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Microbial interactions in theory and practice: when are 
measurements compatible with models? 
Aurore Picot1,3,1, Shota Shibasaki2,3,1, Oliver J Meacock3 and  
Sara Mitri3   

Most predictive models of ecosystem dynamics are based on 
interactions between organisms: their influence on each other’s 
growth and death. We review here how theoretical approaches 
are used to extract interaction measurements from 
experimental data in microbiology, particularly focusing on the 
generalised Lotka–Volterra (gLV) framework. Though widely 
used, we argue that the gLV model should be avoided for 
estimating interactions in batch culture — the most common, 
simplest and cheapest in vitro approach to culturing microbes. 
Fortunately, alternative approaches offer a way out of this 
conundrum. Firstly, on the experimental side, alternatives such 
as the serial-transfer and chemostat systems more closely 
match the theoretical assumptions of the gLV model. Secondly, 
on the theoretical side, explicit organism-environment 
interaction models can be used to study the dynamics of batch- 
culture systems. We hope that our recommendations will 
increase the tractability of microbial model systems for 
experimentalists and theoreticians alike. 
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Introduction 
In microbiomes, a fair rule of thumb is that function 
follows composition and composition follows interac-
tions [1,2]. For example, suppose that a patient is ad-
ministered an antibiotic that kills a specific microbe in 
their gut community. Though not directly impacted by 
the antibiotic, other community members that were 
competing for limited resources with the target will 
likely thrive, while those that relied on them for secreted 
metabolites will collapse. Ultimately, this can lead to 
substantial restructuring of the community and loss of 
community members other than the target. This in turn 
can lead to dysbiosis for the patient, in the worst cases 
creating pathogenesis [3,4]. 

Such unintended consequences result from interactions, 
the effect of one species on the growth and death of 
another. As this example illustrates, these interactions 
can lead to complex changes to the long-term composi-
tion of the community and its stability in response to 
perturbations [5]. One of the principal efforts in micro-
biology has therefore been to catalogue the vast diversity 
of interaction outcomes [6], motivated by the goal to 
ultimately engineer stable microbiomes with desired 
properties. Yet, measuring these interactions and using 
them to build predictive models is not always straight-
forward in practice [7,8]. Historically, much of the the-
oretical ecological literature on macroflora and fauna has 
had interactions at its core, and the different measures of 
interaction strengths and their application to theoretical 
models have been extensively reviewed in the non-mi-
crobial context [9–11]. Two such approaches have been 
directly imported into the microscopic world, and are 
now widely used in microbial ecology [12,13]: the gen-
eralised Lotka–Volterra (gLV) and Consumer-Resource 
(CR) frameworks (Box 1). The question that we address 
in this review is whether the approaches used to couple 
these mathematical models to experimental interaction 
data from microbial communities have a valid theoretical 
basis. 

Collecting experimental data 
The first stage in the process of quantifying interactions 
is to collect data that contain interaction-related in-
formation from the community in question. Complex 
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communities are typically sampled from the environ-
ment directly, but for finer control of conditions, com-
munities are also often studied in the lab using one of 
three culturing methods: batch cultures (e.g. [14,15]), 
serially transferred batch cultures (e.g. [16,17]) or che-
mostats (e.g. [18]). While batch culture allows the study 
of short-term community dynamics in an environment 
with finite resources, the latter two system types allow 
investigation of equilibrium properties. 

Interaction estimates are made using measurements of 
these communities, typically based on the population 
sizes of different community members, which can be 
measured by 16S amplicon sequencing (e.g. [16]), colony 
counting on selective media (e.g. [19]), microscopy (e.g.  
[20]) or quantitative Polymerase chain reaction (PCR) 
(e.g. [21]). Beyond these general approaches, many in-
novations are helping to increase the number of inter-
actions measured per experiment [16,22,23]. Other 
approaches aim to improve the specificity of interaction 
measurements by culturing species in each other’s spent 
media (e.g. [17,24–26]) or on opposite sides of a 
permeable membrane [27,28]. Alternatively, single-cell 
growth rates can be measured directly by combining 
microfluidics and microscopy [14]. One can also avoid 
quantifying population sizes altogether and instead rely 
on indirect measures of community function, such as 
respiration rates [19,26,29]). 

Extracting interactions from data 
Once data about a community have been collected, the 
next step is to pull some measurement of the constituent 
interactions out of it. The first type of approach is to 
remain agnostic to any particular model of the dynamics 
of interactions and define an interaction using some 
summary statistic, typically comparing population 
abundance curves of monoculture and co-culture con-
ditions (statistical comparison (SC), Figure 1a). Interac-
tions can then be defined as the difference between final 
abundances (FA) [22,24,29], or the area under the 
abundance curves (AUC) [19,24]. Alternatively, correla-
tions can be measured between the abundances of 
species pairs, which is known as a co-occurrence network 
(Figure 1b, CON). Such correlations are sometimes in-
terpreted as species interactions. As the issues with this 
approach have been discussed elsewhere [37–39], we do 
not discuss it further here. 

While statistical approaches are broadly applicable, they 
are blind to ecological theory and do not directly translate 
into model parameters. A second broad approach that 
overcomes this issue is therefore to parameterise a 
mathematical model of community dynamics directly 
from community data. The most popular of these ap-
proaches uses the gLV framework (Figure 1c, Box 1). As 
in the case of SCs, one way of parameterising the gLV 
equation is to culture a species alone and in co-culture 

Box 1 Modelling ecological dynamics in microbial ecosystems.  

Several frameworks exist for simulating the ecological dynamics of microbial communities. Here, we briefly outline two of the most common 
modelling approaches used to explore experimental data, which have recently been more extensively reviewed elsewhere [12,13]. First, the gLV 
framework [5,30]: 

= +dS
dt
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ij j

(1) 
Here, aij represents the interaction from species j to species i, which can be positive ( j increases the growth rate of i ), negative ( j decreases the 
growth rate of i) or zero (no effect of j on i ). These interactions are assumed to be direct (e.g. predator-prey-type relationships) and constant. Ri

represents the intrinsic growth rate of i in isolation at low population sizes. 

A second framework is that of CR models [31–36], in which interactions arise from reciprocal feedbacks between the growth of microbes and their 
resulting impacts on their environment. The CR framework can be generalised to consumers as well as producers, and resources as well as 
inhibiting substrates [36], in which case they may be called organism-environment models. For consistency with previous literature, however, we 
continue to call them CR models here, keeping the more general form in mind. 

CR models can usually be broken into so-called ‘impact’ and ‘sensitivity’ functions, which determine respectively the effect of organisms on their 
environment and their growth rate in a given environment. Explicitly, the growth rate of a species i in a given environment CC (where the elements Ck

indicate the concentrations of different resources, toxins, pH etc.) is given by the sensitivity function gi

= CC qq
dS
dt

S g ( , ),i
i i i (2) 

where qqi represents the function parameters, such as the maximal growth rates, yield coefficients and so on. Similarly, the environment itself is 
affected by the collection of all species j via the impact functions ff j

= +CC
ff CC pp

d
dt

S ( , ),
j

j j j (3) 
where ppj represents the parameters of the impact function and represents sources and sinks of resources into and out of the system. 

Under certain conditions, these two frameworks can be shown to be closely related. For example, in chemostat-type systems with quickly 
equilibrating resources, CR models map directly onto the gLV equation [31,32,35]. In general however, they result in distinct dynamics.   
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with a partner species, and then fit the interaction para-
meters to the abundance data [15,40]. Another approach 
applicable to longitudinal clinical and in vivo datasets is to 
estimate the gLV parameters by fitting them to the 

dynamic abundance data of all species in the community 
simultaneously [41–43]. Alternatively, a CR framework 
can be used (Figure 1d, Box 1), where parameters re-
presenting substrate uptake and production rates are 
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Summary of interaction measurement approaches. (a) SC of FA (at time point 72 in this figure) or areas under growth curves (AUC, shaded areas) 
between mono- and co-cultures. (b) A CON can be built by measuring correlations between the abundances of a species pair. (c) Parameters of a gLV 
model (Ri, aij ) can be estimated using a fitting algorithm. This describes interactions between species S phenomenologically (see Box 1). (d) 
Parameters of a CR model (functions gi and f j ) can be estimated. Here, interactions between species S are mediated by chemical compounds C in the 
environment (see Box 1). (e) We classified previous studies of microbial interactions into three categories: experiments (laboratory cultures and/or 
manipulation of culture conditions), observations (collecting natural samples without manipulations) or modelling (i.e. in silico systems). Observation 
and experimental studies are then further categorised into 5 different approaches for extracting interactions (illustrated in panels (a)–(d)): SCs, CON, 
gLV models, CR models and others. Created with Biorender.com.   
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fitted to experimental measurements of species abun-
dances and substrate concentrations. Such approaches can 
themselves adopt differing levels of detail, ranging from 
coarse-grained approaches in which groups of functionally 
related metabolites are pooled together [44] to fine- 
grained approaches in which the entire suite of metabolic 
processes of every organism in the community is ac-
counted for [45]. In- between, explicit simulation of a 
specific subset of metabolic mechanisms that mediate a 
given interaction can provide a balance between accuracy 
and tractability [46,47]. The emergent properties of me-
tabolic models with varying levels of detail have recently 
been reviewed elsewhere [13]. 

In a semi-systematic literature review by keyword search 
(Supplementary Note 1, Figure 1e) [48], we classified 
the approaches of 162 studies investigating microbial 
interactions as experimental (laboratory cultures and/or 
manipulation of culture conditions), observational (col-
lecting natural samples without manipulations) or com-
putational (i.e. in silico systems). Typically, 
observational studies relied upon CON, while in ex-
perimental studies, interactions were more commonly 
derived from SCs. Fitting a gLV model to the data is 
slightly less common than CON, and CR modelling is 
used only in one study (Figure 1e). 

Benchmarking the approaches 
Given these different approaches for estimating inter-
actions, which are the most effective? To answer this 
question, we need to consider both aspects of commu-
nity behaviour that interaction measurements are in-
tended to provide information on: the short-term effect 
of species on each other’s growth and the resulting long- 
term effect on community composition. To this end, we 
generated in silico simulations of two-species commu-
nities based on the CR networks depicted in Figure 2a 
(see also Supplementary Notes 2 and 3). We estimated 
the effect of one simulated species on the growth of 
another to be positive, negative or neutral from the dy-
namics of population abundances under batch-culture 
and chemostat-like conditions. We compared how often 
the following three methods can predict the species in-
teractions outlined in Figure 2a (excluding b1 and b2): 
using SCs (AUC or FA, Figure 1a) or fitting the para-
meters of a gLV model. All approaches in all culture 
conditions were broadly accurate at assigning inter-
species interaction signs, especially when large numbers 
of replicates (n = 8) were available (Figure 2b). 

Does the accuracy of these interaction sign measure-
ments translate into accurate predictions of long-term 
co-existence? As statistical methods do not have such 

Figure 2  
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Benchmarking of interaction estimation approaches. (a) We defined eight CR networks (technically organism-environment networks, as species can be 
producers or consumers and compounds can be resources or toxins, see Box 1 for benchmarking interspecies interaction measurement approaches. 
Blue, orange and green circles represent species, resources and toxins, respectively. Arrowheads represent how each agent affects the dynamics of 
another: A → B represents that A has a positive effect on B, while C ⊣ D means that C has a negative effect on D. These networks are divided into two 
classes: in class (i), the signs of the effective interspecies interactions are fixed. In class (ii), the signs are dependent on the relative concentrations of 
the substrates. (b) We evaluated the accuracy of three methods for predicting the sign (positive, neutral or negative) of two-species interactions for the 
class-a networks: SCs using the area under the growth curves (AUC) or FA, or fitting of abundance timecourses to the gLV model. In each method, we 
evaluated the accuracy over the number of replicates (n), whether the initial abundances are fixed or noisy, and whether we simulated batch cultures or 
chemostats. (c) The probability that gLV interaction estimates correctly predict the long-term co-existence outcomes (i.e. how often the presence or 
absence of two species at t = 720 in gLV matches the presence or absence in the CR models) in simulated serial-transfer experiments (yellow, 
parameterised by batch-culture gLV fits) and chemostats (blue, parameterised by chemostat gLV fits) given the interaction networks in panel (a). Each 
circle differs in the number of replicates and whether the initial condition is fixed or noisy (class (i) networks only).   
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explicit predictive power, we addressed this question for 
the gLV framework. Our fitted gLV parameter estimates 
were used to predict long-term community composition 
in serial-transfer and chemostat-like conditions (Figure 
2c). Taking the CR outcome as the ’ground truth’ 
(generated by running the CR networks in Figure 2a), 
the long-term dynamics of serially transferred competing 
species — likely representative of many natural situa-
tions [29] — were quite hard to predict using gLV. This 
is probably because the relative strength of competition 
(i.e. aji/aii) is critical to determining co-existence out-
comes [49]. In addition, the long-term prediction accu-
racy of the two scenarios where interaction sign is 
context-dependent (b1 and b2 in Figure 2a) was also 
quite low. In these cases, the gLV model failed to pre-
dict the long-term community composition when the 
model estimated species interactions to be competitive 
(Figure S2), and — as in the purely competitive scenario 
— the predictability was lower in the serial transfer than 
in the chemostat condition. 

Pitfalls of interaction extraction using 
generalised Lotka–Volterra 
It is very tempting to use the gLV framework for in-
teraction extraction. We have a deep theoretical under-
standing of the model (e.g. we can analytically predict 
co-existence outcomes), no knowledge of the mechan-
isms underlying interactions is needed (e.g. the role of 
substrate concentrations in mediating growth rate im-
pacts) and it tends to have few parameters (two per in-
teraction). Yet, we have already found that the gLV 
model often fails to predict community co-existence in 
our simulated data (Figure 2c). What is causing this 
failure, and what does this tell us about the use of gLV 
models for interpreting interactions? 

We will address this question by focusing on batch-culture 
data, which was the most widely used approach in our 
review of the literature (40 out of 76 experimental studies 
in Figure 1e use batch culture, of which 6 fit gLV to 
abundance dynamics). Both gLV dynamics and batch- 
culture CR dynamics share the functional form of a logistic 
curve, with populations reaching some saturating abun-
dance after an initial exponential transient. One can 
therefore often obtain a very close fit between a batch- 
culture timecourse and either model. However, this ap-
parent relationship between the two frameworks is de-
ceiving. Fundamentally, the mechanism behind the steady 
state in the two systems is different: in the CR framework, 
it arises because resources in the system are depleted and 
growth rates approach zero, while in the Lotka–Volterra 
framework, it is assumed that (finite) growth rates are ba-
lanced by equal and opposite mortality rates — that is, that 
the gLV steady state is a dynamical equilibrium. Although 
this may seem a subtle distinction, it leads to qualitatively 
different predicted behaviours of the two systems. 

One example of such a difference results when com-
paring batch monocultures initialised with different 
starting densities of bacteria (Figure 3a). In CR-type 
models, higher initial bacterial abundances lead to 
higher steady-state abundances [50]. On the other hand, 
the gLV framework assumes a constant long-term car-
rying capacity for a given set of parameters (although 
parameter changes coupled to environmental changes 
can be incorporated [51,52]). Consequently, simulations 
initialised at low and high abundances equilibrate at the 
same level, with the population shrinking (‘dying’ on 
net) if it begins above the carrying capacity. Even 
stronger differences are observed in communities. In  
Figure 3c, the gLV model is fitted to the early part of 
simulated growth curves from a batch-culture competi-
tion scenario (Figure 2a). Although the models almost 
match within the fitting window, beyond this point, the 
gLV dynamics lead to the extinction of one of the spe-
cies as the fitted interaction parameters correspond to an 
unstable equilibrium. Ultimately, this difference be-
tween the two systems arises because the steady state is 
assumed to be dynamic in the case of the gLV frame-
work and static in the case of the CR framework. 

These issues have led to a number of controversies 
around the adequacy of batch-culture data for para-
meterising gLV models [15,40,53–55]. To assess how 
well a pairwise gLV model can reflect CR dynamics, 
Momeni et al. [55] simulated CR dynamics in a number 
of ecological systems and compared the results to gLV 
fits, similarly to the approach we adopt here. They de-
monstrated that pairwise gLV modelling is often un-
suitable, particularly when resources are consumable 
rather than renewable. In their 2019 study, Ram et al.  
[40] developed a method to infer pairwise interactions 
from mono- and pairwise co-culture data in batch-culture 
systems. They first fitted monoculture data to a logistic 
model to obtain growth parameters such as the intrinsic 
growth rate of strains, then fitted a gLV competition 
model on total abundance data to infer competition 
coefficients. However, attempts by Balsa-Canto et al.  
[53] to reproduce their method showed that it is highly 
dependent on the experimental design and wrongly 
predicts which species win in competitive scenarios, 
likely due to the factors outlined above. 

All is not lost however, as the gLV framework can be 
compatible with systems that reach a dynamic steady 
state [31,32,35]. This is satisfied in continuous cultures 
(e.g. chemostats or serial-transfer systems), in which 
continual dilution of cells acts as an effective mortality 
rate and resources are constantly renewed. In Figure 3b 
and d, we show that in chemostats, the CR and gLV 
frameworks both agree on the dependency of the dy-
namics on the initial conditions and on the longer-term 
outcome of co-cultures. Serial-transfer systems may also 
be reasonably approximated by the gLV equation, at 
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least at rapid dilution frequencies [56]. However, in 
these cases, it is best to fit the gLV equation to the 
global dynamics of the entire serial-transfer experiment. 
As we discuss in Supplementary Note 4 and Figures 
S3–S6, fitting to a single dilution round can lead to in-
accuracies such as the incorrect prediction of the winner 
of a competition scenario. Whether or not the gLV fra-
mework can always correctly capture the dynamics of 
continuously fed systems is yet to be confirmed, but 
there is no reason in principle to avoid using gLV for a 
chemostat-like system such as the mammalian gut. 

Are there viable alternatives to generalised 
Lotka–Volterra? 
If the gLV framework is not always appropriate for de-
termining interactions, how do the other methods com-
pare? SCs have the advantage that no underlying model 
needs to be defined that generates the observed 

microbial dynamics, and so no parameters need to be 
estimated either. One downside is that they depend on 
arbitrary experimental decisions, such as the length of a 
batch-culture experiment. However, a bigger issue is 
that unlike the gLV framework, they cannot generate 
predictions as they are purely descriptive. 

As discussed in Box 1, CR models, or organism-en-
vironment interaction models generally, offer an alter-
native dynamical framework for representing microbial 
ecosystems that can be used for predictive purposes. 
The strongest assumption that they make is that all in-
teractions are mediated by the uptake and production of 
chemical substrates. They therefore cannot incorporate 
direct effects between microbes such as predation [57] or 
contact-dependent interactions [58,59]. Nevertheless, in 
a well-mixed community where interactions are chemi-
cally driven, a CR model can capture the context 

Figure 3  
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Batch-culture growth is incompatible with gLV fitting, whereas continuous cultures such as chemostats are compatible. (a) Using batch monoculture 
growth data (dark-blue line, ’CR training data’), we can fit a gLV (logistic) growth curve (transparent blue, ’gLV fit’). This fit is however entirely specific to 
the given initial resource and population-size conditions. For instance, starting from a higher initial abundance should lead to a higher yield in batch 
culture (black line, ’CR testing ’data’, simulated from a mechanistic CR model in batch culture), while with the fit parameters, the gLV prediction leads 
to the same carrying-capacity equilibrium, consistent with the nature of the model (transparent black line, ’gLV prediction’). (b) Instead of a batch 
culture, we simulate a chemostat monoculture in which different initial conditions lead to the same equilibrium. Hence, the fit made on one of the initial 
conditions is accurate in predicting the dynamics starting from another initial condition. (c) Even on a given specific initial condition, gLV fitting can 
capture unstable dynamics by overfitting on the transient phase. Here, we fit both batch monocultures (not shown) and co-cultures of two species 
(blue and red dotted lines) to estimate the gLV coefficients in the initial time period (’training’, light grey). However, when we extend the simulation time 
(’Prediction’, light yellow), the gLV equilibrium is unstable and leads to the extinction of one of the two species (this is because the intraspecific 
competition is weaker than interspecific competition). In the extended simulated batch culture, the two species remain at the stationary phase at their 
maximum abundance, without additional death. (d) With a continuous culture, the gLV model accurately predicts what happens after the ’training 
phase’ and leads to correct predictions regarding the co-existence or extinction of species at equilibrium.   
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dependency of interactions [19,60]. Another important 
phenomenon that can be captured is that of higher-order 
interactions, the change in pairwise interactions caused 
by the addition of new species to the community  
[61–63]. This makes them a powerful tool for more 
flexibly predicting long-term dynamics. 

The downside of CR models is that parameterising them 
relies on knowing the concentrations of chemical sub-
strates that are supplied by the experimenter, or that are 
taken up or produced by the microbes. Quantifying rates 
of microbial substrate uptake and production can be 
quite challenging compared with measuring interactions 
directly [46]. However, if more species are added to the 
system, the number of parameters scales only linearly for 
CR models, but quadratically if pairwise interactions 
need to be measured (i.e. in gLV). Parameterising CR 
models can also be aided by using chemically defined 

growth media, conducting metabolomics analyses  
[44,64] or by building metabolic models for the inter-
acting species and using them to predict substrate con-
sumption and production [12,13]. 

Under certain circumstances, CR models can still be 
accurately parameterised without time-series data of all 
substrate concentrations. For example, knowledge of 
initial substrate concentrations and the time at which 
growth ceases are sufficient for estimating consumption 
rates [65]. Similarly, if it is known that one substrate is 
rate-limiting (e.g. a sole carbon source), other unknown 
ones may be negligible. Chemostats are also very con-
venient for parameterising these models, as one can es-
timate consumption rates based on the steady-state 
populations at a known dilution rate [66,67]. Ho et al.  
[68] have even shown that a CR model with randomly 
sampled parameters can recapitulate the statistical 

Figure 4  
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The validity of the gLV framework varies for different types of ecological systems. In the ‘system dynamics’ section, we show timecourses of a simple 
CR simulation with a single bacterial species and a single nutrient cultured in a batch-culture system, a serial-transfer system or a chemostat. All 
serial-transfer and chemostat systems are diluted at the same rate over long periods of time. In the ‘long-term behaviour’ section, we show phase 
portraits representing the long-term dynamics of the nutrient and bacterial abundances from the same simulations. In each case, we show separate 
simulations for systems initialised with high and low densities of bacteria. These converge for all systems other than batch cultures, either on the same 
cycle (serial transfers) or the same steady state (chemostats). Red points indicate the steady-state outcome of the batch-culture system, while purple 
points indicate that of the chemostat. Images in the Ecological analogues section created with Biorender.   
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properties of real microbiomes (see also [69]). Despite 
these encouraging findings, though, exactly how much 
information regarding the chemical environment is 
needed to correctly parameterise a CR model is an im-
portant open question. 

Conclusions and recommendations 
In this review, we have shown that the gLV framework can 
be more or less applicable to understanding microbial eco-
systems driven by CR dynamics, depending on the system 
in question. We summarise these arguments in Figure 4. In 
systems that resemble batch culture, the assumptions of the 
gLV framework are broken as the steady state that is ap-
proached is not dynamic: perturbing the abundance of one 
species has no effect on the growth rate of the others. By 
contrast, chemostat-like systems generally stabilise around a 
dynamical equilibrium that resembles that of the gLV fra-
mework. Bridging batch cultures and chemostats, serial- 
transfer-type systems effectively form a continuum from 
low- to high-frequency transfer rates, with batch- and che-
mostat-type systems forming limiting cases at either end. In 
cases where transfers occur frequently relative to the growth 
rate of the community, these systems stably oscillate around 
the dynamic equilibrium of the chemostat and a gLV model 
may be appropriate. However, increasingly long transfer 
windows can profoundly influence the co-existence out-
comes of such communities in a way not captured by the 
assumptions of the gLV framework [56]. Precisely when the 
gLV framework can reliably predict long-term outcomes is 
something we only partially address here (Figure 2c), and 
would be important to explore further. 

Ultimately, the ideal choice of interaction measurement 
depends upon both these considerations of the experi-
mental setup and the end to which the measurement 
will be applied. In many cases, such as detecting overlap 
of substrate use by two species, a relatively straightfor-
ward approach such as pairwise batch-culture experi-
ments combined with a statistical interaction 
measurement will be entirely sufficient. We hope that 
the principles that we have laid out here will help guide 
the design process of experimentalists, as well as high-
light some critical properties of microbial systems that 
theoreticians should take into account when modelling 
such communities. 
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