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Abstract

Concentration gradients provide spatial information for tissue
patterning and cell organization, and their robustness under
natural fluctuations is an evolutionary advantage. In rod-shaped
Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1
gradients control cell division timing and placement. Upon dephos-
phorylation by a Tea4-phosphatase complex, Pom1 associates with
the plasma membrane at cell poles, where it diffuses and detaches
upon auto-phosphorylation. Here, we demonstrate that Pom1
auto-phosphorylates intermolecularly, both in vitro and in vivo,
which confers robustness to the gradient. Quantitative imaging
reveals this robustness through two system’s properties: The Pom1
gradient amplitude is inversely correlated with its decay length
and is buffered against fluctuations in Tea4 levels. A theoretical
model of Pom1 gradient formation through intermolecular auto-
phosphorylation predicts both properties qualitatively and quanti-
tatively. This provides a telling example where gradient robustness
through super-linear decay, a principle hypothesized a decade ago,
is achieved through autocatalysis. Concentration-dependent auto-
catalysis may be a widely used simple feedback to buffer biological
activities.
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Introduction

Protein concentration gradients provide spatial information for

cellular and developmental processes. Classical morphogen

gradients translate cell position into distinct cell fate to pattern a

developing organism (Rogers & Schier, 2011). They are often able to

do so robustly despite fluctuations in morphogen production,

though the underlying mechanisms are debated and subject of

intense research (Barkai & Shilo, 2009; de Lachapelle & Bergmann,

2010; Howard, 2012; Saunders et al, 2012; Cheung et al, 2014).

Gradients also occur at much smaller scales within cells, where they

impart spatial cellular order, for instance in organizing the mitotic

spindle or controlling cell division (Lutkenhaus, 2007; Fuller, 2010).

In rod-shaped fission yeast Schizosaccharomyces pombe cells, the

DYRK-family kinase Pom1 forms membrane-associated concentra-

tion gradients from cellular extremities (Padte et al, 2006; Hachet

et al, 2011). This kinase controls the timing and positioning of cell

division by inhibiting the activity and restricting the localization of

its substrate Cdr2 at the cell equator (Martin & Berthelot-Grosjean,

2009; Moseley et al, 2009; Bhatia et al, 2013; Deng et al, 2014;

Rincon et al, 2014). Pom1 reversibly binds the plasma membrane in

a manner that depends on its degree of phosphorylation (Hachet

et al, 2011). Initiation of Pom1 gradients relies on dephosphoryla-

tion of Pom1 by a type I phosphatase complex, whose regulatory

subunit Tea4 is actively transported to cell extremities by microtu-

bules (Martin et al, 2005; Tatebe et al, 2005; Alvarez-Tabares et al,

2007; Hachet et al, 2011). At the plasma membrane, Pom1 diffuses

laterally and auto-phosphorylates, which promotes detachment

from the plasma membrane and thus forms a gradient that decays

toward the cell middle (Hachet et al, 2011).

Results

The Pom1 gradient has been shown to be highly robust against

fluctuations in amplitude at the pole, with higher Pom1 peak levels

usually coinciding with a smaller gradient decay length, indicative

of a mechanism buffering Pom1 levels at cell sides (Saunders et al,

2012; Fig 1A). To describe the shape of Pom1 gradients quantita-

tively, we measured Pom1-tdTomato and Tea4-GFP distributions

in 97 cells (388 distinct profiles) using the Cellophane ImageJ

plugin (Bhatia et al, 2013; Fig 1B). GFP fluorescence measurements
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Figure 1. Quantitative analysis of Pom1 gradient reveals two system’s properties buffering against high variability of Tea4 at cell poles.

A The standard diffusive gradient (top) is exponential, and its decay length k (the distance at which the concentration is reduced to some fraction of its amplitude) is
independent from the amplitude. Variations in amplitudes are therefore not buffered and translate into large variations in positional information L. By contrast, a
gradient that reduces its decay length at high amplitudes (bottom) buffers variations in amplitude and conveys more robust positional information (L1 � L2).

B Pom1-tdTomato (red) and Tea4-GFP (green) profiles were quantified along the cortex of the same Schizosaccharomyces pombe cells. Curves are averages from 385
individual profiles.

C Smoothed Pom1 gradients averaged in batches of 5% (n = 19 or 20) from lowest to highest Tea4 amplitude. Amplitudes at the pole show a high variability.
D Corresponding smoothed and averaged Tea4 profiles. The variability at the pole is even higher than for Pom1.
E Pom1 gradient decay length decreases with the amplitude at the pole. Each dot corresponds to one average profile as in (C). The trans-phosphorylation model

predicts a slope of �1/2 in log–log space (red line), close to the observed linear regression of �0.52 (black line) and well within the two SE confidence interval (shaded
area). Each data point is weighted by its inverse variance of the mean in the linear regression.

F Pom1 amplitude increases with Tea4 concentration at the pole. Linear regression (black line) in the log–log scale shows a slope smaller than one indicative of a
sub-linear relationship between Pom1 and Tea4 at the pole (see also Fig 2B) and thus buffering of Tea4 fluctuations. Each dot corresponds to one average Tea4 and
corresponding Pom1 profiles as in (C, D). The trans-phosphorylation model predicts the slope to be 2/3 (red line), close to the observed 0.63 (black line), and within the
two SE confidence interval (shaded area). Each data point is weighted by its inverse variance of the mean in the linear regression.

Data information: Error bars represent the s.e.m., and all logarithms are in base 10.
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have been previously shown to be linearly related to protein

concentrations (Wu & Pollard, 2005). Across cells, we observed a

variation of cortical and total Pom1 amounts, as well as cytoplasmic

Pom1 concentration slightly above twofold, as would be expected

from cells that repeatedly half and then double their volume along

the cell cycle, hinting at a possible control of Pom1 production and

degradation. Pom1 levels at cell poles display a somewhat higher

variability with up to several fold differences in amplitude across

cells (Saunders et al, 2012) (Supplementary Fig S1D) and two- to

fourfold differences within cells (Supplementary Fig S1B).

Similar to previous results, we show that Pom1 gradient shape

adapts to this variability, as the Pom1 gradient decay length shows

a strong negative correlation with the Pom1 amplitude (Saunders

et al, 2012) (Fig 1E). Variation in total Pom1 amounts across cells

(Supplementary Fig S1A), covariation of cortical and cytosolic

amounts of Pom1 across cells (Supplementary Fig S1C), and a

strong correlation between these cortical amounts and the Pom1

amplitude at the cell pole (Supplementary Fig S1F) indicate that this

negative correlation between decay length and amplitude cannot be

explained by a mechanism that would keep the total amount of

cortical Pom1 (and thus the area under the profile) constant across

cells. Moreover, the coefficient of variation of the Pom1 concentra-

tion decreases away from the cell pole (Supplementary Fig S2),

suggesting that this negative correlation is the result of a buffering

mechanism on the decay length rather than a tight regulation of

total cortical Pom1.

Tea4 levels at cell poles showed even higher relative variability

than Pom1 (Bartlett test, P-value = 0.039) and were highly

correlated with Pom1 levels (Fig 1D, F). However, the relationship

between Pom1 and Tea4 levels is not proportional, as the ratio

between Pom1 and Tea4 amplitudes was strongly negatively corre-

lated with that of Tea4 (Supplementary Figs S2B and S5A). This

observation indicates that Pom1 amplitude is buffered against varia-

tions in Tea4 levels, which are probably caused by the discontinu-

ous delivery of the phosphatase regulatory subunit Tea4 to cell

poles upon each microtubule contact (Martin et al, 2005; Tatebe

et al, 2005).

Previous work proposed that the concentration-dependent forma-

tion of slow-diffusing Pom1 clusters may underlie Pom1 gradient

shape buffering, where high Pom1 concentration would form larger,

slower-diffusing clusters, leading to a steep gradient (Saunders et al,

2012). This hypothesis implies that a high Pom1 influx to the cell

pole would increase its local accumulation through to a “traffic

jam” phenomenon because the more Pom1 is brought to the cell

pole, the less it can diffuse away. This prediction is contradictory to

the observed reduced variability of Pom1 compared to Tea4 concen-

tration at the pole and negative correlation between Pom1/Tea4 and

Tea4 (see Fig 2B). Indeed, a simplified “cluster-based” model, in

which Pom1 diffusion decreases with its local concentration, repro-

duced the observed negative correlation between Pom1 gradient

amplitude and decay length (Supplementary Fig S3), but predicted

a positive correlation between the Pom1/Tea4 ratio and Tea4,

incompatible with our experimental data (Fig 2C). Similarly, the

detailed two-component clustering model described by Saunders

et al (2012) also predicted such positive correlation (Supplementary

Fig S4). Together, these data confirm that adapting diffusion is not

sufficient for explaining the observed buffering of Pom1 against

Tea4 levels.

We considered the distinct (but not mutually exclusive) hypo-

thesis that concentration-dependent modulation of Pom1 auto-

phosphorylation, and thus detachment rate, may explain both Pom1

gradient properties, that is, the negative correlation between the

Pom1 gradient amplitude and decay length, and the negative

correlation between Pom1/Tea4 ratio and Tea4 levels. Pom1

auto-phosphorylation may occur intramolecularly (in cis) or

intermolecularly between two distinct Pom1 molecules (in trans). In

the cis configuration, Pom1 auto-phosphorylation is independent of

Pom1 local concentration. By contrast, if two Pom1 molecules

phosphorylate in trans, then phosphorylation is directly linked to

the local Pom1 concentration (Fig 2A). Intuitively, Pom1 trans-

phosphorylation could explain a negative correlation between Pom1

gradient amplitude and decay length, with higher local Pom1 levels

causing higher trans-phosphorylation and thus detachment rate,

leading to a steeper gradient.

To formally explore this hypothesis, we considered a mathemati-

cal model of Pom1 gradient formation through intermolecular

phosphorylation. Previous experimental data showed that Pom1

auto-phosphorylates on multiple sites, at least 6 of which control its

membrane affinity (Hachet et al, 2011). Taking into account the

various phosphorylation states of Pom1 as distinct Pom1 species

gives rise to the detailed model described in Box 1. Analytical

developments combined with numerical simulations presented in

the Supplementary Text S1 show that if the Pom1 detachment rate

increases at least linearly with its number of phosphorylated

residues, this model is well approximated by a much simpler model

described by P
� ¼ DP00 � aP2 þ S, where P is the total cortical

Pom1 concentration, D the diffusion constant, and a an effective

detachment rate. S is the influx of Pom1 at the cell tip and can be

experimentally quantified (up to a multiplicative constant) by the

Tea4-GFP signal. We note that the concentration of cytosolic Pom1

(which represents a significant fraction of all Pom1 in the cell;

Supplementary Fig S1E) does not appear to strongly influence S

because we observe no correlation between the amplitude of

Pom1 at the pole and Pom1 concentration in the cytoplasm

(Supplementary Fig S1B and D).

This simple model can be solved analytically and leads to a

gradient profile that decays as a power of the distance from the source

(in contrast to an exponential decay in case of cis-phosphorylation

corresponding to a linear decay term) (Eldar et al, 2003; Wartlick

et al, 2009). The solution predicts that the Pom1 gradient decay

length k decreases with the inverse square root of the amplitude at

the origin, amounting to a power law with a coefficient of �1/2

between the Pom1 amplitude and the decay length (this coefficient

p is the slope of [Pom1] vs. k in log–log space). This prediction

matches well our experimental measurements (p = �0.52 � 0.06

(SE); Fig 1E). Equivalently, the model predicts a 1/2 power law

between the Pom1 amplitude and the overall cortical Pom1, closed

to the observed value of 0.46 (Supplementary Fig S1F). Further-

more, this simple trans-phosphorylation model also predicts a

power law relationship with p = 2/3 between the Pom1 amplitude

at the pole and Tea4 (which is proportional to S in Box 1), consis-

tent with the experimentally observed power law (p = 0.63 � 0.05

(SE), Figs 1F and 2B–C and Supplementary Fig S5A and B). Finally,

we show that individual profiles can be fit equally well with an

exponential or a power law (Supplementary Fig S6). Thus, our

model of trans-phosphorylation explains the observed system
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properties of Pom1 gradient and accurately predicts quantitative

aspects of these properties.

Using a combination of the simplified “cluster-based” model

(described above and in Figs 2C and Supplementary S3, S5) and our

simple trans-phosphorylation model, we further show that the

trans-phosphorylation model can have a dominant effect over the

clustering model to explain the negative correlation between Pom1/

Tea4 and Tea4, indicating that both models could coexist (Fig 2C).

To directly address whether Pom1 auto-phosphorylation occurs

in trans in vitro, we performed kinase assays with c32P-labeled ATP

at different Pom1 concentrations (Figs 3A and Supplementary Fig

S7). Phosphorylation rates are predicted to increase with Pom1

concentration only if auto-phosphorylation is intermolecular. By

comparing equivalent amounts of Pom1 from reactions at different

concentrations, we observed that 32P incorporation increases with

Pom1 concentration. Furthermore, we found the Pom1 can phos-

phorylate an inactive Pom1KD allele (lacking the first 305 aa so it

can be distinguished from wt Pom1 on the gel) in vitro (Supplemen-

tary Fig S7D). Thus, Pom1 auto-phosphorylates in trans in vitro.

We used Pom1 localization as readout of Pom1 phosphorylation

state to test whether Pom1 trans-phosphorylates in vivo. Indeed,

inactive or non-phosphorylatable Pom1 alleles bind the plasma

membrane more strongly and decorate the entire cell periphery

because they do not rely on local dephosphorylation by the

Tea4-PP1 complex for membrane binding (Hachet et al, 2011). We

used a Pom1as1 allele, which is initially functional and localized as

wild-type Pom1 at cell poles, but can be acutely inhibited by the

addition of an ATP analogue 3MB-PP1 (Padte et al, 2006; Bhatia

A

B C

Figure 2. A model of Pom1 intermolecular auto-phosphorylation predicts Pom1 gradient’s system properties.

A Possible hypotheses for a buffering mechanism. In the cluster-based model, high local concentration leads to the formation of slow-diffusing clusters, thus reducing
the decay length at cell poles with high amplitude (Saunders et al, 2012). A cis-phosphorylation model provides no buffering. By contrast, in a trans-phosphorylation
model, phosphorylation (and thus detachment) increases with local Pom1 concentration, providing a buffering mechanism reducing decay length at cell poles with
high amplitude.

B Inverse correlation between Pom1/Tea4 and Tea4 observed experimentally following from the sub-linear relationship between Pom1 and Tea4 (see Fig 1F, same
data). Line shows linear regression (P-value < 10�7).

C Relationship between Pom1/Tea4 and Tea4 predicted by the simple cluster-based and trans-phosphorylation models. The simple cluster-based model simply reflects
the hypothesis that diffusion decreases with Pom1 concentration P. It illustrates that this hypothesis cannot alone explain the decreasing relationship between
Pom1/Tea4 and Tea4 (red line). By contrast, this relationship is well accounted for qualitatively and quantitatively by the trans-phosphorylation model (blue line; see
also 1F). Combining both Pom1 clustering and trans-phosphorylation can also account for the decreasing relationship between Pom1/Tea4 and Tea4 (purple line).

Data information: All logarithms are in base 10.
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et al, 2013). We previously showed that Pom1as1-tdTomato rapidly

delocalizes over a large portion of the cell cortex within 3 min of

3MB-PP1 addition (Hachet et al, 2011). We reasoned that in case of

intermolecular phosphorylation, co-expression of wild-type Pom1

may slow down the kinetics of Pom1as1 delocalization. Indeed, co-

expression of wild-type Pom1-GFP maintained Pom1as1-tdTomato

cell tip localization within 1–2 min after 3MB-PP1 addition

(Fig 3B). By contrast, co-expression of Pom1KD-GFP did not prevent

Pom1as1-tdTomato delocalization (Fig 3B). High expression of

Pom1KD-GFP also appeared to have a drug-independent effect on

Pom1as1-tdTomato localization, possibly through protein–protein

interaction. We thus used a linear model with the GFP signal at

mid-cell as a covariate to assess the effect of the drug treatment on

Pom1as1-tdTomato localization quantified as the log-ratio of its

concentration at the cell pole and the cell middle (Fig 3C). This

showed that the drug treatment had a small yet significant effect on

Pom1as1-tdTomato localization in cells co-expressing Pom1KD-GFP

(n = 30 + 23, one-sided, P-value =0.012) but not in cells expressing

Pom1-GFP (n = 30 + 30, two-sided, P-value = 0.39). These results

are in agreement with the idea that Pom1-GFP phosphorylates

Pom1as1-tdTomato to delay its delocalization, providing in vivo

evidence for Pom1 trans-phosphorylation. We note that our in vivo

data cannot exclude that Pom1 may also auto-phosphorylate in cis.

Sustained drug treatment eventually led to Pom1as1-tdTomato

redistribution over the entire cell periphery even in the presence of

Pom1-GFP as observed in the case of Pom1KD (Bähler & Nurse, 2001;

Hachet et al, 2011), likely because inactive Pom1as1 or Pom1KD on

cell sides overlaps only very poorly with wild-type Pom1 at cell

poles (data not shown). In conclusion, in vitro and in vivo data

are consistent with the idea that Pom1 auto-phosphorylates

intermolecularly.

Discussion

In vitro and in vivo evidence indicates that Pom1 trans-phosphory-

lates in vivo, and cell population analysis of Pom1 gradient shape

exhibits the exact system properties expected from such a trans-

phosphorylation-induced Pom1 detachment: a �1/2 power law

between the gradient amplitude and decay length and a 2/3 power

law between the Tea4 concentration and the Pom1 concentration

at the pole. Such population-level properties are much more

powerful for distinguishing between different models than the

shape of individual gradient profiles (see Supplementary Fig S6).

We conclude that the Pom1 gradient is buffered against fluctuation

in attachment rate through intermolecular auto-phosphorylation.

This, however, does not exclude that Pom1 also auto-phosphory-

lates intramolecularly. Similarly, although a previously proposed

concentration-dependent effect on diffusion rate (Saunders et al,

2012) cannot explain both system’s properties, it may coexist with

the concentration-dependent effect on Pom1 phosphorylation and

membrane detachment proposed here, possibly even acting coop-

eratively by reducing the gradient length scale.

Conceptually, similar nonlinear self-regulatory mechanisms

have been shown to buffer morphogen gradients against varia-

tions in developing embryos and tissues (Eldar et al, 2003;

White et al, 2007). In these cases, the morphogen, by inducing

cell signaling, indirectly promotes its own degradation in a

concentration-dependent manner. By contrast, the concentration-

dependent release of Pom1 from the membrane is directly

induced by Pom1 action on itself. Indeed, by promoting Pom1

detachment from the membrane, the same biochemical reaction

—Pom1 intermolecular auto-phosphorylation—underlies the

decay of the gradient away from its site of membrane associa-

tion at cell poles (Bähler & Nurse, 2001; Hachet et al, 2011) and

provides a concentration-dependent negative feedback that

buffers Pom1 gradients against variations. Beyond concentration

gradients, analogous negative feedbacks may arise in many

other kinase systems, including trans-auto-phosphorylation of the

myosin IIIa, an unconventional myosin possessing a kinase

domain, to down-regulate its own localization at the tips of

filopodia (Quintero et al, 2010); trans-auto-phosphorylation of

PLK4, a major kinase for centriole biogenesis, to promote its

degradation and prevent excessive centriole number (Cunha-

Ferreira et al, 2013); or trans-phosphorylation of Src to promote

Box 1: Mathematical results

If Pi (x, t) is the cortical concentration of Pom1 phosphorylated i times,
the total Pom1 concentration is given by P x; tð Þ ¼ Pn

i¼0 Piðx; tÞ. After
dephosphorylation by the Dis2-Tea4 complex, Pom1 binds the
membrane at the cell tip at a rate S(x), diffuses along the cortex with
a coefficient D, and phosphorylates intermolecularly with a rate b.
Phosphorylated Pom1 molecules detach with increasing rate ji < ji+1,
resulting in the following dynamics:

@P0
@t

¼ D
@2P0
@x2

� j0P0 � bPP0 þ S

@Pi
@t

¼ D
@2Pi
@x2

� jiPi � bPPi þ bPPi�1 8i 0\i\n

@Pn
@t

¼ D
@2Pn
@x2

� jnPn þ bPPn�1

Summing those equations yields

@P

@t
¼ D

@2P

@x2
�
Xn
i¼0

jiPi þ S � D
@2P

@x2
� acP

c þ S

where ac is the effective detachment rate and 1.5 < c ≤ 2. The above
approximation is validated by numerical simulations. Theoretical
considerations (see Supplementary Text S1) along with experimental
data indicate that c ’ 2, resulting in the following model:

@P

@t
¼ D

@2P

@x2
� aP2 þ S

The solution at steady state is given by

PðxÞ ¼ A
x20

ðxþ x0Þ2
with x0 ¼

ffiffiffiffiffiffi
6D

aA

r
;

where the length scale x0 is proportional to the decay length of the profile,
k, and A is the gradient amplitude at the pole and can be computed as

A ¼
ffiffiffiffiffiffiffiffi
3

2aD
3

r
S2=3:

The total amount of Pom1 Ptot in the gradient is given by
Ptot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6DA=a

p ¼ x0A.
Upon a k-fold increase in the Pom1 attachment rate S, a position
given by a threshold concentration of Pom1 is shifted by
Dx ¼ ð1� 1=

ffiffiffi
k3

p
Þx0, which is always less than x0. See Supplementary

Text S1 for more details.
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A

B

C

Figure 3. Pom1 auto-phosphorylates intermolecularly in vitro and in vivo.

A Pom1 in vitro kinase assays with [ϒ-32P] ATP at five distinct Pom1 concentrations, ranging from 2.6 to 32 ng/ll (1× to 12×). Loading of equivalent Pom1 amounts
(40 ng; see silver staining control) reveals higher incorporation of 32P upon higher Pom1 concentration, indicating an intermolecular reaction. Quantification is shown
on the graph.

B Pom1as1-tdTomato in cells co-expressing Pom1-GFP (left) or Pom1KD-GFP (right) before and 1–2 min after the addition of 3MB-PP1, as indicated. Before drug addition,
Pom1 is strongly enriched at cell poles. After drug addition, Pom1as1-tdTomato is rapidly delocalized around the entire cell periphery (arrowheads) in cells co-
expressing inactive Pom1KD-GFP, but not in cells co-expressing active Pom1-GFP, suggesting intermolecular phosphorylation (Hachet et al, 2011). Medial confocal
planes are shown. Scale bar is 5 lm.

C Quantification of data shown in panel B for a larger number of cells. The graphs on the left show the log-2 ratio of Pom1as1-tdTomato fluorescence levels at cell tip
and cell middle relative to the medial Pom1-GFP (top) or Pom1KD-GFP (bottom) signal. Note that the Pom1as1-tdTomato tip/middle log-2 ratios are lowered by
3MB-PP1 addition (red dots) relative to the non-treated samples (blue dots) in the cells co-expressing Pom1KD-GFP, but not in the cells co-expressing Pom1-GFP.
A boxplot (right) of the residuals after correction of the effect of the GFP signal illustrates the significant effect of the drug treatment on Pom1as1-tdTomato
localization in cells co-expressing Pom1KD-GFP (*n = 30 + 23, one-sided t-test, P-value =0.012) but not in cells expressing Pom1-GFP (n = 30 + 30, two-sided t-test,
P-value = 0.39). + and � indicate the presence or absence of 3MB-PP1.
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its inactivation (Osusky et al, 1995). Thus, intermolecular autoca-

talysis may represent a simple, built-in control mechanism to

buffer biological activities.

Supplementary information for this article is available online:

http://msb.embopress.org
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