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Abstract

In-vivo whole brain mapping of the radio frequency transmit field B1
+ is a key aspect of recent method developments in

ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B1
+ mapping at 7T. The

method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We
further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against
large B1

+ deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method
across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively.
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Introduction

Ultra high field (UHF) MRI has attracted an increasing level of

attention over the recent years and offers interesting prospects for

the future of MRI [1]. The strong inhomogeneities of the transmit

RF field B1
+ present in the human head at UHF lead to severe

signal and contrast nonuniformities. Multi-channel transmit

methods alleviate this problem and are gradually being introduced

on commercial scanners thanks to the remarkable developments

that have taken place in the recent years [2–4]. They require

precise knowledge of the B1
+ field to achieve homogeneous

excitation and comply with safety limits [5,6]. Quantitative

mapping methods give powerful insights into biological processes.

However, B1
+ inhomogeneities affect most quantitative methods

[7–9] and an accurate measure of the B1
+ distributions is required

for appropriate correction [10]. Robust whole-brain B1
+ mapping

is therefore critical for parallel transmit and quantitative mapping

methods. A number of B1
+ mapping methods have been

introduced at field strengths #3T but the robustness of these

methods at UHF has not been demonstrated in-vivo [11–16]. In

this study, we present improvements to an existing 3D EPI method

that yield accurate and precise whole-brain maps of the magnitude

of the B1
+ field at 7T. If the phase of the B1

+ field is also required,

the present method can be combined with an existing phase

mapping technique [17]. This B1
+ method was originally

introduced by Jiru and Klose [15] and later optimized by Lutti

et al. [16] to yield highly accurate and reproducible B1
+ maps at

3T in a short acquisition time (,5 min). Although EPI readouts

lead to image distortions that require offline post-processing, it is

particularly suitable for 7T applications since the nominal values

of the RF pulses used with this method can be set to match the

large range of B1
+ deviations present at 7T while the long

repetition time reduces SAR levels. The improvements required

for robust whole brain B1
+ mapping at 7T are the increase of the

dynamic range of the technique combined with parallel imaging

for rapid image acquisition and the reduction of sensitivity to off-

resonance effects. We assess the effect of the improvements on the

accuracy and reproducibility of the B1
+ maps. Using the optimal

configuration we present whole-brain B1
+ maps acquired in-vivo

that exhibit a high level of accuracy and precision.

Methods

Theory
The presented method calculates distributions of B1

+ fields

(expressed as the local flip angle alocal) from the ratio of stimulated

echo (STE, nominal flip angle a/2) and spin echo (SE, nominal

flip angle a) images acquired successively following spin excitation

[15]:

alocal~ arccos
SSTEe

TM
T1

SSE

0
@

1
A ð1Þ

where SSE and SSTE are the intensities of the SE and STE images

and TM is the time interval between the spin and stimulated echo

RF pulses (mixing time). EPI phase images are affected by

susceptibility effects and only magnitude images are used to
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calculate the local B1
+ field. As a result, two possible values of alocal

(90+d and 902d) exist at each voxel that obey equation 1. In order

to overcome this ambiguity, N pairs of SE and STE images are

acquired with different nominal flip angle values a and the correct

alocal values are identified as those yielding a constant alocal/a ratio

across the repetitions [15]. Here, the local B1
+ values are

calculated as a percentage of the nominal flip angle (in percent

units = p.u.) using the hard pulse approximation [18]:

B1
z~alocal=a|100 ð2Þ

As a result of the acquisition of N pairs of SE and STE images, N

estimates of B1
+ are calculated at each voxel. In the following, the

average of these N values is used as a measure of the local B1
+

value. The standard deviation SDB1+ of B1
+ across the N

repetitions is used as a measure of the uncertainty in the B1
+

calculation. Note that in the experiments described below, a large

number of SE/STE pairs were acquired while the number of SE/

STE pairs used for calculation of the B1
+ field was kept smaller.

Dynamic range optimization. Because SSE is the

denominator of equation 1, robust B1
+ calculation requires

maximum signal in the SE images which can be achieved by

setting a to high (low) values where the local B1
+ field is low (high).

In a previous implementation of the method at 3T, 5 nominal

values were used between 160u and 200u [16]. Due to the larger

B1
+ deviations present in the human head at 7T [19], whole-brain

B1
+ mapping requires increase of the dynamic range of the method

by acquisition of data over a wider and densely sampled range of a
values. In order to exclude data with low SE signal level, a sub-set

of SE/STE image pairs is selected at each voxel corresponding to

a values yielding maximum signal amplitude in the SE image. This

voxel-specific sub-set is used for calculation of the local B1
+ field.

Minimizing off-resonance effects. Large susceptibility-

induced inhomogeneities in the polarising field B0 are present in

the human head at 7T. The resulting off-resonance effects during

spin excitation might induce significant bias in the B1
+ maps due to

tilting of the axis of precession and frequency dispersion effects

[20]. However, these effects can be reduced by RF pulses with

large amplitude and bandwidth. In previous implementations of

the method, the amplitude of the RF pulses was proportional to

the a values and their duration was kept constant [15,16]. Here,

we present an alternative approach (off-resonance minimization) where

the maximally achievable RF pulse amplitude is used for all

nominal values and the RF pulse duration is proportional to the

nominal flip angle value. The effect of off-resonance minimization

on the measured B1
+ maps is demonstrated both in-vivo and using

numerical simulations of the Bloch equations of off-resonance spin

precession during the application of the RF pulses.

Acquisition: general considerations
Three volunteer subjects were scanned after giving written

consent according to the declaration of Helsinki. The study was

approved by the ethics committee of the University of Magdeburg.

3D EPI data were acquired on a 7T whole-body system (Siemens

Healthcare, Erlangen, Germany), operated with head-only CP

transmit and 24-channel receive coils (Nova Medical, Inc.,

Wilmington MA). One B1
+ map was also acquired on each

subject using the Actual Flip Imaging (AFI) B1
+ mapping method

[12,16]. Additional phantom experiments were conducted on

another 7T whole-body system (Siemens Healthcare, Erlangen,

Germany) operated with a 32-channel receive coil (Siemens

Healthcare, Erlangen, Germany). Image processing was per-

formed offline using Matlab (The MathWorks Inc., Natick, MA)

version 7 and SPM8 (www.fil.ion.ucl.ac.uk).

3D EPI method
Subject acquisitions. The following parameters were used

for data acquisition with the 3D EPI method: matrix size

48664648, image resolution 46464 mm3, image orientation:

(phase, read, partition) = (R-L, A-P, H-F). Parallel imaging

(acceleration factor 2) was used along the phase and partition

directions with the scanner manufacturer’s GRAPPA

reconstruction algorithm [21]. A fully encoded set of reference

images (no undersampling) was acquired prior to the image

volumes. One partition segment was sampled per readout, the

echo spacing was 500 ms and the bandwidth was 2298 Hz/pixel.

The echo times were 35.9 ms and 67.55 ms for the SE and STE

images respectively and TM was set to 34.08 ms. For all B1
+ map

acquisitions, the number of a values was set to 15 (i.e. 15 SE/STE

image pairs). All RF pulses were Hamming-filtered sinc pulses

(time-bandwidth product of 6). A slab-selective pulse was used for

spin excitation, and the SE and STE pulses were non-selective.

The nominal value of the excitation RF pulse was set to a, the

nominal value of the STE pulse variable across repetitions in order

to maximize SNR over the entire brain. The a values were played

out in a decreasing order for a fast approach to the steady state

[22]. In preliminary experiments, dummy repetitions at each

change of a value did not yield any visible change in the B1
+ maps,

suggesting rapid transition to the steady state for each new value of

a. Dummy repetitions were therefore omitted in the actual

experiments. An additional dataset was acquired on each subject

for whole brain mapping of the B0 field (TE = 5 ms and 6.02 ms,

TR = 667 ms, matrix size: 64664664, image resolution 3 mm3,

2 min acquisition time). The EPI image distortions were corrected

using the acquired B0 mapping data and the toolbox described in

[23]. This toolbox has been used in a large number of fMRI

studies to correct for distortions of EPI time-series and was

recently successfully used at 7T [24]. Distortion correction was

followed by padding and smoothing of the B1
+ maps, as described

in [16]. The threshold for RMS padding was defined as the

acceptable level of error in the B1
+ calculations and was set to 5

p.u., unchanged from a previous implementation of the method at

3T [16]. Following the results of the numerical Bloch Equation

simulations presented in the Results section, the threshold for B0

padding was set to 150 Hz (110 Hz at 3T [16]). Despite the

overlap between the regions affected by the RMS and B0 padding,

B0 padding was still considered necessary in order to achieve

systematic correction of bias due to off-resonance precession.

We chose three complementary criteria in order to assess the

robustness of the 3D EPI method and show the improvements

from the optimization presented here.

A measure of the reproducibility of the 3D EPI method was

obtained by calculating the voxel-wise standard deviation of the

B1
+ maps over three successive acquisitions.

Assessing the accuracy of the 3D EPI method requires a

comparison of the B1
+ maps with a gold-standard reference

technique. For phantom acquisitions the long TR required by the

reference acquisitions can be accommodated and such a

comparison was implemented using the 2D DAM method

described in (16) (see below). Due to the lack of a reference in-

vivo B1
+ mapping method comprehensively validated at 7T, in-

vivo 3D EPI B1
+ maps were compared to those obtained using the

AFI method [12]. The comparison was restricted to the superior

brain areas, since the limited dynamic range of the AFI method

was expected to result in underperformance of the method in basal

brain regions where the B1
+ field is low [25].

We assessed the linearity of the 3D EPI B1
+ mapping method

against varying RF transmit reference voltage (which determines

the amplitude of the RF pulses and therefore the scaling of the B1
+

Robust Whole Brain B1 Mapping at 7T
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maps). An extra dataset was acquired with a reference voltage

manually modified by 10% and the corresponding B1
+ map was

rescaled by the same amount. The difference between this rescaled

B1
+ map and those acquired using automated settings was taken as

a measure of the non-linearity of the method against varying B1
+

field amplitudes.

We investigated the impact of the dynamic range optimization

by using two ranges of a values on the first subject (using off-

resonance minimization): a decreased from 240u to 100u in steps

of 10u (experiment 1) and a decreased from 310u to 100u in steps

of 15u (experiment 2). TR was 500 ms (600 ms) for experiment 1

(experiment 2) and the acquisition time was 3 min 48 s (4 min

34 s) per B1
+ map. The B1

+ value at each voxel was calculated

using the 4 (3) pairs of SE/STE images (out of 15 pairs) yielding

the maximum signal in the SE image.

The range of a values leading to the most robust B1
+ maps was

used in all later experiments on 2 subjects where we investigated

the impact of off-resonance minimization using two RF pulse

implementations. For one implementation, the duration of the RF

pulses was set to 8680 ms for all nominal flip angle values a. For

this implementation, the amplitude of the RF pulses was therefore

proportional to the current a value. For the second implementa-

tion (off-resonance minimization), the duration t of the RF pulse was

set according to: t~
a

5o
|140ms, yielding an RF voltage value

close to the maximum allowed by the RF power amplifier. As a

result, the same RF amplitude was used for all a values and the RF

pulse duration was minimized. That is the RF amplitude was

larger (and the RF duration was shorter) than for the first

implementation for all but the maximum a value.

In summary, the optimal 3D EPI protocol (large range of

nominal flip angles with off-resonance minimization) was used on

a group of 3 subjects on which the linearity, reproducibility and

accuracy (compared to the AFI method) of the method were

assessed. The different aspects of the method optimization (flip

angle range and off-resonance minimization) were tested on

separate fractions of this group.

Phantom acquisitions. The larger range of nominal flip angle

values (a decreased from 310u to 100u in steps of 15u) was also tested

on an oil phantom. The duration t of the RF pulse was set according

to: t~
a

5o
|80ms in order to minimize off-resonance effects. Parallel

imaging was not implemented for this acquisition. As a result, the

echo time TE was 50.98 ms, the mixing time TM was 47.13 ms and

the total acquisition time was 7 min12 s. All other acquisition

parameters were identical to the in-vivo acquisitions.

Bloch simulation of B1
+ bias due to off-

resonance. Numerical simulations of the Bloch equations were

used to model the bias in measured B1
+ due to spin off-resonance

precession during the application of the RF pulses used by the 3D

EPI method. The B1
+ bias was simulated when off-resonance

minimization was on or off using RF characteristics (shape,

amplitude, duration and nominal value) identical to those used

experimentally. The off-resonance bias was simulated for local B1
+

values ranging from 40 p.u. to 150 p.u. by steps of 10 p.u. and B0

inhomogeneities ranging from 0 Hz to 200 Hz by steps of 10 Hz.

AFI method
The following parameters were used for data acquisition with

the AFI method: matrix size 64660648, image resolution

46464 mm3, image orientation: (phase, read, partition) = (A-P,

H-F, R-L), FOV 25662406192 mm3, TE = 2.93 ms. The RF

excitation pulse was a non-selective Hamming-filtered sinc pulse

with a nominal time-bandwidth product of 1. The RF duration

was 820 ms and the nominal flip angle value was 60u. The MR

parameters for spoiling of transverse coherences were set following

the recommendations given in [25]. The spoiler duration was set

to 11 and 55 ms for TR1 and TR2 respectively. The spoiler

amplitude was set to 26 mT/m, leading to gradient moment

values AG1/AG2 = 286/1430 mT.ms/m [25]. The repetition times

were set to the minimum achievable value given the spoiler

duration i.e. 20 ms and 100 ms for TR1 and TR2 respectively. RF

spoiling was used with a linear phase increment w~36u. Partial

Fourier (factor 6/8) was used along the partition direction. The

total acquisition time was 4 min 32 s. Identical parameters were

used for the acquisition of the phantom data.

Reference 2D DAM method
A reference B1

+ map was acquired on an oil phantom using the

2D DAM method described in [16]. The acquisition parameters

were as follows: matrix size: 64648, image resolution: 4 mm3,

TE = 25 ms, image orientation (read, phase, slice) = (R-L, A-P, H-

F). 48 slices were acquired and the repetition time was set to 25 s

in order to avoid bias due to longitudinal relaxation. The

presaturation pulse was a rectangular pulse of duration 500 us

and its nominal flip angle value was set to 22u and 66u. The

excitation RF pulse was a slice-selective sinc pulse of duration

2560 us. The total acquisition time was 40 min. Due to this long

acquisition time this method was only used on the phantom.

Results

In the oil phantom data, the B1
+ values obtained with the

reference 2D DAM method were found to vary between 45 p.u.

and 100 p.u.. The deviation between the reference 2D DAM

method and 3D AFI method was 25.563 p.u. (mean and

standard deviation) and the deviation between the reference 2D

DAM method and 3D EPI method was 24.360.9 p.u. (mean and

standard deviation). Figures 1a) and b) show B1
+ maps acquired

Figure 1. Comparison of 3D EPI and AFI methods. B1
+ maps

acquired with the 3D EPI (a) and AFI (b) methods. Difference between
the B1

+ maps acquired using the two methods (c). The red contour lines
represent the superior part of the brain, used as a region of interest for
quantitative comparison of both methods. Note that due to imperfect
spoiling, the AFI method is expected to underperform in regions with
low B1

+ amplitudes such as the temporal lobes.
doi:10.1371/journal.pone.0032379.g001

Robust Whole Brain B1 Mapping at 7T
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with the 3D EPI and AFI methods respectively, calculated as a

percentage of the nominal flip angle (percent units = p.u.) to allow

direct comparison between the B1
+ maps. Figure 1c) represents the

difference between the B1
+ maps acquired using the 3D EPI and

AFI methods. In the superior half of the field of view (represented

as red contour lines in figure 1), the mean (standard deviation,

6SD) difference between the B1
+ maps was 2.6 (64.1) p.u.

averaged across 3 subjects. In the inferior half of the field of view,

larger differences were observed in the orbitofrontal cortex (OFC)

and temporal lobes as expected from the limited dynamic range of

the AFI method implementation [25].

Figure 2a) represents a typical whole brain B1
+ map acquired

with the larger flip angle dynamic range (100u–310u) and off-

resonance minimization. The local B1
+ values ranged from 40 to

150 p.u.. Figure 2b) and 2c) show typical non-linearity and

instability maps. The brain-averaged non-linearity and instability

of the B1
+ maps were 1.6 and 0.7 p.u. averaged over all 3 subjects.

The non-linearity of the local B1
+ values was below 5 p.u. for

97.6% of the voxels inside the brain. The remaining 2.4% voxels

had a mean non-linearity of 7.9 p.u. and were mostly located near

the cerebellum and temporal lobes. The instability of the B1
+

values was below 5 p.u. for 99.91% of the voxels. The remaining

0.09% voxels had a mean instability of 6.3 p.u.. Figure 2d) shows a

typical SDB1+ map, representing the errors in the local B1
+ values

calculated using 3 SE/STE pairs at each voxel. SDB1+ values

between 1 and 2 p.u. were found over most brain regions. Local

regions with higher errors (,5 p.u.) were found around the OFC

due to residual off-resonance effects and temporal lobes.

Figures 3a) and 3b) represent changes in non-linearity and

instability of the B1
+ maps when the flip angle range was increased

from 100u–240u to 100u–310u. The mean (6SD) reduction in non-

linearity/instability was 3.1(610.9)/0.1(60.7) p.u. averaged over

the brain. 3.3/4.6% of voxels showed changes above a significance

threshold of mean–2xSD and the mean reduction was 53/2.4 p.u.

for these voxels. Figures 3c) and 3d) represent changes in non-

linearity and instability of the B1
+ maps when off-resonance

minimization was used. The changes in non-linearity/instability

were 0.2(61.7)/20.9(60.8) p.u. averaged over 2 subjects. 4.1/5%

of the voxels showed changes above the significance threshold and

the mean reduction was 5.2/3.1 p.u. for these voxels. Regions

showing significant changes in non-linearity and instability are

marked by red contour lines in figure 3. The most significant

improvements due to the increase of the flip angle range were

found in the temporal lobes and cerebellum, where the local B1
+

values were lowest. The most significant improvements following

Figure 2. Precision and linearity of the 3D EPI method. Typical
B1

+ (a), non-linearity (b) instability (c) and SDB1+ (d) maps obtained with
the optimal configuration using a maximum RF nominal value of 310u
and off-resonance minimization.
doi:10.1371/journal.pone.0032379.g002

Figure 3. Improvements due to increase of the dynamic range of the method and off-resonance minimization. Changes in non-
linearity (a) and instability (b) of the B1

+ maps following an increase of the maximum RF nominal value to 310u. Change in non-linearity (c) and
instability (d) of the B1

+ maps after off-resonance minimization. Regions showing significant changes in non-linearity and instability are marked by red
contour lines. B0 map acquired on the subject shown in c and d (e). The red contour lines in figure e show that off-resonance minimization improved
the linearity of the method in areas with high B0 offsets.
doi:10.1371/journal.pone.0032379.g003

Robust Whole Brain B1 Mapping at 7T
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off-resonance minimization were found in the OFC, where B0

gradients and off-resonance effects were highest due to suscepti-

bility effects (see figure 3e). The Bloch equation simulations of off-

resonance spin precession during the application of the RF pulses

showed a bias in the calculated B1
+ value above 5 p.u. for B0

inhomogeneities .,140 Hz and 60p.u.#B1
+#90p.u. without off-

resonance minimization. The off-resonance bias was found below

5p.u. for B1
+,60p.u. because large local flip angles were not

achieved for these B1
+ values given the range of nominal flip angle

values used in-vivo. The main effect of off-resonance minimization

was to reduce the off-resonance bias by ,7 p.u. in regions where

B1
+,80p.u. and B0 inhomogeneities .,150 Hz. This is in good

agreement with the experimental data showing a reduction in off-

resonance bias around the OFC when off-resonance minimization

is used. Results from the Bloch simulations showed that a bias of

up to ,8p.u. might remain in the B1
+ maps when off-resonance

minimization is used where B0 inhomogeneities reach ,200 Hz.

Discussion

We have presented a 3D EPI method for optimized whole brain

B1
+ mapping at 7T. To our knowledge, this study is the first

systematic analysis of the accuracy and reproducibility of a whole-

brain B1
+ mapping method at 7T (as determined by a literature

search of the PubMed database for titles and abstracts containing

the terms ‘‘7T AND (B1 OR RF)’’). The accuracy of the 3D EPI

method was assessed on a phantom by comparison with a

reference technique. This comparison was not performed in-vivo

due to the lack of a fast reference method comprehensively

validated at 7T. The 3D EPI method was validated in-vivo using

three complementary criteria: reproducibility across repetitions,

accuracy (measured as the deviation from the well-established 3D

AFI method [12,16]) and linearity against varying reference

voltage. Improvements to the existing 3D EPI method [16] were

introduced in order to address the challenges of B1
+ mapping at

7T. The use of RF pulses with large amplitudes reduced bias due

to off-resonance spin precession in brain regions with strong B0

inhomogeneities (off-resonance minimization). The large range of RF

nominal values increased the dynamic range of the method,

enabling accurate B1
+ mapping over the large range of B1

+ values

present in the brain at 7T. The total acquisition time was

minimized by extensive use of parallel imaging (4 min34 s+2 min

B0 map).

Validation of the 3D EPI method
The 3D EPI and 3D AFI methods were compared with a

reference 2D DAM method on an oil phantom. A deviation of

24.360.9 p.u was observed between the 3D EPI and the 2D

DAM method and a deviation of 25.563 p.u. was found between

the 3D AFI and the 2D DAM method. Note that parallel imaging

was not implemented for the 3D EPI acquisition on the oil

phantom, degrading the quality of the results obtained for this

method. In-vivo quantitative measures of the accuracy, reproduc-

ibility and linearity of the optimized 3D EPI method were

extracted from a group of 3 subjects.

Since no fast reference technique has been validated in-vivo at

7T, accuracy estimates were obtained by calculating the deviations

between the 3D EPI and 3D AFI methods. The acquisition

parameters of the 3D AFI method were carefully set in order to

achieve maximal spoiling of the transverse coherences and highly

accurate B1
+ maps [25]. Only small (2.664.1 p.u.) differences in

B1
+ values were observed between the two methods in the superior

part of the brain. B1
+ values larger by 5 to 10 p.u. were measured

with the 3D EPI method in the temporal lobes, where the local B1
+

values were particularly low. This is in agreement with systematic

underestimation of the B1
+ field by the 3D AFI method due to

suboptimal spoiling conditions where the actual flip angle is low

[25] and supports the claim that our method maps the B1
+ field

accurately over the entire brain. The discrepancies between the

two methods in the OFC most likely stem from the off-resonance

sensitivity of both methods (see Results section for estimates of the

sensitivity of the 3D EPI method to off-resonance effects obtained

from numerical Bloch Equation simulations).

The linearity of the 3D EPI B1
+ mapping method against

varying RF transmit reference voltage is a necessary though not

sufficient condition to demonstrate the robustness of the method

and is therefore complementary to the reproducibility and

accuracy measures supplied here. An average non-linearity of

1.6 p.u. was found across the 3 scanned subjects, demonstrating a

highly linear relationship between the measured B1
+ maps and RF

transmit voltage. The 10% increase in reference voltage used for

the linearity test proved to be sufficient in order to demonstrate the

improvements from our optimization procedure and was signif-

icantly higher than the level of inaccuracy (compared with the 3D

AFI method), reproducibility and non-linearity demonstrated

here. If a stronger variation of the reference voltage is desired to

enhance the sensitivity of the test, special attention should be given

to the maximum RF voltage in order to avoid clipping of RF

pulses.

A measure of the reproducibility of the 3D EPI method was

obtained by calculating the voxel-wise standard deviation of the

B1
+ maps over three successive acquisitions. An average level of

instability of 0.7 p.u. was observed, illustrating the robustness of

the method against physiological effects.

Optimization of the 3D EPI method
A large number of a values was used to allow dense sampling of

the large B1
+ inhomogeneities present at 7T and increase the

dynamic range of the technique. A sub-sample of SE/STE images

was selected for each voxel to avoid low signal to noise in the

calculation of the B1
+ values. This implied a reduction in data

sampling efficiency but enabled accurate and precise B1
+ mapping

over the whole brain. An improved modelling and weighted fitting

procedure may allow for use of the whole dataset and increase

precision further. Highly accelerated image acquisitions helped

keep the total acquisition time sufficiently short (4 min34 s+2 min

B0 map) so that B1
+ mapping can remain only a small fraction of a

larger scanning protocol. The increased dynamic range of the

optimized method led to a 53 p.u. reduction in the non-linearities

of the 3D EPI method against RF transmit voltage in the temporal

lobes and cerebellum and is essential for whole-brain B1
+ mapping

at 7T.

Minimization of off-resonance effects consisted of the use of RF

pulses with maximal amplitude and minimal duration for all

nominal values. This led to a reduction of the non-linearities by

5.2 p.u. in the OFC, in good agreement with the results from the

Bloch Equation simulations. Further improvements to the method

might involve correcting for the effect of off-resonance precession

on the local B1
+ values using the results of the Bloch simulations

presented here and the acquired B0 maps.

Considerations
The average non-linearity and reproducibility of the B1

+ maps

after optimization was 1.6 p.u. and 0.7 p.u. averaged over the

whole brain and across subjects. However, local regions with non-

linearities greater than 5 p.u. remained in the temporal lobes and

cerebellum. A larger maximum a value (leaving the spacing

between consecutive values unchanged) would improve the
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robustness of the method in these regions without compromising

the quality of the B1
+ maps in other brain regions. Alternatively,

other methods may be suitable for fast and robust whole brain B1
+

mapping at 7T (e.g. [12,14,16,26]), although a systematic analysis

of the performance of these methods at UHF has not been

reported. The 2D STEAM method described in [16,26] is

particularly fast but sensitive to physiological artefacts and requires

independent calibration. The 3D STEAM method presented in

[15] might alleviate these difficulties and benefit from the shorter

acquisition time. However, the problems related to off-resonance

and large B1
+ deviations present at 7T might also prove

problematic for this technique. Long TR gradient-echo techniques

such as in [17] yield robust B1
+ estimates due to their simplicity.

However, their long acquisition time (,20 mins per slice, see e.g.

[17]) renders these methods impractical for in-vivo applications.

The optimized B1
+ mapping protocol described here could be

implemented on all subjects without clipping of the RF pulses

and/or exceeding the SAR safety limits. The reference RF voltage

was typically ,315 V for the subjects scanned, leading to a

maximum RF voltage of ,450 V. This was sufficiently low to

accommodate a 10% increase in reference voltage to test the

linearity of the method without clipping the RF pulses or

exceeding the SAR limit. A maximum nominal flip angle of

340u should therefore be achievable. However, if higher nominal

flip angle values are desirable, longer RF pulses should be used

with longer TR values in order to comply with safety limitations.

The maximum RF voltage was generally higher for the AFI

method, although we ensured that no RF clipping took place. No

problems were encountered regarding SAR levels with the 3D AFI

method.

Note that the 3D EPI method can easily be tuned to produce

high quality B1
+ maps in one specific region of interest only by

setting the range of nominal flip angles appropriately. The number

of required nominal flip angles might be significantly reduced as a

result, leading to a significant reduction in acquisition time.

Although this method has not been tested outside the brain, the

possibility of tuning the nominal flip angle values according to a

specific region of interest might prove advantageous when other

body parts are targeted. However, specific features of the body

part of interest (size, tissue density, B0 homogeneity, …) should be

considered with care.

Parallel imaging was essential to reduce the acquisition time and

the image distortions present in the EPI images. Despite parallel

imaging, image distortions remained visible in the SE and STE

images which required correction. For this purpose, B0 mapping

data were acquired using a standard dual-echo gradient-echo

sequence. The two corresponding echo times were carefully

chosen to provide a high SNR, result in a fat signal in-phase across

both echo images and avoid phase wrapping problems in the B0

map calculated as part of the unwarping procedure. Due to the

lack of a distortion correction software on the scanner console,

image distortion was implemented offline [16,23].

Conclusion
We have presented an optimized SE/STE 3D EPI method for

mapping of the RF transmit field B1
+ at 7T. A robust offline

unwarping procedure was used in order to correct for image

distortions. The dynamic range of the method was increased to

match the higher level of B1
+ inhomogeneities at 7T and off-

resonance effects were minimized using RF pulses with large

amplitudes and short durations. The improvements induced by

our optimization were most significant in the temporal lobes,

cerebellum and orbitofrontal regions, which are notoriously

problematic brain regions at ultra high fields. Whole brain B1
+

maps were obtained in a total acquisition time of 4 min34 s

(+2 min B0 map) with non-linearity and reproducibility of 1.6 p.u.

and 0.7 p.u. respectively and deviations of 2.6 p.u. from the 3D

AFI method in brain regions where the latter method performed

satisfactorily.
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