
Spatial graphs cost and efficiency: exploring
edges competition by MCMC

Guillaume Guex

Department of Geography,
University of Lausanne

guillaume.guex@unil.ch

Abstract. Recent models for spatial networks have been built by de-
termining graphs minimizing some functional F composed by two an-
tagonist quantities. Although these quantities might differ from a model
to another, methods used to solve these problems generally make use of
simulated annealing or operations research methods, limiting themselves
to the study of a single minimum and ignoring other close-to-optimal
alternatives. This contribution considers the arguably promising frame-
work where the functional F is composed by a graph cost and a graph
efficiency, and the space of all possible graphs on n spatially fixed nodes
is explored by MCMC. Covariance between edges occupancy can be de-
rived from this exploration, revealing the presence of cooperative and
competition regimes, further enlightening the nature of the alternatives
to the locally optimal solution.

Keywords: Spatial graph models, Efficiency, Cost, MCMC, Principal
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1 Introduction

Spatial networks constitute a particular case in networks studies, where nodes
and edges are embedded in a metric space. The study of these networks received
a special attention in the recent years, as they model a large quantity of complex
geographic systems, such as transportation networks (road, railroad and airlines
networks), power grids networks and internet ([1, 2, 4–6, 8, 9, 11, 12, 16, 19, 21]).
The particularity of these networks is that the underlying space directly controls
the cost of edges, thus impacting their topology. Previous empirical studies have
examined different spatial network structures and demonstrated that the effect
of space greatly differs, depending on the nature of networks (reviewed exten-
sively in [4]). Nevertheless, their designs typically attempt to maximize some
utility function while minimizing some kind of cost function, making abstraction
of other geographical or economical constraints encountered in real-world situa-
tions.
This article attempts to study a particular class of models of optimal networks
defined as networks minimizing some functional F specified below. These mod-
els exhibit a great variety of interesting results, depending on the ingredients
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entering the composition of F , and are aimed at modelling numerous different
geographic systems of interest. Here, we will consider the case where F = C−I·E,
where C is the cost of the network (the sum of all edges length) and E the effi-
ciency (the mean length of shortest-paths between all pairs of nodes), while the
parameter I, the investment, acts as a balance between those quantities. This
simple and intuitive model, already studied in [1, 2, 4, 11], gives results similar to
our railroads, highways or power grid networks. Previous researches concentrated
on finding a single graph minimizing F , discarding the study of the nature of the
space of all possible graphs on n fixed nodes, controlled by F . By contrast, we
attempt here to explore this space with a Monte Carlo Markov Chain (MCMC)
algorithm ([3, 7, 10, 14, 17, 18]) or more precisely, a variant of simulated anneal-
ing model, implying heating as well as cooling schedules (see section 2.4). By
examining the history of the algorithm, edge competition and synergies can be
revealed, enabling the design of close-to-optimal graphs.
This article is divided in two parts. The first one sets the formalism and the
mathematical tools needed to perform the algorithm and the second one exam-
ines a few case studies in more detail.

2 Formalism

2.1 Generalities and notations

A graph is a couple G = (V, E) where V are the vertices (or nodes) set of size
n and E the edges set of size m. A graph is said to be spatial when all ver-
tices are embedded in a Euclidean space. A spatial graph is entirely defined by
two matrices: X the matrix of vertex coordinates in space and the n × n sym-
metric adjacency matrix A = (aij), where aij = 1 if {i, j} ∈ E , aij = 0 otherwise.

This article considers simple unoriented spatial graphs in R2 equipped with
the Euclidean distance dE . In this context, every edge e = {i, j} possesses a
length l corresponding to the Euclidean distance between nodes composing it,
i.e. l({i, j}) = dE(i, j). Edge lengths permit to define an alternative version of the
well-known shortest-path distance, referred to, in the literature, as the weighted
shortest-paths distance dwsp (or route distance in [1, 2, 4, 11]):

dwsp(i, j) = min
ξ∈P(i,j)

∑
e∈ξ

l(e)

where P(i, j) is the set of all paths between i and j.

2.2 Functional minimization

Some other quantities can be defined on spatial graphs. Define the cost C of a
graph G as the sum of all edge lengths:
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C(G) =
∑
e∈E

l(e)

Futhermore, define the efficiency E of graph G as the mean, along all pairs
of vertices, of the inverse of the weighted shortest-path distance:

E(G) =
1

n(n− 1)

∑
i6=j∈V

1

dwsp(i, j)

Obviously, for any set of vertices, the empty graph yields a null cost and
efficiency, while the complete graph gives their maximum. From a concrete point
of view, the efficiency represents the ability of the network to effectively transport
agents from any node to another, while the cost is self speaking. Therefore, an
optimal network planning may seek to maximize the efficiency while minimizing
the cost, leading to the minimization of the function F defined by:

F (G) = C(G)− I · E(G)

where the parameter I ≥ 0 is the investment, acting as an arbiter between the
conflicting objectives. When I → 0 the graph minimizing F is the empty graph,
while I → ∞ generates the complete graph. For carefully chosen intermediate
values, depending in turn on several parameters such as the real cost of the edges
and the insistence on the efficiency of the network, the solutions are similar to
some real spatial networks, like railroad, highways or power grid networks ([2, 4,
11]). Note that, unless I → ∞, the resulting graph may not be connected (see
e.g. left plot in Fig. 1). If we replace the weighted shortest-path distance by the
standard shortest-path distance in the formula for efficiency, optimal graphs will
possess a structure of ”Hub-and-spoke”, similar to an airline network ([4, 11]).
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Fig. 1. Local minima for different investment values on 30 fixed points in R2 with
abscissas and ordinates generated as N (0, 1). On the left I = 1, in the middle I = 100
and on the right I = 106.
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2.3 MCMC exploration of the space of all graphs

For a fixed set V of n vertices in space, the space of all graphs on these vertices
is noted ΓV . This space is similar to the atomic spins space in the Ising model,
where every possible edges can be in two states { presence, absence } ([10, 15]).
Thus the size of ΓV is 2n(n−1)/2. Let W = (wkl) = (wGkGl) be the transition
matrix of a Markov chain on ΓV defined by:

wkl = wlk =

{ 2
n(n−1) if Gk and Gl differ exactly by one edge

0 otherwise

With this simple transition matrix, the Markov chain will jump from the graph
Gk to any graph Gl having exactly one more or one less edge with equal probabil-
ity. It is obvious that this Markov chain can reach any nodes from any starting
point, and therefore the chain is irreducible. The MCMC Metropolis-Hasting
(MH) algorithm ([3, 14, 17]) , is designed to create a new Markov chain having
a desirable stationary distribution pk on the states from any irreducible Markov
chain:

1. From the state k, generate a new state l with probability wkl
2. Jump to l with probability w̃kl defined by:

w̃kl = min

(
1,
plwlk
pkwkl

)
otherwise stay in k

3. Iterate

Since wkl = wlk, one has that w̃kl = min(1, plpk ).

For any initial configuration, the algorithm will converge to the invariant
distribution pk, itself determined so as to favor near-optimal graphs, as in the
Gibbs sampling of pk ([3, 7]):

pk =
1

Z
exp(−βF (Gk))

where Z =
∑
k exp(−βF (Gk)) is the standardization constant and β = 1

T is
the inverse temperature parameter (T ≥ 0 is the temperature). In fact, the value
of β controls the randomness of the MH algorithm jumps, as seen by:

w̃kl = min

(
1,

exp(−βF (Gl))
exp(−βF (Gk))

)
= min

(
1, eβ(F (Gk)−F (Gl))

)
If β → 0, then w̃kl = 1, i.e. the MH algorithm will jump to any candidate

state l, while β → ∞ implies that w̃kl = 1 iff F (Gl) ≤ F (Gk) and w̃kl = 0
otherwise.
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2.4 Cooling schedule and exploration history

While a local minimum can easily be obtained with the MH algorithm and a
simulated annealing cooling schedule (left plot in Fig. 2, as seen in [13, 20]), we
are more interested here by the history of the exploration of space ΓV . Indeed,
local minima are arguably often not really compatible with some real life con-
straints and we would be interested in finding alternative, but still efficient, ways
to build the network. That is why we need our cooling schedule to be reheated
periodically (right plot of Fig. 2) in order to avoid to be stuck in the same local
minimum and to explore different parts of the space.
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Fig. 2. Two types of cooling schedule: the first case represents a classical simulated
annealing cooling schedule designed to find only one local minima: T (t) = c/ log(1 + t)
with c = 1.25. In the second case, we periodically set a high temperature during 400
iterations followed by a similar cool-down, in the hope of finding another minimum.

Recording the graph history {G1,G2, . . . ,Gt} of a MH run by keeping track
of the states of every edges modified at least once {e1, e2, . . . , ep}, permits to
obtain statistics on the behavior of the MH algorithm. Let the history matrix
H = (hrs) defined as followed:

hrs =

{
1 if the edge es was present in the graph Gr
0 otherwise

This matrix can be viewed as an usual “individuals × variables” matrix, enabling
the computation of various indices. For instance, we can calculate the probability
of the appearance of an edge as p(es) = h•s/t, its variance var(es) = p(es)(1 −
p(es)) and the variance-covariance matrix between edges as Σ = 1

tH
c′Hc (where

Hc is the matrix H after column centration). This variance-covariance matrix
permits in turn to apply a principal component analysis, where the factor scores
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of all observed graphs in the history will underline recurrent configurations in
ΓV and the saturations between edges will highlight the competition or the
cooperation existing between them.

3 Case studies

3.1 Randomly located nodes

Let us first analyse the behavior of the MH algorithm on small sized graphs.
30 nodes in R2 with coordinates following a N (0, 1) are drawn, I is set to 50
and the temperature follows the cooling schedule exhibited on the right in Fig. 2
during t = 20′000 iterations.
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Fig. 3. Results for the graph history in the MH run. Left: first two dimensions of the
factor scores, each point represents an iteration (proportion of variance explained: 13%,
respectively 9%). The lower the value of F is for each iteration, the darker the point.
Right: value of the functional F versus iteration.

As apparent on Fig. 3, the algorithm does not explore very efficiently the
graph space. Each time we reheated the system it escaped from a local min-
imum before converging again on each cool down. The different minima seem
to be close to each other, at least according to what appears in the first two
factor scores (explaining only 13% and 9% of the variance). Fig. 4 confirms the
closeness among the different minima, since some critical edges appear more fre-
quently than others. The saturation plot shows that edges appearing frequently
are correlated positively between themselves.

These results, while interesting, are a bit tarnished by the presence of high
temperature states. While the presence of these states is essential to escape local
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Fig. 4. Results for the edges in the MH run. Left: all edges created at least once
during the process. Right: the saturation plot, where each points representing an edge
and proximity capture correlation, i.e. two edges appearing frequently together will be
close to each other. On both graphics, the darkness of an element is proportional to its
apparition frequency during the run.

minima, they bear very little information on optimal and alternative solutions
to the efficient network building. Therefore, a second analysis is performed after
removing all states having a functional value higher than -100 (corresponding
to the dotted line on the Fig. 3, functional plot). By construction, the selected
states constitute near-optimal solutions.

The graphic in Fig. 5 illustrates the emergence of five different ”cold” temper-
ature regimes during the MH run differ more than what it appear at first glance,
showing that they indeed correspond to different local minima of F . Points in
the middle yield the lowest value of the functional and correspond to the third
cool-down. Graphics in Fig. 6 emphasize the edges created during the process.
Here, we can observe some competition between edges. For example, edges num-
bered 7 and 36, 42 and 49, 20 and 39, 22 and 46, are placed on the opposite
side one to another in the saturation plot. In the graph, we can see that both
pairs represent building alternative to a close-to-optimal graph. On the other
hand, edges 11, 10 and 26 are very centered, meaning that they have a very low
variance and represent a kind of “backbone” appearing in any close-to-optimal
graph. Iterations 8’643 and 12’903 in Fig. 7 exhibit some built variations. Note
that state 12’903 to have a lower functional value than state 8’643 (-103.8 versus
-100.4).

3.2 US cities

To study a real life case, the algorithm will be run on nodes representing US
cities with more than 500’000 inhabitants (Fig. 8). Latitudes θi and longitudes
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Fig. 5. The first two factorial coordinates of the states of the MH runs where states
with high values of F have been removed. The five different cold temperature phases
appear clearly, illustrating five different local minima.
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Fig. 6. Top: edges occupation frequencies. Bottom: saturations, with the same labeling.
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Fig. 7. Graph states at iteration number 8’643 (on the left) and 12’903 (on the right).
Their F value are respectively -100.4 and -103.8.

αi have been extracted from the R data world.cities{maps} and we con-
sider the geodesic dissimilarity between those cities: Dij = arccos2(κij), where
κij = sin θi sin θj + cos θi cos θj cos(αi − αj). Again, 20’000 iterations of MH are
run with an investment of I = 50 (distances have been multiplied by 30 to match
distances of the previous example) and higher temperature states have been re-
moved from analysis.

Here again, edges frequencies and saturations in Fig. 9 reveal the occur-
rence of competing edges in the construction of the network together with some
robust edges. Note the possibility of weighting each node relatively to its popu-
lation resulting in a weighted efficiency functional, currently under investigation.
Nevertheless, the present result can constitute a good start to explore ways of
building real networks, where particular edges can be discarded in a second time,
due to some morphological or economical constraints.

4 Conclusion

Exploring the possible graphs states on n nodes by MCMC not only reveals al-
ternatives to the optimal network, but also gives insights on the structure of this
space as controlled by the functional F . In the present case, the functional makes
the shortest-paths requirement conflicts with the length of the edges, and permits
to preliminary explore how the shortest-paths distance is linked to the Euclidean
distance in this context. The investment, the cooling schedule, the starting state
and the number of iterations are shown to greatly affect this exploration, and a
careful design should be made depending on what is searched. The question of
how to precisely set the parameters according to spatial configuration in hand
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Fig. 8. Representation of the US cities with more than 500’000 inhabitants created by
multidimensional scaling from their geodesic dissimilarities.

remains largely open, and a deeper study should be performed before imple-
menting this algorithm in real life applications. The numerical complexity and
computational demands of the algorithm are also quite heavy, requiring a way
of optimizing the parameters before applying the algorithm to a larger set of
nodes. Nevertheless, case studies already show promising results and, provided
the procedure can be efficiently refined, its flexibility should permit numerous
applications to a large variety of situations.
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