by solving the

system of Equation 5. N2 and m2 fixed at 1000 and 0.01 respectively
(solid horizontal and vertical black lines). The region above and to the
right of the red line has equilibrium values of u1 # u12 # u2; i.e.,
b1
WT #0#b2

WT: In that region, a pair of alleles within population 1 has
a smaller probability of ibd than does an allele from population 1 with an
allele from population 2.

Table 2 Allele-pair matching proportions

Matching of two distinct alleles within individual j in population i eMi

j ¼ ð1=2ÞPuX
i
juðXi

ju 21Þ; E
� eMi

j

	
¼ M þ ð12MÞFij

Average within-individual matching in population i eMi

I ¼ ð1=niÞ
Pni

j¼1
eMi

j ; E
� eMi

I

	
¼ M þ ð12MÞFiI

Average over populations of within-individual matching eMI ¼ ð1=rÞPr
i¼1

eMi

I ; E
� eMI	 ¼ M þ ð12MÞFI

Matching of one allele from each of individuals j; j9 in population i eMi

jj9 ¼ ð1=4ÞPuX
i
juX

i
j9u; E

� eMi

jj9

	
¼ M þ ð12MÞuijj9

Average between-individual matching in population i eMi

S ¼ 1=½niðni 21Þ�Pni
j¼1

Pni
j9¼1;j96¼j

eMi

jj9; E
� eMi

S

	
¼ M þ ð12MÞuiS

Average over populations of between-individual within-population matching eMS ¼ ð1=rÞPr
i¼1

eMi

S; E
� eMS

	
¼ M þ ð12MÞuS

Matching of two distinct alleles, ignoring genotypes, within population i eMi

W ¼ ½2ni=ð2ni 2 1Þ�Pu~p
2
iu 2 ½1=ð2ni 21Þ�; E

� eMi

W

	
¼ M þ ð12MÞuiW

Average over populations of within-population allele matching, ignoring genotypes eMW ¼ ð1=rÞP1
i¼1

eMi

W ; Eð eMW Þ ¼ M þ ð12MÞuW

Matching of an allele from individual j in population i with an allele from individual j9 in population i9: eMii9

jj9 ¼ ð1=4ÞPuX
i
juX

i9
j9u; E

� eMii9

jj9

	
¼ M þ ð12MÞuii9jj9

Matching of one allele from each of populations i; i9 eMii9

B ¼ ½1=ðninj9Þ�
Pni

j¼1

Pni9
j9¼1

eMii9

jj9 ¼
P

u~piu~pi9u; E
� eMii9

B

	
¼ M þ ð12MÞuii9B

Average over pairs of populations of between-population-pair matching eMB ¼ f1=½rðr2 1Þ�gPr
i¼1

Pr
i9¼1;i9 6¼i

eMii9

B ; E
� eMB

	
¼ M þ ð12MÞuB
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expected values of these proportions. Within populations, it
is convenient to express matching proportions in terms of
individual allelic dosages rather than allelic indicators. Between
populations, it is convenient to use sample allele frequencies.

Individuals: If data are available only from a single popula-
tion, it is possible to estimate only the probability of two
alleles, within or between individuals, being ibd relative to
the ibd probability of pairs of alleles in a reference set defined
by these data. We take the reference set to be an allele from
one individual in the sample, paired with an allele from an-
other individual in the sample, averaged over all pairs of
distinct individuals in the sample. The estimates are shown
in Table 3, and for SNPs they are as shown in Equation 6
without designating the population:

Relative  inbreeding  for  individual  j :

b̂j ¼
�
Xj21

�2
2 eMS

12 eMS

Relative  coancestry   for  individuals  j; j9 :

b̂jj9 ¼
1
2

�
1þ �

Xj2 1
��
Xj92 1

��
2 eMS

12 eMS
; (6)

where, for a sample of n individuals, eMS ¼
Pn

j¼1Pn
j9¼1;j9 6¼j½1þ ðXj 2 1ÞðXj92 1Þ�=½2nðn21Þ�: Recall that Xj is

the reference-allele dosage for individual j. Averaging the
inbreeding coefficient over individuals in the sample gives
an estimate of the within-population inbreeding coefficient
FIS for the sampled population, whereas the average coances-
try is zero by construction.

Notice that we construct estimates as the ratio of expres-
sions that each have expected values proportional to
12M ¼ P

upuð12puÞ: As we did in WC84, we assume
the expected value of the ratio of two expressions is approx-
imately the ratio of their expectations. The ð12MÞ values
cancel, and we are left with expected values that are our
“relative to” functions of ibd probabilities. This first-order
Taylor series approximation to the expectation of a ratio has
proven robust for FST since 1984 (e.g., Goudet et al. 1996),
and the results shown in Figure 7 below suggest it is also robust
for relatedness estimation. Being able to cancel the M terms
means we avoid having to know, or estimate, (squares of) the
allele frequencies pu; and so we avoid having to specify ances-
tral populations or individuals. Ourwork results in ranking pop-
ulations or individuals by estimates of their ibd status.

Thenewestimatorswedisplay inEquation6differ fromthe
standard estimators (e.g., Ritland 1996; Yang et al. 2011;
Wang et al. 2017). For biallelic loci these estimators are

ûjj9 ¼
�
Xj 22~p

��
Xj92 2~p

�
4 ~p

�
12 ~p

� (7)

for all j; j9: These estimators use the sample allele frequencies
for the sampled population, and are intended to estimate

ð1þ FjÞ=2 when j ¼ j9 and ujj9 when j 6¼ j9: There is no simple
translation from these estimates to those we propose in
Equation 6.

Ochoa and Storey (2016a,b) have estimates equivalent to
those in Equation 6. Their expressions are a little different
because their reference is for all pairs of alleles in a sample,
including those within individuals, whereas ours are for pairs
of alleles in different individuals. Astle and Balding (2009)
(Equation 2.3) gave similar estimates although, in effect,
they set uB; the average coancestry of all pairs of individuals
in a sample, to zero.

We estimate inbreeding and coancestry relative to the
average coancestry of all pairs of individuals in a study.
Yang et al. (2010) also discuss estimates relative to the study
population, and say “Estimates of relationships are always
relative to an arbitrary base population in which the average
relationship is zero. We use the individuals in the sample as
the base so that the average relationship between all pairs of
individuals is 0 and the average relationship of an individual
with him- or herself is 1.” Although our estimates of pairwise
relationship sum to zero when we use data from a single
population, we retain the unknown value uS in their expect-
ations. We cannot estimate uS; and we may prefer to report
estimates relative to those for the least related pairs as de-
scribed below in Equation 11.

Populations: With data from a set of r populations, the
matching proportions and estimates are also shown in Table
2 and Table 3. In each table these population-based entries
reduce to individual-based entries if the sample sizes are one,
ni ¼ 1; i ¼ 1; 2; . . . ; r: Regardless of sample size, we can esti-
mate inbreeding and coancestry relative to pairs of alleles,
one from each of all pairs of populations in the study. In that
case, we would replace a population-specific eMS in Equation 6
by a population-pair average eMB

: The average inbreeding co-
efficient estimate over individuals in a population i is now an
estimate of the population-specific FiIT value, and averaging
these over populations gives an estimate of FIT: Averaging the
coancestries for pairs of individuals in population i gives an
estimate of the population-specific FiST; and averaging those
over populations gives an estimate of FST:

With genotypic data, the estimates in Table 3 provide the
usual relationship

ð12 FITÞ ¼ ð12 FSTÞð12 FISÞ (8)

althoughour use of thewhole set of populations as a reference
does not allow alleles to be drawn from the same population
for the matching proportion eMB

: This shows the composite
nature of FIT; and we note that, if one is interested in an
overall inbreeding coefficient, it might be better estimated
by not accounting for the subpopulations. Note that Equa-
tion 8 holds for the overall bIT;bST; and bIS quantities as
well as the population-specific bi

IT;b
i
ST; and bi

IS quantities.
If we ignore genotypes and use only allelic data,

then we return to estimation of population-specific
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and population-average FST with eMi
W and eMW

compared
to eMB

:

F̂
i
ST ¼ b̂

i
WT ¼

eMi
W 2 eMB

12 eMB ; F̂ST ¼ b̂WT ¼
eMW

2 eMB

12 eMB :

The population-average value has been given previously by
Hudson et al. (1992) (Equation 3).

For SNPs, where the sample frequency of the reference
allele for population i is ~pi; the allele-based population-
specific, and population-average FST estimates for large
sample sizes can be written as

b̂ i
WT ¼

�p
�
12 �p

	
2 ~pi

�
12 ~pi

	
þ 1

r s
2
p

�p
�
12 �p

	
þ 1

r s
2
p

b̂WT ¼ s2p

�p
�
12 �p

	
þ 1

r s
2
p

; (9)

where �p ¼ Pr
i¼1~pi=r and s2p ¼ Pr

i¼1ð~pi2�pÞ2=ðr2 1Þ: For
a large number of sampled populations, and only then, b̂WT
is the common FST estimate s2p=�pð12 �pÞ (e.g., Hartl and
Clark 1997, Equation 4.6). For all r it is an estimate of
ðuW 2 uBÞ=ð12 uBÞ: For the case r ¼ 2; the single-population
and population-pair estimates are

b̂ 1
WT ¼

�
~p1 2 ~p2

��
2~p1 2 1

�
~p1
�
12 ~p2

�þ ~p2
�
12 ~p1

�

b̂
2
WT ¼

�
~p2 2 ~p1

��
2~p22 1

�
~p1
�
12 ~p2

�þ ~p2
�
12 ~p1

�

b̂WT ¼
�
~p12~p2

�2
~p1
�
12 ~p2

�þ ~p2
�
12 ~p1

�: (10)

Each of the estimates in Equation 10 reflects difference of the
two sample allele frequencies. Either b̂

1
WT or b̂

2
WT can be neg-

ative as shown in Figure 2 for predicted values, but b̂WT is
positive.

Note that the pairwise coancestry estimates b̂jj9; j 6¼ j9; and
population-pair estimates b̂

ii9
; i9 6¼ i; sum to zero by construc-

tion. Although it is not possible to find estimates for each u

when the sampled individuals within a population are re-
lated, or when sampled populations have correlated sample
allele frequencies, or when there is just a single sampled
population, it is possible to rank b̂ values, and, we expect
these to have the same ranking as their expected values u.

Combining over loci: Single-locus analyses do not provide
meaningful results, and combining estimates over loci l has
often been considered in the literature. In a parallel discus-
sion of weighting over alleles u at a single locus, Ritland
(1996) considered weights wu chosen to minimize variance.

If the locus-l estimates b̂l; for individuals (Equations 6 and
7) or populations (Equations 9 and 10), are written as Nl=Dl;

then a weighted average over loci is
P

lwlb̂l=
P

lwl: Two ex-
treme weights arewl ¼ 1 andwl ¼ Dl: The first may be called
“unweighted” and the second “weighted.” For population
structure, Bhatia et al. (2013) refer to the first estimate as
the “average of ratios” and the second as the “ratio of aver-
ages.”WC84 advocated the second, with justification given in
the Appendix to that paper, as did Bhatia et al. (2013).

The unweighted estimate is unbiased for all allele frequen-
cies, but is susceptible to the effects of rare variants, when the
denominators Dl of the single-locus estimates can be very

Table 3 Estimates of inbreeding, coancestry, and relatedness

Allele matching in individual j of population i, relative to individual-pair matching in population i. b̂
i
j ¼ ð eMi

j 2
eMi

SÞ=ð12 eMi

SÞ; E
�
b̂
i
j

	
¼ bi

j ¼
ðFij 2 uiSÞ=ð12 uiSÞ

Average within-individual matching in population i, relative to individual-pair matching in population i b̂
i
IS ¼ ð eMi

I 2
eMi

SÞ=ð12 eMi

SÞ;
E
�
b̂
i
IS

	
¼ FiIS ¼ bi

IS ¼ ðFiI 2 uiSÞ=ð12 uiS; Þ population-specific FIS

Population average of within-individual matching, relative to individual-pair matching in each population. b̂IS ¼ ð eMI
2 eMSÞ=ð12 eMSÞ; Eðb̂ISÞ ¼ FIS ¼ bIS ¼

ðFI 2 uSÞ=ð12 uSÞ
Population average of within-individual matching, relative to allele matching between populations. b̂IT ¼ ð eMI

2 eMBÞ=ð12 eMBÞ; Eðb̂ITÞ ¼ FIT ¼ bIT ¼
ðFI 2 uBÞ=ð12 uBÞ

Allele matching between individuals j; j9 in population i relative to between-individual matching in that population. b̂
i
jj9 ¼ ð eMi

jj9 2
eMi

SÞ=ð12 eMi

SÞ; E
�
b̂
i
jj9

	
¼

bi
jj9 ¼ ðuijj9 2 uiSÞ=ð12 uiS; Þ with zero average over pairs of individuals.

Average individual matching within population i, relative to allele matching between populations. b̂
i
ST ¼ ð eMi

S 2
eMBÞ=ð12 eMBÞ; E

�
b̂
i
ST

	
¼ bi

ST ¼
ðuiS 2 uBÞ=ð12 uBÞ; population-specific FST for genotypic data.

Population average of within-population individual-pair matching, relative to allele matching between populations. b̂ST ¼ ð eMS
2 eMBÞ=ð12 eMBÞ;

Eðb̂STÞ ¼ bST ¼ FST ¼ ðuS 2 uBÞ=ð12 uBÞ; overall FST for genotypic data.
Distinct allele matching within population i, ignoring genotypes, relative to allele matching between populations. b̂

i
WT ¼ ð eMi

W 2 eMBÞ=ð12 eMBÞ;
E
�
b̂
i
WT

	
¼ bi

WT ¼ ðuiW 2 uBÞ=ð12 uBÞ; population-specific FST for allelic data.

Population average of within-population allele matching, relative to allele matching between populations. b̂WT ¼ ð eMW
2 eMBÞ=ð12 eMBÞ;

Eðb̂WTÞ ¼ FST ¼ bWT ¼ ðuW 2 uBÞ=ð12 uBÞ; overall FST for allelic data.
Matching of one allele from each of populations i; i9; relative to allele matching between all populations. b̂

ii9
B ¼ ð eMii9

B 2 eMBÞ=ð12 eMBÞ; Eðb̂ii9
BTÞ ¼ bii9

B ¼
ðuii9B 2 uBÞ=ð12 uBÞ; with zero average over pairs of populations.
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small. Rare variants may have little effect on the weighted
average, and the variance of the estimate is seen in simula-
tions to be less than for the unweighted average, but it is
unbiased only if every locus has the same b value. A more
extensive discussion was given in the Appendix of WC84 for
population structure, and by Ritland (1996) for inbreeding
and relatedness. More recently, Ochoa and Storey (2016b)
discussed weights for their estimates, and Wang et al. (2017)
discuss weighting in the context of known allele frequencies.

Regardless of weighting scheme, the use of several loci
allows us to use bootstrapping over loci (Weir 1996) to gen-
erate empirical sampling distributions for our estimates. We
used bootstrapping for confidence intervals in the Results
section. We discussed sampling properties previously (Weir
and Hill 2002; Weir et al. 2005), and will give more details
elsewhere. We note here that it is increasing the number of
loci, rather than the number of individuals, that lead to the
greatest reduction in variance—providing the parametric val-
ues do not vary too much over loci.

Private alleles: Current sequence-based studies are revealing
large numbers of low-frequency variants, including those
found in only one population. These private alleles were
identified by Slatkin (1985) and Mathieson and McVean
(2012) as being of particular interest. They are very frequent
in the 1000 genomes project data (1000 Genomes Project
Consortium 2010). We show estimates in Table 4 for the case
of an allele observed in only one of a set of r populations.

The estimate of bWT ¼ FST for a private allele is, ap-
proximately, its own-population sample frequency, but
the population-specific value b̂

1
WT for its own population

ranges from approximately 2rþ 1 when ~p1 is very small to
1 when ~p1 ¼ 1: This amplifies the comment “populations
can display spatial structure in rare variants, even when
Wright’s fixation index FST is low” of Mathieson andMcVean
(2012). A population with many private alleles at low to
intermediate frequencies will thus likely have a negative
b̂WT; and how negative will depend on how many popula-
tions have been sampled. Note that this implies b̂

i
WT must

be allowed to go negative, whereas Bayesian and maxi-
mum likelihood estimators of population specific FST are
often forced to belong to ½0; 1�; although this assumption
can be relaxed (Ritland 1996).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Population structure

We conducted a series of simulations to evaluate the perfor-
mance of our FST estimates, and we looked at 1000 Genomes
SNP data to explore the role of rare variants on the estimates.

Some of the simulations were conducted with sim.genot.
metapop.t available in the hierfstat package (Goudet 2005).
The migration model we used allows for a matrix of migra-
tion rates between each pair of populations, and themutation
model allows for multiple alleles at a locus. The notation for
a two-population model was given above. Our approach of
estimating FST values that are population-specific, and of
allowing allele frequencies to be correlated among popula-
tions, means that we are estimating different (combinations
of) parameters than have other authors (e.g., Gaggiotti and
Foll 2010).

Drift with mutation

We first simulated genotypic data under a scenario of pure
genetic drift from a common ancestral population. Popula-
tions of different sizes (100; 1000 and 10; 000) were in-
vestigated, and 50 diploid individuals, each genotyped at
1000 loci with up to 20 alleles were sampled from each pop-
ulation at three time points: t ¼ 50; 500; and 5000 genera-
tions. The results are reported in Table 5. In all situations, the
estimates b̂

i
WT are close to their expectations, and the 95%

confidence intervals obtained by bootstrapping over loci in-
clude the expected value bi

WT: The credible intervals for F̂
i
ST

obtained from Bayescan 2.1 (Foll andGaggiotti 2008) include
the expected values bi

WT for only three of the nine reported
situations. The Bayescan estimate F̂

i
ST tends to overestimate

bi
WT when it is large, and to underestimate it when it is small.

A possible reason for this discrepancy is that the Dirichlet
distribution used in Bayescan is an approximation of allele
frequency distribution under an equilibrium island model
(Gaggiotti and Foll 2010). We note that an alternative to
the Dirichlet distribution often used, the truncated normal
distribution (Nicholson et al. 2002), might be more appropri-
ate for the simulated data, but we are unaware of available
implementations of such estimator of FST:Moreover, both the
Dirichlet and the truncated normal are just convenient
approximations of the true distribution of allele frequencies

Table 4 Population-level estimates for private alleles

Quantity Observation or estimate

Private allele
frequency

~p1 in population 1, zero in populations 2;3; . . . ; r

Sample matching
proportions

~M
1
W ¼ 122~p1ð12 ~p1Þ2ni=ð2ni 21Þ

~M
i
W ¼ 1; i 6¼ 1

~M
W ¼ 122~p1ð12 ~p1Þ2n1=½rð2n1 2 1Þ�

~M
1i
B ¼ 12 ~p1; i 6¼ 1

~M
ii9
B ¼ 1; i; i9 6¼ 1; i 6¼ i9

~M
B ¼ 122~p1=r

b estimates F1ST ¼ b̂
1
WT ¼ 12 rð12 ~p1Þ2n1=ð2ni 2 1Þ

� 12 r
�
12 ~p1

	
FiST ¼ b̂

i
WT ¼ 1; i 6¼ 1

FST ¼ b̂WT ¼ ð2n1 2 ~p1 21Þ=ð2n1 21Þ � ~p1
b̂
1i
WT ¼ 12 r=2; i 6¼ 1

b̂
ii9
WT ¼ 1; i; i9 6¼ 1
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[see figure S1 and file S2 in Karhunen and Ovaskainen
(2012)].

Drift with mutation and migration

Model 1. Same migration rates, different population sizes:
We considered two populations under the model described
by Equation 5, with sizes N1 ¼ 100;N2 ¼ 1; 000; and mi-
gration rates m1 ¼ m2 ¼ 0:01: The mutation rate was
m ¼ 1026: After 400 generations, b has expected values
b1
WT ¼ 0:156 and b2

WT ¼ 2 0:037; and u12WT ¼ 0:059: We
simulated 50 individuals from each population under this
scenario, with 1000 loci and up to 20 alleles per locus. From
the resulting allelic data we obtained estimates, and 95%
confidence intervals by bootstrapping over loci. The results
are shown in Table 6. The predicted values are contained in
the confidence intervals, and there are negative values for
both the parametric and the estimated value of b2

WT: Note
that we cannot estimate b12

WT with data from two populations.

Model 2. Continent-island model: In this scenario we have
an infinite continent supplying a proportion m ¼ 0:01 of the
alleles independently to populations 1 and 2, still with sizes
N1 ¼ 100 and N2 ¼ 1; 000: There is no migration between
the two populations, so u12 ¼ 0: Table 6 shows that the pre-
dicted values are contained in the confidence intervals of
their estimated values. For this situation, the F-model is suit-
able, and at the bottom of Table 6 we report F̂

1
ST; F̂

2
ST with

their 95% credible intervals. F̂
1
ST slightly overestimates b1

WT
and F̂

2
ST underestimates b2

WT:

Model 3. Migrant-pool island model: In this model, each
population contributes to amigrant pool, fromwhichmigrant

alleles aredrawn.Among themigrant alleles in the case of two
populations, half of the “migrant alleles” will in fact be resi-
dent alleles if the gametic pool is composed of the same pro-
portion of alleles from each island, independent of its size.
With otherwise the same parameter values, the predicted
values, and our estimates after 400 generations, are shown
in Table 6, and are in good agreement.

Model 4. Different population sizes, different migration
rates: We return to the two-populations model described by
Equation 5, but now with N1 ¼ 10; 000 and N2 ¼ 100; and
different migration rates m1 ¼ 0:01 and m2 ¼ 0: Predicted
values after 400 generations are given in Table 6.

The results in Table 5 and Table 6 show good behavior of
bi
WT estimates with low bias. In Figure 3 we show the esti-

mates for 10 different time points (independent replicates)
for Model 4 with a mutation rate of 1023 in order to main-
tain sufficient levels of polymorphism. Again, expected val-
ues and estimates are in good agreement throughout the
simulations.

Rare alleles: For r populations with total sample size nT ;
and with x1 copies of an allele private to population 1, the
total count for this alleles is xT ¼ x1 and ~pT ¼ n1~p1=nT ; so
b̂WT ¼ nT ~pT=n1 � r~pT ; assuming similar sample sizes for
each sample. In Figure 4 we display b̂WT ¼ FST as a function
of allele frequencies for SNPs located on chromosome 2 in
the 1000 Genomes project. Individuals were grouped by
regions (Africa, Europe, South Asia, East Asia and the Amer-
icas). The drawn line corresponds to bWT ¼ 5pT : The initial
linear segment corresponds to alleles that are present in one
continent only. bWT starts departing from this line for allele
counts .80, or equivalently, for worldwide sample
frequencies .� 0:01; given the sampled chromosome num-
ber of 2426:

When a new allele appears, it will be present in one
population only. We expect most, if not all, rare alleles to
be private alleles, and thus the expected values for FST (bWT)
for these rare alleles are their own-population frequencies.
When b̂WT starts departing from the allele frequency, it
implies that some scattering has been happening. In spe-
cies with a lot of migration, this will happen at low frequen-
cies, whereas the species that are more sedentary should
show a 1:1 relation between subpopulation allele frequen-
cies and bWT for a larger range of their site frequency
spectrum.

Table 5 Predicted and estimated population-specific FST values for
two populations without migration

t N bi
WT ¼ ui b̂

i
WT F̂

i
ST

50 100 0.221 0.222 (0.215, 0.229) 0.332 (0.325, 0.340)
50 1,000 0.025 0.026 (0.024, 0.028) 0.026 (0.025, 0.027)
50 10,000 0.002 0.003 (0.001, 0.005) 0.0003 (0.0001, 0.0005)
500 100 0.891 0.887 (0.875, 0.899) 0.918 (0.911, 0.925)
500 1,000 0.211 0.211 (0.204, 0.219) 0.289 (0.283, 0.296)
500 10,000 0.023 0.025 (0.021, 0.029) 0.002 (0.001, 0.002)
5000 100 0.962 0.958 (0.950, 0.965) 0.958 (0.953, 0.964)
5000 1,000 0.693 0.698 (0.684, 0.713) 0.683 (0.673, 0.694)
5000 10,000 0.143 0.145 (0.138, 0.152) 0.056 (0.053, 0.058)

Mutation rate m ¼ 1024; 1000 multi allelic loci. 95% confidence intervals for b̂
i
WT

from bootstrapping over loci. 95% credible intervals obtained with Bayescan 2.1 for
F̂
i
ST:

Table 6 Predicted and estimated population-specific FSTvalues for two populations with migration

Model N1 N2 m1 m2 b1
WT b̂

1
WT b2

WT b̂
2
WT u12WT

1 100 1000 0.01 0.01 0.156 0.159 (0.148, 0.169) 20.037 20.031 (20.038, 20.023) 0.059
2 100 1000 0.01 0.01 0.198 0.203 (0.196, 0.211) 0.024 0.025 (0.022, 0.027) 0
3 100 1000 0.01 0.01 0.277 0.268 (0.254, 0.282) 20.061 20.059 (20.067, 20.050) 0.112
4 10,000 100 0.01 0 20.281 20.269 (20.292, 20.248) 0.461 0.448 (0.419, 0.477) 0.090

Mutation rate m ¼ 1026; Generation t ¼ 400; 1000 multiallelic loci. 95% confidence intervals from bootstrapping over loci. For Model 2, using Bayescan 2.1,
F̂
1
ST ¼ 0:206ð0:201; 0:211Þ; F̂2ST ¼ 0:001ð0:000; 0:002Þ:
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Reference populations: In Buckleton et al. (2016) we gave
population-specific FST estimates for a set of 446 populations,
using published data for 24 microsatellite loci collected for
forensic purposes.We showed in that paper how the choice of
a reference set of populations can affect results. Here, we
illustrate this point with data from the 1000 genomes, using

1,097,199 SNPs on chromosome 22. For the samples origi-
nating from Africa, there is a larger FST; b̂WT ¼ 0:013; with
Africa as a reference set than there is, b̂WT ¼ 2 0:099; with
the world as a reference set. African populations tend to be
more different from each other on average than do any two
populations in the world on average. The opposite was found
for the collection of East Asian populations: there is a smaller
FST; b̂WT ¼ 0:013 with East Asia as a reference set than there
is, b̂WT ¼ 0:225 with the world as a reference set. East Asian
populations are more similar to each other than are any pair
of populations in the world.

Inbreeding and coancestry

To check on the validity of our estimators of individual in-
breeding and coancestry coefficients, we simulated data for
a range of nine coancestries: ði=32 : i ¼ 0; 1; . . . ; 6; 8; 10Þ:Us-
ing thems software (Hudson 2002), we generated data from
an island model with two populations exchanging Nm ¼ 1
migrant per generation. We simulated 5000 independent
loci, read either as haplotypes (5000) or as SNPs (�80,000
polymorphic sites for the founders). We then chose 20 indi-
viduals from one of these populations and let them mate at
random, without selfing. We did not assign or consider sex
for these 20 founders. In order to generate a sufficient num-
ber of pairs of related individuals, we drew the number of
offspring per mating from a Poisson distribution with a mean
of five. These offspring were also allowed to mate at random,
without selfing, and produced families with sizes drawn from
a Poisson distribution with mean three. By keeping records of
all matings we could generate the pedigree-based inbreeding
and coancestry values for all 135 individuals: founders, their
offspring, and their grand-offspring. The pedigree-based
coancestries for all 9045 pairs of individuals are shown in

Figure 3 Estimated bWT for independent simulations of the two-
population model described by the system of Equation 5, at different
times. Population sizes N1 ¼ 10; 000 and  N2 ¼ 100: Migration rates
m1 ¼ 0:01 and m2 ¼ 0:0: Mutation rate m ¼ 1023: b1

WT in red, b2
WT in

blue, bWT in black. Lines are expectations, points are estimates, and bars
represent the 95% confidence intervals obtained by bootstrapping over
loci.

Figure 4 bWT as a function of allele frequencies (nu=nT ) for SNPs
located on chromosome 2. Data from the 1000 genomes project,
individuals were grouped by regions (Africa, Europe, South Asia,
East Asia, and Americas). The drawn line corresponds to 5nu=nT :
The initial linear segment corresponds to alleles that are present in
one continent only. bWT starts departing from this line for allele
counts .80, or equivalently, for worldwide frequencies . � 0:01;
given the sampled chromosome number of 2426.
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Figure 5, although we note (Hill and Weir 2011) that the
actual values have variation about expected or pedigree
values.

The left-hand plot of Figure 6 compares the coancestry
estimates b̂jj9; with the pedigree values for all pairs of indi-
viduals in the pedigree, and reflects the summing to zero by
construction of the b̂jj9; j 6¼ j9 coancestries, whereas the ped-
igree coancestries are necessarily non-negative. The right-
hand plot shows a “correction” of the estimates: we took
the set of smallest b̂ jj9 values in the left-hand plot to represent
the unrelated (relative to the assumed-unrelated) founders.
If we write b̂ 0 as the average value of the set of least-related
pairs of individuals then our corrected values b̂

c
jj9 are

b̂c
jj9 ¼

b̂ jj9 2 b̂ 0

12 b̂ 0
: (11)

The corrected estimates are clearly close to the pedigree
values. However, we are not sure if it is necessary, in general,
to undertake this correction process. Whether or not it is
applied, the b̂ values are still relative to those among all pairs
of individuals in a study sample. In general, we will not have
any individuals identified for which it is justified to assume
zero relatedness or zero inbreeding, and we note the com-
ment by Thompson (2013) “in most populations IBD within
individuals is at least as great as IBD between.”

The distributions of estimates in Figure 7A are tightly
clustered around nine values, corresponding to the nine dis-
tinct pedigree values i=32; i ¼ 0; 1; 2 . . . 6; 8; 10: A contrast-
ing result is shown in Figure 7B, for the standard estimates

(Equation 7), calculated as weighted averages over loci (i.e.,
taking the ratio of the sums over loci of the single-locus esti-
mator numerators and denominators).

There is a current tendency in genome wide association
studies (GWAS) to restrict the SNPs used in relatedness
estimation to having a minor allele frequency (MAF) above
some threshold. For example, theKINGmanual (http://people.
virginia.edu/�wc9c/KING/manual.html) lists a parameter-
minMAF to specify the minimum minor allele frequency to
select SNPs for relationship inference in homogeneous popula-
tions. The thought is that lesser frequencies give rise to biased
values, but that is not likely the case if “ratio of averages”
estimates are used. To illustrate the effect of MAF filtering,
we applied four different thresholds to our simulated data,
and we show the means and SDs for estimates for each of nine
pedigree values in Table 7. The estimates are the corrected
values – i.e., relative to an assigned value of zero for the
least-related class. There is clear evidence for the merits of
retaining all SNPs, both in terms of bias and variance: all fil-
tered estimates are downwardly biased, and the stronger the
filter, the stronger the downward bias.

We continued a comparison of our proposed coancestry
estimates b̂ by applying the estimates described by Wang
(2014), listed in Table 8, and computed using the related R
package (Pew et al. 2015). Additionally, related offers maxi-
mum likelihood estimators, derived by Milligan (2003) and
Wang and Santure (2009). They are not computed here,
because they require substantial computing time, which
may rule them out for genomic data.

In Figure 8we display box plots of coancestry estimates for
seven alternative estimates, displayed according to nine ped-
igree values. The solid line for each panel corresponds to the

Figure 5 Pedigree-based coancestry coefficients for simulated data for
135 individuals with 20 founders. Red correspond to low values, yellow to
high values of coancestry, white are missing data (unknown inbreeding
coefficient of the founders). Black horizontal and vertical lines separate
generations in the pedigree. The yellow blocks along the main diagonal
correspond to sibships.

Figure 6 Comparison of estimated and pedigree coancestries. Uncor-
rected estimates (Equation 6) on left, corrected estimates (Equation 11)
on right.
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pedigree value. The dashed line corresponds to an adjusted
pedigree value, where the adjustment is obtained by sub-
tracting the mean pedigree coancestry from the pedigree val-
ues, and dividing this by 1 – the mean pedigree value to
insure that the range of possible values are covered. In Figure
6, we used estimates from the least related individuals to
adjust the estimates, whereas here we adjusted the pedigree
values to have an overall mean of zero.

All the estimates are negatively biased when compared to
the pedigree values.When compared to the adjusted pedigree
value, the b estimates show extremely good properties, with
no bias, and very small variances. Other estimates, while also
closer to these adjusted values, mostly underestimate, but
sometimes overestimate (e.g., wang, lynchli) the adjusted
pedigree values. The standard estimators (weighted or un-
weighted) consistently underestimate the adjusted pedigree
values, except for the unrelated class.

Next, we illustrate how we can recover the average FST
from the individual coancestries. For this, we use the pedi-
gree described above, but take as founders 10 individuals
from each of the two populations (mean FST between these
two populations is b̂ST ¼ 0:114). Figure 9 illustrates the ac-
curacy of our b estimates (Equation 6) compared with the
standard estimates (Equation 7), for the coancestries of pairs
of founders (but with the whole pedigree as the reference
population). The b̂ values for pairs of founders from the same
population (Boxplot A in Figure 9) are tightly distributed
around 0.016, while b̂’s for pairs of individuals one from each
population (boxplot B) are tightly distributed around
20:111: The distribution for the same two categories for
the standard estimator (boxplots C and D) is wider, in partic-
ular for pairs of individuals originating from the same
population.

The b̂ST; i.e., the average F̂ST for the two populations from
which the founders originated, is recovered from the individual
coancestries as follows: each individual pair coancestry is calcu-
lated as b̂

p
jj9 ¼ ðeMp

jj9 2 eMp
SÞ=ð12 eMp

SÞ (Table 3; the superscript p
highlights that the estimates are taken over all pairs in the
pedigree). We are seeking b̂STf0

¼ ðeMSf0
2 eMBf0Þ=ð12 eMBf0Þ;

the overall FST among the founders only. The mean coancestry
of founders from the same population in Figure 9 (boxplot A)
corresponds to ~Sf0 ¼ ðeMSf0

2 eMp
SÞ=ð12 eMp

SÞ; and the mean
coancestry of founders, one from each population in the same

figure (boxplot B) corresponds to ~Bf0 ¼ ðeMBf0
2 eMp

SÞ=ð12 eMp
SÞ:

Subtracting ~Bf0 from ~Sf0; and dividing by ð12 ~Bf0Þ allows elim-
ination of eMp

S and recovery of the expression of b̂STf0
:

For our situation, this gives b̂STf0
¼ ð0:0162 ð20:111ÞÞ=

ð12 ð20:111ÞÞ ¼ 0:114 ¼ b̂ST; as expected.

Discussion

A unified approach

Although there has been general recognition that family and
evolutionary relatedness are just two ends of a continuum,we
are not aware of previous moment estimates of population
structure quantities such as FST or individual-pair coancestries
that rest on this common framework. We have presented
estimates that apply equally well to populations and individ-
uals. While their statistical properties remain to be fully ex-
plored, it is reassuring to see how well they performed in the
few simulations presented here.

Although individual-specific inbreeding coefficient, and
individual-pair-specific coancestry coefficient moment esti-
mates, are used routinely in association studies, we have
not seen widespread adoption of population-specific FST mo-
ment estimates in evolutionary studies. We have shown here,
theoretically and empirically, that these values can differ sub-
stantially among populations. This may simply reflect popu-
lation size andmigration rate differences, but different values
for specific loci may also provide signatures of natural selec-
tion: see Balding and Nichols (1995), Beaumont and Balding
(2004), Foll and Gaggiotti (2008) and Weir et al. (2005) for
example. There is a growing literature for Bayesian analyses
that address population-specific parameters (e.g., Karhunen

Figure 7 Comparison of b (A) and standard coancestry (B) estimates,
when founders are drawn from a single population.

Table 7 Effects of filtering to L SNPs on coancestry estimate means
(and SDs 3100)

Pedigree value
L ¼ 79;069 L ¼ 72;012 L ¼ 56;979 L ¼ 44;061
All SNPs MAF‡0:01 MAF‡0:05 MAF‡0:10

0 0.000 (0.50) 0.000 (1.00) 0.000 (1.99) 0.000 (2.43)
0.03125 0.031 (0.30) 0.026 (0.30) 0.010 (0.89) 0.003 (1.45)
0.06750 0.061 (0.34) 0.056 (0.35) 0.041 (1.13) 0.036 (1.79)
0.09375 0.092 (0.27) 0.087 (0.27) 0.069 (0.72) 0.061 (1.13)
0.12500 0.124 (0.41) 0.120 (0.46) 0.112 (1.90) 0.109 (2.69)
0.15625 0.156 (0.29) 0.151 (0.29) 0.133 (0.65) 0.122 (1.15)
0.18750 0.184 (0.26) 0.179 (0.27) 0.157 (1.07) 0.144 (1.64)
0.25000 0.249 (0.42) 0.245 (0.45) 0.241 (1.87) 0.239 (2.62)
0.31250 0.311 (0.20) 0.307 (0.20) 0.285 (0.77) 0.271 (1.23)
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and Ovaskainen 2012; Günther and Coop 2013), although
these may not be amenable to analyses of genome-wide var-
iant data.

There is also general understanding that identity by de-
scent is a relative concept, rather than an absolute concept.
Thisunderstandinghasnot led toanapparent recognition that
the standard estimates of inbreeding and kinship are not
unbiased for expected or pedigree values. Replacing popula-
tion allele frequencies by sample values leads to bias in the
usual estimates, regardless of sample size. Whenever sample
allele frequencies from a study are used to estimate inbreed-
ing or coancestry coefficients, the estimators are affected by
the inbreeding and coancestry values for all study individu-
als. We will come back to this point in the section containing
Equation 13

We also stress that all allelic variants, whatever their
frequencies, need to be included in the estimation of popula-
tion structure and inbreeding or relatedness. The estimates
certainly depend on the allele frequencies, and restricting the
range of frequencies used may reveal features of interest, but
the underlying ibd parameters do not depend on the frequen-
cies (see Equation 1 with the ibd interpretation). Exclusion
of some alleles based on their frequencies will lead to biased
estimates of the parameters as shown in Table 7.

Table 8 Other estimates of relatedness

Method Description

ped The pedigree based relatedness
bij bij ; developed here (Equation 4). These values are

relative to the mean of the population and hence
the mean of these relatedness must be 0

stand.u The standard estimator, Equation 7 average of ratios
Identical to the estimator derived by Ritland (1996)

[Equation (4) in Wang (2014)] and also used in
GCTA Yang et al. (2011)

stand.w Equation 7, ratio of averages
wang The estimator developed by Wang (2002)
lynchli The estimator derived by Lynch (1988) and improved

by Li et al. (1993), Equation (7)in Wang (2014)
lynchrd The estimator derived by Lynch and Ritland (1999)

[Equations (5 and 6) in Wang (2014)]
quellergt The estimator derived by Queller and Goodnight

(1989) [Equations (2 and 3) in Wang (2014)]

Figure 8 Boxplots of coancestry estimates for seven alternative estimates, displayed according to nine pedigree values. Vertical solid black line on each
panel shows the pedigree coancestry, and vertical dashed line shows the mean-adjusted pedigree coancestry (see text). Estimators are defined in Table
6. bjj9 shows very good statistical properties for all mean-adjusted pedigree coancestries.
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Previous estimates

Weir and Cockerham estimates of FST: The FST estimate of
WC84 has been widely adopted, and it performs well for the
model stated in that paper: data from a series of independent
populations with equivalent histories and sizes. In the pres-
ent notation, WC84 assumed ui ¼ u; uii9 ¼ 0 for all popula-
tions i and all i9 6¼ i: The estimate was designed to be
unbiased for any number of sampled populations, any sample
sizes and any number of alleles per locus. The analysis
was a weighted one over populations: the average allele
frequencies �pu for a study had sample size weights,
�pu ¼ P

ini~piu=
P

ini for ni alleles sampled from population
i. Although our b estimates do not make explicit mention of
allele frequencies, there is implicit use of sample frequencies
that are unweighted averages over populations.

Weighting over populations has been discussed by Tukey
(1957) and Robertson (1962). Those authors were concerned
with bias and variance, and they used the language of variance
components, within and between populations. For allele u,
these components were given as ð12 uÞpuð12 puÞ and
upuð12 puÞ; respectively, by WC84. Tukey said “In practice,
we select two quadratic functions by some scheme involving
intuition, find how their average values are expressed linearly
in terms of the variance components, and then form two linear
combinations of the original quadratics whose average values
are the variance components. These linear combinations are
then our estimates. Much flexibility is possible.” The estimates
ofWC84,Weir andHill (2002) and Bhatia et al. (2013) all have
this structure, although ratios of linear combinations are taken
to remove the allele frequency parameters. Tukey went on to
say that theweightswi ¼ ni (in the present notation) “gives the
customary analyses, which treat observations as important and
columns [i.e.populations] as unimportant.” Further, “the choice

wi ¼ 1 . . . treat the columns as important. This [unweighted]
approach is appropriate when the column variance component
is large compared with the within variance component.”
Robertson (1962) also pointed to sample-size weights for small
between-population variance components and equal weights
for large values. Bhatia et al. (2013) were concerned with un-
equal FST values so their use of equal weights is consistent with
Turkey’s statements. Their work provides simple averages of
the different FST values as opposed to averages weighted by
sample sizes. For unequal FST and unequal sample sizes, Weir
andHill (2002) said “the usualmoment estimate [with sample-
size weights] is of a complex function [of the FST’s].” In our
current model of unequal ui and nonzero uii9; we agree that
unweighted analyses (population weights of 1) are appropriate,
and that is what we have used in this paper.We note that Tukey’s
“flexibility” in the choice of moment estimators, phrased in terms
of weights, does not arise with maximum likelihood approaches.
If sample allele frequencies are taken to be approximately nor-
mally distributed, then REML methods give appropriate and
unique estimates.

What are the consequences of using the WC84 estimates
when the currentmodel of unequal ui and nonzero uii9 is more
appropriate? We can show that the expected value of the
Weir and Cockerham estimate ûWC is

EðûWCÞ ¼ uW*2 uB* þ Q

12 uB* þ Q
:

This expression uses three functions of sample sizes:
�n ¼ Pr

i¼1ni=r; nci ¼ ni 2 n2i =
P

ini and nc ¼
P

in
c
i=ðr2 1Þ:

The two weighted averages are uW* ¼ P
in

c
iu

i =
P

in
c
i and

uB* ¼ P
i
P

i9 6¼inini9u
ii9=

P
i
P

i9 6¼inini9: The quantity Q is
½Piðni=�n2 1Þui�=½ncðr2 1Þ�: For equal sample sizes, ni ¼ n;
or, for equal values of FST; uiW ¼ uW ¼ uW* ¼ u; and Q ¼ 0:

Figure 9 Boxplots of coancestry estimates b (A and B) and
the standard estimates (C and D) when the founders come
from two populations. Coancestries were estimated for all the
individuals in the pedigree shown in Figure 5, but only coan-
cestries between founders are shown. (A and C): pairs of
founders from the same population (B and D) pairs when
the two members come from different populations.
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Under these circumstances Eðb̂WCÞ ¼ ðuW 2 uBÞ=ð12 uBÞ;
and we find the WC84 estimator performs well unless ui

and/or nivalues are quite different. We stress though that it
is ðuW 2 uBÞ=ð12 uBÞ being estimated.

Nei estimates of FST: Although we have phrased estimates
in terms of matching proportions, we note that they are the
complements of “heterozygosities” ~M ¼ 12 ~H:Our approach
uses eMB

; the average population-pair allelematching, whereas
most previous treatments, from Nei (1973) onwards, use total
heterozygosities ~H

T ¼ 12
P

u�p
2
u where �pu is the average sam-

ple allele frequency over populations: �pu ¼ Pr
i¼1~piu=r: For

large sample sizes, ~H
T ¼ ðr2 1Þ~HB

=rþ~H
W
=r and Nei’s GST

quantity and its expectation, in our notation, are

GST ¼ 12
~H
W

~H
B
2 1

r

�
~H
B
2 ~H

W
	;

EðGSTÞ ¼ uW 2 uB

12uB þ 1
r21

�
12 uW

�; (12)

which reduce to b̂WT and Eðb̂WTÞ as r becomes large. Other-
wise, the expectation of GST depends on the number r of

populations. This expectation is bounded above by one, con-
trary to the claim of Bhatia et al. (2013). Nei and Chesser
(1983) and Nei (1987) modified Nei’s earlier approach to
remove the effects of the number of populations. Bounds on
FST; when that is defined as ð12 ~H

W
=~H

TÞ; were given by
Jakobsson et al. (2013).

Jost (2008) pointed out that GST does not provide a good
measure of differentiation among populations, where differen-
tiation reflects the collection of allele frequencies piu; or their
sample values ~piu: We regard u as an indicator of evolutionary
history, rather than of allele frequencies, and we interpret it as
probabilities of pairs of alleles being identical by descent. Jost
introducedD ¼ ðHB 2HWÞ=ð12HWÞ orD ¼ ðuW 2 uBÞ=uW as
a measure of differentiation among populations. For the two-
population drift scenario without mutation,D, unlike bWT; does
not have a simple dependence on time, and so does not serve as
a measure of evolutionary distance.

Standard coancestry estimates: The expressions in Equa-
tion 7 provide unbiased estimates of ujj ¼ ð1þ FjÞ=2 and
ujj9; j 6¼ j9when the allele frequencies are known. When study
sample allele frequencies are used, however, the expectations
of these expressions, for one locus, are

Figure 10 Comparison of standard coancestry estimates (Equation 7) against pedigree coancestries (A and C) or against their expected values from
Equation 13 (B and D), using the pedigree shown in Figure 5 and genotypes derived from founders originating from a single population. (A and B):
unweighted standard coancestries; (C and D): weighted standard coancestries.
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E
�
û jj9

	
¼

�
u jj9 2cj 2cj9þ uS

	
2 1

n

�
ujj þ uj9j9 2cj 2cj92 FS þ uS

	
ð12 uSÞ2 1

n ðFS 2 uSÞ
(13)

where FS ¼
Pn

j¼1ujj=n is the average of all within-individual
coancestries ð1þ FjÞ=2; cj ¼

Pn
j9¼1;j9 6¼jujj9=ðn21Þ is the aver-

age coancestry of individual j to all other individuals, and
uS ¼

Pn
j¼1cj=n: These expectations also hold for both the

average over loci of the ratios for each locus, and for the
ratio of averages when each locus has the same values of
ujj9: Note the difference with the expected values of b̂ii9
shown in Table 2.

The differences diminish for studies with large numbers of
individuals:

E
�
û jj9

	
� u jj9 2cj2cj9þ uS

12uS

They diminish further for low average coancestries cj9;cj9 of
the target individuals with other study individuals. An equiv-
alent expression was given by Ochoa and Storey (2016b).
The extent of bias of ûjj9 depends on the number of individuals
in the sample, and how different the average coancestry of
a target individual with all other study individuals cj is from
the average coancestry of all pairs of study individuals. How-
ever, the standard ûjj9 estimates are not unbiased for ujj9: This
is illustrated in Figure 10, which displays, for the pedigree
discussed previously (Figure 5) with founders originating
from one population, the relation between the unweighted
or weighted standard coancestry estimates (Equation 7) and
pedigree coancestries in the left column, and the relation
between the unweighted or weighted standard coancestries
estimates and their expectation given by Equation 13 in the
right column (B and D). The estimated standard coancestries
do not match well the pedigree coancestries (Figure 10, A
and C), contrary to the good match for b̂ij (see Figure 6),
which leads to the overdispersion of standard coancestry
estimates seen in Figure 7B. But, standard coancestries match
very well their expected values given by Equation 13, partic-
ularly so for the weighted standard coancestries (Figure
10D).

The standard estimates of Equation 7 appear as elements
of the Genetic Relatedness Matrix (GRM) of Yang et al.
(2011). We are grateful to P. Visscher (personal communica-
tion) for pointing out that the GRM was not designed for the
purpose of kinship estimation, but was for estimating genetic
variances in association mapping.

Population history

We commented earlier that FST can serve as a measure of
genetic distance among populations in the sense that, for the
genetic drift model, it depends on the time since the sampled
populations diverged from an ancestral population. We see the
need for further exploration of the role of population-specific
FST estimates in evolutionary genetic studies, given the gener-
ally unrecognized prevalence of negative expected values for

populations with correlated allele frequencies shown in Figure
1, and the relationship of estimateswith the site-frequency spec-
trum suggested in Figure 4.

Conclusion

We have presented moment estimators for the probabilities
that pairs of alleles, taken from individuals or from popula-
tions, are ibd relative to the ibdprobabilities for alleles fromall
pairsof individualsorpopulations ina study.By identifying the
reference set of alleles as those in the current study, we allow
for negative values of measures of population structure or
relatedness and their estimates. Alleles may have smaller ibd
probabilities within some populations than between all pairs
of populations in a study, for example. Some pairs of individ-
uals in a studywill be less related than the average for all pairs.
Our estimates are phrased in terms of the proportions of pairs
of alleles, within and between populations or individuals, that
are of the same type (ibs).

For sets of populations, we advocate the use of population-
specific FST values, as these more accurately reflect popula-
tion history. For sets of individuals, our estimates seem to
behave at least as well as those given previously. We note
that our estimates have the same logical basis, and algebraic
expressions, for populations and for individuals. The chief
novelty of our method-of-moments approach is in allowing
for allele frequencies to be correlated among populations
when characterizing population structure, and correlated
among all individuals when characterizing individual-pair
relatedness.
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