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Abstract

Wildlife monitoring is essential for conservation science and data-driven

decision-making. Tropical forests pose a particularly challenging environment

for monitoring wildlife due to the dense vegetation, and diverse and cryptic

species with relatively low abundances. The most commonly used monitoring

methods in tropical forests are observations made by humans (visual or acous-

tic), camera traps, or passive acoustic sensors. These methods come with trade-

offs in terms of species coverage, accuracy and precision of population metrics,

available technical expertise, and costs. Yet, there are no reviews that compare

the characteristics of these methods in detail. Here, we comprehensively

review the advantages and limitations of the three mentioned methods, by ask-

ing four key questions that are always important in relation to wildlife
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monitoring: (1) What are the target species?; (2) Which population metrics are

desirable and attainable?; (3) What expertise, tools, and effort are required for

species identification?; and (4) Which financial and human resources are

required for data collection and processing? Given the diversity of monitoring

objectives and circumstances, we do not aim to conclusively prescribe particu-

lar methods for all situations. Neither do we claim that any one method is

superior to others. Rather, our review aims to support scientists and conserva-

tion practitioners in understanding the options and criteria that must be con-

sidered in choosing the appropriate method, given the objectives of their

wildlife monitoring efforts and resources available. We focus on tropical forests

because of their high conservation priority, although the information put for-

ward is also relevant for other biomes.
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1 | INTRODUCTION

Monitoring wildlife is an essential component of conser-
vation (CMP, 2020; Nichols & Williams, 2006; Salafsky
et al., 2001). Evidence-based conservation efforts, data-
driven decision making for adaptive management, and
sustainable use of natural resources, are all based on the
premise that population declines can be detected in a
timely manner (e.g., Díaz et al., 2020; Grooten &
Almond, 2018). Monitoring objectives can range from
assessing species presence/absence, to knowing the exact
density of one or more species. Monitoring data are used
across multiple scales, from local (site-level) to national,
regional, and global scales (e.g., as indicators for global
biodiversity goals, the IUCN Red List of Threatened Spe-
cies, the CITES Appendix status of taxa, and to formulate
species-specific IUCN Action Plans; Brooks et al., 2015;
IUCN, 2020; Pereira et al., 2013; Stephenson, 2019).

Tropical forests harbor a large proportion of the world's
terrestrial wildlife (Myers et al., 2000). At the same time,
tropical forests are a particularly challenging environment
for wildlife monitoring, due to limited visibility in often
dense understory, and the diverse, cryptic nature and low
densities of many animal species. The complex nature of
tropical forests comes with low and variable detection prob-
ability (Sollmann et al., 2013), risk of bias related to the
timing and location of observations (Cusack et al., 2015),
the effort required for species identification, and the cost of
data collection. As each monitoring method has its advan-
tages and limitations, and resources are often limited, it can
be complicated to select a suitable monitoring method
(Stephenson, 2020; Stephenson et al., 2020).

The most commonly used monitoring methods in
tropical forests are direct observations made by humans
(visual or acoustic), camera traps, or passive acoustic sen-
sors. Observations by humans of wildlife or their signs
have traditionally been the most commonly used method
(Heyer et al., 2014; Plumptre, 2000; Sutherland, 2008;
Wilson et al., 1996), but is increasingly being replaced by
the use of autonomous recorders (Mulatu et al., 2017).
Camera traps are now a well-established monitoring tool
(Beaudrot et al., 2016; Rovero & Zimmermann, 2016) and
the use of acoustic sensors for passive acoustic monitor-
ing (PAM) is growing fast (Alvarez-Berríos et al., 2016;
Blumstein et al., 2011; Deichmann et al., 2018; Sugai
et al., 2019). Standardized protocols are available for
human observations (Sutherland, 2008; White &
Edwards, 2000), camera traps (Kays et al., 2020; Meek
et al., 2014; Rovero & Zimmermann, 2016; Scotson
et al., 2017, Wearn & Glover-Kapfer, 2017), and PAM
(Abrahams, 2018; Browning et al., 2017; Darras
et al., 2018). There is also much literature comparing the
outcomes of particular methods (e.g., human observation
versus camera trapping: Bessone et al., 2020, Cappelle
et al., 2019, Greene et al., 2016; Joshi et al., 2020,
Roberts, 2011). However, few articles compare all three
field methods (Stephenson, 2020; Wrege et al., 2017), and
none do so in depth.

Here, we review the advantages and limitations of the
three mentioned methods—observations by humans,
camera traps, and passive acoustic sensors—for wildlife
monitoring with a focus on tropical forests given their
high conservation priority, although the information we
provide is also applicable in other biomes. The methods
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considered typically target terrestrial vertebrate wildlife,
but we also consider application to invertebrates where
relevant. Our aim is to objectively facilitate the
correct uptake and use of these field methods for effec-
tive, goal-oriented monitoring by scientists and practi-
tioners (e.g., the private sector, government agencies, and
NGOs). We evaluate each method by asking four key
questions (Figure 1), that we believe need to be addressed
before any monitoring survey: 1. What are the target spe-
cies (e.g., is the target a community or a particular spe-
cies)?; 2. Which population metrics are desirable and
attainable (e.g., encounter rates, occupancy, or density)?;
3. What expertise, tools and effort are required for species
identification?; and 4. Which financial and human
resources are required for data collection and data
processing? Following these four questions, all relevant
characteristics of each method are summarized in
Table 1.

2 | SPECIES COVERAGE

Every wildlife monitoring project foremost requires a clear
objective with regard to its target species. Is the goal to

monitor populations of particular species, or to monitor a
community? Monitoring approaches differ strongly in spe-
cies coverage—the number and types of species that can
be detected—as well as detection biases. For species-level
monitoring, the major challenge is the acquisition of suffi-
cient data for acceptable accuracy and precision, within a
manageable time and budget. A community-wide assess-
ment requires an approach with broad and unbiased spe-
cies coverage, where differences in detection probability
can be estimated and accounted for.

2.1 | Human observation

Observations by humans can be direct, for example, spot-
ting animals, or indirect, for example, recording signs such
as nests, tracks, or feces (Buckland et al., 2001, 2010; Laing
et al., 2003). Direct observations are biased toward mam-
mals and birds that are easy to detect because of vocaliza-
tion, size, and diurnal habits, while rare, small, fossorial,
nocturnal, and cryptic species are less likely to be observed
(Richard-Hansen et al., 2015). The likelihood of detection
may vary across the day and across seasons (Pearse
et al., 2015), and by shyness and habituation—animals
may be repelled or attracted by observers (Marini
et al., 2009; Thomas et al., 2010). Direct observation fur-
thermore requires highly skilled observers. Observer bias
may arise from differences in skills between observers and
fatigue, although these problems can be reduced by careful
training, limiting the length of monitoring sessions, and
limiting the number of tasks assigned to each observer
(Emlen & DeJong, 1992; Kühl et al., 2008). Due to these
biases, direct field observations are generally most suitable
for highly detectable species, rather than for community
assessments that require broad taxonomic coverage
(Roberts, 2011).

Indirect observations have the advantage that signs
are immobile and more abundant than the animals that
produce them because they remain visible for extended
periods (up to several months). Detectability is less
influenced by the time of day of the survey than direct
animals observations. To estimate a population size from
signs, the production and the decay rate of the signs need
to be known (Hedges et al., 2012; Laing et al., 2003).
These rates can differ across sites and seasons. For exam-
ple, the decay rates of gorilla and chimpanzee nests
depend on forest type, nest height, and structure, and
above all, precipitation (Morgan et al., 2016). The decay
rates of signs should thus be estimated in the same survey
area and season (Laing et al., 2003; Morgan et al., 2016),
which may involve substantial effort and costs (Kuehl
et al., 2007). Production rates of signs are less variable,
hence estimates from similar or nearby sites can be used

FIGURE 1 This review is structured along four key questions

that we believe need to be considered when choosing a monitoring

method
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TABLE 1 An overview of how observations by humans, camera traps, and passive acoustic sensors relate to the characteristics of

interest for the four questions discussed in this article

Questions Characteristics

Observations by
humans on line, point,
or recce transects Camera trapping

Passive acoustic
monitoring

1. Species coverage Detection of ground-
dwelling mammals and
birds

Medium High Medium

Detection of arboreal
mammals and birds

Medium Medium High for vocal species

Detection of amphibians Medium Low High for vocal species

Detection of reptiles Medium Low Low

Detection of insects Medium Low High for vocal species

Detection of bats High with handheld bat
detectors

Low High

Elusive, shy, and rare
species

Low High High for vocal species

Suitability to assess whole
communities

Low High High for vocal species,
also through
soundscapes

Common biases for
community assessments
particular to the method

Timing of the survey;
animal size; animals'
avoidance of observers;
observer skills

Installation location (e.g.,
close to the ground, on
trails); animal size)

Uncertainties in
estimating distance of
detected animals and
group size; ambient
noise; calling
frequency affected by
behavioral and
abundance changes

Ways of maximizing
observations when
targeting specific species

Targeting trails or other
often used habitat
characteristics, BUT this
cannot be used if
assessing either density
or encounter rate

Targeting trails or other
often used habitat
characteristics, using
bait, BUT this cannot be
used if assessing either
density or encounter
rate

Setting acoustic grids
during specific
seasons (e.g., breeding
period for birds, when
males will be calling)

2. Population metrics Feasibility for counting
detections (encounter
rates)

High High High

Feasibility for estimating
occupancy

High High High

Feasibility for estimating
density

High for line and point
transects, not possible
for recces

Medium to high Low

Analytical methods for
density estimations

-Distance sampling -Distance sampling
-Capture recapture
-Random encounter
modeling

None that are widely
available. Distance
sampling and capture
recapture are in the
experimental stages of
development

Precision of density
estimates

Medium to high Medium to high Low to medium

Reproducibility of the data Low to medium High High
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(e.g., Theuerkauf & Gula, 2010). For signs such as foot-
prints or markings left on trees, the rate of production
and decay cannot be estimated, so only presence and
occupancy estimates, but not density estimation is possi-
ble (Sections 3.2 and 3.3, respectively). Not all species
produce signs that allow for species-specific identification
(Furuichi et al., 1997; Miller et al., 2011). Genetic diag-
nostics, which are gaining in importance, can help in this
case, even for identifying individuals, although this adds
costs and complexity (Bowkett et al., 2009; Gray
et al., 2013). Many species, such as most felids, do not
leave sufficient species-specific signs with known produc-
tion and decay rates for robust population estimates, and
therefore require other monitoring methods (Borah
et al., 2014).

Observations can be made either on line, point or
reconnaissance transects (recces; Hedges et al., 2012).
Line or point transects are predefined randomly located
straight lines or points from which observations are

made, allowing for distance measurements to the
observed objects required for density estimation with dis-
tance sampling (Section 3.3). Recces are transects that
follow a path of least resistance, that is, the easiest path
to follow, without the possibility of collecting additional
parameters such as distance from the transect, and can
therefore only be used for encounter rates or occupancy
analyses (Sections 3.1 and 3.2, respectively).

2.2 | Camera trapping

The use of camera trapping has increased rapidly over the
past two decades (Glover-Kapfer et al., 2019; Wearn &
Glover-Kapfer, 2017). Triggered by passive infra-red sensors
(Welbourne et al., 2016), camera traps record wildlife of a
broad array of size classes and taxonomic groups, including
mammals (Tobler et al., 2008), birds (O'Brien &
Kinnaird, 2008), and reptiles (Richardson et al., 2018), with

TABLE 1 (Continued)

Questions Characteristics

Observations by
humans on line, point,
or recce transects Camera trapping

Passive acoustic
monitoring

3. Species identification Approaches for
observations/data
annotation

-Direct observations
-Indirect observations
(requires production
and decay rates)

-Some citizen science (e.g.,
for birds or butterflies)

-Manual
-Automated
-Citizen science

-Manual
-Automated
(unsupervised or
species specific
classifiers)

-Citizen science

Technical expertise
required for data
annotation

Low Medium High

Potential for automation Low High High

4. Resources required Relative costs of
monitoring equipment

Low High High

Costs of software and
hardware for species
identification

Low Medium High when detection
algorithms have to be
developed;

Medium when detection
algorithms are
available

Costs of training for
fieldwork

High Medium Low

Costs of field labor High Medium to high Medium to high

Time required for species
identification

Low High when detection
algorithms have to be
developed;

Medium when detection
algorithms are available

High when detection
algorithms have to be
developed;

Medium when detection
algorithms are
available

Costs of logistics High Medium to high Medium

Note: The field methods are rated high, medium, or low, indicating a relative approximation of their suitability for each of the characteristics.
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minimal invasiveness. With time-lapse photography or spe-
cialized camera traps, even arthropods can be surveyed
(e.g., Collett & Fisher, 2017; Hobbs & Brehme, 2017). Cam-
era trapping is generally most effective for medium to large
terrestrial animals, but can also be used to survey smaller,
cryptic, and rare animals that typically go undetected by
humans (Bessone et al., 2020, Glen et al., 2013; Khwaja
et al., 2019). Because camera traps record continuously and
automatically, they are not biased by the timing of activity
of the target species or observer skill or fatigue, making the
collection process more standardized and transparent than
with human observations. Also, every observation comes
with a photograph that can be used for verification and vali-
dation. Additionally, as each observation is timestamped,
camera trapping informs about activity patterns and human
disturbance (Caravaggi et al., 2017; Gaynor et al., 2018;
Ramirez et al., 2021).

A camera trap covers only a small surface area (typ-
ically 10–20 m2). This, coupled with nonrandom use of
space by wildlife, makes it particularly important to
carefully consider study design and placement strategy
(e.g., spacing and location in relation to trails or
streams). When surveying target species, detections
can be boosted by placing cameras at locations known
to be frequented (Cusack et al., 2015; Harmsen
et al., 2010; Kolowski & Forrester, 2017) or by using
lures or baits (du Preez et al., 2014; Mills et al., 2019).
While this strategy can work when coupled with appro-
priate analytical methods that control for variation in
detection (covered in Section 3.1), it must be recog-
nized that boosting detectability for one species may
have unpredictable effects on the detectability of others
(Kolowski & Forrester, 2017). For example, while dom-
inant predators may preferentially travel along larger
trails (Karanth, 1995), many prey species, as well as
competitor species and even subdominant individuals
of the same species, may avoid these landscape features
as a result (Wearn & Glover-Kapfer, 2019).

When surveying a wildlife community, it is vital that
cameras are installed at randomized locations with respect
to local landscape features. Such a survey design may take
the form of a systematic grid of points with a randomly
allocated starting position (e.g., the TEAM protocol; Jansen
et al., 2014), which is also essential when density estima-
tion for nonindividually recognizable individuals is
planned (Section 3.3), and can be stratified by habitat type
if desired. The mounting height also influences the com-
munity that is effectively sampled. This happens most
strongly through the exclusion of fully arboreal species
with terrestrial placements, but small terrestrial species get
excluded as the camera is mounted further from the gro-
und. While canopy wildlife has effectively been studied
with camera traps (Gregory et al., 2014; Moore et al., 2020;

Whitworth et al., 2016), the difficulty and danger of placing
camera traps in the canopy may preclude this approach for
most monitoring projects.

2.3 | Passive acoustic monitoring

PAM uses acoustic sensors, often referred to as Autono-
mous Recording Units (ARUs), to survey wildlife by
recording vocalizations and other species-specific sounds.
PAM is rapidly growing as monitoring method for terres-
trial wildlife (Darras et al., 2019), in addition to marine
environments where it is commonly used for monitoring
cetaceans. ARUs record—often continuously and for
extended periods of time—the soundscape of a given
area, that is, all sounds measured as frequency and inten-
sity over time, consisting of biotic (e.g., animals), abiotic
(e.g., rain, wind), and anthropogenic (e.g., vehicle traffic)
sounds (Pijanowski et al., 2011). All species that produce
identifiable calls (e.g., elephants trumpeting or rumbling;
Wrege et al., 2017) or sounds (e.g., chimpanzees buttress
drumming, gorillas chest beating; Heinicke et al., 2015)
can be monitored with PAM, including many taxa that
are poorly captured by other methods, such as insects
(Ganchev & Potamitis, 2007) and amphibians (Aide
et al., 2017; Troudet et al., 2017). Bats (Russo &
Voigt, 2016) are the taxon most often monitored using
PAM, followed by birds (Brandes, 2008) and anuran
amphibians (Brauer et al., 2016; Sugai et al., 2019).

Acoustic recordings are typically used to monitor spe-
cies presence and activity patterns, but in some cases also
the sex, behavior, individuals, and even emotional state of
individuals can be deduced (Mielke & Zuberbühler, 2013;
Soltis et al., 2005). For most species, the detection area of
ARUs is much larger than that of camera traps (Diggins
et al., 2016; Enari et al., 2019) and therefore the precise
installation location introduces less bias in terms of the spe-
cies that can be detected. Since the loudness of calls
affects the effective survey area of ARUs (Hutto &
Stutzman, 2009), comparing detection rates across species is
only possible when the detection range for each species is
known (Section 3.1). Detections of focal species can, as with
camera traps, be maximized by deploying ARUs near land-
scape features frequented by wildlife such as mineral licks
or nesting sites, or by recording during seasons with
high calling activity by the target species (e.g., breeding
season). Such recording protocols should be standard-
ized however across sites, and potential variability in
detection probability accounted for, if abundance trends
over space or time are to be reliably inferred.

Like camera traps, ARUs can monitor continuously,
enabling the study of temporal vocal activity patterns
(Sugai et al., 2019), even in periods and areas where it is
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logistically challenging to do field observations. The accu-
racy of PAM estimates, however, varies widely with spe-
cies, distance to recorders and ambient noise levels,
precluding absolute abundance estimates for most species
(Brauer et al., 2016; Stowell et al., 2019). Moreover, esti-
mating the number of individuals in group-living species
is problematic, as counting simultaneously vocalizing
individuals is difficult (Sedl�aček et al., 2015). Further-
more, the calls of quieter species, such as many mam-
mals, may be swamped by more vocal species. This is
especially the case during sound-rich moments such as
the dawn and dusk (Hutto & Stutzman, 2009). Compara-
tive studies reported a large overlap in bird species rich-
ness estimates between PAM and human field
observations, with each method also detecting unique
species (Darras et al., 2019; Digby et al., 2013; Leach
et al., 2016). Overall, PAM is well-suited for rapidly
assessing the presence and habitat use of vocal species, as
well as intraspecific changes in activity patterns and
encounter rates over time, over large geographical areas.
As such, PAM is a suitable method for detecting human-
induced impacts and for assessing the success of conser-
vation strategies (Astaras et al., 2020; Kalan et al., 2015).

3 | POPULATION METRICS

It is important to consider a priori which population met-
rics are desired and attainable (Stephenson, 2019). Is a
one-off measure of population or community status suffi-
cient, or is it necessary to monitor changes over space or
time? Is it important to measure population density, or
are encounter rates sufficient? Here we consider the costs
and benefits of analytical methods for generating three
types of data outputs (in ascending order of usefulness in
terms of potential applications and information gain):
(1) encounter rate, also referred to as relative abundance
or trap rate; (2) occupancy, that is, the proportion of sam-
pled sites occupied; and (3) population density, the num-
ber of animals per unit area.

3.1 | Encounter rate

The encounter rate, that is, the number of detections per
unit of effort, is the most basic metric of biodiversity, as it
does not require any additional parameters. However,
comparing encounter rates across sites or time should be
done with caution as variable detection may cause seri-
ous bias (Sollmann et al., 2013; Strindberg & O'Brien,
2012). Detectability of animals varies with the weather,
vegetation, visibility due to the season, monitoring equip-
ment, survey design, animal size and behavior, and

numerous other factors (Bas et al., 2008; Buckland et al.,
2001; Cusack et al., 2015; Kolowski & Forrester, 2017;
Madsen et al., 2020; Moore & Kendall, 2004; Pollock
et al., 2002). As a result, observed differences in encounter
rates may simply reflect differences in detectability rather
than differences in population sizes (Sollmann et al.,
2013). Constant detection probability may be achieved
within sites with strict monitoring protocols, but it is more
problematic to achieve across sites. For this reason, metrics
that account for variation in detection probability are nec-
essary for comparisons across sites, seasons, and species.

3.2 | Occupancy

Occupancy refers to the proportion of sampled sites occu-
pied by a species. Since MacKenzie's seminal article on
ways of accounting for imperfect detection in wildlife sur-
veys (MacKenzie et al., 2002), occupancy modeling—now
a broad family of models—has become a widely used
analytical method in wildlife monitoring, especially for
elusive species for which estimates of absolute abundance
(Section 3.3) are rarely possible due to low overall detec-
tions. Occupancy modeling improves naive estimates of
occupancy—that is, the proportion of sites where the spe-
cies was observed—by correcting for the probability of a
missed detection when the species is in fact present. This
probability is estimated based on the detection history in
the sites where the species' presence was confirmed, and
requires multiple survey periods (replicates either in
space or time). Occupancy estimates based on occupancy
modeling can be used to compare population trends
across space and time, without the risk of patterns being
confounded by variable detectability (Section 3.1). A key
advantage of modeling occupancy based on camera trap
or PAM data is that no additional parameters are
required, as opposed to density estimation (Section 3.3).
Another important class of occupancy modeling are
Bayesian approaches (Royle & Kéry, 2007), which allow
for more complicated multispecies models, deriving addi-
tional metrics and incorporating prior information.
Leading software for occupancy modeling includes PRES-
ENCE (Hines, 2006) and the R-library “unmarked”
(Fiske & Chandler, 2011).

The repeated observations of presence/absence that
are necessary to estimate detectability in occupancy
analysis, can be achieved in various ways. Observations
collected by humans ideally require multiple field visits
to each site (Guillera-Arroita et al., 2010; Kendall &
White, 2009), but these visits must be sufficiently close
in time to ensure that animal distribution does not
change between visits. This additional effort may add
substantial costs, particularly in more remote areas.
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Models exist that allow for obtaining spatial replicates
with a single team and a single visit, for example, by
treating fixed-length sections of a long transect as sepa-
rate survey periods (Guillera-Arroita et al., 2011; Hines
et al., 2010). For camera traps and PAM surveys,
repeated survey periods can be obtained by dividing a
single deployment period in fixed-duration sub-periods,
for example, a month-long deployment split into six
5-day survey-periods. The duration of these sub-periods
is decided based on the characteristics of the species
monitored, and should be sufficiently long to assume
that repeated detections in subsequent survey periods
are independent of earlier detections. Generally, once a
minimum-duration survey period has been decided on,
additional longer survey periods can be considered to
ensure that the detection probability per survey period
is not too low, for example, <20% per survey period
(G�alvez et al., 2016; MacKenzie & Royle, 2005). It is
commonly recommended to let the size of the sampling
unit, defined by grid cell area or recording unit spacing,
be greater than the largest home range size of the target
species, to avoid the need to correct for spatial correla-
tion across sites. This, however, is usually unfeasible for
species with very large home ranges.

Although occupancy can be a viable alternative to
population density (e.g., Beaudrot et al., 2016; Devarajan
et al., 2020), studies exploring whether occupancy has a
linear relationship with density estimates have shown
mixed results. While some studies show that the relation-
ship approaches linearity (Linden et al., 2017; Tempel &
Gutiérrez, 2013), other studies indicate that occupancy
does not reflect density when species are rare (Gaston
et al., 1998). Occupancy modeling does not work well for
rare species because detection and occupancy become
harder to separate, this problem can be partly alleviated
by modeling occupancy of multiple species in the same
model (using Bayesian approaches). The relationship also
tends to vary with spatial and temporal sampling scales
(Latham et al., 2014; Steenweg et al., 2018), or when spe-
cies exhibit altered patterns of space use due to distur-
bances (Parsons et al., 2017). Nonlinearity between
occupancy and density implies that for the same animal
species, in the same habitat, over the same period of time,
occupancy can sometimes align with density, or be
slightly different to it, or show a completely opposite
trend, and should therefore be treated with caution
(Parsons et al., 2017).

3.3 | Population density

The most informative metric of wildlife monitoring is
population density, that is, the number of animals per

unit area, which if extended over the species range, can
be used to calculate population size (also referred to as
absolute or true abundance). Accurate density estimates
are important for effective management of wildlife, as
they can provide the most robust picture of population
trends over space or time (Plumptre & Cox, 2006). These
trends can be used to quantify responses to, for example,
disturbance, management, or invasive species, and to
inform sustainable management of exploited species (van
Vliet & Nasi, 2008). The international classification of
species conservation status on the IUCN Red List of
Threatened Species and subsequent conservation strate-
gies often require not only an understanding of the direc-
tion and magnitude of population trends (which could
theoretically be obtained using occupancy), but, at least
for IUCN Categories C and D, also information on the
absolute size of a species' population is needed
(IUCN, 2020). This section discusses the three leading
analytical methods for estimating population density: dis-
tance sampling, the random encounter model (REM),
and capture recapture, although various other analytical
methods exist (Gilbert et al., 2020).

3.3.1 | Distance sampling

Distance sampling by human observers along line or point
transects in tropical forests is a well-established analytical
method for density estimation (Buckland et al., 2001), for
which free software (Distance) is available (Thomas
et al., 2010). To convert the number of observations (indi-
vidual, group, or sign) to density estimates, distance sam-
pling estimates the effectively surveyed area by calculating
the rate of decrease of species' detection probability, with
distance from the observer. Distance sampling therefore
requires accurate measurements of these distances. Cam-
era trap data have also been successfully used as point
transects (Bessone et al., 2020; Cappelle et al., 2019, 2020;
Howe et al., 2017), which requires the recording of dis-
tances at which recorded animals pass in front of the cam-
era. Numbers of replicates (points) and detections
(distance measurements) required for robust estimation
are comparable to those required on line and point tran-
sects by human observers (Bessone et al., 2020; Cappelle
et al., 2020). Analytical advances in image recognition are
expected to automate such measurements, which will
greatly speed up the process of density estimation using
camera traps (Glover-Kapfer et al., 2019). For PAM, the
distance of a vocalization cannot be inferred from volume
alone, as the volume is also influenced by the direction in
which the vocalization is emitted, atmospheric conditions,
and the intensity of the call (Alldredge et al., 2007). Suffi-
ciently dense ARU arrays can triangulate sound locations,

8 of 19 ZWERTS ET AL.



but this is at the cost of the overall spatial coverage
achieved with a given budget (Marques et al., 2013;
Mennill et al., 2012; Wrege et al., 2017). A key requirement
of distance sampling is that sampling units (lines or
points) capture the heterogeneity of the area surveyed,
which is typically ensured by systematic sampling design
(Buckland et al., 2001, 2010; Thomas et al., 2010). Sam-
pling designs required for density estimation and broad-
spectrum community application are the same (Section 2),
making it possible to estimate densities for multiple
species.

3.3.2 | Random encounter model

The REM estimates density from trap rates by correcting
the latter for the daily distance traveled by animals
and the area sampled by camera traps (Rowcliffe
et al., 2008). Sampled area is estimated in the same way
as in distance sampling (Rowcliffe et al., 2011), and sam-
pling design requirements are also identical. REM can
only be used for camera trap data because the size of the
sampled area needs to be known. REM requires estimates
of animal speed of movement and daily activity level,
which in principle can be estimated from camera footage
(Rowcliffe et al., 2016), but this adds complexity.

3.3.3 | Capture recapture approaches

Capture recapture analyses, including spatially explicit cap-
ture recapture which is now the standard, are an effective
analytical method for species that are individually recog-
nizable (Amstrup et al., 2010; Borchers & Efford, 2008;
Efford, 2004), and are supported by a variety of analysis
software (e.g., Efford, 2009, 2020; Laake, 2013;
McClintock, 2015). This analysis is based on detecting and
identifying individuals from part of a population in one
sample, and then redetecting a proportion of these individ-
uals in subsequent population samples. This way, the
chance for an individual to be redetected in multiple sam-
ples is calculated and population density can be derived
(Amstrup et al., 2010). Individual recognition is generally
not possible with direct observations of tropical forest wild-
life. Capture recapture analysis is widely used in camera
trapping of species in which individuals have unique visual
characteristics such as fur patterns, for example, leopards
and tigers, but also elephants and great apes can be recog-
nized individually (Arandjelovic et al., 2010, 2011; Després-
Einspenner et al., 2017; Head et al., 2013; Kane et al., 2015;
Karanth, 1995; Rich et al., 2014). The approach can also be
used with PAM for species with individually unique vocali-
zations (Dawson & Efford, 2009). Individual identification

of large amounts of material can be facilitated by pattern
recognition software such as hotspotter and Wild-ID
(Nipko et al., 2020).

4 | SPECIES IDENTIFICATION

With the advent of autonomous recorders, an often-
overlooked part of wildlife monitoring is the effort
required for species identification.

4.1 | Human observation

For observations collected directly by humans, species
identification is an integral part of the fieldwork, immedi-
ately identifying species or signs, or measuring distances,
on the spot. Data are then recorded in a standardized for-
mat and only minimal extra steps are required to prepare
the data for analysis.

4.2 | Camera trapping

Camera trap surveys can produce thousands to millions of
observations. Annotation and management of such volumes
can be challenging for monitoring projects (Glover-Kapfer
et al., 2019), despite the availability of various platforms for
data management (Young et al., 2018). Image annotation by
automated classification is developing rapidly (Glover-
Kapfer et al., 2019; Whytock et al., 2021; Willi et al., 2019)
and is increasingly being integrated in data management
platforms (Ahumada et al., 2020) and desktop apps (Falzon
et al., 2020), requiring gradually less technical expertise and
improving access for mainstream use (Aodha et al., 2014).
Algorithms can annotate images with increasing accuracy to
species or genus level, or filter out empty images (Wei
et al., 2020), which can drastically reduce the workload
(Norouzzadeh et al., 2018; Tabak et al., 2019). The user can
define the confidence thresholds that are deemed acceptable.
Lowering these thresholds increases the number of anno-
tated species, but also the margin of error. Confidence levels
therefore directly affect the amount of observations ana-
lyzed, and should be reported to enable comparison of the
output of automated methods between studies.

There are however limitations to the automated iden-
tification of less common species (Tabak et al., 2019), as
building a robust classifier requires large amounts of
annotated photos. The more species, the more annotated
photos are needed to realize sufficient discriminative
power of the algorithm. Additionally, the dense vegeta-
tion of tropical forests contains highly variable back-
ground colors, shapes, and light conditions, making it
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more difficult to distinguish species in photos as com-
pared to open landscapes. Emerging methods are finding
solutions to this problem (Beery et al., 2019, 2020). How-
ever, as some images are difficult to identify even for
humans (Meek et al., 2013), it is unlikely that human
effort can safely be removed for rare species identification
altogether in the foreseeable future.

4.3 | Passive acoustic monitoring

For species detections with PAM, it is important to decide
early on in a project how vocalizations will be detected in
the recordings. This can be done manually by reviewing
the spectrogram of the files both visually and acoustically
(Aide et al., 2013; Bas et al., 2017; Knight et al., 2017;
Ovaskainen et al., 2018). However, with multiple ARUs
recording many hours of data each day, manual review
quickly becomes impractical, making the use of auto-
mated classifiers desirable. These classifiers are not yet
available for most species in tropical forests. Exceptions
include elephants (Wrege et al., 2017), some primates
(Heinicke et al., 2015; Zwerts et al., 2021), and birds
(Priyadarshani et al., 2018). They do exist for gunshots,
which can be used for eco-surveillance purposes (Astaras
et al., 2017). Regardless of their availability, generally,
the technical expertise required for using species-specific
classifiers is moderately high.

Software facilitating the construction of new classi-
fiers (Knight et al., 2017; Ovaskainen et al., 2018)
includes a free web-based acoustic analysis platform
(RFCx Arbimon; arbimon.rfcx.org). Robust classifier
development often require a large annotated dataset
(e.g., Enari et al., 2019; Gibb et al., 2019), which can be
acquired either by manual annotation, or by the use of
unsupervised classification which divides repeating pat-
terns (vocalizations) into separate classes (Ovaskainen
et al., 2018; Stowell & Plumbley, 2014). The output from
this classification needs to be annotated. Existing data-
bases (e.g., www.xeno-canto.org, www.macaulaylibrary.
org) can be used to cross-reference vocalizations for most
bird species (Araya-Salas & Smith-Vidaurre, 2017). For
species that are not yet in these databases, expert knowl-
edge is needed to annotate recordings. Unsupervised clas-
sification works well for regularly occurring
vocalizations, but less so for rare species or rare vocaliza-
tions, as vocalizations will have a lower chance of detec-
tion or high risk of being masked by other sounds.

The annotations that are thus acquired, can be used to
train species-specific classifiers. These can be sensitive to
intra-specific call variations (Enari et al., 2019) and back-
ground noise (Knight et al., 2017; Priyadarshani et al., 2018),
and have therefore shown mixed results when compared to

manual classifications, both in terms of efficiency and accu-
racy (Blumstein et al., 2011; Brauer et al., 2016; Joshi
et al., 2017). Furthermore, outcomes vary across classifica-
tion methods, type of ARU, and species (Heinicke
et al., 2015). Performance evaluation through manual cross-
checking (Stowell et al., 2019) and rigorous reporting of ana-
lytical methods is therefore essential to safeguard the repro-
ducibility of the data and to avoid false inferences (Digby
et al., 2013; Kalan et al., 2015), as discussed for camera traps.
In conclusion, most classifiers at the moment should be con-
sidered as semi-automated, as time-consuming human vali-
dation of the results is required.

Camera trap photos or acoustic data can also be anno-
tated with the help of citizen science (Arandjelovic
et al., 2016; Baker, 2016; Swanson et al., 2015). An exam-
ple of that is Zooniverse, a citizen science platform driv-
ing identification of millions of camera trap images in
many projects around the world (Simpson et al., 2014),
and which is also increasingly being applied in combina-
tion with automated methods (Willi et al., 2019).
Although citizen science can provide valuable input
and can have wider benefits in terms of education and
involvement, it can be time consuming to initiate and
manage. Moreover, it may be of less use when species are
not widely known or are difficult to identify.

5 | RESOURCES REQUIRED

Each method comes with costs and it is important to plan
realistically according to the available budget and staff
capacity. Because of international price differences, we
do not discuss absolute costs here, but rather indicate the
relative importance of cost components of materials,
labor, and logistics specific to each method. For the sake
of comparability, we focus on larger monitoring projects
that cover extensive survey areas, requiring multi-day
field missions. For absolute cost comparisons between
the field methods, we refer to other literature (camera
traps: Cappelle et al., 2019; Güthlin et al., 2014; PAM:
Darras et al., 2019). Also not discussed here but very
important to consider, is how many transects, camera
traps and ARUs are necessary to provide acceptable con-
fidence of estimates. Pilot studies may help in estimating
how many sites should be surveyed and for how long, to
get the best return on investment.

5.1 | Human observation

Field observations require small initial investments for
the monitoring or data processing equipment. Specific
equipment purchases include a thread-based distance
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measurer, measuring tapes, and binoculars. Standardized
data recording is ideally done using a rugged device with
the relevant software and recording structure installed
(e.g., Spatial Monitoring and Recording Tool;
smartconservationtools.org). The highest costs of
human observations are related to salaries and fuel, due
to an extensive training phase and continued time
investment of field personnel. Thorough training is
essential for multiple observers to standardize and
develop the required skills base, including detailed taxo-
nomic knowledge (Fitzpatrick et al., 2009). Typical
courses for university-level field technicians last for
about 6–9 weeks, and regular refresher courses must be
run to ensure standardization of methods across time
and space (Maisels et al., 2008). Team sizes vary (but
can be up to 14 people) depending on remoteness, on
whether multiple specialized observers for various taxa
are present, and the monitoring protocol.

Recces are roughly four times less costly than line/
point transects (Section 2.1; Walsh & White, 1999). If
density is not required, occupancy models can be applied
to recce data although one needs to be sure that enough
effort has been planned to allow replication. If density is
required, systematically designed line or point transects
must be used, although a recce-transect combination
increases the chance to detect less frequently occurring
signs of wildlife or poaching. The length of line transects
that can be covered in a day in tropical forests
(an approximate 1–4 km) depends on forest type, wildlife
density and terrain characteristics. Teams sometimes
spend weeks at a time in the forest, either to take
repeated observations for occupancy estimations, or to
cover extended areas (Cappelle et al., 2019; Diggins
et al., 2016). Monitoring large areas can thus weigh
heavily on costs of labor, rations, and field equipment.

5.2 | Camera trapping

The initial investment for camera traps is relatively
high, ranging from 150 to 800 USD per camera trap for
midrange to high-end models. Apart from the device
itself, SD cards, batteries, locks, hard disks, and some-
times security boxes are required. Due to high humidity
and termites in tropical forests, a percentage of camera
traps can fail. In addition, cameras may get damaged or
be stolen, so extra cameras should be purchased as
backup (Glover-Kapfer et al., 2019; Meek et al., 2019).
During camera trap installation and recovery missions,
around 10–15 km per day can be covered. The field
teams are generally made up of 2–5 persons, but may be
larger depending on the survey area and the number of
cameras. One to two persons per team require in depth
training in camera trap installation, as the orientation of

the cameras, and assuring random/systematic location
requires an understanding of the errors engendered by
poor field practice (Roberts, 2011). Batteries may last for
several months. Thus, installation, maintenance, and
recovery missions do not have to be scheduled fre-
quently, resulting in relatively low logistical costs. How-
ever, regularly relocating camera traps improves the
precision of estimates more than monitoring at the same
locations longer (Fewster et al., 2009; Kays et al., 2020),
lowering initial investments into materials but increas-
ing salary costs. For camera traps, the workload shifts
from fieldwork to image processing (Section 4.2), with
associated costs for employees that have received at least
moderate levels of training in the use of database soft-
ware and species identification.

5.3 | Passive acoustic monitoring

Initial investment for PAM is generally high, as an ARU
costs in the range of 250–600 USD (Darras et al., 2019),
although low cost (<200 USD) alternatives exist (Hill
et al., 2018). Costs of batteries and SD cards and the size
of field teams (2–5 persons) are comparable to those of
camera traps. As sound recordings quickly result in siz-
able datasets, much larger than with camera trap images,
data storage can be costly. Unlike camera traps, relatively
little training is required to set up ARUs, as the installa-
tion location is less likely to introduce biases in data col-
lection. While ARUs can record continuously for several
days or weeks, depending on the target species, they can
be programmed to record according to a predetermined
schedule (e.g., only during morning chorus) and for a
limited frequency range (thus reducing the size of files
generated per recording session), thereby extending the
overall deployment duration with a set number of batte-
ries and as such decreasing operational costs. As with
camera traps, the limited spatial replication can be com-
pensated by regularly relocating the ARUs, which in turn
inflates fieldwork and logistical costs. For PAM, the
workload also shifts from fieldwork to data processing,
and even more so than with camera traps, PAM requires
highly trained technicians (Section 4.3). Data processing
also involves fairly high computing power, requiring
investment for either a modern multi-core computer or
cloud computing services. Web-based platforms require
access to high-speed internet connection to upload the
typically very large acoustic files.

6 | CONCLUDING REMARKS

Given the intricacies of each method and the widely vary-
ing objectives and circumstances of wildlife monitoring
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efforts, it is not possible to make universally relevant pre-
scriptions for action stemming from this review. The rela-
tive advantages of each monitoring method are always
context dependent and the result of a complex web of
equally important details. Guidance as to which field
method is most adequate in any particular situation can
be found by answering the four key questions we posed
in this review. The answers to questions 1 and 2 should
match the monitoring objectives, as each method allows
the detection of some species but not all, which should
be taken into account when doing community studies.
The answers to questions 3 and 4 depend on the available
budget, time, and skills. Monitoring is most effective if
the objectives are clearly defined (Stephenson, 2019;
Yoccoz et al., 2001). Decision trees (e.g., Hedges et al.,
2012; Kühl et al., 2008; Strindberg & O'Brien, 2012) can
help to define these objectives. Central to any monitoring
objective is whether a project targets either a specific spe-
cies or the entire community, as well as which population
metric is required. Aside from setting objectives, it is nec-
essary to acknowledge the realities in the field with regard
to the availability of financial and human resources for
fieldwork and data processing, and select field methods
accordingly. Not fully considering the trade-offs between
achieving the objectives and the attainability of a survey in
relation to a particular method, may ultimately lead to
ineffective monitoring and loss of conservation funds
(Nichols & Williams, 2006; Sheil, 2001).

Despite current bottlenecks associated with camera
trapping and PAM, the technological landscape is quickly
evolving. Many people and organizations are working
hard to improve efficiency both in data collection and
processing through the development of new platforms
and tools (e.g., RFCx Arbimon, Zooniverse, Wildlife
Insights [Ahumada et al., 2020; Simpson et al., 2014]).
Moreover, apart from the methods discussed here, excit-
ing new genetic methods with much promise to monitor
terrestrial and aquatic species, also merit attention. They
can provide information on species diversity within a
community (using e-DNA), animal density (using spa-
tially explicit capture-recapture techniques), individually
known animals (if one wants to assess the entire popula-
tion in a small area), sex ratios, and taxonomy (Bohmann
et al., 2014).

Integrated monitoring using multiple methods are,
despite complementary strengths, rarely combined
(Buxton et al., 2018; Garland et al., 2020), mainly due to
the costs involved, but also due to a lack of cross-
methodological knowledge exchange. Of course, any
one method requires significant technical know-how
and financial resources, which are not always readily
available. Yet, we encourage combining field methods,
as it has the potential to greatly broaden the diversity of

species monitored. In addition, using multiple methods
may facilitate synergies for more in-depth ecological or
behavioral research (Garland et al., 2020; Moore
et al., 2020), opening up new, interdisciplinary, research
paths that can ultimately help to answer pressing eco-
logical questions and provide improved guidance for
conservation policy.
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