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Summary

� Arbuscular mycorrhizal fungi (AMF) form mutualisms with most plant species. The model

AMF Rhizophagus irregularis is common in many ecosystems and naturally forms

homokaryons and dikaryons. Quantitative variation in allele frequencies in clonally dikaryon

offspring suggests they disproportionately inherit two distinct nuclear genotypes from their

parent. This is interesting, because such progeny strongly and differentially affect plant

growth. Neither the frequency and magnitude of this occurrence nor its effect on gene tran-

scription are known.
� Using reduced representation genome sequencing, transcriptomics, and quantitative analy-

sis tools, we show that progeny of homokaryons and dikaryons are qualitatively genetically

identical to the parent. However, dikaryon progeny differ quantitatively due to unequal inher-

itance of nuclear genotypes. Allele frequencies of actively transcribed biallelic genes resem-

bled the frequencies of the two nuclear genotypes.
� More biallelic genes showed transcription of both alleles than monoallelic transcription, but

biallelic transcription was less likely with greater allelic divergence. Monoallelic transcription

levels of biallelic genes were reduced compared with biallelic gene transcription, a finding con-

sistent with genomic conflict.
� Given that genetic variation in R. irregularis is associated with plant growth, our results

establish quantitative genetic variation as a future consideration when selecting AMF lines to

improve plant production.

Introduction

Arbuscular mycorrhizal fungi (AMF; Glomeromycotina) are
ubiquitous soil microorganisms that establish mutualistic rela-
tionships with most terrestrial plants (Van der Heijden et al.,
1998; Davison et al., 2015; Brundrett & Tedersoo, 2018).
Hyphae of these fungi absorb and transport soil inorganic nutri-
ents, especially phosphorus and nitrogen, to plant roots (Govin-
darajulu et al., 2005; Fellbaum et al., 2012). In exchange, AMF
receive photoassimilates and plant-derived lipids (Bravo et al.,
2017; Keymer et al., 2017). This symbiotic interaction occurs
across the planet, making AMF global players in nutrient and
carbon cycling, affecting plant growth and diversity (Van der
Heijden et al., 1998; Bago et al., 2000; Steidinger et al., 2019).
Accordingly, Rhizophagus irregularis is a model AMF species of
Glomeracae, a dominant family of AMF communities (Tisserant
et al., 2013; Rodriguez-Echeverria et al., 2017; Gao et al., 2019).

AMF are coenocytic, with thousands of nuclei coexisting
within a common cytoplasm. Recent studies show that R. irregu-
laris isolates are either homokaryons or dikaryons and that nuclei
are haploid (Ropars et al., 2016; Wyss et al., 2016; Chen et al.,
2018b; Masclaux et al., 2018, 2019). Dikaryon AMF harbour
populations of two genetically distinct nuclei; referred to here-
after as nuclear genotypes (Masclaux et al., 2018). Although evi-
dence implies that R. irregularis might reproduce sexually,
population genetic studies suggest that clonal reproduction
occurs frequently in nature (Ropars et al., 2016; Savary et al.,
2018a; Mateus et al., 2020). Indeed, R. irregularis isolates have
been maintained clonally for almost 20 yr in vitro (Koch et al.,
2004; Rosikiewicz et al., 2017). Since initiating cultures,
dikaryon isolates continually retain both nuclei (Angelard et al.,
2010; Ropars et al., 2016; Wyss et al., 2016; Masclaux et al.,
2018, 2019)

Single-spore culturing is a technique that allows the generation
of AMF single-spore sibling lines (SSSLs) from an AMF isolate
that we call here a parental isolate (Fig. 1a). At present, unequal*These authors contributed equally to this work.
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Fig. 1 Experimental procedures, collected data, and unanswered questions about genetic variation by clonally produced arbuscular mycorrhizal fungus
(AMF) siblings. (a) Single-spore culturing of Rhizophagus irregularis involves taking one spore to initiate a new culture and produce sibling cultures of a
parental isolate. Subculturing involves transferring a large amount of fungal material to maintain single-spore sibling lines (SSSLs) and produce a larger
amount of material for molecular analyses. PC, plant compartment; FC, fungal compartment. (b) Parental AMF lines and their SSSLs that were used for
molecular analyses. Black dots indicate samples included in a given analysis, and white dots indicate the samples were not used for a given analysis. (c)
Schematic diagram of the unanswered questions posed in this study about generation of genetic variation among SSSLs and their gene transcription.
Analysis at the genome level using DNA sequencing allows the test of whether siblings of a parental AMF isolate are genetically indistinguishable (as
expected in homokaryon offspring) or genetically variable at the quantitative level (as was predicted in dikaryon offspring), while transcriptome analysis
allows the test of whether allelic imbalance (AI) in gene transcription occurs in dikaryon siblings that display quantitative genetic variation at the genome
level.
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inheritance of nuclear genotypes has only been described for a
small number of SSSLs from one parental isolate, known as C3
(Croll et al., 2009; Ehinger et al., 2012; Angelard et al., 2014;
Masclaux et al., 2018). Three studies demonstrated that SSSLs of
C3 (with an approximate 1 : 1 ratio of the two nuclei) can inherit
different proportions of both nuclear genotypes (Angelard et al.,
2010, 2014; Masclaux et al., 2018). The first study detected
genetic variation among SSSLs by assessing amplified fragment
length polymorphisms (Angelard et al., 2010). As discussed by
Angelard et al. (2010), although this multilocus technique can
verify the presence of an allele, it lacks sufficient sensitivity to mea-
sure changes in allele frequency or among SSSLs and does not dis-
tinguish single-copy from multicopy regions of the genome. Both
capillary electrophoresis and amplicon sequencing at a single locus
(known as the bg112 locus) confirmed that nuclear genotypes can
be unequally inherited among SSSLs of C3 (Angelard et al., 2010;
Ehinger et al., 2012; Masclaux et al., 2018). These results indi-
cated that significant shifts in allele frequencies sometimes arise
among clonally produced dikaryon spores. The study by Masclaux
et al. (2018) considered one single-copy locus in few SSSLs, where
PCR error represents an unlikely, but possible, source of variation.
A high-throughput, reduced-representation approach, such as
double-digest restriction-site-associated DNA sequencing
(ddRADseq), is a reliable method for detecting genetic diversity
within populations and distinguishing quantitative differences in
allele frequencies (Wyss et al., 2016).

Whole-genome amplification and sequencing of individual
nuclei were fundamental in establishing that R. irregularis isolates
have either a homokaryon or dikaryon genome organization (Lin
et al., 2014; Ropars et al., 2016; Chen et al., 2018a). Yet, this
technique offers too low resolution and, thus, is not well suited
for determining quantitative differences in allele frequencies
among several lines. First, the success rate of obtaining data of
sufficient quality from a single-nucleus of R. irregularis is stagger-
ingly low, ranging from 10 to 63% (Lin et al., 2014; Ropars
et al., 2016; Chen et al., 2018a). Second, the quantity of data
needed to address quantitative variation at multiple loci among
several lines, is fiscally prohibitive. For example, to date, < 300
nuclei have been sequenced, of which, only 148 passed quality fil-
ters: four in Lin et al. (2014); 59 in Ropars et al. (2016); and 85
in Chen et al. (2018a). A conservative assessment of changes in
nuclear dynamics among dikaryon SSSLs would require a mini-
mum of 1000 successfully sequenced nuclei from each SSSL. For
this reason, ddRADseq is more suitable to estimate quantitative
genetic variation existing among SSSLs at multiple biallelic sites
across the genome. By using ddRADseq, allele frequency varia-
tion can be estimated in many dikaryon and homokaryon SSSLs
and compared with their parent to quantify changes in nuclear
dynamics. The premise of this analysis rests on the fact that bial-
lelic sites must be single-copy regions of the genome, meaning
that detection of two alleles would only be possible if two differ-
ent nuclear genotypes were represented. Thus, estimating the fre-
quency of the two alleles can serve as a proxy for the relative
abundance of both nuclear genotypes in a dikaryon. It is true that
some biallelic sites were still detected in ddRADseq and whole-
genome sequencing of homokaryons (Wyss et al., 2016; Chen

et al., 2018b; Savary et al., 2018b; Masclaux et al., 2019). How-
ever, these loci are very few, located in problematic regions of the
assembly, and seem to have no discernible functional conse-
quence (Masclaux et al., 2019). In stark contrast, biallelic sites in
dikaryon C3 were more prevalent, and likely impact biallelic gene
expression (Masclaux et al., 2019).

Quantitative genetic variation among SSSLs is likely signifi-
cant for their symbiotic interaction with plants, since SSSLs differ
significantly in fungal quantitative traits, how they colonize roots,
and how they affect plant biomass (Ehinger et al., 2012; Angelard
et al., 2014; Savary et al., 2018a). Indeed, pot experiments with
rice, as well as field studies with cassava, indicate that genetic vari-
ation among SSSLs has enormous effects on plant biomass
(Angelard et al., 2010; Ceballos et al., 2013, 2019; Mateus et al.,
2019; Savary et al., 2020). The link between qualitative genetic
variation (presence or absence of single-nucleotide polymor-
phisms (SNPs)) of R. irregularis isolates and plant growth was
recently presented by Ceballos et al. (2019), although likely
depends additionally on plant host, edaphic characteristics, and
other biotic and abiotic factors. However, the more elusive link
between quantitative genetic variation (allele proportions) among
SSSLs and its effect on plant growth has not yet been made. It is
first necessary to understand whether quantitative changes in
nuclear dynamics lead to quantitative differences in gene expres-
sion of dikaryon SSSLs.

How often, and by how much, quantitative differences in allele
frequencies vary among dikaryon SSSLs could have profound
consequences on fungal gene expression and on the AMF–plant
symbiosis. For example, imbalanced nuclear ratios affect gene
transcription and growth rate of the heterokaryon basidiomycete
Heterobasidion parviporum, resulting in phenotypic differences
from true diploid individuals (Clergeot et al., 2019). Moreover,
owing to intricacies of transcriptional regulation within nuclei,
equal proportions of two nuclei may not necessarily result in
equal allele transcription. This may be due to localized transcrip-
tional bursts, allele-specific gene imprinting, or other mecha-
nisms (Dong et al., 2017; Lafon-Placette et al., 2018; Larsson
et al., 2019). For example, the dikaryon basidiomycete Agaricus
bisporus exhibits imbalanced allele expression at different growth
stages, despite both nuclear genotypes being equally abundant
(Gehrmann et al., 2018). Interestingly, many biallelic sites in the
dikaryon R. irregularis isolate C3 were expressed in proportions
equal to nuclear genotype proportions estimated from
ddRADseq data, as well as the frequencies of both bg112 alleles
(Masclaux et al., 2018). Although this study showed that both
nuclei were transcriptionally active in dikaryons, it could not
address the effects of unbalanced nuclear dynamics on the contri-
bution of gene expression in SSSLs from each of the two different
nucleus genotypes. To address that, gene transcription needs to
be assessed among SSSLs that have variable proportions to the
two nuclear genotypes. Our current knowledge of how frequent
nuclear genotype proportions vary in R. irregularis, as well as con-
sequences on transcription, is very limited (Kokkoris et al., 2020,
2021; Yildirir et al., 2020).

To assess quantitative variation at biallelic sites, 48 SSSLs were
generated from three homokaryon and two dikaryon ‘parental’
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isolates of R. irregularis (Fig. 1a,b). The parental isolates represent
single-spore cultures from a field in Switzerland, and have been
propagated clonally in axenic conditions for almost 20 yr (Koch
et al., 2004). We employed ddRADseq to study allele frequencies
at hundreds of biallelic sites to test the prevalence and amplitude
of quantitative genetic variation among SSSLs (Fig. 1b,c). We
later focused on six dikaryon SSSLs of C3 to investigate allelic
imbalance in expressed genes at single-copy biallelic sites and
whether allele proportions reflect nuclear dynamics (Fig. 1c).
Here, we define allelic imbalance to mean unequal transcription
of two alleles of single-copy biallelic genes, such that the two alle-
les are located on different nuclear genotypes and transcription of
each allele represents the transcriptional contribution of each
nuclear genotype. We hypothesized that transcribed alleles at
biallelic sites would reflect DNA allele frequencies detected with
ddRADseq. We investigated allelic expression patterns across
hundreds of biallelic sites to further test whether all biallelic genes
in an R. irregularis dikaryon displayed biallelic expression (i.e.
both copies expressed) or whether some genes only exhibited
monoallelic expression.

Materials and Methods

Fungal material and growth conditions

Rhizophagus irregularis isolates from T€anikon, Switzerland
(‘parental’ isolates; homokaryons: A1, B12, C2; and dikaryons:
A5 and C3), were used in this study (Koch et al., 2004). C5 was
also included in the analysis and is considered a clone of C2 as
they are genetically indistinguishable (Wyss et al., 2016; Savary
et al., 2018a). Forty-eight SSSLs were generated from these par-
ents and maintained at 25°C in dark, axenic conditions with Ri
T-DNA-modified carrot roots (Fig. 1a) (St-Arnaud et al., 1996;
Rosikiewicz et al., 2017). Additional cultures were produced
independently for conducting a second ddRADseq (five SSSLs of
C3), as well as RNA sequencing (RNAseq; six SSSLs of C3), and
were maintained in the same manner (Fig. 1b). Three individual
split plates (three biological replicates; ddRADseq) or three pools
each of four split plates (three biological replicates; RNAseq)
were produced.

DNA extraction, double-digest restriction-site-associated
DNA sequencing library preparations, and sequencing

After at least 4 months, medium from fungal compartments con-
taining AMF hyphae and spores was dissolved in 500 ml stirred
citrate buffer (0.0062M citric acid, 0.0028M sodium citrate) for
20 min. One compartment represented one biological replicate
(Fig. 1a). Fungal material was collected, flash frozen, and stored
at �80°C until use.

Homogenized samples (CryoMill; Retsch GmbH, Haan, Ger-
many) (29 30 s, 25 Hz, resting 30 s, 5 Hz) were used to extract
DNA (Qiagen Plant DNA kit; Qiagen, Hombrechtikon, Switzer-
land). DNA was quantified (Promega QuantusTM Fluorometer
and DNA QuantiFluor® dye; Promega AG, D€ubendorf, Switzer-
land) and stored at �20°C.

During ddRADseq library preparation, samples were subjected
to duplicate digests to obtain two technical replicates of each
sample (2 h at 37°C, then 20 min at 65°C: 19 CutSmart®

buffer, 50 mM sodium chloride (NaCl), 0.05 µg µl�1 BSA, 1 U
MseI, 5 U EcoRI-HF®, 6 µl template) using a frequent (MseI:
New England Biolabs, Bioconcept AG, Allschwil, Switzerland)
and a less frequent (EcoRI-HF®: New England Biolabs, Biocon-
cept AG) cutting restriction enzyme(Wyss et al., 2016; Savary
et al., 2018a). DNA was diluted to 15 ng µl�1, or used directly at
lower concentrations. Adapters and barcodes were ligated (6 h at
16°C, then 10 min at 65°C: 19 T4 ligase buffer, 14 mM NaCl,
0.014 µg µl�1 BSA, 862 nM MseI adapter, 86.3 nM EcoRI
adapter, and 335 U T4 ligase; Supporting Information Table S1)
and samples were purified (AMPure XP beads; Beckman-
Coulter, Indianapolis, IN, USA; 19 bead volumes) before PCR.
PCRs were performed in triplicate (30 s 98°C, 26 cycles (20 s
98°C, 30 s 60°C, 40 s 72°C), followed by 10 min 72°C; 19
Q5® High Fidelity Buffer, 363 µM dNTPs, 305 nM forward
and reverse primers (Table S1), 0.99 High GC Enhancer, and
0.4 U Q5® High Fidelity polymerase), verified by gel elec-
trophoresis (1.5% agarose gel, 100 V for 1 h), size selected (c.
300 bp; AMPure, 19 bead volume), and quantified before pool-
ing. Equal quantities of ≤ 48 samples were pooled per library
(Table S2). Libraries were purified (AMPure, 19 bead volume)
and verified (Fragment Analyzer; Agilent, Santa Clara, CA, USA)
before sequencing.

The five SSSLs of C3 underwent the same procedure, but with
doubled reaction volumes and were pooled and sequenced inde-
pendently in a single library (Fig 1b).

Lausanne Genomic Technologies Facility sequenced 100 bp
paired-end reads using Illumina® HiSeq 2500 (Illumina, San
Diego, CA, USA). Demultiplexed data files are deposited with
European Nucleotide Archive under accession nos. PRJEB37069
(parental isolates and 48 SSSLs) and PRJEB39082 (five SSSLs of
C3).

RNA extraction, RNA-sequencing library preparation, and
sequencing

After 4 months, medium from fungal compartments of six
SSSLs of C3 were dissolved in stirred citrate buffer for 50 min
and washed with sterile double-distilled water. Four pooled
compartments represented one biological replicate. Total RNA
was extracted (Maxwell RSC Plant RNA kit; Promega) and
RNA quantity and quality were determined (Nanodrop pho-
tometer and Agilent 5200 Fragment Analyzer). Two duplicate
RNAseq libraries were prepared using 100 ng RNA each and
13 cycles of PCR enrichment, representing technical replicates
of each biological replicate (NEBNext Ultra II RNA Library
Prep Kit for Illumina; New England Biolabs). Libraries with
unique indices were pooled, and 150 bp paired-end reads were
sequenced with an Illumina HiSeq 4000 platform in three
lanes. Six replicates (two technical replicates of three biological
replicates) of each R. irregularis SSSL were sequenced. RNAseq
reads were deposited in the European Nucleotide Archive
(PRJEB39188).
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Double-digest restriction-site-associated DNA sequencing
data preprocessing on six parental isolates and 48 single-
spore sibling lines

Low-quality reads were removed using CASAVA filter (Y). Adapters
and low-quality bases were trimmed using tagcleaner.pl (Sch-
mieder et al., 2010). Only paired reads with lengths > 50 bp, and
mean base quality > 25, were retained with prinseq-lite-0.20.4
(Schmieder & Edwards, 2011). Demultiplexing was done with
process_radtags, allowing ≤ 2 bp mismatch (Catchen et al., 2011).
Sample reads were mapped to R. irregularis DAOM197198
(ASM43914v3) to assess qualitative differences. Quantitative
analyses of allele frequencies at biallelic sites were achieved by
mapping to the respective parental genome (PRJEB33553). Only
uniquely mapped reads were considered using the bwa mem algo-
rithm with –c 2 (Table S2; Li & Durbin, 2009). Variants with
allele frequency ≥ 10% and coverage ≥ 20 were called using FREE-
BAYES v.1.2.0, and only biallelic sites were considered further (Gar-
rison & Marth, 2012). Variable sites were filtered (present in
≥ 60% of biological replicates) with BCFTOOLS to obtain com-
mon variants (Li et al., 2009). All scripts are available at https://
github.com/chanz06/AMF_RADseq_scripts.

Qualitative and quantitative analyses of double-digest
restriction-site-associated DNA sequencing data on
parental isolates and 48 single-spore sibling lines

Samples containing ≥ 4000 SNPs were combined in a presence/
absence matrix (165 303 sites; missing information was consid-
ered as absent). These filters eliminated the parent isolate B12
from further analyses. The DENDEXTEND v.1.14.0 and CIRCULIZE

v.0.4.10 R packages computed distances and generated a phylo-
genetic tree using the binary distance method. The package
GMODELS v.2.18.1 was used to compute principal components
using the fast.prcomp function.

Common biallelic sites among a parent and all its SSSLs were
selected, and reads supporting the reference and alternative allele
were used to compute allele frequencies. Allele frequencies at
biallelic sites were quantitatively assessed using two methods.
First, a traditional chi-squared test was used to detect significant
differences between the reference allele abundance in the parent
and SSSL at each biallelic site. Second, a nonparametric Mann–
Whitney U-test was used to test quantitative changes in allele fre-
quencies between SSSLs and their parent. All biallelic sites and
statistical testing results are documented in Table S3(a–d). Mean
reference allele frequencies were finally tested with a one-sample
t-test for significant shifts in SSSLs compared with their parent.
All scripts are available at: https://github.com/chanz06/AMF_
RADseq_scripts.

Double-digest restriction-site-associated DNA sequencing
data preprocessing and mapping of five dikaryon single-
spore sibling lines of C3

Adapter sequences were removed with tagcleaner.pl and low-
quality reads were trimmed with prinseq.pl (Schmieder et al.,

2010; Schmieder & Edwards, 2011). Only reads ≥ 50 bp were
kept. Reads were aligned to R. irregularis A4 genome
(PRJNA299206), using NOVOALIGN v.3.04.04 (Novocraft Tech-
nologies, Selangor, Malaysia). This assembly was used because
previous analyses revealed high similarity to C3, and thus these
two isolates are considered genetically indistinguishable (Wyss
et al., 2016; Savary et al., 2018a; Chen et al., 2018b). Mapping
statistics can be found in Table S4.

The same exact methods were applied to diploid (Candida
albicans and Betula nana) and tetraploid (Betula9 intermedia)
controls. Publicly available ddRADseq data are retrievable from
the National Center for Biotechnology Information Sequence
Read Archive database (BioProject accession nos. PRJNA268659
and PRJEB3322) using the reference genomes
GCA_000182965.3 and GCA_000327005.1 (Wang et al.,
2013).

RNA-sequencing data preprocessing and mapping of six
dikaryon single-spore sibling lines of C3

Adapter sequences and low-quality bases were removed with
TRIMMOMATIC v.0.36 (Bolger et al., 2014). Reads were mapped
onto the A4 genome (PRJNA299206) with STAR software
v.2.6.0, using the following parameters: --alignIntronMin
20 --alignIntronMax 5000 --outFilterMismatchNoverLmax
0.4 --outFilterMismatchNmax 15 --sjdbOverhang 99 --
outFilterIntronMotifs RemoveNoncanonical --alignEndsType
EndToEnd --outSAMtype BAM SortedByCoordinate --
outSAMattributes Standard --outSAMstrandField intronMotif
(Dobin et al., 2013). Mapping statistics are contained in
Table S5.

Variant calling, filtering, and allele frequency estimations of
biallelic sites of single-spore sibling lines of C3 from double-
digest restriction-site-associated DNA-sequencing and
RNA-sequencing data

Variant calling was performed in the same way for both data sets
using FREEBAYES v.1.2.0 (Garrison & Marth, 2012). SNPs, indels,
and multiple-nucleotide polymorphisms were detected with cov-
erage > 10 with a diploid assumption (-p 2). Parameters -0 -J -K
-u -F 0.1 ensured all possible variants were called.

SNPs in repeats were discarded using a repeat annotation file
and ‘bedtools intersect’ (Quinlan, 2014). Only biallelic sites with
a Phred-scaled Qscore ≥ 30 and in scaffolds > 1 kb were consid-
ered, provided they were detected in all six replicates (Tables S6,
S7). Finally, only biallelic sites with a depth within the interquar-
tile range of its sample, and ≥ 20 reads and in at least five repli-
cates, were retained. We estimated the pooled reference allele
frequency at all biallelic sites that did not vary significantly
among replicates (chi-squared test, P > 0.05). Statistics and plots
were performed using R software (Ihaka & Gentleman, 1996). A
principal component analysis (PCA) of common biallelic sites in
ddRADseq data was performed with the prcomp function. Plots
were made with GGPLOT2 package. Custom PYTHON scripts are
available at https://github.com/jquimcrz/afreq_NGS.
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Allelic fold-changes and allelic imbalance thresholds of
genes in RNA-sequencing data

To investigate genes with evidence of disproportionate allelic
transcription, log2 values of allelic fold-change (aFC) were esti-
mated for each gene containing at least one biallelic site (passing
filters). When a gene contained > 1 biallelic position, the highest
coverage position was used for estimates, meaning that aFC was
based on allele frequencies at one biallelic site. Thresholds
applied to determine allelic imbalance were absolute values of
log2(aFC) > 0.5. A chi-squared test compared the proportion of
genes under allelic imbalance among SSSLs using prop.test. A
post hoc pairwise comparison of proportions was performed with
pairwise.prop.test, using Holm–Bonferroni corrections.

Functional annotation of genes under allelic imbalance

We used EGGNOG mapper to perform a functional annotation
of identified genes under allelic-imbalance (Jensen et al., 2008;
Huerta-Cepas et al., 2019). Results were summarized based on
their clusters of orthologous groups (Tatusov et al., 2003).

Identification of biallelic sites with monoallelic and biallelic
expression

The genomic biallelic sites were first identified by mapping
whole-genome sequencing reads of A4 (PRJNA299206) to the
A4 assembly (NOVOALIGN v.3.04.04) and calling variants using
the same parameters as described for six SSSLs (Garrison &
Marth, 2012). Only biallelic sites in coding sequences of anno-
tated genes, with ≥ 25 depth and ≥ 10 reads supporting both alle-
les, were considered further.

Using ‘samtools depth’, we then computed the number of
reads mapping to biallelic positions (≥ 25 reads) from each
RNAseq alignment file and looked for the presence of either one
(monoallelic expression) or two (biallelic expression) alleles
among mapped reads in these biallelic sites (Li et al., 2009).

Fragments per kilobase of transcript per million mapped
reads analysis of genes with monoallelic and biallelic
expression

Fragments per kilobase of transcript per million mapped reads
(FPKM) values were computed for genes using RSEQC ‘FPKM_-
count.py’ (Wang et al., 2012). Significant differences (P < 0.05)
between monoallelic and biallelic expressed genes were deter-
mined by Mann–Whitney U-test of transformed values
(log2(FPKM + 1)).

Results

Qualitative assessment of Rhizophagus irregularis parental
isolates and their 48 single-spore sibling lines

We detected 165 303 polymorphic loci in the ddRADseq data
from R. irregularis parental isolates and all 48 SSSLs. These

polymorphic loci allowed us to infer qualitative similarity among
the parents and their SSSLs. The relationship among parental iso-
lates conformed to that expected from previous results (Wyss
et al., 2016; Savary et al., 2018a; Masclaux et al., 2019). We
recovered three distinct groups: a group with C3 and its off-
spring, a second group with C2, C5, and their offspring, and a
third group comprising A1, B12, and A5 and their offspring
(Fig. 2a). Parents and their SSSLs showed a clear separation
among three distinct clusters based on the presence and absence
of multiple polymorphic sites (Fig. 2b). All SSSLs clustered simi-
larly with their parent and were, therefore, considered qualita-
tively indistinguishable, as would be expected for offspring from
clonal reproduction.

Quantitative assessment of biallelic sites in Rhizophagus
irregularis parental isolates and their 48 single-spore sibling
lines

Very few biallelic sites were shared among homokaryon parents
A1 and C2 and their SSSLs (167 and 32 sites, respectively;
Fig. 3a). By contrast, dikaryon isolates A5 and C3 shared more
biallelic sites with their progeny (1233 and 299, respectively;
Fig. 3b). We tested whether this difference between dikaryons A5
and C3 was influenced by the high number of C3 SSSLs being
compared. Indeed, we detected fewer common biallelic sites in
dikaryons as we considered more SSSLs (Fig. 3c). There was a
significant negative correlation between commonly detected bial-
lelic sites and the number of SSSLs compared (�0.6379,
P = 0.0014 in homokaryons; �0.8408, P < 0.001 in dikaryons).

We tested whether reference allele frequencies at common bial-
lelic sites increased or decreased significantly (i.e. quantitatively
varied) in SSSLs relative to the frequencies in their parent. By
subjecting read counts at biallelic sites to a chi-squared test, we
found significant differences in relative allele frequencies between
a parent and its offspring in both homokaryons and dikaryons
(15–59 sites and 135–727 sites, respectively; Fig. 3a,b). The ref-
erence allele frequency differences between a parent and their
SSSLs were significantly higher in dikaryons than in
homokaryons (Fig. 3a,b,d).

We analysed mean reference allele frequencies at all significant
biallelic sites between a parent and SSSL to understand whether
these sites resulted in salient increases or decreases in reference
allele frequencies of a given SSSL (Fig. 3a,b). We found that
homokaryon SSSLs generally displayed fewer significant shifts in
their reference allele frequency than their parent did, and several
experienced no significant change (Fig. 3a). Still, some differences
were observed in some homokaryon SSSLs of C2, but these may
represent stochastic variation or positions at which there are
potential problems in the genome assembly (Masclaux et al.,
2019). More striking were changes in reference allele frequency
occurring in dikaryon SSSLs; notably, that changes were bidirec-
tional, representing both reference allele increases and decreases
in SSSLs compared with their parent (Fig. 3b). Most of the A5
SSSLs retained a lower reference allele frequency than the parent
did (Fig. 3b). Only SSSL A5.7 showed a significant increase in
the reference allele frequency compared with A5. There was a
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much broader range of variation among SSSLs of C3. The SSSLs
C3.1, C3.5, C3.7, C3.8, C3.10, C3.11, C3.12 C3.14, C3.16,
C3.17 and C3.20 all exhibited highly significant reference allele
frequency increases compared with C3. The SSSLs C3.3, C3.6,

C3.13, C3.15, C3.19 and C3.22 all showed similar reference
allele frequencies to C3, and SSSLs C3.4, C3.9 and C3.21
showed decreases in the reference allele frequency compared with
the parent C3.
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Fig. 2 Qualitative analysis of 165 303 biallelic
sites in Rhizophagus irregularis parental
isolates and their 48 single-spore sibling lines
(SSSLs). (a) Relationship between parents
and SSSL progeny based on shared
polymorphisms. Homokaryon parents and
SSSLs are labelled with grey and black open
circles, respectively, and dikaryon parents
and SSSLs are labelled with grey and black
filled circles, respectively. (b) Principal
component analysis of present and absent
polymorphisms showing distinct clustering of
three groups. Colours follow the groupings
shown in (a). ddRADseq, double-digest
restriction-site-associated DNA sequencing;
RNAseq, RNA sequencing.
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Concordance of biallelic sites in double-digest restriction-
site-associated DNA-sequencing and RNA-sequencing data
from single-spore sibling lines of C3

We observed a large number of shared biallelic sites in the
genome among SSSL replicates, ranging from 1740 to 2318 in

C3.6 and C3.8, respectively (Fig. S1). All SSSLs shared 1409
common genomic biallelic sites, with 684 located in coding
regions (Fig. S2a,b). Of the 684 genomic biallelic sites observed
in coding regions in ddRADseq data, only some of these were
observed in the transcriptome, ranging from 130 to 144 in C3.6
and C3.21, respectively (Fig. S2c). RNAseq reproducibility was
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lower than that observed in ddRADseq data, as many variants
were unique to one technical replicate, being most likely sequenc-
ing artefacts due to the large differences in sequencing depth
between the two experiments (Fig. S3; Tables S4, S5). Despite
this, thousands of biallelic sites were consistent among replicates,
and ranging from 5989 to 7117 in C3.8 and C3.21, respectively.
Conservative posterior analyses of allele frequencies were
restricted to a subset of these biallelic sites, resulting in from 479
to 757 (in C3.6 and C3.7, respectively; ddRADseq) and from
728 to 1445 biallelic sites (in C3.9 and C3.7, respectively;
RNAseq).

Variation in allele frequencies among five dikaryon single-
spore sibling lines of C3

Allele frequency distributions of biallelic sites displayed the
expected peaks of the diploid (0.5) and tetraploid controls (0.25;
0.5; 0.75) (Fig. S4). Similarly, we examined allele frequencies
among all SSSLs at common biallelic sites in ddRADseq data and
revealed that SSSLs C3.5 (497 sites), C3.6 (479 sites), and C3.8
(739 sites) exhibited a unimodal allele frequency distribution
centred at 0.5 (Fig. 4a). By contrast, two other SSSLs, C3.7 (757
sites) and C3.9 (604 sites), displayed bimodal distributions with
peaks around 0.45 and 0.55 in C3.7 and 0.40 and 0.60 in C3.9
(Fig. 4a). Furthermore, even though both these SSSLs displayed
bimodal distributions, reference allele frequencies were opposing.
More specifically, at a given site, the reference allele frequency
was higher in C3.9 and the alternative allele frequency was higher
in C3.7 (Fig. 4b). Using allele frequencies at 125 common bial-
lelic sites, PCA revealed SSSL dissimilarity at these biallelic sites,
explaining 63.3% (PC1) of the variance (Fig. 4c). We observed
that SSSLs were distributed along PC1, likely representing the
variation in abundance of nuclear genotypes among SSSLs. The
three dikaryon SSSLs (C3.5, C3.6 and C3.8) that showed a 1 : 1
ratio of both nuclei (unimodal distributions) clustered together at
the centre. The two dikaryon strains (C3.7 and C3.9) that dis-
played unequal proportions (bimodal distributions) of allele fre-
quencies were diametrically opposed along PC1 (Fig. 4c).

Transcriptome-wide differences in allele expression among
six dikaryon single-spore sibling lines of C3

We then addressed whether RNAseq data revealed transcriptional
bias at biallelic sites in dikaryon SSSLs. A remarkably similar
allele frequency distribution to that observed in the genomic data
also occurred in SSSL transcriptomes (Fig. 5a). Similar to
ddRADseq, biallelic sites in SSSLs C3.5 (1276 sites), C3.6 (1152
sites), and C3.8 (913 sites) showed unimodal distributions cen-
tred at 0.5. SSSLs C3.7 (1445 sites) and C3.9 (728 sites) again
presented clear bimodal distributions in their transcript frequen-
cies, similar to unequal allele frequencies observed in ddRADseq.
C3.21 (1368 sites) also exhibited a bimodal distribution, with
the most extreme allele frequencies transcribed of all SSSLs (an
approximate 3 : 7 ratio).

We compared transcript allele frequencies at common biallelic
sites to determine similarity among SSSLs with bimodal

distributions. Pairwise comparisons between C3.9 and C3.21
allele frequencies revealed a positive correlation (R = 0.78) and a
transcription bias towards the same, most abundant allele
(Fig. 5b). By contrast, pairwise comparison of C3.7 with C3.9
(R = 0.31) and C3.7 with C3.21 (R = 0.18) showed much weaker
correlation. This result is congruent with observations of
ddRADseq data, where reference allele frequencies of SSSLs C3.7
and C3.9 were opposing.

Genes under allelic imbalance during transcription

Similar to ddRADseq, and global RNAseq analyses, we further
observed bimodal distributions in SSSLs C3.7, C3.9, and C3.21
when testing for allelic fold-change variation in gene transcripts
based on one biallelic site (Fig. 6a). Genes exhibiting allelic
imbalance were present in all six SSSLs, even though allele fre-
quency distributions centred at 0.5 (Table S8). Still, allelic imbal-
ance of biallelic expressed genes significantly differed among the
SSSLs (v2 = 152.71, df = 5, P < 2.29 10�16) and, indeed, was
more pronounced in SSSLs with bimodal allele frequency distri-
butions. For example, C3.21 showed the highest proportion of
genes under allelic imbalance (close to 80%) and a slightly lower
proportion in C3.7 and C3.9 (60–70%) (Fig. 6b; Table S9).
Allele frequencies of several genes differed by up to c. 25%
between SSSLs C3.7 and C3.21 and were consistently dissonant
(Fig. 6c, top). Other biallelic expressed genes exhibited similar
allele frequencies among the SSSLs (Fig. 6c, bottom). Notably,
most genes under allelic imbalance were unique to individual
SSSLs (Fig. S5a) and possessed a wide variety of biological func-
tions (Fig. S5b).

Monoallelic expression of biallelic sites within genes

RNAseq data at biallelic sites revealed that either both alleles or
sometimes only one allele was transcribed (Fig. 7a,b). We, there-
fore, further investigated the prevalence of monoallelic expression
at biallelic sites and found that the number of biallelic sites with
biallelic expression was lower than those with monoallelic expres-
sion (Fig. 7c). Still, biallelic expressed genes were significantly
higher than monoallelic expressed genes in all SSSLs (Fig. 7d).
Approx. 600 biallelic expressed and 250 monoallelic expressed
genes were identified in each SSSL, of which 459 and 187, respec-
tively, were commonly shared among all six SSSLs (Fig. 7e,f).
Most notably, monoallelic expressed genes had significantly higher
SNP densities, compared with biallelic expressed genes (Fig. 7g),
and were significantly less expressed than biallelic expressed genes
(Fig. S6). In both cases, the functional annotation of genes with
monoallelic expression and biallelic expression revealed ortho-
logues involved in many, and sometimes common, biological pro-
cesses, such as energy production and conversion, transcription, or
signal transductionmechanisms (Tables S10, S11).

Discussion

In this study, we generated ddRADseq data on a cohort of 48
homokaryon and dikaryon SSSLs of their R. irregularis parental
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isolates. We showed that SSSLs are indeed clonal offspring, but
that dikaryon SSSLs, despite qualitatively being clones, com-
monly exhibit quantitative allele frequency variation at biallelic
sites. This variation represents proportions of two genetically dis-
tinct nuclei. Analysis on a subsample of dikaryon SSSLs from one
parent revealed that the frequency of two nuclear genotypes devi-
ated considerably from the parent. Ultimately, this translated
into the predominance of one of the two nuclear genotypes in
some SSSLs. Both nuclear genotypes contributed to gene tran-
scription, and the transcription of biallelic genes mirrored nuclear
genotype frequencies. Monoallelic expression also sometimes

occurred in genes that were biallelic, and this was more likely if
there was a greater divergence between alleles (i.e. a higher SNP
per kilobase density) of the gene.

Rhizophagus irregularis dikaryons produce clonal single-
spore sibling lines that quantitatively differ in nuclear
genotype proportions

Using ddRADseq data, we analysed more SSSLs than previous
studies, and many more than would be possible with single nuclei
sequencing. Multiple loci enabled us to assess genetic variation in
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homokaryon and dikaryon SSSLs (Fig. 8a). SSSLs clustered with
their parents, indicating no significantly detectable qualitative
genetic variation. Although a small number of biallelic sites were
still detected in homokaryons, we expect that they have little to
no functional consequence (Masclaux et al., 2019). Although the
lack of genetic variation among homokaryon SSSLs is intuitive, it
is interesting in the context of recent field-based experiments.
Large significant differences in cassava yield were observed in the
field in a fully replicated randomized-block design experiment
when cassava was inoculated with SSSLs originating from
homokaryon parents (Ceballos et al., 2019; Pe~na et al., 2020).
The SSSLs were the same ones on which ddRADseq was per-
formed in this study. It is, therefore, improbable that yield differ-
ences induced by inoculation with different SSSLs can be
attributed to quantitative genetic variation among homokaryon
SSSLs, and so likely depends on additional, contextual factors,
including potential epigenetic differences among SSSLs and how
SSSLs affect soil microbial community composition and succes-
sion (Gao et al., 2019).

In contrast to homokaryons, we observed much more quanti-
tative variation among dikaryon SSSLs. As hypothesized, biallelic
sites were more prolific among dikaryon SSSLs and reflect the
presence of two genetically distinct nuclei. Furthermore, refer-
ence allele frequencies at multiple biallelic sites quantitatively
deviated between clonal SSSLs and their parent, indicating the
inheritance of different nuclear genotype proportions.

Typical allele frequency distributions at biallelic sites in
diploid organisms are unimodally distributed and centred at 0.5
(Zhu et al., 2016) (Fig S4). Similarly, AMF isolates with a pop-
ulation of two distinct haploid nuclear genotypes (e.g. a
dikaryon) should display diploid-like allele frequency distribu-
tions (Ropars et al., 2016). On the other hand, disproportionate
inheritance of nuclei would result in deviations from 0.5 (Mas-
claux et al., 2018). We provide additional support based on
more detailed analyses that SSSLs of C3 varied between 2 : 3
and 3 : 2 in nuclear ratios from their parent (1 : 1; alterna-
tive : reference allele frequency). Specifically, our results strongly
indicate disproportionate inheritance of two nuclear genotypes
in C3.7 and C3.9 and that quantitative genetic variation often
occurs among dikaryon SSSLs (Fig. 8a). A previous single-locus
study of bg112 allele frequencies arrived at a similar conclusion
but, despite adequate replication, was scrutinized due to possi-
ble PCR variability (Masclaux et al., 2018; Kokkoris et al.,
2020). We confirm earlier results and can conclude that this
criticism is highly unlikely, given that independent and well-
replicated data sets produced near-identical results across hun-
dreds of biallelic sites. An alternative explanation for quantita-
tive genetic differences observed among siblings would be that
nuclei fused and recombined. However, this is unlikely. Single-
nucleus sequencing of R. irregularis isolate A4 (which is geneti-
cally indistinguishable from C3 and is, thus, considered a clone)
revealed no evidence (Chen et al., 2018a) of among-nucleus
recombination in this fungus. Although the same study detected
a very small amount of recombination among nuclei of another
isolate of the same species, this remains controversial (Auxier &
Bazzicalupo, 2019).

Allelic imbalance in gene transcription in Rhizophagus
irregularis dikaryons

Previously, researchers suggested that gene expression in a
dikaryon isolate might reflect proportions of both nuclei (Mas-
claux et al., 2018). Because some SSSLs of C3 displayed different
nuclear genotype proportions, we wanted to see if evidence of the
same could be found in transcriptome profiles of these SSSLs.
The results confirmed that SSSLs with disproportionate nuclear
genotypes based on ddRADseq data also displayed allelic imbal-
ance in biallelic transcripts, reflecting allele frequencies found in
ddRADseq (Fig. 8b). These observations suggest a direct conse-
quence of unequal nuclear genotype ratios on transcribed alleles,
with the most abundant genotype being transcriptionally over-
represented. This is an important result because this indicates
that the generation of such quantitative genetic variation could
also potentially influence the AMF phenotype. Furthermore,
because a previous study has shown associations between patterns
of genome variation in R. irregularis and plant growth, such alter-
ations in nuclear genotype frequency could potentially influence
the symbiosis with plants (Ceballos et al., 2019).

Exceptions to the rule: when transcribed alleles do not
reflect nuclear genotype ratios

Allele frequencies of transcripts did not always reflect the esti-
mated nuclear genotype ratios, but this represented a much
smaller number of biallelic genes than those that were expressed
in the same proportion as the nuclear genotype frequencies.
Interestingly, some biallelic genes exhibited the same pattern of
allelic imbalance in expression in all SSSLs, regardless of nuclei
proportions (Fig. 6c). Therefore, it is likely that some genes are
affected by other transcriptional regulatory mechanisms that are
independent of nuclear genotype proportions.

Biallelic vs monoallelic expression at biallelic sites suggests
multilayered regulation of transcription in dikaryons

We observed that at many biallelic sites in the genome only one
of the two possible sequence variants was actually transcribed.
This was a consistent and significant pattern across all six SSSLs,
irrespective of nuclear genotype ratios (Fig. 7). Intriguingly, sig-
nificantly more biallelic genes expressed both alleles, rather than
showing monoallelic expression. Again, this was a remarkably
similar pattern across all SSSLs and across replicates of each
SSSL, revealing a very robust pattern (Fig. 7). Taken together,
these results show that biallelic genes in which greater divergence
between the two alleles has occurred (as measured by the number
of biallelic sites in the gene) are less likely to both be transcribed.
These results point both to biased monoallelic expression at
highly polymorphic sites and to possible epigenetic silencing of
highly divergent alleles, a situation that is predicted in a conflict-
ual scenario between two divergent genomes (Dyson & Goodis-
man, 2020; Zou et al., 2020).

One other completely unexpected result was that transcription
was also consistently significantly higher in biallelic expressed
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genes than in monoallelic expressed genes across all replicates and
all SSSLs (Fig. S6). The fact that transcription of both alleles of a
gene gave rise to significantly more transcripts than those exhibit-
ing monoallelic expression suggests that, in more highly divergent
biallelic genes, suppression of one allele limits the transcription
of the gene. A prediction from this finding would be that genes
that are required to respond to a sudden environmental cue by

rapidly producing a high transcript number should be under
selection to retain two alleles that have undergone little diver-
gence. However, we cannot completely exclude the possibility
that overall lower expression levels of monoallelic expressed genes
hindered the detection of the second allele in some cases.

It was important that all cultures were maintained in a homo-
geneous environment, so as not to influence transcription results.
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Fig. 8 A schematic diagram summarizing the relationship between observed proportions of nuclear genotypes in Rhizophagus irregularis parents and
offspring and their gene transcription patterns. (a) A parental homokaryon isolate gives rise to clonally identical offspring (shown as red nuclei). A dikaryon
parental isolate gives rise to offspring with relative proportions of two nuclear genotypes that can diverge in a single-spore sibling line (SSSL) from the
parental isolate (e.g. SSSL.1 and SSSL.3). The nuclei of the two different genotypes are shown in yellow and blue. These proportions represent allele
frequencies estimations in double-digest restriction-site-associated DNA sequencing data. (b) Allele frequencies at biallelic sites in the genome and in the
transcriptome of the three SSSLs 1, 2 and 3 shown in (a). Colours under the allele frequency curves represent alleles originating from each of the two
nuclear genotypes.

New Phytologist (2021) 231: 1984–2001
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist1998



In cases where monoallelic expression occurs in a biallelic gene, it
is also possible that selection would favour the retention of two
divergent alleles that could be differentially expressed in different
environments. Experimentally manipulated environments may
shed light on this possibility.

Ecological significance and application of quantitative
variation among dikaryon single-spore sibling lines

Fungi typically display an array of nuclear dynamics to fit their
life strategies. For example, yeasts, which are not host dependent,
show a fitness cost associated with being diploid; consequently,
haploid strains adapt and evolve much faster (Marad et al., 2018).
On the other hand, the obligate plant pathogenic rust fungus
Puccinia graminis f. sp. trici needs two plant hosts to complete its
life cycle, but it can only infect alternate hosts with homokaryon
spores and primary hosts with dikaryon spores (Bakkeren &
Szabo, 2020). Scott et al. (2019) recently compared two models
of AMF evolution in which selection acts either on individuals or
on the nucleus. The current opinion is that high intraspecific
genetic diversity in R. irregularis could facilitate evolution by
enabling generalist lifestyles and overcoming the danger of
becoming too specialized on one host (Chen et al., 2018b). This
relationship was explored and demonstrates that nuclear dynam-
ics may change in response to particular plant hosts for dikaryon
AMF (Angelard et al., 2014; Kokkoris et al., 2021). In nature,
AMF dikaryons may optimize niche adaptation in multiple
ecosystems by maintaining both populations of cooperating
nuclear genotypes. Dikaryon SSSLs indeed exhibit large differ-
ences in quantitative traits and affect plant growth significantly
(Angelard et al., 2010; Ceballos et al., 2013, 2019; Pe~na et al.,
2020). This might perhaps be due to the fact that SSSLs with the
most optimal ratios of nuclear genotypes colonize and form sym-
bioses with a given host more rapidly.

In conclusion, we show that dikaryon R. irregularis isolates
commonly generate quantitative shifts in allele frequencies
among single-spore offspring. These shifts in allele frequencies
are observed in hundreds of biallelic sites across the genome and
likely reflect the changes in proportions of the two nuclear geno-
types. We further conclude that varying nuclear dynamics of
SSSLs generate similar quantitative shifts in gene transcription,
meaning that transcription is linked to the underlying nuclear
ratios of SSSLs. These findings hint toward additional factors to
consider that may regulate transcription and symbiosis within
these important plant mutualists.
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