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Abstract10

How can the forensic scientist rationally justify performing a sequence of tests and11

analyses in a particular case? When is it worth performing a test or analysis on12

an item? Currently, there is a large void in logical frameworks for making rational13

decisions in forensic science. The aim of this paper is to fill this void by pre-14

senting a step-by-step guide on how to apply Bayesian decision theory to routine15

decision problems encountered by forensic scientists on performing or not per-16

forming a particular laboratory test or analysis. A decision-theoretic framework,17

composed of actions, states of nature, and utilities, models this problem, and an18

influence diagram translates its notions into a probabilistic graphical network.19

Within this framework, the expected value of information (EVOI) for the sub-20

mission of an item to a particular test or analysis addresses the above questions.21

The development of a classical case example on whether to perform presumptive22

tests for blood before submitting the item for a DNA analysis illustrates the use23

of this model for source level questions in forensic biology (i.e., questions that ask24

whether a crime stain consisting of a particular body fluid comes from a particu-25

lar person). We show how to construct an influence diagram for this example, and26

how sensitivity analyses lead to an optimal analytical sequence. The key idea is to27

show that such a Bayesian decisional approach provides a coherent framework for28

justifying the optimal analytical sequence for a particular case in forensic science.29

Keywords: Decision theory, Value of information, Utility, Bayesian decision network,30

Influence diagram, Forensic science31
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1 Introduction32

In 1984, Kahneman and Tversky wrote the following words to underline the33

importance of decision-making:34

Making decisions is like speaking prose — people do it all the time, knowingly or35

unknowingly. [22, p. 341]36

This is very true for decisions in forensic science. Decisions in forensic science are of the37

utmost importance, because the forensic scientist’s work may determine whether the38

true perpetrator of a crime can be found and convicted. Hence, it is highly desirable39

for forensic scientists to make rational decisions which they can justify in a court of40

law.41

However, there is currently a large void in logical frameworks for making decisions42

in forensic science. In practice, forensic scientists make decisions by blindly following43

laboratory protocols, which are not based on any logical framework. The scientific44

literature in forensic science is currently very limited with regard to models for ratio-45

nal decision-making. This literature currently contains a handful of publications on46

modeling a forensic scientist’s conclusions as a decision: Krawczak and Schmidtke [28]47

support the minimax decision rule for identifying fathers in disputed paternity cases,48

Phillips et al. [35] advocate for the use of signal detection theory for forensic individ-49

ualization conclusions, Biedermann et al. [2] introduce Bayesian decision theory for50

an identification or individualization conclusion, Biedermann et al. [3] apply Bayesian51

decision theory to the conclusion of whether an unknown proportion (e.g., of a consign-52

ment containing an illegal substance) is greater than a predefined threshold, Gittelson53

et al. [11] apply Bayesian decision theory to the conclusion of individualizing a person54

found through a database search, Gittelson et al. [14] apply Bayesian decision theory55

to the genotype designation of low-template DNA results, and Sironi et al. [42] apply56

Bayesian decision theory to declaring a person of unknown age a minor or an adult57

within the context of the law. A few publications attempt to create decision models58

for a forensic scientist’s decision of performing a DNA analysis [43, 44, 50]. And two59

publications apply Bayesian decision theory to a forensic scientist’s decision of per-60

forming a laboratory analysis in forensic science: Gittelson et al. [12] present a model61

for a forensic scientist’s decision of whether to process a fingermark, and Gittelson et62

al. [15] present the results of applying Bayesian decision theory to a forensic scientist’s63

decision of performing a single DNA analysis or two replicate DNA analyses on low-64

template DNA crime stains. Yet, these publications do not provide any explanation65

on how to apply Bayesian decision theory, how to construct an influence diagram, or66

how to perform sensitivity analyses.67

The aim of this paper is to fill this void by presenting a step-by-step guide on how to68

apply Bayesian decision theory to decision problems encountered by forensic scientists69

on performing or not performing a particular laboratory test or analysis. We follow70

Raiffa’s solution for the oil-wildcatter example [38], because this model is already71

widely published for medical decision problems on performing or not performing a72

test, decision problems which are structurally very similar to the forensic scientist’s73

decision problems. Similar structures include, for example, a model for the decisions of74

testing and then treating an infant born to a mother infected with HIV [34], a model75
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for the decisions of performing a bacterial culture and then treating with antibiotics a76

patient with a sore throat [32], and a model for the decisions of performing diagnostic77

tests and then a thoracotomy on a patient with a lung-cancer tumor [32].78

More specifically, this paper illustrates the application of Bayesian decision theory79

by presenting a decision-theoretic model for source level questions [8] in forensic biol-80

ogy. A source level question asks whether a crime stain consisting of a particular body81

fluid comes from a particular person. For example, in an assault where the perpetra-82

tor is injured and sheds blood, we are interested in whom the bloodstain(s) come(s)83

from.1 Making an inference about whom a particular body fluid comes from requires84

both information about the type of body fluid the DNA comes from and information85

about the source of the DNA. To address both of these questions, the forensic scien-86

tist first performs one or several presumptive tests for the targeted body fluid, and87

second, submits this crime stain for a DNA analysis. So the forensic scientist performs88

a sequence of tests and analyses.89

A probabilistic framework (e.g., a Bayesian network) that evaluates the combi-90

nation of the results of multiple such tests and analyses has already been published91

elsewhere [49], and will not be treated here. What has not been published in previ-92

ous studies is a model that takes the cost of each of the performed tests and analyses93

into account. Each presumptive test comes at a cost, and performing a DNA analysis94

is even more costly. So, the question we ask is, “How can the forensic scientist ratio-95

nally justify performing a sequence of tests and analyses in a particular case?” That96

is, “When is it worth performing a presumptive test?” And, “When is it worth per-97

forming a DNA analysis?” The forensic problem under scrutiny here is a decisional98

extension of part of previously published work [49], and can be expressed in the fol-99

lowing terms: “Do we need to perform a presumptive test for blood before submitting100

the sample for a DNA analysis?”.101

The aim of this paper is to place this decision problem into a decision-theoretic102

framework composed of actions, states of natures and utilities (these concepts are103

defined in Section 2.1.1), and to translate these notions into a probabilistic graphical104

model, that is, an influence diagram. This theory is then applied to a case example.105

This case study illustrates the use of such a model for making and justifying rational106

decisions in forensic science.107

This paper is structured as follows. Section 2 introduces the reader to the notions108

of Bayesian decision theory, sensitivity analysis and influence diagrams, notions that109

will play a role in the decision analysis of the forensic problem approached in Section110

3. Section 3 describes the case study and the decision-theoretic solution. Section 4111

presents a general discussion, and Section 5 provides a synthesis and a conclusion of112

the paper.113

1As opposed to whom the DNA comes from, because there could be background DNA unrelated to the
assault on the surface of the bloodstain(s).
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2 Methodology114

The principal aim of this section is to provide a basis for forensic scientists to solve115

decision problems based on Bayesian decision theory. The aimed-for model is nor-116

mative [29], meaning that it describes, or prescribes, how a rational decision maker117

would act, given the available information and his or her objectives and preference118

ranking. Note that this model may or may not represent a forensic scientist’s choice119

made without a normative model on the basis of, for example, intuition or a pre-120

established laboratory protocol. It is important to highlight that this model does not121

intend to replace the forensic scientist in making decisions, but simply intends to pro-122

vide a transparent tool, or framework – combining notions from probability theory,123

computational statistics, logic, and Bayesian decision theory – to reach a coherent2124

decision. Further, note that this model is personal in the sense that it reflects only one125

decision maker’s valuation of the possible consequences and probability assignments.126

This makes the model flexible, and presents great opportunities for exploring different127

alternatives, and then justifying a chosen course of action in a particular case.128

This section describes how Bayesian decision theory, sensitivity analyses and129

influence diagrams contribute to creating this normative model.130

2.1 Bayesian decision theory131

Bayesian decision theory focuses on choosing and justifying a rational course of action132

based on the inferences made in the presence of incomplete information [e.g., 39].133

The difficulty is that there is uncertainty regarding the consequence of each possible134

action. The consequence is not only determined by the chosen action, but also by an135

unknown variable, or condition, referred to as the state of nature (or state of the world).136

Not knowing the true state of nature, the decision maker is only able to formulate a137

probability distribution over the space of possible states of nature. This is why the138

decision maker is uncertain about the resulting consequence (i.e., the combination of139

the chosen action with the true state of nature).140

The decision-making process is not just based on probability distributions describ-141

ing the unknown states of nature. Decision theory’s major feature is that of combining142

the measure of uncertainty (probability distributions) with values describing the desir-143

ability of each of the possible consequences. By weighing the desirabilities of these144

consequences with the consequences’ probabilities of occurring, the rational decision145

maker chooses the action with the maximum expected desirability. Formally, this is146

called the maximum expected utility.147

2We use the word ”coherent” following Lindley [29], p. 22:

(...) it will not be possible to say that a decision is right but only that these decisions cohere,
or not. It is the relationships between events or decisions that matter, not the individual
events or decisions.

Hence, a normative framework provides constraints that ensure coherence in decision making. These con-
straints demand that the decision maker’s degrees of belief in uncertain events, as well as his or her degrees
of satisfaction with the choices’ possible consequences, obey the laws of probability.
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Here, we present the notions of utilities, expected utility maximization, and148

value of information. We begin by briefly describing the mathematical notation used149

throughout the rest of this paper.150

2.1.1 Mathematical notation151

To structure a decision problem, one has to define:152

� an action space A consisting of an exhaustive3 list of mutually exclusive4 actions153

a1, a2, . . . , am;154

� a random variable Θ consisting of the possible states of nature, which are discrete155

in our example so that Θ has n possible states denoted Θ1,Θ2, . . . ,Θn.156

Further random variables will be denoted with capital roman letters according to the157

same scheme as Θ: the capital letter without subscripts denotes the variable’s set of158

possible states, and the capital letter with a subscript one of its states. For boolean159

variables, the capital letter describing the random variable denotes the state “true” of160

this variable, and this capital letter preceded by the symbol “¬” denotes its negation,161

that is, the state “false” of this variable. The results presented in this paper consider162

only discrete random variables so that each has a predefined number of exhaustive and163

mutually exclusive states. In some cases, the same capital letter will be used to denote164

multiple appearances of a particular variable in a problem, and we will distinguish165

between them by using superscripts.166

Each variable is characterized by a probability distribution. This distribution rep-167

resents the degree of belief the decision maker has in each of the states being true at168

a given point in time. These degrees of belief are described by subjective (or personal169

[31]) probabilities [10], which we denote using the notation Pr(·|·).5 This expression170

designates the conditional probability of the element(s) to the left of the vertical bar,171

given the element(s) to the right of the vertical bar. All of the decision maker’s degrees172

of belief are conditional because they are conditioned on his or her knowledge. For173

example, if we denote by I the decision maker’s knowledge at a given point in time, the174

decision maker’s degree of belief in Θ1 at this point in time is denoted by Pr(Θ1|I).175

The combination of A with Θ, i.e. A × Θ, produces the space of the actions’ possi-176

ble consequences, which we will call outcomes: O(ai,Θj), abbreviated by Oij , denotes177

the outcome obtained when the decision maker chooses action ai, i ∈ {1, 2, . . . ,m},178

when state of nature Θj , j ∈ {1, 2, . . . , n}, is true.179

To quantify the desirabilities of the actions’ possible outcomes, we will use utilities,180

denoted by the following expression:181

u(ai,Θj) = u(Oij) is the utility of outcome Oij .182

The decision-theoretic analysis of a problem will compute the expected utility, of183

each of the possible actions. We will denote it by ū(ai|·), i = 1, 2, . . . ,m, with the184

information available to the decision maker to the right of the conditioning bar. For185

3The list is exhaustive when the decision maker inevitably chooses one of the actions in the list. Note
that if it is possible for the decision maker to do nothing, then this possibility must be defined as one of
the actions for the action space to be exhaustive.

4The actions are mutually exclusive if the decision maker can never choose more than one of them at
one time.

5A discussion on the role of subjective probabilities and their relation with frequencies is introduced in
[47].
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example, ū(a1|I) is the decision maker’s expected utility for performing action a1 given186

the information contained in I.187

2.1.2 Utilities188

Utilities measure the desirability of each possible outcome, based on the decision189

maker’s objectives and personal preferences. It is a subjective notion (in the sense of190

personal), meaning that decision makers with different objectives and preferences may191

have different preference orderings of the possible outcomes.192

The practical application of the notion of utilities to decision problems was largely193

made possible by its concretisation through axioms [33, 40]. It was demonstrated that194

utilities are numerically measurable quantities, (i.e., numbers that may concretely be195

obtained through the comparision of gambles), and asserted that these numbers must196

obey the following axioms, where u1, u2 and u3 are three utilities and p1, p2 and p3197

are three probabilities:198

199

� It is possible for the decision maker to order the possible outcomes from best to200

worst (or to explicitly state her indifference between two, or several, of them).201

� These preferences respect the property of transitivity: i.e., if preferences for three202

outcomes are defined by utilities u1, u2, and u3, such that u1 > u2 and u2 > u3,203

then u1 > u3 must be true.204

� If u2 < u1, then the outcome described by u2 is less preferable than any gamble6205

between u1 and u2, and the outcome described by u1 is more preferable than any206

such gamble.207

� If u3 < u2 < u1, then it is possible to define a gamble between u1 and u3 which is208

less preferable than u2, and another gamble (still between u1 and u3) which is more209

preferable than u2.210

� The order in which utilities are combined is irrelevant: i.e., if p1 and p2 are two211

probabilities, then p1u1 + p2u2 = p2u2 + p1u1.212

� Finally, the number of algebraic steps used in combining utilities is irrelevant: i.e.,213

p1(p2u1 + (1− p2)u2) + (1− p1)u2 = p3u1 + (1− p3)u2, with p3 = p1p2.214

These axioms provide decision theory with a means for quantifiying and unifying
desirabilities of outcomes on a single scale. More specifically, the utility that should be
assigned to a particular outcome is precisely defined through the comparison of two
gambles. For this, consider a utility scale from 0 to 1, where a utility of 1 is assigned
to the most desirable outcome (which we shall denote by O+):

u(O+) = 1 ,

and, analogously, 0 is assigned to the least desirable outcome (denoted by O−):

u(O−) = 0 .

6A gamble between two outcomes means that one of them will occur with a probability p and the other
with a probability (1 − p).
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For the remaining outcomes, the utilities will be somewhere between 0 and 1. The215

numerical value of any u(Oij), i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, is now216

determined by comparing the following two gambles:217

gamble 1: obtain outcome Oij for sure,218

gamble 2: obtain the most desirable outcome O+ with a probability of Pr(O+) and219

the least desirable outcome O− with a probability of Pr(O−) = 1− Pr(O+).220

Which gamble does the decision maker prefer? If Pr(O+) is very small, the decision221

maker will choose gamble 1. If Pr(O+) is very large, the decision maker will choose222

gamble 2. Thus, there must be a turning point somewhere between these two probabil-223

ities, that is, a single value for Pr(O+), for which the decision maker will be indifferent224

between gambles 1 and 2. This numerical value for the probability of Pr(O+) is equal225

to the decision maker’s utility for outcome Oij . In other words:226

u(Oij) = u(O+)× Pr(O+) + u(O−)× (1− Pr(O+))

= 1× Pr(O+) + 0× (1− Pr(O+))

= Pr(O+) . (1)

For example, a utility of u(Oij) = 0.7 means that the decision maker is indifferent227

between obtaining outcome Oij for sure and obtaining the best possible outcome with228

a probability of 0.7 and the worst possible outcome with a probability of 0.3.229

2.1.3 Maximizing the expected utility230

We consider - as expressed by Lindley [29] - that a rational decision maker wants to
maximize the satisfaction she expects to obtain. This corresponds to maximizing her
expected utility. For discrete states of nature, the most rational action is therefore:

arg max
i

ū(ai|·) = arg max
i

n∑
j=1

u(Oij)Pr(Θj |·).

This action that maximizes the expected utility is called the Bayes action [1].231

Numerous examples apply this theory in forensic science [e.g., 2, 3, 11, 14, 42, 45].232

2.1.4 Value of information233

The probability distribution over the states of nature, Θ, is conditioned on the infor-234

mation the decision maker has. We denoted by I the information the decision maker235

has at a given point in time. Let this point in time be when the decision maker is first236

faced with the decision of choosing a given action in A. The question is, should she237

make this decision with her current knowledge I, or should she acquire an additional238

piece of information before making the decision? Let us define a random variable E239

for this additional piece of information. E is a discrete random variable partitioned240

into q possible states denoted E1, E2, . . . , Eq. A rational decision maker (i.e., a deci-241

sion maker wanting to maximize the satisfaction she expects to obtain from choosing242

an action in A) will acquire this additional piece of information if its expected value243
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is greater than the cost of acquiring it. This requires a quantification of the expected244

value of the additional piece of information.245

Bayesian decision theory defines the expected value of information (EV OI) as
the difference between the maximum expected utility with this information and the
maximum expected utility without this information. The maximum expected utility
without the additional piece information is:

maxi ū(ai|I) = maxi

n∑
j=1

u(Oij)Pr(Θj |I). (2)

With the additional piece of information E, the maximum expected utility becomes the
weighted average of the maximum expected utilities for each of the different possible
realizations of this new piece of information (which is still unknown when the decision
maker must decide to acquire or not acquire it):

q∑
k=1

maxi ū(ai|Ek, I)Pr(Ek|I) =
q∑

k=1

maxi

n∑
j=1

u(Oij)Pr(Θj |Ek, I)Pr(Ek|I), (3)

where Pr(Θj |Ek, I) is the updated probability of Θj upon learning Ek, which we call246

the posterior probability of Θj .247

The mathematical relationship between the posterior probability Pr(Θj |Ek, I) and
the prior probability Pr(Θj |I) is given by Bayes’ theorem. The application of Bayes’
theorem updates one’s initial degree of belief in Θj so that this posterior probability
assignment takes into account the new piece of information Ek:

Pr(Θj |Ek, I) =
Pr(Ek|Θj , I)Pr(Θj |I)

Pr(Ek|I)
. (4)

248

This updating process may be repeated as many times as necessary.249

250

Inserting Eq. (4) into Eq. (3) produces:251

q∑
k=1

maxi ū(ai|Ek, I)Pr(Ek|I) =

q∑
k=1

maxi

n∑
j=1

u(Oij)
Pr(Ek|Θj , I)Pr(Θj |I)

Pr(Ek|I)
Pr(Ek|I)

=

q∑
k=1

maxi

n∑
j=1

u(Oij)Pr(Ek|Θj , I)Pr(Θj |I). (5)

The EV OI of E is the difference between Eq. (5) and Eq. (2), that is:

q∑
k=1

maxi ū(ai|Ek, I)Pr(Ek|I)−maxi ū(ai|I)
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=

q∑
k=1

maxi

n∑
j=1

u(Oij)Pr(Ek|Θj , I)Pr(Θj |I) − maxi

n∑
j=1

u(Oij)Pr(Θj |I). (6)

The EV OI is always greater than or equal to zero, reflecting the informative value252

of additional information [e.g., 18, 37]. If this value is greater than the cost of obtaining253

E, the decision maker should acquire the additional information. If this value is smaller254

than the cost, the rational decision maker would choose not to acquire the information.255

Further information on using the EV OI for solving forensic decision problems can be256

found in Gittelson et al. [12], Gittelson [13], Gittelson et al. [15].257

2.2 Sensitivity analyses258

According to Edwards [9]:259

Any decision [. . . ] is, if made under conditions of uncertainty, equivalent to an assessment260

of a vector of probabilities. [9, p. 338]261

Given a set of preferences, the decision between two actions comes down to comparing262

the posterior probability of a state of nature to a threshold probability calculated as263

a function of these preferences. Several examples illustrate this in the judicial context264

[e.g., 4, 23–25].265

Consider the discrete states of nature Θj , j ∈ {1, 2, . . . , n}. If we are interested,266

say, in the posterior probability of Θ1, this refers to the probability of this state after267

observing a certain amount of evidence, say Ek: Pr(Θ1|Ek). This probability is a func-268

tion of the variables and parameters defined in the model for the relationship between269

Θ1 and Ek. Thus, as Edwards [9] states, the decision is actually a function of the270

uncertain parameters in the model. Variations in these parameters may lead to differ-271

ent posterior probability distributions, which, in turn, may lead to different courses272

of action. To understand and justify the decision analysis’s outcome, it is therefore273

imperative to study the decision model’s behavior through sensitivity analyses. This274

information makes the decision maker aware of when the value of a parameter must275

be evaluated with high numerical precision, and when a simple order of magnitude276

suffices for a coherent decision analysis. Examples of such an approach can be found277

in forensic literature [e.g., 5, 11, 14, 16, 45].278

2.3 Influence diagrams279

2.3.1 Definition280

Influence diagrams are normative expert systems combining probability and decision281

theory in a graphical model [e.g., 20, 26]. They consist of:282

� nodes representing random variables in the form of circles (◦), decisions in the form283

of squares (□), and the utilities in the form of diamonds (⋄); and284

� arrows denoting either the direct probabilistic relationships between these nodes285

(represented by unbroken arrows), or precedence links that indicate the order in286

which multiple decisions must be made (represented by dotted arrows) [27].287
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Each arrow points from a parent node to a child node, and together they form a288

directed acyclic graph.289

Conditional probability tables respecting the direct probabilistic relationships290

between nodes are associated with each random variable.291

An influence diagram is a translation of the elements in the decision problem into292

a graphical structure. The main advantage of such a graphical structure is its prac-293

tical capacity of modeling a complex problem [13, 20, 41, 46]. Through its graphical294

representation it describes the assumed dependence relationships between the vari-295

ous elements of the problem. Underlying this representation, the laws of probability296

and decision theory rigorously govern the mathematical calculations. An example is297

developed in Section 3.2.298

2.3.2 Structure for forensic decision problems299

The basic structure of an influence diagram combines the three types of nodes as shown300

in Figure 1(a): utilities u(Oij), i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, are assigned to301

each outcome Oij (⋄), and each outcome Oij depends on action ai ∈ A (□) and on302

the state of nature Θj ∈ Θ (◦).303

An observation or test result updates the probability distribution over the possible304

states of nature. Figure 1(b) shows the most basic Bayesian network7 for making an305

inference on Θ given evidence E. Combining this model with the influence diagram306

in Figure 1(a) produces the influence diagram in Figure 1(c). This model does the307

same as the influence diagram in Figure 1(a), except that the probability distribution308

over Θ may now be updated by observing evidence E (by instantiating the observed309

evidence in node E).310

Finally, a decision T on whether or not to obtain the observation or test result311

(represented here by evidence E) can precede the main decision A at a cost of c.312

Figure 1(d) shows the generic influence diagram for the sequence of decisions test313

decision (denoted T ) → terminal decision (denoted A) [27]. The decision to perform a314

particular test (node T ) is a parent to the random variable E representing the possible315

observations or analytical results obtained if the test is performed. Node c, modeled as316

a child of this decision node accounts for the cost of performing this test. The dotted317

arrow between the action nodes T and A is a precedence link indicating that decision318

T precedes decision A. Such an influence diagram allows the decision maker to find319

the optimal course of action in a complex decision problem involving many intricately320

related random variables and a sequence of decisions.321

7A Bayesian network (BN) is a graphical probability model containing only random variables as nodes
[e.g., 20, 26].
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Fig. 1: Generic structures of graphical probability and decision models: (a) the general
structure of an influence diagram combining actions (node A), utilities (node u), and
states of nature (node Θ); (b) a Bayesian network for making inferences on the state of
nature given a piece of evidence (node E); (c) the combination of models (a) and (b)
produces an influence diagram for choosing an action in A given evidence E; (d) an
extension of model (c) to include the preliminary test decision (node T ) of performing
or not performing the test which produces the evidence in E for a cost specified in
node c. Model (d) is the generic model for the sequence of decisions test decision
→ terminal decision [27]. The unbroken arrows represent the network’s functional
relationships between the nodes (i.e., the dependence relationships that determine
the model’s evaluation process), and the dotted arrow stands for a precedence link
indicating that decision T precedes decision A.

3 Results322

In this section, we present a case study that applies the theory and model presented in323

Section 2. The forensic decision problem under scrutiny here is: “Should we perform324

a presumptive test for blood before submitting the sample for a DNA analysis?”325

Consider the following scenario. There is an assault, and during this assault the326

perpetrator is injured and sheds blood. An investigator collects a stain on the crime327

scene, believing that it may contain blood coming from the offender. If this stain is328

human blood, the forensic scientist wants to obtain its DNA profile. However, if the329

stain is not human blood, a DNA analysis would not produce any relevant result, and330
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the cost of performing this analysis would be wasted.8 The forensic scientist has the331

choice of directly performing a DNA analysis, or of first performing a presumptive332

test for hemoglobin. If she decides to first perform a presumptive test, then she must333

decide which type of presumptive test, for there are chemical tests that react with334

hemoglobin without distinguishing between animals and humans, and slightly more335

expensive immuno-chromatographic tests that react specifically with hemoglobin from336

primates. It is also possible to perform a sequence of both of these tests. The question337

is which presumptive test(s), if any, should the scientist perform? This decision deals338

with determining the sequence of tests to perform on a crime stain before deciding339

to submit it to a more costly analytical test, the DNA analysis. Hence, the scientist’s340

terminal decision here consists of the action space A = {a1, a2}, with:341

a1 - perform a DNA analysis,342

a2 - not perform a DNA analysis.343

The possible states of nature in this decision problem are:344

Θ1 - the stain is human blood,345

Θ2 - the stain is not human blood,346

These make the set of possible outcomes, O = A × Θ, consist of:347

O11 - performing a DNA analysis and obtaining a profile because the stain is human348

blood,349

O12 - performing a DNA analysis and not obtaining a profile because the stain is350

not human blood,351

O21 - not performing a DNA analysis (and thus not obtaining a DNA profile), even352

though the stain is human blood.353

O22 - not performing a DNA analysis (and thus not obtaining a DNA profile) when354

the stain is not human blood.355

Outcomes O21 and O22 amount to the same physical result (i.e., not performing a DNA356

analysis and therefore not obtaining a DNA profile), so we will group them together357

and call this outcome O2−.358

There are different types of presumptive tests for hemoglobin (e.g. Luminol,359

leuchomalachite green, phenolphthalein, Hemastix, Hemident, Bluestar, Hexagon360

OBTI, Hemastix and Kastle-Meyer). Comments on performances of such tests can361

be found in Piva de Almeida et al. [36]. Other studies [e.g., 6, 17, 21] provide fur-362

ther information. Here, for the sake of illustration, we will use two that are used363

in European forensic genetics laboratories: the chemical Kastle-Meyer test and the364

immunochromatographic Hexagon OBTI test. The first targets the pseudoperoxidase365

activity of hemoglobin and will produce a positive result for both animal and human366

hemoglobin. The second uses antibodies specific for human hemoglobin and will367

produce a positive result for hemoglobin coming from a primate [19]. We will use the368

superscripts “KM” and “HO” to distinguish between these two tests, so that for the369

Kastle-Meyer test we have the test decision T KM = {tKM
1 , tKM

2 }, with:370

8Note that the forensic scientist here is interested specifically in obtaining the DNA profile of a bloodstain,
and is not interested in the DNA profile of any other biological material of human origin that may be
present on the surface on which the stain was recovered.

12



tKM
1 - perform a Kastle-Meyer test,371

tKM
2 - not perform a Kastle-Meyer test,372

and for the immunochromatographic Hexagon OBTI test, we have the test decision373

T HO = {tHO
1 , tHO

2 }, with:374

tHO
1 - perform a Hexagon OBTI test,375

tHO
2 - not perform a Hexagon OBTI test.376

377

We assume that each of these presumptive tests, if performed, will produce either378

a positive or a negative result [48]. Let us denote:379

EKM
1 - positive Kastle-Meyer test result,380

EKM
2 - negative Kastle-Meyer test result,381

EHO
1 - positive Hexagon OBTI result,382

EHO
2 - negative Hexagon OBTI result.383

384

Finally, performing each of these tests comes at a cost, denoted cKM for the cost385

of performing the Kastle-Meyer test and cHO for the cost of performing the Hexagon386

OBTI test.387

3.1 Utility function388

Quantifying the EV OI for each presumptive test requires assigning a utility function389

to the space of possible outcomes O. In this decision problem, only the combination390

of a1 (performing a DNA analysis) and Θ1 (the stain is human blood) will lead to a391

DNA profile of the bloodstain. In all of the other combinations of ai ∈ A and Θj ∈ Θ,392

the scientist will not obtain a DNA profile of the bloodstain, but will still have to pay393

for this analysis if a1 was chosen. The utility function must therefore cover both the394

gain obtained from acquiring a DNA profile, and the cost produced by performing395

this analysis. On a monetary scale, this function is:396

u(O11) = gain from DNA profile - cost of DNA analysis,397

u(O12) = cost of DNA analysis,398

u(O2−) = 0.399

For example, if the cost of one DNA analysis is 400 if it produces a DNA profile400

and 300 if it doesn’t produce a DNA profile, we would obtain the following utility401

function:9402

u(O11) = gain from DNA profile - 400,403

u(O12) = −300,404

u(O2−) = 0.405

406

This leaves one unknown in the utility function: gain from DNA profile. How
important is it in the case under investigation to obtain a DNA profile of this stain
if this stain is indeed blood? Is this profile essential for finding and convicting the

9We purposely did not specify a monetary unit, as these costs will vary from lab to lab and from country
to country, and these numbers are for illustrative purposes only.
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offender? The answers to these questions will vary from one case to another. We assume
in this study that outcome O11 is the most desirable, so that

u(O11) > u(O2−) ,

in other words, this means that in this case

gain from DNA profile > 400 .

In Section 2.1.2, we saw how a utility function is defined by the probabilities of
the most desirable outcome that make the decision maker indifferent between a gam-
ble of obtaining this most desirable outcome with the chosen probability and the least
desirable outcome with one minus this probability, and the gamble of obtaining the
intermediate outcome for sure. Here, if the forensic scientist finds it difficult to put a
numerical value on the gain from DNA profile, she may prefer to define the function
on a scale from 0 (depicting the worst possible outcome) to 1 (for the best possible
outcome), and then applying a linear transformation to obtain the equivalent function
in monetary units. On a scale from 0 to 1, this utility function is given by:

u(O11) = 1
u(O12) = 0
u(O2−) = κ ,

where 0 < κ < 1 is defined through the comparison of gambles explained in
Section 2.1.2. Hence, the value of κ is equal to the probability that makes the forensic
scientist indifferent between obtaining outcome O2− (not performing a DNA analy-
sis and therefore not obtaining a DNA profile) for sure, and obtaining outcome O11

(performing a DNA analysis and obtaining a DNA profile of the bloodstain) with a
probability of κ and outcome O12 (performing a DNA analysis and not obtaining a
DNA profile of the bloodstain) with a probability of 1 − κ (see the explanation in
Section 2.1.2 for more details). The smaller κ, the more the forensic scientist wants to
obtain a DNA profile, because the more she is willing to pay to perform the analysis
when there is a small probability of obtaining a result. In other words, the smaller κ,
the greater the gain obtained from a DNA profile. In terms of κ, the monetary gain
acquired from a DNA profile in this example of the utility function is given by:

gain from DNA profile =
300

κ
(1− κ) + 400 .

Or, a given monetary gain from a DNA profile is equivalent to setting κ equal to:

κ =
300

gain from DNA profile − 100
.

This utility function is plugged into Eq. (6) to evaluate the EV OI for each of the407

presumptive tests.408
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3.2 Complete decision model – Influence diagram409

The complete model consists of a sequence of two test decisions (the Kastle-Meyer test410

and the Hexagon OBTI test) and one terminal decision (performing a DNA analysis).411

The Kastle-Meyer’s test result provides information about whether the crime stain412

is blood, and the Hexagon OBTI’s test result provides information about whether413

the crime stain is human blood. We already have a variable for whether the stain is414

human blood: the decision problem’s state of nature Θ. Yet we do not have a random415

variable for whether the stain is blood, so we add the boolean variable B with states:416

B - the stain is blood,417

¬B - the stain is not blood.418

419

The state of nature Θ depends on whether the stain is blood (B) and on whether420

the stain is of human origin, so we must add the boolean variable G for whether the421

stain is of human origin. Its states are:422

G - the stain is of human origin,423

¬G - the stain is not of human origin.424

425

We can now connect the random variables, decisions, utilities and costs to create426

the influence diagram for this decision problem. This influence diagram is shown in427

Figure 2. It is the influence diagram for the test decisions of both performing a Kastle-428

Meyer test (node TKM ) and performing a Hexagon OBTI test (node THO) on the429

crime stain before deciding whether to submit it for a DNA analysis.430

A

u

E

Θ

T

c

GB

E

T

c HO

HO

HO

KM

KM

KM

Fig. 2: An influence diagram for the sequence of decisions of performing a presumptive
test for blood (node T ) before deciding to submit an item for DNA typing (node
A). The utility function in node u models the satisfaction obtained from decision
A in function of whether the stain is human blood (node Θ). The prior probability
distribution over this node depends on whether the stain is blood (node B) and on
whether the stain is of human origin (node G). Here there are two presumptive tests
possible: first, the scientist may perform a Kastle-Meyer test (node TKM ), specific
for hemoglobin, producing result EKM at a cost of cKM ; second, the scientist may
perform a Hexagon OBTI test (node THO), specific for the hemoglobin of primates,
producing result EHO at a cost of cHO.
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If both tests are applied, the Kastle-Meyer test always precedes the Hexagon OBTI431

test, because the forensic scientist proceeds from the most general test to the most432

specific test. In this case (and in most cases), the most general test is also the least433

expensive test. Here, we fix the cost of the Kastle-Meyer test to be 0.60 monetary434

units, and the cost of the Hexagon OBTI test to be 5 monetary units. These costs435

are contained in nodes cKM and cHO, respectively. Nodes B and G in this influence436

diagram are the nodes for the boolean variables B (the stain is blood) and G (the437

stain is of human origin).438

The conditional probability table for Θ is filled out as follows:

Θ1 =

{
1 if B and G are both true ,
0 in all other cases .

Nodes EKM and EHO model the test result of each of the presumptive tests, and439

have the following conditional probability tables:440

441

B ¬B
EKM : EKM

1 1− βKM αKM

EKM
2 βKM 1− αKM

442

Θ1 Θ2

EHO : EHO
1 1− βHO αHO

EHO
2 βHO 1− αHO

443

where α represents the probability of a false positive and β the probability of a false444

negative.10 According to the literature, the Kastle-Meyer test may produce false pos-445

itives when in contact with certain types of food (e.g., potatos, tomatos, red kidney446

bean, horseradish), bleach solutions and materials [e.g., 7, 51], and the Hexagon OBTI447

test may produce false positives when in contact with certain detergents and bleach448

solutions, in addition to blood from primates other than humans [e.g., 19]. A false neg-449

ative may occur when the blood is highly diluted, that is, diluted more than 1:100,000450

for the Kastle-Meyer test [51] and more than 1:1,000,000 for the Hexagon OBTI test451

[19]. As the false positive and false negative probabilities are highly dependent on the452

case circumstances,11 it is not possible to put a single, general numerical value on each453

of these. Instead, we examine the impact of α and β, along with the impact of B, G,454

and κ in the sensitivity analyses in Section 3.3.455

3.3 Sensitivity analysis456

The EV OI associated with each of the tests is a function of:457

� the false positive and false negative probabilities, α and β,458

10The literature also commonly uses the terms sensitivity and specificity, which are 1 − β and 1 − α,
respectively.

11For example, was a gorilla present on the crime scene? Or, more realistically, what is the probability
that the surface on which the trace was recovered was freshly cleaned with a bleach solution?
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Fig. 3: The EV OI of a test (here for the Hexagon OBTI test) depends on (a) α (the
test’s false positive probability) and (b) β (the test’s false negative probability). These
graphs show that the EV OI is only affected by α and β if these probabilities are very
high. In other words, if α < 10−3, the EV OI is independent of α’s precise numerical
value, and if β < 10−2, the EV OI is independent of β’s precise numerical value.

� the prior probability distributions over B and G (which determine the probability459

distribution over Θ), and460

� parameter κ in the forensic scientist’s utility function.461

3.3.1 False positive and false negative probabilities462

Figure 3 presents the EV OI in function of α and β.463

According to Figure 3(a), the exact value of α is of no importance when α < 10−3.464

And according to Figure 3(b), the exact value of β is of no importance at all, except if465

β would take unrealistically high values of 10−1 or 10−2. This means that unless there466

are particular case circumstances that are favorable to false positives (i.e., making467

α ≥ 10−3 and/or β ≥ 10−2), assigning more precise numerical values for α and β does468

not change the EV OI of the test. For the sensitivity analyses that follow, we will use469

α equal to 10−3 and 10−1 and β equal to 10−3 and 10−1 for both the Kastle-Meyer470

and the Hexagon OBTI tests.471

3.3.2 Prior probability distributions over B and G and parameter κ472

A presumptive test is useful when there is uncertainty surrounding the presence of473

the test’s target molecule. For the test to be useful, this uncertainty (quantified here474

by the probabilities Pr(B|I) and Pr(Θ1|I)) must fall into a particular range, that475

is, a range of probabilities where the test’s result will have an impact on the choice476

of the terminal action. In other words, if the probability that the target molecule477

is present is already very high, a presumptive test will probably produce a positive478

result, and this will add very little information to what is already known. Conversely,479

17



if the probability of the target molecule being present is extremely small, the test will480

probably produce a negative result, also adding very little information. And if the test481

result does happen to go in the opposite direction of what is expected (i.e., negative482

for a very high prior probability, or positive for a very low prior probability), then its483

value may still be too small to counterbalance prior probabilities that are very close484

to 0 or to 1, so that the scientist would not change her choice of ai ∈ A upon learning485

the test result. Thus, a presumptive test is useful when the probability of the target486

molecule is in a range excluding values very close to 0 and values very close to 1.487

So, when is it worth performing a Kastle-Meyer test, and when is it worth per-488

forming a Hexagon OBTI test? Figure 4 presents the EV OI (solid black line) of a489

Kastle-Meyer test in function of Pr(B|I) and given values for κ, α, β and Pr(G|I).490

Figure 5 presents the EV OI (solid black line) of a Hexagon OBTI test in function491

of Pr(Θ1|I) and given values for κ, α and β. For κ, the values 0.1, 0.5 and 0.9 were492

chosen to cover the typical range of cases a forensic scientist encounters: (1) a serious493

case where it is worth investing in a DNA analysis even when there is as little as a 0.1494

probability of obtaining a DNA profile (κ = 0.1), (2) a case of medium severity where495

it is worth investing in a DNA analysis when the odds of obtaining a DNA profile are496

50:50 or higher (κ = 0.5), and (3) a case of low severity where it is only worth invest-497

ing in a DNA analysis when there is a probability of 0.9 or greater of obtaining a DNA498

profile (κ = 0.9). These graphs also plot the maximum expected utility without the499

test (dotted red line) and the maximum expected utility with the test (dashed green500

line), whose difference produce the EV OI (Eq. (6)).501

The maximum expected utility with the test is a linearly increasing function502

of Pr(B|I) for the Kastle-Meyer test (Fig. 4) and a linearly increasing function of503

Pr(Θ1|I) for the Hexagon OBTI test (Fig. 5), with a minimum value equal to u(O2−)504

for a probability of 0 and a maximum value equal to u(O11) for a probability of 1.12505

The maximum expected utility without the test is first equal to u(O2−) when Pr(B|I)506

takes values from 0 to κ
Pr(G|I) for the Kastle-Meyer test (Fig. 4) and when Pr(Θ1|I)507

takes values from 0 to κ for the Hexagon OBTI test (Fig. 5), and then after this thresh-508

old, its value increases linearly13 to the maximum value of u(O11) for a probability509

of 1. Since the EV OI is the difference between these two functions, its maximum is510

at the thresholds Pr(B|I) = κ
Pr(G|I) (Fig. 4) and Pr(Θ1|I) = κ (Fig. 5), where it is511

equal to the maximum expected utility with the test.512

More specifically, these sensitivity analyses produce the following results for the513

EV OI:514

� Kastle-Meyer test: The Kastle-Meyer test has an EV OI equal to 0 for Pr(G|I) ≤
κ. When Pr(G|I) ≤ κ, a2 will always maximize the expected utility, even when the
test’s result is positive, because the low Pr(G|I) prevents Pr(Θ1|I) from exceeding
the threshold necessary for a1 to be the Bayes action. The information provided
by a Kastle-Meyer test is therefore useless whenever Pr(G|I) ≤ κ. However, when

12These extremes represent perfect information which attain the maximum utility values for performing
a DNA analysis (i.e., u(O11)) and for not performing a DNA analysis (i.e., u(O2−)).

13Here, the maximum expected utility without the test is equal to Pr(B|I)×u(O11)+Pr(¬B|I)×u(O12)
for the Kastle-Meyer test (Fig. 4) and to Pr(Θ1|I) × u(O11) + Pr(Θ2|I) × u(O12) for the Hexagon OBTI
test (Fig. 5).
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(d) Pr(G|I) = 0.60, α = 1
10 , β = 1
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(e) Pr(G|I) = 0.75, α = 1
10 , β = 1
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(f) Pr(G|I) = 0.90, α = 1
10 , β = 1

10

Fig. 4: The EV OI of the Kastle-Meyer test in function of the probability of the crime
stain being blood, Pr(B|I), for κ = 0.5, for values of Pr(G|I) of 0.60, 0.75 and 0.90,
and for values of α and β of 1

1000 and 1
10 . The solid black line depicts the EV OI, the

dotted red line the maximum expected utility without performing the test, and the
dashed green line the maximum expected utility with performing the test.
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(b) κ = 0.5, α = 1
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(c) κ = 0.9, α = 1
1000 and β = 1
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(d) κ = 0.1, α = 1
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(e) κ = 0.5, α = 1
10 and β = 1
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(f) κ = 0.9, α = 1
10 and β = 1

10

Fig. 5: The EV OI of the Hexagon OBTI test in function of the probability of the
crime stain being human blood, Pr(Θ1|I), for values of κ of 0.1, 0.5, and 0.9, and for
values of α and β of 1

1000 and 1
10 . The solid black line depicts the EV OI, the dotted

red line the maximum expected utility without performing the test, and the dashed
green line the maximum expected utility with performing the test.
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Pr(G|I) > κ, the EV OI attains its maximum value for

Pr(B|I) = κ

Pr(G|I)
.

Figure 4 shows this. Further, the greater Pr(G|I), the greater is the maximum
value of the EV OI. This is because the EV OI is a function of the expected utility
of a1, which is a function of Pr(Θ1|I), and a greater Pr(G|I) produces a greater
Pr(Θ1|I). Higher false positive and false negative probabilities (i.e., α = 1

10 and
β = 1

10 ) produce slightly lower values for the EV OI than lower false positive and
false negative probabilities (i.e., α = 1

1000 and β = 1
1000 ) because the test produces

less information when the probabilities of a false positive or a false negative are
higher. Higher false positive and false negative probabilities also produce EV OI = 0
for very low values of Pr(B|I), because a positive test result in this case would not
provide enough information to justify performing a DNA analysis. In our example
with cKM = 0.60 monetary units, it is worth performing the Kastle-Meyer test
whenever

EV OIKM ≥ 0.60 .

For the instances plotted in Figure 4 where α = 1
1000 and β = 1

1000 , this is the case515

when:516

for Pr(G|I) = 0.60: 0.011 ≤ Pr(B|I) ≤ 0.997, i.e., 0.007 ≤ Pr(Θ1|I) ≤ 0.598

for Pr(G|I) = 0.75: 0.005 ≤ Pr(B|I) ≤ 0.997, i.e., 0.004 ≤ Pr(Θ1|I) ≤ 0.748

for Pr(G|I) = 0.90: 0.003 ≤ Pr(B|I) ≤ 0.997, i.e., 0.003 ≤ Pr(Θ1|I) ≤ 0.897

517

For the instances plotted in Figure 4 where α = 1
10 and β = 1

10 , this is the case518

when:519

for Pr(G|I) = 0.60: 0.170 ≤ Pr(B|I) ≤ 1, i.e., 0.102 ≤ Pr(Θ1|I) ≤ 0.600

for Pr(G|I) = 0.75: 0.136 ≤ Pr(B|I) ≤ 1, i.e., 0.102 ≤ Pr(Θ1|I) ≤ 0.750

for Pr(G|I) = 0.90: 0.114 ≤ Pr(B|I) ≤ 1, i.e., 0.103 ≤ Pr(Θ1|I) ≤ 0.900

520

� Hexagon OBTI test: The Hexagon OBTI test has a maximum EV OI for
Pr(Θ1|I) = κ. This is shown in Figure 5. In addition, Figure 6 plots the EV OI in
function of κ, showing how the EV OI increases to this maximum value and then
decreases. The smaller κ, the greater is the maximum value of the EV OI. This is
because a smaller κ represents a greater gain from obtaining a DNA profile, making
the information on the possible success of obtaining a DNA profile more valuable.
Like for the Kastle-Meyer test, higher false positive and false negative probabilities
produce slightly lower values for the EV OI, as well as EV OI = 0 for very low
values of Pr(Θ1|I). In our example with cHO = 5.00 monetary units, the Hexagon
OBTI test is worth performing whenever

EV OIHO ≥ 5.00 .

In the instances presented in Figure 5 where α = 1
1000 and β = 1

1000 , this is the case521

when:522
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for κ = 0.1: 0.002 ≤ Pr(Θ1|I) ≤ 0.983

for κ = 0.5: 0.017 ≤ Pr(Θ1|I) ≤ 0.983

for κ = 0.9: 0.151 ≤ Pr(Θ1|I) ≤ 0.983

523

In the instances presented in Figure 5 where α = 1
10 and β = 1

10 , this is the case524

when:525

for κ = 0.1: 0.015 ≤ Pr(Θ1|I) ≤ 0.490

for κ = 0.5: 0.117 ≤ Pr(Θ1|I) ≤ 0.883

for κ = 0.9: 0.584 ≤ Pr(Θ1|I) ≤ 0.969

526

3.3.3 Both presumptive tests in sequence527

With two presumptive tests, there is also the possibility of performing both tests in528

sequence. So, when is it worth performing both tests? Given a positive result from529

a Kastle-Meyer test, is it worth performing the Hexagon OBTI test? Figure 7 plots530

the EV OIHO for a case where the Kastle-Meyer test has already produced a positive531

result. The graphs in this figure plot the EV OIHO and the maximum expected utility532

values with and without this additional test in function of the prior probability of the533

stain being human blood (Pr(Θ1|I)), that is, the probability of the stain being human534

blood before learning that the Kastle-Meyer test produced a positive result. These535

graphs show that the sequence of tests Kastle-Meyer → Hexagon OBTI is the most536

cost effective for small prior probabilities for Θ1 when κ = 0.1 and κ = 0.5, and for537

larger prior probabilities for Θ1 when κ = 0.9. This is because the forensic scientist538

is willing to risk performing a DNA analysis and not getting a DNA profile more for539

lower values of κ than for a high value of κ. Hence, the forensic scientist will risk per-540

forming a DNA analysis with less information for lower values of κ so that the value541

of additional information decreases and plateaus as the prior probability Pr(Θ1|I)542

increases for these values of κ (Fig. 7(a),(b),(d) and (e)). For a large value of κ, the543

forensic scientist is more risk-adverse and will therefore require more information in544

order to perform a DNA analysis. Here, the graphs (Fig. 7(c) and (f)) show that the545

value of the Hexagon OBTI test is beneficial for larger prior probabilities for Θ1,546

because for these prior probabilities the information of this second test will provide547

the required useful information for making the decision of performing or not perform-548

ing a DNA analysis. These graphs indicate that the very small prior probabilities for549

Θ1 are too small for the information of the two tests to suffice for a justification of550

performing a DNA analysis. When comparing the EV OI values with the cost of the551

Hexagon OBTI test (cHO = 5.00), we note that the cost of this test is low enough that552

it is cost effective to perform the Hexagon OBTI test for 0.001 ≤ Pr(Θ1|I) ≤ 1 when553

αKM = αHO = 1
1000 and βKM = βHO = 1

1000 , and for κ = 0.1, κ = 0.5, and κ = 0.9.554

555

Where αKM = αHO = 1
10 and βKM = βHO = 1

10 , this range of probabilities is:556

for κ = 0.1: 0.002 ≤ Pr(Θ1|I) ≤ 0.105

for κ = 0.5: 0.015 ≤ Pr(Θ1|I) ≤ 0.769

for κ = 0.9: 0.153 ≤ Pr(Θ1|I) ≤ 1

557

22



0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

κ

m
on

et
ar

y 
un

its

(a) Θ1 = 0.1, α = 1
1000 and β = 1

1000

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

κ

m
on

et
ar

y 
un

its

(b) Θ1 = 0.5, α = 1
1000 and β = 1

1000

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

κ

m
on

et
ar

y 
un

its

(c) Θ1 = 0.9, α = 1
1000 and β = 1

1000

0.0 0.2 0.4 0.6 0.8 1.0
0

50
10

0
15

0
20

0
25

0
30

0

κ

m
on

et
ar

y 
un

its

(d) Θ1 = 0.1, α = 1
10 and β = 1

10

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

κ

m
on

et
ar

y 
un

its

(e) Θ1 = 0.5, α = 1
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(f) Θ1 = 0.9, α = 1
10 and β = 1
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Fig. 6: The EV OI of the Hexagon OBTI test in function of κ, the probability that
makes the forensic scientist indifferent between obtaining outcome O2− for sure and
obtaining outcome O11 with a probability of κ and outcome O12 with a probability
of 1 − κ, plotted here for values of Pr(Θ1|I) of 0.1, 0.5, and 0.9, and for values of α
and β of 1

1000 and 1
10 . The solid black line depicts the EV OI, the dotted red line the

maximum expected utility without performing the test, and the dashed green line the
maximum expected utility with performing the test.
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(d) κ = 0.1, αKM = αHO = 1
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(e) κ = 0.5, αKM = αHO = 1
10 and
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(f) κ = 0.9, αKM = αHO = 1
10 and

βKM = βHO = 1
10

Fig. 7: The EV OI of the Hexagon OBTI test after having obtained a positive result
from the Kastle-Meyer test in function of the prior probability of the stain being human
blood Pr(Θ1|I), for values of κ of 0.1, 0.5, and 0.9, and for values of αKM = αHO and
βKM = βHO of 1

1000 and 1
10 . The solid black line depicts the EV OI, the dotted red

line the maximum expected utility without performing the Hexagon OBTI test, and
the dashed green line the maximum expected utility with performing the Hexagon
OBTI test.
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For higher probabilities of false positives and false negatives, the EV OI values558

are slightly lower, and therefore the range of prior probabilities for which such a test559

would be cost effective is more restricted.560

3.4 Decision strategy561

The results of these sensitivity analyses lead to the following decision strategy for our562

example:563

If Pr(G|I) ≤ κ:564

� if Pr(Θ1|I) falls into the range defined by κ for the Hexagon OBTI test565

→ perform the Hexagon OBTI test.566

� if Pr(Θ1|I) does not fall into the range defined by κ for the Hexagon OBTI test567

→ do not perform any presumptive test.568

– if Pr(Θ1|I) is close to 0 → do not perform the DNA analysis.569

– if Pr(Θ1|I) is close to 1 → perform the DNA analysis.570

If Pr(G|I) > κ:571

� if Pr(Θ1|I) falls into the range defined by κ for the Hexagon OBTI test572

→ perform the Hexagon OBTI test.573

� if Pr(Θ1|I) falls into the range defined by κ and Pr(G|I) for the Kastle-Meyer test574

→ perform the Kastle-Meyer test.575

� if Pr(Θ1|I) falls into the range defined for the Hexagon OBTI test after a positive576

Kastle-Meyer result577

→ perform the Kastle-Meyer test,578

and if Kastle-Meyer produces a positive result579

→ perform the Hexagon OBTI test.580

� if Pr(Θ1|I) does not fall into any of the above ranges581

→ do not perform any presumptive test.582

– if Pr(Θ1|I) is close to 0 → do not perform the DNA analysis.583

– if Pr(Θ1|I) is close to 1 → perform the DNA analysis.584

Note that the overlap of the ranges defined by κ for the Hexagon OBTI test and585

by κ and Pr(G|I) for the Kastle-Meyer test for Pr(G|I) > κ, make it possible that586

performing each of these tests is a cost-effective choice. In this case, a more in-depth587

analysis focusing specifically on the values of Pr(G|I), Pr(B|I) and κ in the case at588

hand is required to see which course of action maximizes the expected utility.589

4 Discussion590

The model presented in this study contains several test decisions for a single terminal591

decision. With this case study, we have shown how a decision-theoretic analysis of such592

a case allows the forensic scientist to come up with the optimal analytical sequence593

for a particular case.594
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There is a clear need to apply a coherent framework to make and justify decisions595

based on the available information. The major difficulty in making rational decisions is596

the inevitable presence of uncertainty. This uncertainty is due to incomplete knowledge597

of the event which ultimately determines how desirable the outcome of the decision is.598

In forensic casework, this uncertainty is reflected in questions such as, “What traces599

are present on an item of evidence under examination?” or “Where do these traces600

come from?”. These questions place the forensic scientist in front of, not only a single601

decision on what test or analysis to perform, but, a whole sequence of such decisions.602

All of these decisions are interconnected, and together the chosen actions ultimately603

determine the value of the scientific evidence in a given case.604

However, it is common that scientists do not bother with decision analysis because605

they are sure that they will make excellent choices without a formal analysis. Yet,606

how the quality of a decision is measured in the absence of decision analysis remains607

a mystery. A justification of an action, even if only implicit, should be supported:608

More often than not, the decisions you make in your personal or professional life can609

be made without a lot of fuss. Either your best choice is clear to you without much610

analysis, or the decision is not important enough to warrant any great amount of attention.611

Occasionally, however, you probably find yourself in a situation where you feel it is worth612

your time and effort to think systematically and hard about the different courses of action613

you might pursue. You might even be willing to push a few numbers around, if you thought614

it would help you make a better decision. [38, p. ix]615

Forensic scientists have not always appreciated that they can make a contribution616

to decision making; that they can not only present the data informatively by using the617

coherent metric known as the Bayes factor or the likelihood ratio, but also explain how618

those data can be used to assist in choosing the most rational course of action [30]. The619

decisions made by forensic scientists are an integral part of the judicial process that620

may lead to the conviction or acquittal of an individual. It is therefore crucial that621

these decisions be made and justified on rational foundations, such as those provided622

by Bayesian decision theory. The model presented in this paper provides a foundational623

framework for making rational decisions in forensic science about obtaining additional624

information at a given cost, and its application provides a means for choosing and625

justifying a sequence of analytical tests.626

5 Conclusion627

Decision analysis plays an important role in forensic science. It is becoming more and628

more important for forensic scientists to justify their choices (e.g., a given analytical629

sequence of tests and analyses in the laboratory). Therefore, it is desirable for scientists630

to conform to a line of reasoning that can be explained and where the chosen course of631

action is justified. Here, a typical example of choosing a forensic analytical sequence632

has been introduced and developed by putting forward the role of Bayesian decision633

theory, the importance of sensitivity analyses, and the support offered by probabilistic634

graphical models called influence diagrams.635
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