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Abstract

Background: Whole-heart magnetic resonance angiography (MRA) requires sophisticated methods accounting for
respiratory motion. Our purpose was to evaluate the image quality of compressed sensing-based respiratory
motion-resolved three-dimensional (3D) whole-heart MRA compared with self-navigated motion-corrected
whole-heart MRA in patients with known thoracic aorta dilation.

Methods: Twenty-five patients were prospectively enrolled in this ethically approved study. Whole-heart 1.5-T
MRA was acquired using a prototype 3D radial steady-state free-precession free-breathing sequence. The same
data were reconstructed with a one-dimensional motion-correction algorithm (1D-MCA) and an extradimensional
golden-angle radial sparse parallel reconstruction (XD-GRASP). Subjective image quality was scored and objective
image quality was quantified (signal intensity ratio, SIR; vessel sharpness). Wilcoxon, McNemar, and paired t tests
were used.

Results: Subjective image quality was significantly higher using XD-GRASP compared to 1D-MCA (median 4.5,
interquartile range 4.5-5.0 versus 4.0 [2.25-4.75]; p < 0.001), as well as signal homogeneity (3.0 [3.0-3.0] versus
2.0 [2.0-3.0]; p = 0.003), and image sharpness (3.0 [2.0-3.0] vs 2.0 [1.25-3.0]; p < 0.001). SIR with the 1D-MCA
and XD-GRASP was 6.1 + 3.9 versus 74 + 2.5, respectively (p < 0.001); while signal homogeneity was 274.2 +
265.0 versus 199.8 + 67.2 (p = 0.129). XD-GRASP provided a higher vessel sharpness (45.3 + 10.7 versus 40.6 + 101,

p = 0.025).

Conclusions: XD-GRASP-based motion-resolved reconstruction of free-breathing 3D whole-heart MRA datasets
provides improved image contrast, sharpness, and signal homogeneity and seems to be a promising technique that
overcomes some of the limitations of motion correction or respiratory navigator gating.
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Key points

e Prototype compressed sensing whole-heart magnetic
resonance angiography (MRA) provides improved
signal homogeneity and sharpness.

e Motion-resolved three-dimensional whole-heart
MRA reconstruction outperformed one-dimensional
image-based motion correction.

e Motion-resolved MRA allows for image acquisition
without the need for respiratory navigator.

Background

Whole-heart magnetic resonance angiography (MRA)
has been extensively used as a clinical tool to visualize
three-dimensional (3D) cardiac anatomy [1]. While 3D
whole-heart MRA can be obtained using contrast-
enhanced techniques [2], the most common application
remains the unenhanced steady-state free-precession
(SSFP) acquisition [3—6]. As the heart is relatively still
only for a short mid-diastolic or late systolic period of
the cardiac cycle, collection of such MRA data requires
hundreds of cardiac cycles and a protocol designed for
free-breathing imaging.

Current 3D SSFP MRA techniques depend on sophis-
ticated respiratory motion compensation or gating. Dia-
phragmatic navigators, the only tool clinically available,
have several limitations including unpredictable acquisi-
tion time and low scan efficiency, which can render the
length of the acquisition excessively long, up to 28 min
[7-10]. Alternatively, a variety of self-navigated tech-
niques have been proposed, which allow the extraction
of a respiratory motion signal directly from the image
data that can be used for respiratory motion correction
during post-processing [11-16]. Self-navigation, employ-
ing a radial trajectory combined with one-dimensional
correction, has been one of the most widely used investi-
gational approaches which can provide 100% scan effi-
ciency and predictable acquisition times, enabling the
application of this technique even in children with lim-
ited compliance [17, 18]. However, self-navigation also
suffers from certain limitations that are related to the
1D motion model used for correction [19], which may
not be accurate when a wide range of respiratory motion
is present [20].

Recent developments have shifted towards more so-
phisticated reconstruction techniques that are able to
extract a respiratory signal from the image data and use
it to sort images into different respiratory motion states.
The extradimensional golden-angle radial sparse parallel
(XD-GRASP) method, a novel compressed sensing
image reconstruction framework, combines the benefits
of reduced k-space sampling and sparse reconstruction
[20, 21]. In particular, XD-GRASP enables the reconstruc-
tion of 3D radial golden-angle free-breathing coronary
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artery MRA data at multiple respiratory phases by exploit-
ing the sparsity along the respiratory dimension [20]. This
is a paradigm shift for motion compensation, as with this
technique, respiratory motion is no longer corrected using
an approximation of the displacement (e.g, reducing the
motion to a 1D correction). Instead, the strong similarity
between different respiratory phases is used to improve
the image quality of the reconstruction.

The purpose of this study was to evaluate the sub-
jective and objective image quality of XD-GRASP-
based respiratory motion-resolved 3D whole-heart
MRA in comparison with respiratory motion-corrected
whole-heart MRA in patients with known thoracic aorta
dilation.

Methods

Patient selection

Our study protocol was approved by the local Institu-
tional Review Board and written informed consent was
obtained from all patients. The study was conducted in
compliance with the Health Insurance Portability and
Accountability Act guidelines. Patients (n = 25) with
known thoracic aorta dilation were prospectively en-
rolled for a research study between July 2017 and
September 2018. Further inclusion criteria were: (1) >
18 years of age; (2) previous clinically indicated aorta,
chest, triple-rule-out, or pulmonary embolism com-
puted tomography examination; and (3) willing to
comply with all study procedures and provide written
informed consent. General magnetic resonance exclu-
sion criteria were applied to patient selection. Pa-
tient’s demographics were obtained by medical record
chart review.

Acquisition protocol

Image acquisition was performed on a 1.5-T system
(Magnetom Avanto DOT, Siemens Healthcare, Erlangen,
Germany). Patients were scanned head-first in a supine
position. A multi-channel spine phased-array radiofre-
quency coil with 24 elements integrated into the patient
table and a 6 element, 6-channel phased-array body coil
were used for signal reception. Acquisitions were elec-
trocardiographically gated. The entire protocol was per-
formed in a free-breathing fashion. Following the initial
scout images, a free-breathing two-dimensional balanced
SSFP cine image set in a parasagittal long-axis view of
the left ventricle was acquired using the following typical
parameters: repetition time/echo time, 2.3/1.1 ms; field
of view 220340 mm?; matrix 192% number of segments
15; reconstructed phases 25; temporal resolution 45 ms;
flip angle 77°; number of excitations 3; and parallel ac-
quisition acceleration factor 2. Cine image data were
used to determine the optimal mid-diastolic timing for
the whole-heart MRA.
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Whole-heart MRA was performed using a prototype
fat-saturated and T2-prepared pulse sequence that em-
ploys the 3D radial trajectory [7, 22]. A coronal satur-
ation slab was placed at the level of the anterior chest
wall and the following imaging parameters were used:
repetition time/echo time 3.1/1.5 ms; field of view 320 x
320 x 320 mm?; reconstructed voxel size, 1.7 x 1.7 x
1.7 mm? matrix 192% flip angle 115° and bandwidth,
898 Hz/pixel. An acceleration factor of 5 with respect to
the Nyquist sampling for 3D radial imaging was applied
[21]. The acquisition was performed in free-breathing
and the following two approaches were used to address
respiratory motion within the reconstruction.

Post-processing

Respiratory motion-corrected approach

For the self-navigation approach, respiratory motion was
extracted by cross-correlating the automatically seg-
mented blood pool of the 1D Fourier transform of a
readout along the superior-inferior direction acquired
consistently at the beginning of each heartbeat. The de-
tected 1D superior-inferior respiratory displacement was
then used for correcting each readout before the grid-
ding operation. The correction was performed by apply-
ing a phase shift to all k-space radial readouts and was
adapted for the polar orientation of each readout accord-
ing to the spiral phyllotaxis pattern [22]. This recon-
struction has been implemented inline at the scanner
and takes about 1-2 min. Further details about the algo-
rithm employed for motion correction were described by
Piccini et al. [12].

Respiratory motion-resolved approach

For the respiratory motion-resolved approach, the same
raw data of the whole-heart MRA acquisition were
exported and processed on a dedicated workstation
using an adaptation of the previously described framework
[20] implemented in MATLAB 2015a (MathWorks,
Natick, Massachusetts, USA). Using a respiratory signal
extracted directly from the image data, individual readouts
of the 3D radial acquisition were binned according to their
respiratory phase [23]. The resultant series of motion-
resolved undersampled images were then reconstructed
using an XD-GRASP algorithm [21], which aims at
exploiting the intrinsic similarities between distinct re-
spiratory phases (or motion states) of the whole-heart ac-
quisition to perform a compressed sensing reconstruction
along the respiratory motion dimension. To achieve this,
first, the acquired readouts are separated and grouped ac-
cording to the respiratory phase they belong to. Subse-
quently, a k-t sparse SENSE iterative reconstruction is
performed, where the temporal domain is represented by
the different respiratory phases. Out of the four recon-
structed respiratory phases, the end-expiratory phase was
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selected in all datasets for the subsequent analyses. The
motion resolved reconstruction has not been imple-
mented inline and takes between 15-30 min using high-
end computers.

Image analysis

Respiratory motion-corrected and motion-resolved
MRA reconstructions were randomized and independ-
ently reviewed by two readers (with 1 and 11 years of
experience in cardiovascular imaging, respectively) on a
dedicated workstation (Aquarius iNtuition Edition
v4.4.12, TeraRecon, Inc., Foster City, CA, USA). Stand-
ard axial, coronal, and sagittal planes were used to gen-
erate multi-planar reformats (MPR), but readers were
allowed to use curved MPR or maximum intensity pro-
jection (MIP) series according to their preference. The
presence of artifacts was noted.

Qualitative analysis

The overall image quality was subjectively rated inde-
pendently by each reader on a 5-point Likert-scale: (1)
vascular anatomy not assessable due to severe image ar-
tifacts and/or poor contrast, (2) vascular anatomy assess-
able despite severe image artifacts and/or poor contrast,
(3) acceptable image quality with artifacts and/or limited
contrast, (4) good image quality with minor artifacts
and/or good contrast, and (5) excellent image quality
without artifacts and excellent contrast. Signal homo-
geneity in the intra-aortic blood pool was rated using a
3-point Likert-scale as (1) inhomogeneity affecting diag-
nosis, (2) subtle inhomogeneity with no effect on diag-
nosis, and (3) excellent homogeneity. Image sharpness
was evaluated on a 3-point scale as follows: (1) motion
affecting diagnosis, (2) motion with no effect on diagno-
sis, and (3) no significant motion. Finally, diagnostic
confidence was also rated by each reader using a 3-point
scale as (1) low reader confidence, (2) marginal reader
confidence, and (3) high reader confidence.

Quantitative analysis

Readers visualized seven standard anatomical levels of
the thoracic aorta using a double oblique technique as
follows: sinuses of Valsalva, sinotubular junction, mid as-
cending aorta, proximal aortic arch, mid aortic arch,
proximal descending aorta, and mid descending aorta
[24]. At each level, the signal intensity ratio (SIR) be-
tween the intravascular signal and the surrounding lung
tissue was calculated. Regions of interest were placed in
the center of the aorta. Aorta blood pool signal
homogeneity was quantified by measuring the stand-
ard deviation of blood signal as a function of distance
along the thoracic aorta on centerline reconstructions.
Finally, the sharpness of the right coronary artery was
quantitatively evaluated using a dedicated prototype
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application (Soap-Bubble, John’s Hopkins University,
Baltimore, MD, USA) [25]. This software examines a
user-assisted definition of a curved subvolume enclosed
in the 3D MRA dataset and measures the magnitude of
local change in signal intensity at the vessel borders in the
reformatted image. The resulting vessel edge value indi-
cates quantitative sharpness, whereas a value of 100% re-
fers to an abrupt signal intensity change at the vessel
border, and lower values are associated with lower vessel
sharpness [25]. Measurements were taken in the proximal
segment of the right coronary artery, being the most sensi-
tive to motion [26].

Statistical analysis

Statistical analysis was performed using SPSS v213 (IBM
Corporation, Armonk, NY, USA). Categorical variables
are represented as total number and percentages, and
continuous variables as mean + standard deviation or
median (interquartile range), depending on their distri-
bution (tested with Shapiro Wilkes). Subjective image
quality scores were compared between the respiratory
motion-corrected and motion-resolved techniques using
the Wilcoxon signed-rank test, and the McNemar test
was used to compare the presence of image artifacts.
Interclass correlations (ICC) were used to assess the
absolute agreement between readers and were inter-
preted as follows: <0.2, poor; 0.2-0.4, acceptable;
0.41-0.6, moderate; 0.61-0.8, good; and >0.8, excel-
lent. Objective image quality measures were compared
using a paired Student’s ¢ test. A p value <0.05 was
considered significant.

Results
A total of 25 patients with thoracic aorta dilation were
enrolled, aged 70 + 9years (mean * standard deviation,
16 men and 9 women). The mean patient body weight
and body mass index were 88.5 + 14.6 kg and 27.8 + 3.0
kg/m?, respectively. All patients were successfully
scanned using the free-breathing whole-heart MRA
protocol. Representative high-quality images of respira-
tory motion-corrected and motion-resolved reconstruc-
tions of corresponding datasets are shown in Fig. 1.
Overall subjective image quality was rated significantly
higher using the motion-resolved reconstruction com-
pared to motion correction (4.5 versus 4.0, p < 0.001),
including signal homogeneity and image sharpness
(Table 1). Representative images highlighting the signal
homogeneity and sharpness differences between the two
techniques are shown in Fig. 2. Image artifacts mostly
arising from motion were noted on 7 motion-corrected
and 3 motion-resolved datasets (p = 0.219). The im-
proved image quality of the motion-resolved reconstruc-
tion also resulted in higher diagnostic confidence scores
(3.0 versus 2.0, p = 0.016). Inter-reader assessment
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Respiratory motion-corrected

a

Respiratory motion-resolved

Fig. 1 Representative images from a 66-year-old woman with
ascending aorta dilation. Maximum intensity projection MRA images
displayed as 3-mm thick slabs are shown in the candy cane view of
the aorta reconstructed using motion-corrected (a) and motion-
resolved (b) algorithms in end-expiratory phase. While the image
quality of both datasets was rated the best, the improved sharpness
and overall image quality achieved by the motion-resolved

reconstruction can be clearly observed

showed moderate to excellent agreement between the
readers in motion-corrected datasets (ICCs between
0.577 and 0.841) and good to excellent agreement in the
motion-resolved image sets (ICCs between 0.648 and
0.860) (Table 2).

Objective image quality parameters showed improve-
ment when the motion-resolved technique was used.
Overall SIR values with the motion-corrected and
motion-resolved techniques were 6.1 + 3.9 versus 7.4 +
2.5 (p < 0.001). Individual SIR measurements taken at
the various standard anatomical levels of the thoracic
aorta showed significant improvement at the mid arch,
proximal descending aorta, and mid descending aorta
(Table 3). No statistically significant difference was ob-
served in signal homogeneity (motion-corrected versus
motion-resolved 274.2 + 265.0 vs 199.8 + 67.2, p =
0.129); however, the standard deviations for the
motion-corrected acquisitions were higher when com-
pared with the motion-resolved technique, indicating

Table 1 Subjective image quality parameters. Data are reported
as median with interquartile ranges or frequency

Respiratory Respiratory p value
self-navigated  motion-resolved
Overall image quality 40 [2.25-4.75] 45 [45-5.0] <0.0001*
Signal homogeneity 2.0 [2.0-3.0] 3.0 [3.0-3.0] 0.003*
Image sharpness 2.0 [1.25-3.0] 3.0 [2.0-3.0] 0.0001*
Presence of artifacts 7 (25%) 3 (10.7%) 0219
Diagnostic confidence 2.0 [2.0-3.0] 3.0 [20-3.0] 0.016*

*Indicating significant difference
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Respiratory motion-corrected ~ Respiratory motion-resolved

Fig. 2 Representative motion-corrected (a, ¢) and motion-resolved
(b, d) images from a 74-year-old woman (a, b) and a 59-year-old
woman (¢, d), both with ascending aorta dilation. Maximum intensity
projection images displayed as 3-mm thick slabs are shown in the
candy cane view of the aorta. Substantially improved image sharpness
can be observed with motion-resolved reconstruction in both cases
(b, d) along with improved signal uniformity especially in the first
patient (a). Note that data from the same image acquisition are used
but processed differently

a more uniform signal measurement in the Ilatter.
Soap-Bubble-based image sharpness analysis revealed that
motion-resolved reconstruction provides higher coronary
vessel sharpness (45.3 + 10.7 versus 50.6 + 10.1, p =
0.025), as shown in the image example in Fig. 3.

Discussion

This study aimed to evaluate if respiratory-resolved com-
pressed sensing reconstruction, specifically XD-GRASP,
provides improved image quality of free-breathing 3D

Table 2 Inter-reader agreement in subjective image quality ratings
as shown by intra-class correlation coefficient values

Respiratory Respiratory
self-navigated motion-resolved
Overall image quality 0.841 0.860
Signal homogeneity 0577 0.648
Image sharpness 0.784 0.772
Presence of artifacts 0.825 0.680
Diagnostic confidence 0.726 0.780
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Table 3 Objective image quality parameters

Respiratory
self-navigated

Respiratory
motion-resolved

p value

Signal intensity ratio

Sinus 6.9 £ 45 7.7 +22 0.325
Sinotubular junction 72+54 78 £22 0.601
Ascending aorta 71 £52 7325 0.829
Proximal arch 56+ 34 6.1+18 0475
Mid arch 47 +19 56+17 0.035%
Proximal descending 50+ 13 80 %27 <0.0001*
aorta
Mid-descending aorta 6.0 + 2.8 92+29 0.0001*
Signal homogeneity 2742 £ 2650 1998 £ 67.2 0.129
Right coronary artery 453 +£ 107 506 £ 10.1 0.025*

sharpness

*Indicating significant difference

whole-heart MRA, when compared to self-navigated
motion-corrected reconstructions of the same sets of data
in a patient population. Subjective and objective image
quality measures were assessed by two readers. Overall,
we found improved image quality and better diagnostic
confidence using the respiratory motion-resolved recon-
struction, indicating that the technique has the potential
to overcome the limitations of other approaches used for
respiratory motion compensation or correction.

In this study, we reported improvements in both sub-
jective and objective image quality parameters when the
motion-resolved technique was used. Subjective ratings
were higher in the overall assessment, but also showed a
significant increase when signal homogeneity and image
sharpness were rated separately. The improvement in
image quality also resulted in an increase in the readers’
diagnostic confidence. Inter-reader assessment showed
similar agreement between the readers for both motion-
corrected and motion-resolved.

Vascular signal in the motion-corrected data sets
proved to be less uniform, especially in the center of the
image, most likely because the compressed sensing re-
construction technique reduced the standard deviation
of the noise. Such inhomogeneity was not observed on
motion-resolved reconstructions, despite the utilization
of the same raw data for both algorithms. Although the
quantitative signal homogeneity assessment did not
show any significant difference, a substantially higher
standard deviation can be observed in the motion-
corrected datasets, which potentially contributed to the
statistical outcome.

Coronary vessel sharpness, on the other hand, was also
found to be significantly improved when the respiratory
motion-resolved reconstruction was used. The Soap-
Bubble analysis confirmed the increase of sharpness,
which otherwise can also be visually observed. The
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Respiratory motion-corrected

Fig. 3 Left ventricular outflow track view of the heart visualizing the proximal segment of the right coronary artery. Motion-resolved
reconstruction (b) provides improved sharpness (62.6%) compared to motion correction (50.9%, a)

Respiratory motion-resolved

quantitative vessel edge sharpness values measured in
the motion-resolved datasets in this study population
were comparable to those obtained using respiratory
navigator-gated MRA [25] and higher than those re-
ported with self-navigated motion-corrected whole-heart
MRA with or without contrast administration [7, 17]. A
previous study performed in a limited number of healthy
volunteers reported similar improvement in vessel edge
sharpness using the motion-resolved reconstruction
when compared to motion correction [20]. Our study,
however, was different in multiple aspects. We not only
set out to use the technique in a cohort of clinical pa-
tients, creating a more relevant study design, but we also
imaged the entire thoracic aorta. The latter required the
use of an increased field of view (in the 300-350-mm
range), which subsequently reduced spatial resolution.
Despite the decrease in spatial resolution, we were able
to demonstrate the superiority of the motion-resolved
technique over the motion-corrected reconstruction in
objective, quantifiable vessel edge sharpness. While ves-
sel sharpness does not necessarily represent the quality
of respiratory motion compensation or correction, this
measure may also be influenced by other factors includ-
ing cardiac motion (e.g, patients with high heart rate
variability) and patient movements. However, the very
same datasets were used and compared in our study,
meaning that the cardiac motion and patient movements
were exactly the same in both reconstructions.

Finally, SIR measurements indicated significant im-
provement in image contrast using the respiratory
motion-resolved reconstruction. The difference in SIR
was the most apparent at the mid arch, proximal de-
scending aorta, and mid descending aorta levels. One
possible explanation is that the XD-GRASP reconstruc-
tion provides both a better suppression of the motion

artifacts (resolving motion versus correcting) and a re-
duced amount of noise (regularization term in the re-
construction) not only in the heart and vessels, but also
in the lung tissue. Since the region of interest selected
within the pulmonary tissue averages pixels with rela-
tively very low intensities, even small changes in the
noise levels will produce improved SIRs.

The XD-GRASP-based reconstruction is an algorithm
which outputs a motion resolved 3D whole-heart dataset
without the need for any navigator or motion correction.
As the reconstruction can be performed offline after the
acquisition, theoretically any free-breathing radial 3D
whole-heart dataset can be reprocessed without the need
to acquire new data. The motion-resolved algorithm
overcomes most of the limitations that diaphragmatic
navigator gating or self-navigation combined with mo-
tion correction is subject to [20], such as long and un-
predictable image acquisition times [27-31] or artifacts
and residual motion issues with the 1D self-navigation
[6, 20]. While several other groups have proposed con-
tinuous data acquisition regardless of the phase of the
respiratory cycle [11, 12, 14-16], most of the techniques
apply retrospective motion correction using registration
algorithms or motion models [13, 14, 32, 33], which, in
contrast, are not used in the XD-GRASP algorithm. The
novelty in applying a respiratory motion-resolved algo-
rithm is that the image data can be continuously ac-
quired in a free-breathing fashion over a certain number
of predetermined heartbeats, without the need for any
real-time navigation or motion correction [20]. The re-
construction algorithm considers respiratory motion as
an additional dimension without imposing a specific
motion model for the reconstruction and allows the
reader to choose the most optimal phase from the re-
spiratory domain during the post-processing steps.
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Such XD-GRASP-based motion-resolved reconstruction
approaches are now moving towards five-dimensional
continuous imaging, where the same concept is applied at
the same time to respiratory and cardiac motion [34].

Our study has some limitations to consider. While our
sample size is limited, such image quality assessment
does not require a large patient cohort. Our study did
not demonstrate how image quality improvement affects
diagnostic value; however, going forward, we are planning
to expand the assessment to other aspects of the evalu-
ation (diagnostic accuracy, coronary artery visualization,
etc.) in a wider range of patients (including various age, as
children with low compliance) and for different disease
groups (e.g, congenital heart disease). Another limitation
that highly depends on the available infrastructure is the
non-negligible computational power that the motion-
resolved reconstruction requires. Currently, the processing
time is in the 15-30-min range using high-end computers,
which is expected to decrease with the continuous im-
provement in computer technologies. Finally, MPRs and
MIPs generated individually by the two readers may have
influenced visualization and consequently image quality
assessment.

In conclusion, XD-GRASP-based motion resolved re-
construction of free-breathing 3D whole-heart MRA
datasets provides improved image contrast, sharpness,
and signal homogeneity and seems to be a promising
technique that overcomes some of the limitations of mo-
tion correction or respiratory navigator gating.
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