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Abstract 7	
  
In the face of rapid climate warming, rapid glacier recession should lead to a marked increase in 8	
  
the spatial extent of the paraglacial zone in glaciated drainage basins. The extent of the 9	
  
paraglacial zone has been well established to be transient but there are very few studies of this 10	
  
transient response and what it means for sediment export. There is good reason to expect that 11	
  
glacier recession could increase basin-scale sediment connectivity as: sediment becomes less 12	
  
dependent on glacier surface transport; proglacial streams are more able to migrate laterally 13	
  
than subglacial streams and so access sediment for transport; and glacier debuttressing may 14	
  
aid the development of gullies that can dissect moraines and so aid hillslope to proglacial zone 15	
  
connectivity. By using records of the flushing of hydroelectric power installations we were able 16	
  
to develop a record of coarse sediment (sand and gravel) export from a basin with a rapidly 17	
  
retreating valley glacier, the Haut Glacier d’Arolla, from 1977 to 2014. Modelling suggested that 18	
  
these data could only be partially controlled by transport capacity implying an important role for 19	
  
sediment supply and potentially for the influence of changing sediment connectivity. Indeed, 20	
  
there was evidence of the effects of glacial debuttressing upon gullying processes and hence a 21	
  
possible increase in the ease of connection of upstream basins to the proglacial area. More 22	
  
recently, we were able to show possible temperature control on sediment export, which may 23	
  
only have become apparent because of the progressive development of better sediment 24	
  
connectivity. However, whilst rapid glacier recession should result in theory in a progressive 25	
  
increase in connectivity of sediment sources to the basin outlet, the supply to capacity ratio 26	
  
does not increase continually with glacier recession until maximum capacity is reached. We 27	
  
identified two possible examples of why. First, gullying was also accompanied by the sediment 28	
  
accumulation at the base of moraines that was too coarse to be transported by the proglacial 29	
  
stream, maintaining disconnection of the upper basins. Second, the sediment capacity ratio 30	
  
appeared to be elevated during periods of more rapid retreat and we attribute this to the 31	
  
importance of a continued supply of unworked glacial till before fluvial reworking and sorting of 32	
  
freshly exposed sediment increased the resistance of sediment to entrainment and hence 33	
  
export rates. Thus, the transient geomorphic response of glaciated basins to glacier recession 34	
  
may involve negative feedbacks that can reduce the extent to which increases in connectivity 35	
  
elsewhere in the basin lead to increased sediment export. 36	
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Highlights 39	
  
• Presents one of the few multi-decadal records of coarse (sand and gravel) export from a40	
  

glaciated river basin41	
  
• Suggests that increasing sediment transport capacity does not explain interannual42	
  

variability in sediment export implying important variation in sediment supply43	
  
• Shows how connectivity develops in a glaciated basin in response to glacier recession44	
  
• Proposes that fluvial reworking of glacial till may reduce sediment transport rates and so45	
  

reduce sediment connectivity46	
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Introduction 53	
  
 54	
  
The rapid recession of mountain glaciers in recent decades is now well documented (e.g. Barry, 55	
  
2006; Fischer et al., 2014). However, until recently, there have been fewer considerations of 56	
  
what the rapid transition from glacial to non-glacial conditions means for geomorphic processes 57	
  
in mountain regions (Baewert and Morche, 2014; Heckmann et al., in press) despite the serious 58	
  
implications that this might have (Vaughan et al., 2013) such as for sediment yield. The notion 59	
  
that glaciated basins may have substantially higher erosion rates (Koppes and Montgomery, 60	
  
2009) and sediment yield per unit area (e.g. Hallet et al., 1996) than non-glaciated basins is well 61	
  
established if debated (e.g. Hicks et al., 1990; Harbor and Warburton, 1993). Given sufficient 62	
  
time and in the absence of other forcing (e.g. tectonic), the replacement of glacial erosion with 63	
  
non-glacial erosion and fluvial transport should lead to a progressive decline in sediment export 64	
  
rates. However, as Harbor and Warburton (1993) argued, the geomorphic complexity of such 65	
  
basins, including the sequential arrangement of landforms systems with different rates of 66	
  
sediment flux, and progressive sediment deposition and reworking (Orwin and Smart, 2004a) 67	
  
will make comparison of the relative contributions of glacial and nonglacial erosion to sediment 68	
  
yields difficult to establish.  69	
  
 70	
  
With rapid ice cover loss, it is possible that the transient response of the landscape, at the 71	
  
within-basin scale and over the time scale of years to decades, dominates sediment yield, 72	
  
notably through the ways in which it changes sediment connectivity and so sediment flux. This 73	
  
transient phase has been used to label parts of the landscape as ‘paraglacial’ (e.g. Church and 74	
  
Ryder, 1972; Ballantyne, 2002, 2003) and the start of the phase may be a period when 75	
  
geomorphic processes are particularly efficient (e.g. Mercier et al., 2009; Cossart and Fort, 76	
  
2008). There are good reasons to hypothesise that this efficiency initially increases sediment 77	
  
yields as a result of its impact upon sediment connectivity. The net sediment export from a 78	
  
basin will be a function of the ease with which sediment can cascade through that system 79	
  
(Caine, 1976; Caine and Swanson, 1989), and so the ease with which transporting processes 80	
  
can connect to and transport sediment through potential sediment storage zones. Glacier 81	
  
recession may increase sediment connection in three ways.  82	
  
 83	
  
First, the transition from ice cover to proglacial area should increase the level of connection 84	
  
between stream channels and sediment sources that have accumulated beneath a glacier. The 85	
  
position of stream channels under ice, and hence the sediment sources that they can access, 86	
  
will be limited by: (1) the ability of subglacial channels to migrate laterally by ice melt; and (2) 87	
  
the fact that the position of most subglacial channels is pinned by the Shreve hydraulic potential 88	
  
(Shreve, 1972), confirmed as a primary control on the position of many subglacial drainage 89	
  
systems (e.g. Sharp et al., 1993; Rippin et al., 2003; Evatt et al., 2006; Wright et al., 2008; 90	
  
Banwell et al., 2013). Thus, glacier retreat is likely to increase the ease with which rivers can 91	
  
access the large amounts of erodible sediment created and stored under ice (e.g. Leggat et al., 92	
  
2015) and it has been shown that as long as there remains reworkable sediment within the 93	
  
proglacial zone, sediment flux in deglaciated zones can be maintained by fluvial activity 94	
  
(Warburton, 1990a; Ballantyne, 2002; Orwin and Smart, 2004a). The extent to which this effect 95	
  
is observed in sediment yield will, of course, depend upon the characteristics of proglacial areas 96	
  
themselves, such as the extent to which rapid glacier retreat is accompanied by proglacial lake 97	
  
formation. The latter may actually disconnect the downstream flux of glacially produced 98	
  
sediment (e.g. Schiefer and Gilbert, 2008; Carrivick and Tweed, 2013; Geilhausen et al., 2013; 99	
  
Staines et al., 2015; Bogen et al., 2015). Indeed, it has been argued that proglacial zones may 100	
  
filter the signals that drive glacial sediment production (e.g. Warburton, 1990a; Harbor and 101	
  
Warburton, 1993; Orwin and Smart, 2004a; Geilhausen et al., 2013).  102	
  
 103	
  
Second, notably in valley glaciers, glacier recession should increase the level of connectivity 104	
  
between hillslopes, hillslope tributaries and the proglacial area. Material delivered by, for 105	
  
example, landslides, to the ice surface has a supraglacial flux that is an order of magnitude 106	
  



smaller than that associated with subglacial or ice marginal proglacial zones (Uhlmann et al., 107	
  
2013). This is not surprising given the relatively low annual surface velocities typical of many 108	
  
mountain valley glaciers (e.g. Mair et al., 2002; Nienow et al., 2005; Uhlmann et al., 2013; 109	
  
Gabbud et al., 2016). Access of glacier-delivered sediment to the subglacial hydrological 110	
  
system and hence fluvial sediment transport is restricted to crevasses and moulins. By 111	
  
comparison, sediment flux in proglacial streams has been shown to be more continual and 112	
  
important (e.g. Østrem, 1975; Hunter et al., 1996; Lane et al., 1996; Orwin and Smart, 2004a; 113	
  
Morche et al., 2012; Geilhausen et al., 2013; Baewert and Morche, 2014). Thus, glacier 114	
  
recession is likely to increase the possible connectivity of hillslope-sourced material directly to 115	
  
the stream network, where transport rates and hence sediment yield is likely to be more 116	
  
efficient. 117	
  
 118	
  
Third, glacier recession leads to debuttressing of valley sidewalls (Porter et al., 2010), and so 119	
  
an effective base level fall for drainage basins located above them. This should lead to 120	
  
headward extension of sidewall tributaries (e.g. Schiefer and Gilbert, 2007) through erosion 121	
  
and/or the melt of dead ice exposed to air temperatures after glacier recession (e.g. Mercier et 122	
  
al., 2009). Sidewall streams are likely to be more efficient transporters of sediment than the 123	
  
hillslopes that they drain as hillslopes, notably in deglaciated environments, may have fine scale 124	
  
surface texture (e.g. Trevisani et al., 2012) that reduces the ease of surface sediment flux. 125	
  
Further, evidence suggests that the legacy of past glacial activity, such as terminal moraines 126	
  
may disconnect glacial sedimentary systems at larger spatial scales from valley bottoms 127	
  
(Cossart, 2008; Cossart and Fort, 2008; Bosson et al., 2015: Messenzehl et al., 2014; Micheletti 128	
  
et al., 2015b) and headward extension or gullying through such features may also facilitate the 129	
  
connection of hillslope-eroded sediment to the valley system.  130	
  
 131	
  
Given the above, this paper is concerned with three broad questions. First, to consider the 132	
  
ensemble of these three processes, it tests the extent to which there is a marked increase in 133	
  
sediment export with glacier recession. Because one response to rapid glacier recession is an 134	
  
increase in annual water yield (at least to the point at which the relative glacial contribution to 135	
  
stream runoff starts to decline), it is possible that sediment transport capacity also rises. 136	
  
Capacity controls on transport have often been described in Alpine and glaciated river basins 137	
  
(e.g. Bogen, 1989; Morche et al., 2008; Baewert and Morche, 2014; Staines et al. 2015). Thus, 138	
  
we quantify the extent to which, if there is an increase in sediment export, it occurs at a rate that 139	
  
is greater than the associated sediment transport capacity in the proglacial stream. 140	
  
 141	
  
Second, we test the extent to which there is an evolution in sediment connectivity at the 142	
  
catchment scale in response to rapid valley glacier recession that might explain the relationship 143	
  
between changing sediment export and changing sediment transport capacity. In doing so, we 144	
  
aim to quantify: (1) the extent to which the expansion in size of the proglacial zone might 145	
  
maintain higher sediment flux; and (2) the extent to which connectivity evolves as a result of a 146	
  
better connection of valley side walls to the valley bottom due to the headward extension of 147	
  
gullies after ice mass retreat.  148	
  
 149	
  
Third, as it is possible that the climate warming that drives glacier recession also leads to 150	
  
permafrost thaw and hence an increase in supply (e.g. Mercier, 2008; Bosson et al., 2015; 151	
  
Micheletti et al., 2015b), we also explore the extent to which temperature can determine 152	
  
variability in sediment export.  153	
  
 154	
  
Throughout, our focus is upon coarse sediment transfer, defined as that which moves as 155	
  
suspended bed material or bedload as this has been traditionally harder to measure and so is 156	
  
less well understood. As we explain below, this has determined the focus of our work: the Haut 157	
  
Glacier d’Arolla, Canton Valais, south-west Switzerland (Figure 1). 158	
  
 159	
  
Methodology 160	
  



 161	
  
Overview 162	
  
The basic goal of the methodology was to explore the extent to which evolution in coarse 163	
  
sediment volumes exported from a glaciated basin, during a phase of rapid glacier recession, 164	
  
could be related to changes in connectivity in the upstream basin. Thus, the methodology has 165	
  
two distinct components: (1) determination of coarse sediment export; and (2) quantification of 166	
  
the evolution of connectivity. These goals determined the case study chosen for the work. Not 167	
  
only was it important to identify a basin with an established history of glacier recession, we also 168	
  
needed reliable data on sediment export. The challenges of determining coarse sediment 169	
  
transport rates in glaciated basins even during a single melt season are well established (e.g. 170	
  
Warburton, 1990b; Lane et al., 1996; Lane, 1997) and there are very few long term datasets on 171	
  
sediment export from glaciated basins (Orwin et al., 2010). However, we needed export data 172	
  
over the timescale of decades from a basin with an established history of glacier recession and 173	
  
where we could isolate the effects of changing connectivity from changing sediment transport 174	
  
capacity. We solved this challenge in three ways.  175	
  
 176	
  
First, we worked in collaboration with the owners of a hydroelectric power scheme (Grande 177	
  
Dixence SA) who have extracted almost 100% of river flow from the basin of the Haut Glacier 178	
  
d’Arolla, since 1962.  The associated intake has to be flushed of coarse sediment periodically 179	
  
and from 1977 it is possible to reconstruct volumes of sediment exported. The use of purge 180	
  
frequency data to estimate sediment transport volumes has been reported by a number of 181	
  
authors (e.g. Wold and ∅strem, 1979; Lane, 1997; Bezinge et al., 1989; Raymond Pralong et 182	
  
al., 2015). 183	
  
 184	
  
Second, we would expect that the sediment transport volume of a basin to be a function of both: 185	
  
(1) sediment transport capacity (i.e. hydraulic control, as conditioned by snow melt, ice melt and 186	
  
rain fall within the basin); and (2) sediment mobilisation and delivery. The analysis of glacial 187	
  
recession rates revealed a progressive increase in the annual water yield of the basin, notably 188	
  
from the early 1980s (Gabbud et al., 2016). As this implies a progressive increase in sediment 189	
  
transport capacity, in order to isolate sediment supply effects and their relationship to 190	
  
connectivity, we developed a model for estimating sediment transport capacity based upon the 191	
  
volumetric coarse sediment transport model of Nitsche et al. (2011). We combined the sediment 192	
  
export volumes with the modelled transport capacity to estimate a supply-capacity ratio, i.e. 193	
  
inverted from the capacity-supply ratio of Soar and Thorne (2001) as it seems more logical to 194	
  
express sediment export as a proportion of the possible transport capacity.  195	
  
 196	
  
Third, in order to determine controls on the supply-capacity ratio, we aimed to quantify the 197	
  
topographic evolution of the basin and its possible influence on connectivity, using historical 198	
  
digital elevation data and imagery. Messenzehl et al. (2014) note the dangers of relying upon 199	
  
morphometric analysis alone in the interpretation of how sediment connection evolves. Thus, 200	
  
we combine morphometric analysis with imagery but also field observations of the evolution of 201	
  
the basin by the first author since 1989. The morphometric and image analysis is based upon 202	
  
archival and specially-acquired aerial imagery, used to produce digital elevation models of the 203	
  
basin. These provided data on glacial recession rates (Gabbud et al., 2016), including changes 204	
  
in the size of the proglacial area. They also allowed us to calculate the changes in the extent to 205	
  
which hillslopes became connected to the proglacial area as a result of glacier recession. 206	
  
 207	
  
The Haut Glacier d’Arolla  208	
  
 209	
  
The 12.65 km2 catchment of the Haut Glacier d'Arolla (Figure 1) is located the Val d’Hérens, 210	
  
Canton Valais, in the south-western part of the Swiss Alps. The catchment includes a temperate 211	
  
valley glacier, with a surface area of 3.46 km2, a mean elevation of 2987 m and a terminus 212	
  
altitude of 2579 m in 2010  (Fischer et al., 2014). The glacier lies primarily on a bed of 213	
  
unconsolidated sediments with some bedrock outcrops (Hubbard and Nienow, 1997). The wider 214	
  



catchment includes a number of smaller hanging glaciers, morainic material, some of which 215	
  
remains ice cored, rockwalls and a large and expanding proglacial area. 216	
  
 217	
  
The glacier, as with the wider area, has been the subject of numerous scientific publications that 218	
  
have, together, changed our understanding of glacier dynamics and subglacial hydrology (e.g. 219	
  
Sharp et al. 1993; Harbor et al. 1997; Nienow et al. 1998; Swift et al. 2002; Mair et al. 2003; 220	
  
Willis et al. 2003; Nienow et al. 2005; Fischer et al. 2011), the relationship between glaciers and 221	
  
climate (e.g. Brock et al. 2000; Pellicciotti et al. 2005; Brock et al. 2006; Dadic et al. 2010) and 222	
  
sediment transport in proglacial streams (Bezinge et al., 1989; Lane et al., 1995; Lane, 1997; 223	
  
Swift et al., 2005). The latter have shown no real evidence of outburst floods as sediment 224	
  
transporting agents (cf. Carrivick et al., 2004, Carrivick, 2007) in this system. 225	
  
 226	
  
This research aside, to date, there has been no systematic attempt to quantify the long-term 227	
  
evolution of coarse sediment export from the basin, nor its relationship to glacier recession and 228	
  
changes in hillslope connectivity. A recent study (Gabbud et al., 2016) quantified the history of 229	
  
glacier recession over recent decades through the use of archival digital photogrammetry and 230	
  
provides the necessary digital elevation models (DEMs) for our analysis.  231	
  
 232	
  
River flow data, purge frequency and estimation of purge volumes 233	
  
 234	
  
Data on river flow for the Haut Glacier d’Arolla are available with a 15 minute resolution from 235	
  
1962 and were provided to us by Hydroexploitation SA at the request of the strategic 236	
  
management company Alpiq Holdings Ltd. which in turn represents the owners of the scheme 237	
  
Grande Dixence SA. These data were used to determine purge frequency using the approach 238	
  
of Bezinge et al. (1989) who calibrated purge frequency data to determine sediment flux for the 239	
  
intake that is studied in this paper. The intake (Figure 1c) is part of a major hydroelectric power 240	
  
scheme and is designed to separate bed load and suspended load from the river discharge 241	
  
before the water is transferred in tunnels to a large water storage reservoir (Lac des Dix) in an 242	
  
adjacent valley. At present there is no requirement to leave a minimum discharge in the river 243	
  
downstream. Given high rates of sediment delivery to the basin, the intakes can rapidly fill with 244	
  
sediment and so the intakes have to be opened to flush or to ‘purge’ accumulated sediment 245	
  
and, when open, all water passes to the stream rather than being transferred to the 246	
  
hydroelectric power scheme. For the coarse sediment trap, gates are opened slowly over about 247	
  
30 minutes. For the fine sediment trap, gates are opened over a very short period of time, 248	
  
typically about 30 seconds. 249	
  
 250	
  
Before transfer, the flow has to be gauged precisely for regulatory purposes and this is done in 251	
  
in the fine sediment trap (Figure 1c). When either trap is flushed, the water level in the fine 252	
  
sediment trap reduces, very rapidly for the flushing of the fine sediment trap, more slowly for the 253	
  
coarse sediment trap. These draw downs need to be corrected so as to obtain a complete 254	
  
discharge time-series but, each correction also tells us that the trap has been emptied. Thus, 255	
  
the basic principle of our analysis is that it is possible to identify intake openings from the 256	
  
analysis of the discharge time-series as rapid drawdowns in the flow record (e.g. Figure 2).  257	
  
 258	
  
Records were available from 1969 to 2013 with a 15 minute resolution. From 1977 to 1982, 259	
  
purges had already been removed from these data. Thus, for this period we use data in Bezinge 260	
  
et al. (1989). For 1983 until 2013, each purge was identified manually and removed by two 261	
  
individuals, one doing an initial identification and the second acting as a check. From these 262	
  
data, we acquired the number of purges per year and for the period 1983 to 1987, we were able 263	
  
to validate our method by comparison with Bezinge et al. (1989), which yielded a mean error of 264	
  
-3.9 %.  265	
  
 266	
  
Two important steps followed once purges had been identified. First, discharge data that had 267	
  
been removed were then replaced by linear interpolation using values either side of the purge 268	
  



(Figure 2, circles) to produce a corrected flow record. An approximation of the release flow 269	
  
record is then possible by subtracting the raw flow record from the corrected flow record (Figure 270	
  
2, triangles) for the entire study period, but we do not use these data further in this paper. 271	
  
However, the corrected (1969-2013) and flow record (1983-2013) is used to model sediment 272	
  
transport capacity (see below). 273	
  
 274	
  
Second, we wanted to use the purge data to estimate sediment export. The coarse sediment 275	
  
trap captures all fractions coarser than gravel and some sand. The sand trap is designed to 276	
  
allow all sediment that is maintained in suspension by turbulence to settle out before the water 277	
  
is transferred to a water storage lake. Thus, it is likely that all grain size fractions of sand size or 278	
  
greater are stored in the intake and recorded in the purge record. Up until 2007, either the 279	
  
gravel trap or the sand trap was purged automatically once a known sediment level was 280	
  
reached (Bezinge et al., 1989): 100 m3. Since 2008, automatic purging has been maintained for 281	
  
the fine sediment trap but operation of the coarse sediment trap has changed. For safety 282	
  
reasons, it was deemed preferable to purge during the night where possible (at 23h00), if the 283	
  
trap is filled to a certain level during the day, in addition to additional purges needed when the 284	
  
trap is full to 100 m3. Thus, from 2008, the volume of each purge depends on whether it is 285	
  
classed as preventative or not: preventative purges have a volume between c. 60% and 100% 286	
  
of a full purge; others 100%. At the annual scale, this means that we have to determine a range 287	
  
of possible purged volumes from 2008 onwards. We did this by distinguishing between fine 288	
  
sediment purges (short duration, steep draw down in the flow records) from coarse purges 289	
  
(longer duration, slower draw down) and then adding the 60% to 100% uncertainty range to the 290	
  
volumes of those purges that were deemed to be coarse sediment and clear in the records at 291	
  
23h00 to 23h15. 292	
  
 293	
  
A second correction to these volumes was then needed to deal with the effects of packing 294	
  
density (e.g. Bezinge et al., 1989; Raymond Pralong et al., 2015). The model used to determine 295	
  
sediment transport capacity (see below) predicts the volumetric transport rate. Thus, we needed 296	
  
to scale our purge estimated volumes by packing density. Bezinge et al. (1989) reports the only 297	
  
field data on packing density, which was obtained by comparing volumes of sediment in the 298	
  
intake before and after purges with the volume of sediment deposited downstream, after flow 299	
  
recession. The latter is possible because the short duration of the purge leads to coarse 300	
  
sediment being deposited immediately downstream. They reported two values of packing 301	
  
density within the Val d’Hérens, for the Bas Glacier d’Arolla intake, 1,300 kgm-3, and the Glacier 302	
  
de Tsijiore Nouve intake, 1,630 kgm-3, both less that the typical values reported for gravel-bed 303	
  
streams (e.g. Carling and Reader, 1982). They attributed this difference to grain size effects, 304	
  
with the Bas Glacier d’Arolla intake accumulating coarser material. The Haut Glacier d’Arolla 305	
  
stream delivers material eventually to the Bas Glacier intake, so in this sense is more likely to 306	
  
be similar to the Bas Glacier. But the Bas Glacier is also supplied by two systems that deliver 307	
  
much coarser material, the Glacier de Bertol and the Glacier de Vuibe systems, which are small 308	
  
steep glaciated basins. Given the associated uncertainty, we treat these two packing densities 309	
  
as extremes and use them in the determination of error bars. To obtain volumetric packing 310	
  
densities, we divide the values of Bezinge et al. (1989) by the sediment density (2,650 kgm-3) 311	
  
and use this to scale the purge volumes. We assume the packing densities apply equally to 312	
  
both coarse and fine sediment traps, which we think is appropriate because visual inspection 313	
  
shows that the coarse sediment trap commonly includes large amount of sand material. 314	
  
 315	
  
The above explanation flags two sources of uncertainty in the estimation of purge volumes: (1) 316	
  
the effects of preventative purges; and (2) the effects of packing density. We use these 317	
  
uncertainties to transform the number of purges into a minimum possible volume (where we 318	
  
assume that all preventative purges occur with the trap 50% full and we have the Bas Glacier 319	
  
d’Arolla packing density) and a maximum possible volume (where we assume that all 320	
  
preventative purges occur with the trap full and we have the Tsijiore Nouve packing density), 321	
  
and so give a range of possible release volumes for each year. 322	
  



 323	
  
Sediment transport capacity 324	
  
 325	
  
We model sediment transport capacity using an approach that has been extensively evaluated 326	
  
for instrumented Swiss catchments (Nitsche et al., 2011). The approach of Nitsche et al. (2011) 327	
  
recognises that many bedload transport equations for rivers have been based upon flume 328	
  
experiments and, to a lesser extent, instrumented river catchments with relatively low bed 329	
  
slopes and relative roughness. It is argued that they tend to under-estimate energy losses 330	
  
associated with macroform roughness and hence over-estimate bedload flux. Whilst implicit in 331	
  
our paper is the recognition that such over-estimation may also come from conditions where 332	
  
sediment supply is insufficient to transport sediment at the capacity suggested by a bedload 333	
  
transport equation, we follow Nitsche et al. (2011) and attempt to deal with possible over 334	
  
prediction of bedload flux. The Nitsche et al. approach follows Rickenmann and Recking (2011) 335	
  
by developing a treatment for the additional energy losses associated with roughness elements, 336	
  
but where no information on the detailed spatial organization of roughness elements is 337	
  
available. Nitsche et al. found that the Rickenmann and Recking approach, even with a 338	
  
relatively simply representation of the effects of size selectivity on sediment transport, was 339	
  
preferable because of: (1) probable inadequacies in the physical representation of roughness 340	
  
elements in more complex treatments; and/or (2) the challenges of identifying and measuring 341	
  
roughness elements in the field.  342	
  
 343	
  
Calculation of sediment transport capacity is based upon a model of: (1) flow velocity taking into 344	
  
account depth-dependent flow resistance; and (2) volumetric sediment transport capacity. 345	
  
Following Ferguson (2007), we use a variable power equation to estimate the cross-section 346	
  
averaged flow velocity (vtot). This allows for the effects of changing flow depth upon flow 347	
  
resistance in a physically plausible way (Ferguson, 2007). The cross-section averaged flow 348	
  
velocity, including energy losses, is defined as: 349	
  
 350	
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[1] 354	
  
where g is the gravity constant (ms-2); R is the hydraulic radius (m), defined as the flow cross-355	
  
sectional area divided by the wetted perimeter; S is the slope of the energy line, taken to be the 356	
  
mean valley slope; and D84 is the 84th percentile of grain-size (m). The grain-scale velocity (v0), 357	
  
i.e. without energy losses, is then estimated (Nitsche et al., 2011) from: 358	
  
 359	
  

 360	
  

[2] 361	
  
Following Rickenmann and Recking (2011), [1] and [2] are combined to partition the slope (S) of 362	
  
the energy line into: that lost on overcoming flow resistance; and that available for sediment 363	
  
transport (S0), associated with grain friction, after Meyer-Peter and Müller (1948):  364	
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This reduced slope is then applied to an equation for estimating volumetric sediment transport 370	
  
rates (Rickenmann, 1991). The volumetric transport rate per unit channel width (qb) is given as: 371	
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[4c] 382	
  
and where; ρs is the sediment density (2,650 kgm-3); ρ is the water density (1000 kgm-3); D50 is 383	
  
the median diameter of the bed sediment (m); θ is the dimensionless shear stress reduced 384	
  
through application of [3]; θrc is the reduced critical dimensionless shear stress; Rc is the 385	
  
hydraulic radius corresponding to the critical discharge; S0c is the reduced slope corresponding 386	
  
to the critical discharge; and Fr is the Froude number defined as vtot/(gd)0.5, where d is the mean 387	
  
flow depth. Nitsche et al. (2011) signal the importance of reducing both the dimensionless shear 388	
  
stress and the critical dimensionless shear stress as [4a] is an empirical equation. The 389	
  
formulation in [4a] is a relatively simple threshold-based sediment entrainment formula, which 390	
  
does not account for processes that have been shown to be important in flume experiments 391	
  
(e.g. the role of a sand fraction in reducing the critical discharge necessary for sediment 392	
  
entrainment; Wilcock and Crowe, 2003). However, we do not have detailed information on the 393	
  
evolution of grain-size through time. Furthermore Nitsche et al. (2011) noted that this simple 394	
  
approach appeared to be effective in representing sediment transport provided the slope was 395	
  
reduced to correct for form roughness effects as per [3] on the basis of tests for a large number 396	
  
of instrumented Swiss catchments. 397	
  
 398	
  
Here we estimate sediment transport capacity using slope and grain size data for the proglacial 399	
  
area, just before the river channel steepens and the river flows into the intake. This steeper 400	
  
reach, which comprises very coarse boulders, shows no evidence of sediment accumulation, 401	
  
and appears to be a transport reach. We use the geometry of the channel at the downstream 402	
  
end of the proglacial area and the value of S measured as 0.0178, at the lowest end of the 403	
  
range of slopes considered by Nitsche et al. (2011). A total of 70 samples of 100 grains gave a 404	
  
mean D50 of 0.0246 m and a mean of D84 of 0.0777 m. We assume that these values are 405	
  
representative of the bed grain size through time, although this is a source of uncertainty in our 406	
  
calculations. 407	
  
 408	
  
To apply the model we take a series of water levels in increments of 0.5 mm above the 409	
  
minimum elevation plus 0.1 m in the section. For each water level, we calculate the number of 410	
  
occupied channels. For the range of possible discharges at this section, this was always one 411	
  
and we did not need to deal with multiple branches. The water level and cross-section 412	
  
morphology was then used to calculate the hydraulic radius for each branch, and [1] was 413	
  
applied to calculate vtot. The latter was then combined with width and mean flow depth at each 414	
  
water level to create a look up table that allowed us to identify the parameters needed in [3] and 415	
  
[4] for each discharge. The model was applied by taking the corrected flow data from 1977 to 416	
  
2014, matching each discharge to the look up table, and then determining the volumetric 417	
  
transport rate per unit width, and hence the volumetric transport rate. The volumetric transport 418	
  
rate was integrated through each year to get the annual volumetric transport capacity. We did 419	
  



not calibrate the volumetric transport capacity on the measured release volumes because we 420	
  
hypothesise that release volumes are a combined function of sediment supply (and degrees of 421	
  
sediment connectivity) and transport capacity. Rather, we calculate the supply-capacity ratio 422	
  
(SCR) by dividing the possible release volumes for each year by the estimated transport 423	
  
capacity for that year. We are also assuming some equivalence between the sediment capacity 424	
  
that is modelled with the Nitsche et al. (2011) approach and the sediment volumes that are 425	
  
stored in the intakes for eventual release. The calibration approach of Bezinge et al. (1989) 426	
  
focused on bedload transport, which is also the focus of the Nitsche et al. model. At the 427	
  
margins, in terms of suspended bedload, this might lead to some mismatch but we assume that 428	
  
this would predominantly shift the time-varying SCR upwards or downwards, and not change 429	
  
the relative variability. Although the approach makes a large number of assumptions, we 430	
  
emphasise that we are interested more in the relative variation in the SCR through time than in 431	
  
the absolute values.  432	
  
 433	
  
Derivation of digital elevation models (DEMs), orthorectified imagery and DEMs of difference 434	
  
 435	
  
Similar to Schiefer and Gilbert (2007), we use archival analytical photogrammetry to derive 436	
  
DEMs of the basin that serve two purposes: (1) they allow us to quantify the spatial patterns of 437	
  
erosion and deposition within the river basin; and (2) they can be used to quantify the extent to 438	
  
which hillslopes are connected to the proglacial stream and so able to deliver sediment. The 439	
  
majority of the methodology adopted is detailed in Micheletti et al. (2015a) and Gabbud et al. 440	
  
(2016) and only a summary is provided here. The one exception is detailed below.  441	
  
 442	
  
Archival digital photogrammetry was used to construct Digital Elevation Models (DEMs) from 14 443	
  
µm resolution historical imagery provided by the Swiss Federal Office of Topography 444	
  
(Swisstopo), with scales varying between 1:9,000 and 1:25,000 (Table 1). Table 1 shows the 445	
  
theoretical precision of elevations that might be obtained with these images (after Lane et al. 446	
  
2010) given their scale and the scanning resolution used. Ground control points (GCPs), 51 in 447	
  
total, comprising points clearly visible on the historical imagery and that we thought might be 448	
  
stable over the timescale of the study were measured using dGPS survey and post-processed 449	
  
to the CH1903+ (Swiss) co-ordinate system. Measured points were mapped onto 0.5 m 450	
  
orthorectified imagery, provided by Swisstopo for 2004, to confirm that they were indeed stable. 451	
  
All image processing was undertaken using the Leica Photogrammetry Suite of ERDAS 452	
  
IMAGINE® 2008. The DEMs were derived in raster form, each in the same X Y grid, with a 1 m 453	
  
resolution. These results were then used to orthorectify the raw aerial images to a 0.3 m 454	
  
resolution.  455	
  
 456	
  
The main difference as compared with the Gabbud et al. (2016) approach was the DEM 457	
  
analysis to determine erosion and deposition patterns. This kind of archival image analysis can 458	
  
cause problems because random error in the bundle adjustment phase of image processing can 459	
  
translate into systematic error in derived DEMs (Lane et al., 2004) that becomes particularly 460	
  
evident when DEMs are compared. To address this problem we applied a multi-station 461	
  
adjustment method commonly used with terrestrial Lidar data (Gabbud et al., 2015) which 462	
  
rotates and translates all DEMs onto a single DEM, in our case the 2009 DEM, using patches of 463	
  
ground thought to be stable. In our case, we identified 16 patches of ground located in zones 464	
  
thought to be stable across the period 1967 to 2009, each containing many 1000s of data 465	
  
points. The multi-station adjustment was conducted using RiSCAN PRO® (see RIEGL, 2005 for 466	
  
further details). Rather the multi-station adjustment automatically translated and oriented each 467	
  
DEM onto the 2009 DEM. Under the assumption that the patches are stable, the resultant 468	
  
standard deviation residuals between each DEM and the 2009 DEM, which we define as σ2009, 469	
  
is an explicit measure of the uncertainty associated with DEM comparison (Table 1). In practice, 470	
  
this will over-estimate uncertainty because there may be instabilities within some of the patches 471	
  
used. Under the assumption that the associated residuals are normally distributed, we can 472	
  
assign 95% confidence limits to elevation changes as ±1.96σ2009, the detection limit.  473	
  



 474	
  
The DEMs and orthoimages were used in the following ways. First, we difference the DEMs and 475	
  
apply the detection limit to identify zones of significant erosion and deposition. Table 1 shows 476	
  
the detection limits and with the exception of the 1967 to 2009 adjustment comparison, the 477	
  
results are encouraging. The poorer results for the 1967 appear to be related to a reduction in 478	
  
the number of patches that can be used for comparison. We also calculate volumes of change 479	
  
for some regions (e.g. in the proglacial area) but note that sometimes their interpretation needs 480	
  
caution because if the difficulty of distinguishing between erosion and the melt out of buried ice. 481	
  
Second, we use the orthoimages to digitise the glacier extent on each date and we use the 482	
  
reduction in glacier extent as a surrogate for the increase in the proglacial area. This 483	
  
assumption works for the valley glacier setting here because of the steep side walls. We prefer 484	
  
this to digitising the proglacial area as glacier recession leaves two kinds of proglacial material: 485	
  
morainic material that has not been fluvially-reworked; and fluvially reworked deposits. 486	
  
Distinguishing precisely between these deposits is difficult on the aerial photographs, notably 487	
  
the older ones. However, we were able to digitise approximately the interface between fluvially-488	
  
reworked and morainic material through time. Third, we derive from the DEMs parameters (e.g. 489	
  
slope) that aid visualisation of the evolving morphology of the proglacial area and also in an 490	
  
analysis of connectivity (see below). 491	
  
 492	
  
Analysis of hillslope connectivity 493	
  
 494	
  
Our analysis of connectivity seeks to make a distinction between process disconnection and 495	
  
methodological disconnection. It follows from observations made by Cavalli et al. (2013) that 496	
  
sediment connection in high mountain basins will be partially controlled by topographic 497	
  
roughness. A problem then arises: as the spatial resolution of the calculation of roughness 498	
  
becomes finer, so the determined roughness value will become progressively more influenced 499	
  
by noise in the DEM data. Here, we adopt a different approach, based upon one of the 500	
  
fundamental challenges of hydrological routing analyses. 501	
  
 502	
  
We define process disconnection as arising when a flow path encounters a reverse slope and 503	
  
our aim is to quantify how this process disconnection has changed between 1967 and 2009. 504	
  
The extent to which this becomes an actual disconnection will depend upon the magnitude of 505	
  
the reverse slope and eventually, due to fill of the associated depression, the volume of fill that 506	
  
is possible to eliminate the reverse slope. However, it is normal practice to force flow 507	
  
accumulation through to the basin outlet by filling all pits that are found in the DEM under the 508	
  
assumption that a pit is caused by DEM noise (Arnold, 2010). We define methodological 509	
  
disconnection as that caused by DEM noise.  510	
  
 511	
  
Ideally, we would be able to distinguish between these two scales of disconnection clearly, and 512	
  
remove methodological disconnection so as to then identify process disconnection. Such 513	
  
distinction is likely to be complicated for two reasons: (1) the process disconnection caused by 514	
  
certain landforms may be close to the threshold for methodological disconnection (e.g. a rock 515	
  
glacier surface); and (2) as different sub-basins have different mixes of landforms, there may be 516	
  
little possibility of generalising the distinction at the landscape scale. It is only possible by 517	
  
reference to the landforms that make up the sub-basin being considered. Hence, an important 518	
  
step in the analysis is to simulate how, for different sub-basins, changing the threshold assumed 519	
  
to be methodological disconnection impacts flow paths and hence flow accumulation.  520	
  
 521	
  
We do this through quantifying the effect of different levels of DEM filling on the area upstream 522	
  
contributing to the main valley (A). The approach follows from Peñuela et al. (2015) who 523	
  
considered overland flow connectivity as a function of when a critical level of depression storage 524	
  
is reached. Here, we conceptualise the problem in the same way, by considering how 525	
  
connectivity changes as pits are progressively filled. At low levels of fill, we would expect A to 526	
  
not change much. As we approach the level of likely noise in the DEM, we would expect A to 527	
  



increase rapidly until the level of fill at which noise has been completely removed and A no 528	
  
longer increases. That is, we would expect the relationship between A and the level of fill to take 529	
  
the form of an ogive. However, in the presence of process disconnection, we would expect this 530	
  
transition to occur at greater levels of fill, with the delay being a function of the kind of landform 531	
  
responsible for the process disconnection. The length scale at which the ogive becomes 532	
  
asymptotic then defines the level of process disconnection along the flow path. Thus, in a first 533	
  
exercise, we quantify the response of A to a progressive increase in the level of DEM fill. We 534	
  
begin by filling all depressions less than 0.1 m and we quantify A. Then, we double the fill 535	
  
progressively until the maximum considered, 102.4 m.  536	
  
 537	
  
In order to calculate A we need a flow routing algorithm and we use Holmgren (1994) where: 538	
  
 539	
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[5] 541	
  
and βi = slope in direction i ;  FS(i) = proportion of flow going in direction (i) ; x = a parameter 542	
  
that can vary between zero and infinity. As x tends to infinity, FS tends to route all the flow in a 543	
  
single direction, that is the line of steepest slope (commonly known as a D8 algorithm). For x = 544	
  
1, flow is routed evenly in proportion to slope. For x = 0, flow is routed equally between all cells 545	
  
regardless of slope. As we do not wish to impose a value of x a priori, we undertake the 546	
  
exercise of progressively filling the DEM for a dyadic series of x = 1; 2; 4; 8; 16; and 32. The pit 547	
  
filling and flow routing uses the DEM analysis tools in the TopoToolBox of Schwanghart and 548	
  
Kuhn (2010).  549	
  
 550	
  
We interpret these results with respect to four sub basins on the east side of the valley that in 551	
  
total, under perfect connection, could supply 10.8% of the total basin area. For each area we 552	
  
plot the logarithm of the accumulation area that results with each level of DEM fill, and for each 553	
  
value of the parameter x in [5]. We interpret these plots in two ways. First, for each sub basin, 554	
  
we compare the spatial scale at which perfect connection is reached (i.e. the maximum possible 555	
  
accumulation area), for 1967 and 2009. We choose these two dates as an end member 556	
  
comparison. Second, we consider the change in sensitivity of the calculations of accumulation 557	
  
area to the parameter x for 1967 and 2009. We hypothesise that with incision and headward 558	
  
extension of gullies, the sensitivity of accumulation area to x should decrease. 559	
  
 560	
  
Results 561	
  
 562	
  
Sediment transport capacity, sediment export and the supply-capacity ratio 563	
  
 564	
  
Figure 3 shows the modelled annual volumetric transport capacity from 1968 to 2014, with the 565	
  
measured basin water yield superimposed. Both increase as a function of time. The relative rate 566	
  
of increase, defined as t x( ) dx dt( ) , where dx dt  is the linear rate of change of x (capacity or 567	
  
yield) as a function of t (time), is greater for the capacity ( t x( ) dx dt( ) = 21.7) than it is for the 568	
  
yield ( t x( ) dx dt( ) = 16.9): the capacity increases at a greater rate than the yield. Given the 569	
  
form of [4], it suggests that there is a greater duration of excess shear stress over its critical 570	
  
value due to more extreme river flows. This may be achieved through either progressively 571	
  
greater glacier melt volumes or systematic change through time in the extent to which the 572	
  
subglacial drainage system is more channelised and so producing flow hydrographs with better 573	
  
defined peaks (e.g. Nienow et al., 1998). The water yield is more strongly correlated with time 574	
  
(0.703, p < 0.001) than the transport capacity (0.589, p < 0.01), which may be due to greater 575	
  
interannual variability in the efficiency of the subglacial drainage system than in the volume of 576	
  
snow and ice melt. However, annual water yield and annual transport capacity are strongly 577	
  



correlated (0.950, p < 0.001) which is not surprising given the form of [4]. There is some 578	
  
temporal variability in both water yield and transport capacity during the 1970s and this reflects 579	
  
wider observations of a cooler snowier period leading to greater snow accumulation in this 580	
  
region during the late 1970s (e.g. Micheletti et al., 2015b; Gabbud et al., 2016). 581	
  
 582	
  
Figure 4 shows the modelled annual volumetric transport capacity and the export volume 583	
  
estimated from the records of intake flushing. The latter show some increase in uncertainty from 584	
  
2008, when the intake operation was changed to automatically flush if the basin was at least 585	
  
50% full, during the night. Sediment export is relatively low from 1976 to 1980 after which it 586	
  
becomes higher but variable to 1994. It then becomes low again until 2003. As a result, whilst 587	
  
there is a significant correlation between capacity and export (r = 0.415, p < 0.02), transport 588	
  
capacity only explains c. 17% of the variability in sediment export. 589	
  
 590	
  
Figure 5a shows the supply to capacity ratio (SCR) and reflects the data in Figure 4. First, the 591	
  
SCR is uniformly less than one (implying less export than transport capacity). Although the 592	
  
precise values of the SCR will be influenced by uncertainties in the estimation of the annual 593	
  
transport capacity, as values greater than 1 are implausible, Figure 5a suggests that the relative 594	
  
variability in the SCR are plausible. Second, standardisation of the export by the capacity to 595	
  
create the SCR still does not produce a record of progressively increasing SCR that we 596	
  
hypothesised would follow from glacier recession and the progressive increase in connectivity. It 597	
  
seems that for the period 1977 to 1980, there are low values of SCR (compare Figure 4 and 598	
  
5a), they then rise and are variable to the mid 1980s, and then decline to 2002 (1992 being a 599	
  
notable exception). From 2002 to 2011 there is a consistent rise, before again a decline in the 600	
  
most recent years. 601	
  
 602	
  
Relationship between the supply-capacity ratio, glacier recession and the development of the 603	
  
proglacial area 604	
  
 605	
  
On the basis of Figures 4 and 5a, it appears that there is some decoupling of the relationship 606	
  
between annual transport capacity and sediment export within this system. Figure 5a shows the 607	
  
cumulative area of proglacial zone exposed due to glacier recession. Whilst the area increases 608	
  
continuously, the SCR does not. However, the two periods of rising SCR have more rapid 609	
  
increases in proglacial area than the period in between when the SCR is falling. There may be 610	
  
some relationship between the SCR and the rate of glacier recession but this is difficult to 611	
  
elucidate with the resolution of aerial imagery available.  612	
  
  613	
  
Figure 5b shows the mean annual temperature on a south facing terrace (Bricola, Val de 614	
  
Ferpècle) at an altitude (2’430 m) only slightly lower than that of the Haut Glacier d’Arolla 615	
  
terminus (2’600 m) and 7.8 km to the North North-East. Whilst there appears to be a negative 616	
  
relationship between the supply-capacity ratio and temperature until about 2000 (r = -0.508 p < 617	
  
0.05), from 2000 there is a significant positive correlation (r = 0.714, p < 0.01). The same occurs 618	
  
with the relationship between sediment export and temperature (Figure 5b), with a correlation of 619	
  
-0.385 (p < 0.05) to 2000 and 0.821 (p < 0.001) from 2000. As the glacier retreats, there is 620	
  
evidence of the onset of temperature forcing. 621	
  
 622	
  
Following the observation of Marren and Toomath (2014), it is important to interpret these 623	
  
patterns in the context of a more detailed evolution of the proglacial area. Glacier recession 624	
  
does not necessarily just leave a proglacial stream, but also morainic material and related 625	
  
features which may constrain the ability of the stream to access and to transport poorly 626	
  
consolidated sediment. Thus, Figure 6 shows the evolution of the proglacial area from 1967 to 627	
  
2009. In 1967 (Figure 6a) there was a very small proglacial area. The glacier terminus was 628	
  
oriented diagonally across the valley reflecting steeper slopes on the west side of the valley 629	
  
which leads to shading and slow melt rates. Between 1967 and 1977 (Figure 6b) there was 630	
  
terminus retreat of approximately 300 m on the east side of the valley to create a narrow 631	
  



corridor of proglacial stream bounded by ice to the west. This process continued to 1983 (Figure 632	
  
6c) albeit somewhat more slowly and also with some evidence of advance of the west side of 633	
  
the terminus. From 1983 to 1988 (Figure 6d) terminus recession and expansion of the proglacial 634	
  
area remains slow. From 1988 to 1997 (Figure 6e) there is some widening of the proglacial area 635	
  
and also some further snout recession but this is over an 11 year period and so is relatively 636	
  
slow. When taking into account the shorter duration, there is a marked recession to 2000 637	
  
(Figure 6f), with widening of the proglacial area. Retreat and widening continue to 2005 (Figure 638	
  
6g) and then 2009 (Figure 6h). Broadly speaking, these patterns reflect the quantitative data 639	
  
regarding the increase in the proglacial area (Figure 5). Closer inspection of the imagery, plus 640	
  
field observations, do counter this observation slightly because within the growing proglacial 641	
  
area there was evidence of ice-cored moraines. Figure 7 shows slope maps for the proglacial 642	
  
zone in 1997 and 2009, showing how a large zone of ice cored moraine melted out leading to a 643	
  
substantial increase in the width of the proglacial area. 644	
  
 645	
  
Erosion and deposition in the proglacial area 646	
  
 647	
  
Figure 8 shows the mean surface changes per year for the periods when data are available for 648	
  
zones that are fluvially reworked according to the most recent aerial image. The date at which 649	
  
they become fluvially reworked is taken as the start date of the first period for which surface 650	
  
change can be calculated. In most but not all cases, this start date is also the first date when the 651	
  
glacier appears to have retreated through the identified area. This is not always the case, 652	
  
however, because reworking by the river can be limited by the melt out of ice cored moraine. 653	
  
For instance, Figure 8a shows areas labelled as 2005 and 2009 but surrounded by earlier 654	
  
dates. This corresponds to the zone of ice-cored moraine flagged in Figure 7 that had only 655	
  
melted out by 2009.  656	
  
 657	
  
Up until the 2000-2005 period, the proglacial zone progressively lowers in all cases (Figure 8b). 658	
  
There are two explanations for this. First it may be due to evacuation of accumulated sediment 659	
  
by the river. Figure 6h shows that most of the proglacial stream is braided and with ice retreat, 660	
  
such that the stream is no longer pinned by the hydraulic potential of the ice mass, the area of 661	
  
sediment that the stream can erode should go up. Second, it is not possible to distinguish this 662	
  
effect from the ongoing melt of ice-cored till. For the period 2000 to 2005, all areas undergo fill, 663	
  
with two of these areas also filling between 2005 and 2009. The effect of this change is that 664	
  
there appears to be a positive slope in Figure 8b. It may suggest that the proglacial stream is 665	
  
switching from being dominated by: (a) surface lowering to ice melt and fluvial erosion, with 666	
  
implications for fluvial sorting of sediment; to (b) surface rise associated with sediment 667	
  
deposition.  668	
  
 669	
  
Hillslope connectivity and evolution 670	
  
 671	
  
Figure 9 shows the flow accumulation area calculated for 2009 along with the glacier margin in 672	
  
1967 and 2005 calculated with all pits filled. In a general sense, it emphasises the potential 673	
  
importance in this kind of environment of the heritage of previous glacial activity. Above the 674	
  
1967 line (to the north-east on Figure 9) there is a clear rupture in the flow accumulation area 675	
  
that corresponds to the ridge of the Little Ice Age moraine dating from the mid 1850s. Thus 676	
  
upstream basins have the potential to be highly disconnected. Figure 9 also shows that the 677	
  
incised streams, that are now apparent in the steep deglaciated zone between the 1850s 678	
  
moraine and the proglacial area, have the potential to become disconnected where they join the 679	
  
proglacial area: they become distributary systems. Field observations suggest that this relates 680	
  
to the accumulation of very coarse material (> 0.5 m diameter) at the bottom of the hillslopes 681	
  
that cannot be transported by the proglacial stream even under extreme conditions. 682	
  
 683	
  
Figure 10 shows the evolution of the relationship between upslope contributing area for different 684	
  
levels of DEM fill for 1967 and 2009, for the four sub basins shown on Figure 9. Two sub basins 685	
  



(1 and 2) were located down valley of the glacier terminus in 1967 and two were located 686	
  
between the 1967 and 2005 positions of the glacier terminus (Figure 9). As expected, in all 687	
  
cases, the upslope contributing area increases with the level of DEM fill. In 2009, for the two 688	
  
smallest sub basins (2 and 3), there is very little evolution of basin area with fill, suggesting that 689	
  
these are generally well connected basins on this date. For the two larger sub basins (1) and (4) 690	
  
there is some evolution with connection being achieved in basin (1) at around 0.8 m and basin 4 691	
  
at around 1.6 m. These values can be compared with DEM related noise as suggested by either 692	
  
the RMSE z or the 1.96σ2009 (Table 1). If we take the more conservative measures suggested 693	
  
by 1.96σ2009, then the critical level of fill for sub basin 1 is close to DEM noise, but the value for 694	
  
sub basin 4 is somewhat greater. There remains some process disconnection in sub basin 4.  695	
  
 696	
  
More interesting is the evolution in the levels of fill needed to achieve connection when 1967 697	
  
and 2009 are compared (Figure 10). Higher levels of fill are required to get the maximum values 698	
  
of accumulation area for three sub basins: 3.2 m for sub basins 1 and 3; and 6.4 m for sub 699	
  
basin 4. Table 1 suggests that there is greater uncertainty in the 1967 elevation data. However, 700	
  
this is only in the 1.96σ2009 estimate and may be as much to do with difficulties in identifying 701	
  
patches for the rotation and translation of DEMs as the elevations themselves, especially given 702	
  
that the DEM analysis that we are undertaking here will be more dependent on local, relative 703	
  
elevation variability than absolute georeferencing. Further there does not appear to be noise 704	
  
present that effects connection in sub basin 2. Thus, we tentatively conclude that there appears 705	
  
to be higher levels of disconnection in 1967 than in 2014, and higher levels of disconnection for 706	
  
those sub basins where there has been more recent terminus retreat (sub basins 3 and 4). 707	
  
 708	
  
Greater confidence in these conclusions is obtained by considering erosion and deposition 709	
  
patterns between 1967 and 2009. Figure 11 shows erosion and deposition on the east side of 710	
  
the glacier for four periods and this includes sub basin 4. The glacier itself can be seen as 711	
  
zones of lower slope (< 0.3) in Figures 11e through 11h. In 1983 (Figure 11e) there is a clear 712	
  
line of contact (co-ordinates [2’400, 2’000] to [2’850, 1’400]) between glacier ice and the 713	
  
sidewall but with a terrace most likely comprising ice-cored till to the right of this contact line. 714	
  
Figure 11a shows extensive surface lowering of the main glacier and the terrace between 1967 715	
  
and 1983 but also some sediment accumulation where ice at the base of the slope can act as a 716	
  
base level control and aid the accumulation of sediment delivered by gravitational processes. 717	
  
General surface lowering continues throughout the hillslope between 1983 and 1988 (Figure 718	
  
11b), more rapidly in the terrace zone than in other parts of the sidewalls. By 1997, gullying of 719	
  
the sidewalls is clear in a number of places shown in both the slope map (Figure 11g, linear 720	
  
features, orthogonal to the glacier margin with slope values approaching 1) and also the DEM of 721	
  
difference (Figure 11c). The development of one such gully can be seen in the aerial imagery by 722	
  
comparing Figures 6d and 6e, the left of the three gullies that appear in the bounding box on 723	
  
Figure 6e. These processes continue between 1997 and 2009 (Figure 11d). Figure 12 shows 724	
  
the development of these three gullies in section from 1983 to 2009, showing that incision has 725	
  
occurred to greater than 10 m in depth. Note that the incision in the sub basin 4 gully (to the left) 726	
  
is lower. Those to the right drain sub basins that are not considered in this analysis because the 727	
  
DEM for 2009 does not quite extend to include their full catchment extents. Thus, the 728	
  
accumulation areas shown for them in Figure 9 are lower than the correct ones. 729	
  
 730	
  
Discussion 731	
  
 732	
  
Rapid glacier recession and sediment yield 733	
  
 734	
  
The focus of this paper is a glacier that has undergone near continual recession in terms of its 735	
  
loss of surface area and the associated increase in the area of its proglacial zone (Figure 5). 736	
  
This rapid recession is widely reported for the European Alps and, for instance, glaciers in 737	
  
Switzerland have lost one third of their area since 1973 (Fischer et al., 2015). Studies of what 738	
  



this might mean for sediment yield are much rarer and have tended to make the assumption 739	
  
that sediment yield is a function of transport capacity.  740	
  
 741	
  
Figure 3 shows a progressive rise in water yield and the associated sediment transport capacity 742	
  
for the Haut Glacier d’Arolla basin from 1968. The rising water yield is likely to be primarily a 743	
  
temperature signal. Micheletti et al. (2015b) synthesised data for this region and observed that 744	
  
aside from a wetter period in the late 1970s and early 1980s, total precipitation has generally 745	
  
remained stable or declined weakly. Basic snow depth modelling (Micheletti et al., 2015b, 746	
  
Figure 5) suggested a progressive decline in the accumulated March snow depth from the early 747	
  
1980s of about 40% at an altitude of 2’500 m; with also very low levels of snow remaining in the 748	
  
glaciated parts of the basin at the end of the ablation season (September). Thus, rising yield 749	
  
appears to be more closely related to temperature rise, and increasing glacier melt, than 750	
  
precipitation or snow effects and annual water yield and mean annual temperature are 751	
  
significantly correlated (r = 0.547; p < 0.01). Sediment transport capacity is not significantly 752	
  
correlated with temperature (r = 0.290; p > 0.05) neither globally, nor in the period from 2000 753	
  
when temperature correlates with the supply-capacity ratio (Figure 5b). This points to the 754	
  
important control of the non-linear form of [4] such that estimated sediment transport capacity is 755	
  
restricted to a smaller percentage of the year than water yield, as illustrated for an example year 756	
  
(2014, Figure 13). Under the assumption that [4] and its application are valid, the capacity of the 757	
  
proglacial area to transport sediment has some potential to act as a control on sediment export. 758	
  
Sediment transport capacity and sediment export were significantly correlated (r = 0.415, p < 759	
  
0.01) and we can conclude that sediment transport capacity is at least in part a control of 760	
  
sediment connectivity in the system (cf. Hooke, 2003).  761	
  
 762	
  
That said, this correlation means that only about 17% of the variability in sediment export is 763	
  
explained by the estimated sediment transport capacity and this is confirmed in Figure 4. 764	
  
Notably, from the early 1990s until the early 2000s, whilst estimated transport capacity 765	
  
continues to rise, sediment export falls to very low levels. This is shown clearly in the supply-766	
  
capacity ratio (Figure 5) and the SCR variability may be related to three controls on 767	
  
disconnection, each related to transport capacity: (1) a non-linear relationship between spatial 768	
  
scale and transport capacity; (2) sediment sorting processes which reduce transport capacity; 769	
  
and (3) legacy controls on the river channel access to erodible sediment. 770	
  
 771	
  
First, even in a basin that was not glaciated, we would expect sediment transport capacity to 772	
  
decrease more rapidly with distance upstream because sediment transport capacity is a non-773	
  
linear function of excess shear stress over a critical value, that is there is a minimum upstream 774	
  
area needed, in combination with local bed slope, before transport can begin. This will be 775	
  
reinforced in a glaciated basin because the possible sources of water are not distributed in the 776	
  
same way as in a non-glaciated basin, they are concentrated in glaciated parts of the basin, so 777	
  
reinforcing the spatial variability in transport capacity. Thus, disconnection can occur because 778	
  
the transport capacity does not downscale linearly. 779	
  
 780	
  
Second, Figure 5 suggests that as the glacier recession slowed from the late 1980s to the late 781	
  
1990s, so the supply-capacity ratio declined. Albeit with perhaps a small lag, which may be as 782	
  
much due to the temporal resolution of the aerial imagery as it may be due to a process effect, 783	
  
when the glacier recession rate begins to rise, the supply-capacity ratio follows. Thus, whilst 784	
  
glacial recession appears to replace ice constrained streams with streams that are much freer 785	
  
to migrate, this does not transfer into a progressive increase in sediment yield. One theory to 786	
  
explain this observation is that fluvial sorting of sediment progressively increases the resistance 787	
  
to motion of proglacial stream channels once ice has retreated. It is well established that fluvial 788	
  
sediment transport leads to sediment sorting (e.g. Bacchi et al., 2014) including in mountain 789	
  
(e.g. Bacchi et al., 2014) and proglacial streams (e.g. Ashworth et al., 1992; Kociuba and 790	
  
Janicki, 2015). Indeed, glacier recession commonly leads to initial stream incision (Marren and 791	
  
Toomath, 2014), something that would aid the sorting process. In our case, there is evidence of 792	
  



incision after initial glacier recession (Figure 8b) but this cannot be distinguished from the 793	
  
effects of melt out of ice cored till. As glacial till is commonly poorly sorted (e.g. Santos-794	
  
Gonzalez et al., 2013), glacier recession leads to the exposure of poorly sorted sediment. This 795	
  
leads to increased sediment supply but only in so far as it is not countered by increases in the 796	
  
resistance of sediment to entrainment due to subsequent fluvial sediment sorting. Following 797	
  
Church and Ryder (1972), sediment sorting becomes an early contributor to declining sediment 798	
  
yields during the period when the extent of paraglacial sedimentation is important. Orwin and 799	
  
Smart (2004b) observed how overland flow effectively armours till, making it more resistant to 800	
  
erosion. Here, we propose it may also apply to fluvially-reworked sediments. It points to a 801	
  
weakness in our use and application of [4] as the decline in the supply-capacity ratio may be 802	
  
due to our failure to allow for the critical entrainment threshold to rise due to fluvial reworking of 803	
  
sediment, and hence the sediment transport capacity to fall. In process terms, it further implies 804	
  
that sediment transport capacity is an ultimate control upon the connection of proglacially stored 805	
  
sediment to the basin outlet. Maintaining high sediment supply to the basin outlet is dependent 806	
  
upon a rate of glacier recession and supply of poorly sorted till that is greater than the rate at 807	
  
which the proglacial stream can sort it, unless there are extreme flood events capable of 808	
  
mobilising well sorted fluvial deposits. The importance of extreme floods as a control on total 809	
  
sediment yield in proglacial streams has been observed (e.g. Warburton, 1990b; Nicholas and 810	
  
Sambrook-Smith, 1998; Lamoureux, 2002; Kociuba and Janicki, 2014). 811	
  
 812	
  
Third, despite rapid glacier recession, there is evidence that the active channel zone remains 813	
  
constrained by the legacy of glacial occupation: glacier recession does not necessarily lead to 814	
  
an expansion in proglacial stream width, and hence the width of the deposit that the stream is 815	
  
able to access. Figure 7 showed how a zone that was deglaciated by the mid 1990s still has 816	
  
substantial ice cored moraine that had only melted out by 2009. Marren and Toomath (2014) 817	
  
observed that such moraines may serve to limit the lateral erosion by the stream channel and 818	
  
so the width of the proglacial area available for the river to access sediment. 819	
  
 820	
  
In summary, our data suggest that there may be an association between glacier recession and 821	
  
sediment export but that this may only be a transient response. Inherently, sediment transport 822	
  
capacity will remain limited by a non-linear relationship with spatial scale. Whilst glacier 823	
  
recession does increase the ease with which stream channels may connect to potentially 824	
  
transportable sediment, this connection may initially be limited by ice-cored moraine and till. 825	
  
Further, fluvial reworking of till material may serve to increase entrainment thresholds and so 826	
  
reduce sediment flux to the basin outlet. Such increases do not disconnect potential in-channel 827	
  
sediment  sources permanently. Rather they make them reliant upon extreme sediment 828	
  
transport events. The work emphasises that hydraulically-based bedload transport equations 829	
  
such as [4] should not be used as a means of estimating sediment export from these kinds of 830	
  
basins, even after calibration, as it appears that export is controlled strongly by supply limitation 831	
  
(see also Stott, 2002).  832	
  
 833	
  
Hillslope sediment connectivity and its impact on sediment export 834	
  
 835	
  
The initial evaluation of sediment connectivity (Figure 9) showed the important potential of past 836	
  
glacial activity upon the landscape and, in theory, the decoupling of hillslope-derived sediment. 837	
  
For instance, it was possible to identify clearly the effects of a Little Ice Age moraine ridge on 838	
  
flow routing and sediment disconnection as others have observed (e.g. Cossart, 2008, Cossart 839	
  
and Fort, 2008). Sediment connection by water can only be achieved once the ridge has been 840	
  
breached.  841	
  
 842	
  
Figure 9 identified two basins that were inside the terminus in 1967. For the basin farthest 843	
  
upstream it was possible to identify the progressive development of gullying into the Little Ice 844	
  
Age moraine (Figure 12) that will have served to aid this connection. Curry et al. (2006) 845	
  
described this process in a similar Alpine setting, noting that gullying tended to develop over 846	
  



about 50 years from deglaciation after which gully relief reduced due to gully infilling. The DEMs 847	
  
of difference (Figure 11) did suggest some deposition on these slopes that we attributed to 848	
  
sediment falling from higher altitudes on the moraine, notably before glacier retreat when there 849	
  
was a higher base level. However, there was no evidence of gully infilling suggesting that these 850	
  
gullies are still in a phase of incision. This incision occurred in parallel with continued ice melt 851	
  
out but at a faster rate such that gullies were clearly evident in the topography (e.g. slope, 852	
  
Figure 11; sections, Figure 12) at the end of the period. Without this incision, it is likely that the 853	
  
Little Ice Age moraine would act as a sediment sink (Bosson et al., 2015), disconnecting the 854	
  
upper basins shown in Figure 9 from the proglacial area of the Haut Glacier d’Arolla  855	
  
 856	
  
We aimed to see if it was possible to quantify an evolution in hillslope connectivity (‘process 857	
  
disconnection’) in response to glacier recession. We made the assumption that the primary 858	
  
process of sediment transfer is hydrological and so focused upon the analysis of hydrological 859	
  
flow paths on two dates, 1967 and 2009. As one of the basic problems of flow path analysis is 860	
  
that hydrologists have traditionally forced perfect connection upon landscapes in the calculation 861	
  
of accumulated area and given the possibility of noise in the older datasets used 862	
  
(‘methodological’ disconnection’), we explored how the level of connectivity as represented by 863	
  
flow accumulation area changed with the level of pit filling applied to the data. This is a new way 864	
  
of considering the uncertain relationship between methodological and process disconnection. 865	
  
By considering four basins, two of which had been subject to a much shorter period since 866	
  
glacial debuttressing, we found that there was some evolution in connected upslope areas: 867	
  
perfect connection was found to occur at lower levels of DEM fill for: (1) those sub basins 868	
  
debuttressed for longer; and (2) in 2009 data as compared with 1967 data. In addition, there 869	
  
was some evidence of reduced sensitivity to the diffusion parameter in [5] in the 2009 data 870	
  
which may suggest a surface that is more incised. It appears that there has been an evolution of 871	
  
hillslope connectivity at least in the hydrological terms implicit in this kind of DEM analysis. That 872	
  
said, it was evident that the Little Ice Age moraine had already been breached in some locations 873	
  
by 1967. Thus, the period of study represents a period of developing connectivity that, with 874	
  
progressive glacial debuttressing and gully development, both of the Little Ice Age moraine and 875	
  
at higher altitudes within the sub-basin, rather than the onset of connectivity that was not there 876	
  
before. Further, the development of greater levels of upstream connectivity may not have been 877	
  
sufficient to connect these upper basins. Figure 9 shows that as the moraine gullies approach 878	
  
the proglacial area, the flows become more diffusive as they encounter very coarse material 879	
  
that accumulates at the toe of the moraine. This material is hard to erode and whilst there may 880	
  
be some throughput of suspended material, field observations suggest that these could be 881	
  
zones of deposition and sediment accumulation, reducing sediment flux to the zone of fluvial 882	
  
reworking. It is not yet completely clear that these higher sub basins are evolving to the point at 883	
  
which they can contribute significantly to exported sediment. 884	
  
 885	
  
There is one counter to this observation in the results in Figure 5b. This shows that a very 886	
  
strong association between mean annual air temperature and sediment export occurs from the 887	
  
early 2000s (r = 0.821, p < 0.001). This was accompanied by a reversal in the correlation 888	
  
between temperature and supply-capacity ratio that was negative to 2000 (r = -0.508, p < 0.05) 889	
  
and then positive from 2000 (r = 0.714, p < 0.01). The negative correlation between temperature 890	
  
and supply-capacity ratio could be explained by a system where sediment supply does not 891	
  
respond as much to climate forcing as melt and hence transport capacity. The positive 892	
  
correlation suggests a system where sediment supply responds more sensitively to climate 893	
  
forcing than does capacity. To remove the possible effects of temperature on capacity and so to 894	
  
isolate the direct effects of temperature on sediment export, we calculated the partial correlation 895	
  
between temperature and export, taking into account capacity variability. There was no 896	
  
significant correlation between export and temperature until the 2000s (r = -0.465, p > 0.05) but 897	
  
a highly significant relationship between export and temperature afterwards (r = 0.812, p < 898	
  
0.001). This shift in pattern may reflect direct temperature effects on permafrost melt and 899	
  
sediment production on the hillslopes. Although the processes involved are complex (Huggel et 900	
  



al., 2012; Stoffel and Huggel, 2012), the potential importance of permafrost degradation for 901	
  
sediment flux has been observed in similar Alpine settings (e.g. Chiarle et al., 2007; Kniessel et 902	
  
al., 2007; Lugon and Stoffel, 2010; Bennett et al., 2013). It is possible that given the 903	
  
hypsometric curve of this basin, the mean annual average temperatures are such that the 904	
  
altitudes of possible permafrost degradation have increased since 2000 to capture zones of 905	
  
previously accumulated but frozen sediment. Given the apparent evolution of basin connectivity 906	
  
(e.g. Figure 10), such material is increasingly delivered to the proglacial area. For the latter to 907	
  
occur, there has to have been sufficient retreat of the main glacier, to avoid material 908	
  
accumulating in ice marginal zones. Thus, the results in Figure 5b may be the result of the 909	
  
evolution of connectivity between hillslopes and the proglacial area, following main glacier 910	
  
recession such that, since 2000, sediment production due to permafrost degradation becomes 911	
  
the limiting control on total sediment export. This observation may emphasise why linkages 912	
  
between permafrost degradation and sediment export from basins are complex. It also suggests 913	
  
that high frequency records of sedimentation (e.g. in proglacial lakes) will only reflect climate 914	
  
drivers in so far as sediment delivery is not limited by connectivity (Micheletti et al., 2015b). 915	
  
 916	
  
Synthesis 917	
  
 918	
  
Figure 14 attempts to synthesise the above discussion in a way that emphasises the 919	
  
established importance of the sediment cascade in this kind of environment (e.g. Slaymaker et 920	
  
al., 2003; Morche et al., 2008; Otto et al., 2009; Bennett et al., 2014; Messenzehl et al., 2014). 921	
  
The presence of a systematic variation in sediment export can be traced to the transient 922	
  
response of the system to rapid glacier recession. This may be direct, such as through the ways 923	
  
in which glacier recession replaces slower glacier surface sediment transport with more rapid 924	
  
fluvial transport; or through the greater freedom of the proglacial stream to access sediment as 925	
  
compared with subglacial channels. But it also occurs indirectly through the evolution of 926	
  
landscape connectivity associated with processes like glacial debuttressing. Connectivity is 927	
  
clearly dynamic. Its evolution may explain the onset of temperature forcing of sediment export  928	
  
as higher levels of connectivity are established that connect respective sediment sources to the 929	
  
channel network. 930	
  
 931	
  
However, the evolution of this connectivity can both increase and decrease the strength of 932	
  
coupling between components of the landscape. Although further data collection and analysis is 933	
  
needed to confirm the conclusion, provisional results suggest that whilst the initial response of 934	
  
the glacier recession is an increase in sediment export, this is countered through the effects of 935	
  
sediment reworking through fluvial transport that reduces the downstream connectivity of 936	
  
sediment flux and makes it more dependent upon extreme sediment transport events. Similarly, 937	
  
whilst gully erosion into debuttressed Little Ice Age moraine is critical to connect upper sub-938	
  
basins to the proglacial area, this process also produces very coarse material (material that 939	
  
could not be transported by the proglacial stream) that accumulates at the gully toes, serving to 940	
  
disconnect the system. Again, an initial response might be an increase in sediment transfer but 941	
  
as very coarse material accumulates, so it acts as a source of disconnection. Thus, there is a 942	
  
series of negative feedbacks in the system that serve to counter the effects of glacier recession 943	
  
on sediment yield.  944	
  
 945	
  
In the next stage of analysis, work is needed in three areas. First, closer attention needs to be 946	
  
given to the evolution of grain size in space and in time, to quantify the possible impacts of 947	
  
sediment sorting upon sediment transfer and hence export. New surveillance technologies (e.g. 948	
  
drone technologies) should make this much easier than has hitherto been the case. Second, the 949	
  
analysis of connectivity could be taken further to consider all of the DEM data and at the full 950	
  
scale of the glacier system. It should also seek to quantify how temperature is changing the 951	
  
availability of sediment that can be mobilised through permafrost degradation higher in the 952	
  
basin and how readily such sediment sources are coupled to the channel network. Third, and 953	
  
most importantly, these kinds of analyses should be combined with graph theory methods (e.g. 954	
  



Heckmann and Schwanghart, 2013) to quantify how sediment can flux through these 955	
  
landscapes and crucially, through using historically acquired data on glacier extent and the 956	
  
associated evolution of connectivity, how that sediment flux might have changed. 957	
  
 958	
  
Conclusions  959	
  
 960	
  
The analysis of a valuable record of hydroelectric power intake flushing, for a rapidly 961	
  
deglaciating Alpine drainage basin revealed systematic variability in sediment export between 962	
  
the late 1970s and present. Sediment export rates were high but variable until the early 1990s, 963	
  
then diminished before rising again from the early 2000s. An obvious explanation of this 964	
  
variability is a systematic variation in sediment transport capacity. Standardisation of the 965	
  
sediment export using a model of sediment transport capacity did not change this variability 966	
  
substantially, suggesting that the variability in export is not only a function of capacity limitation.  967	
  
 968	
  
Initial considerations suggested that the effects of glacier recession on sediment connectivity 969	
  
could explain at least some of this process. An increase in connectivity following from reduction 970	
  
of the glaciated extent, expansion of the proglacial area, and the development of better 971	
  
connection between upper basins and the proglacial area, was to some extent identified in the 972	
  
data available. However, acceleration and deceleration of glacier recession appeared to lead to 973	
  
acceleration and deceleration of sediment export. It is hypothesised that river reworking of 974	
  
glacial till reduces sediment transfer through the proglacial zone. Coarse sediment 975	
  
accumulation at the base of gullies further serves to increase disconnection. These two 976	
  
negative feedbacks mean that continued exposure of unworked till is necessary to sediment 977	
  
transfer and export. 978	
  
 979	
  
Finally, it was intriguing to find that since the early 2000s, sediment export from the basin has 980	
  
become dependent upon temperature. It was not possible to distinguish clearly whether this 981	
  
was because: (a) rising temperatures have led to permafrost degradation at higher altitudes, 982	
  
maintaining the supply of poorly consolidated sediment, and hence sediment transfer and 983	
  
export; or (b) whether it was now easier to identify temperature effects because the basin has 984	
  
become, in general, better connected. Field investigation of the state of permafrost in the upper 985	
  
part of the basin is required to evaluate these two hypotheses. 986	
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Year 
Image 

scale, x 
(1: x) 

Theoretical 
precision (m) 

Global RMSE 
of bundle 

adjustment 
(m) 

RMSE 
X (m) 

RMSE 
Y (m) 

RMSE Z 
(m) 

Mean 
error Z 

(m) 

σ2009 
(m) 

1.96 σ2009 
(m) 

1967 13,700 ±0.19 ±0.59 ±0.83 ±0.81 ±0.04 0.00 ±2.34 ±4.59 
1977 10,000 ±0.14 ±0.39 ±0.21 ±0.23 ±0.01 0.00 ±0.18 ±0.36 
1983 12,000 ±0.17 ±0.35 ±0.18 ±0.25 ±0.08 0.02 ±0.21 ±0.42 
1988 22,200 ±0.31 ±0.88 ±0.42 ±0.62 ±0.45 0.05 ±0.67 ±1.32 
1997 9,000 ±0.13 ±0.36 ±0.53 ±0.45 ±0.06 0.01 ±0.35 ±0.68 
2000 9,000 ±0.13 ±0.37 ±0.39 ±0.34 ±0.07 0.01 ±0.34 ±0.66 
2005 11,900 ±0.17 ±0.36 ±0.33 ±0.40 ±0.04 0.01 ±0.24 ±0.47 
2009 13,000 ±0.18 ±0.30 ±0.34 ±0.24 ±0.07 0.02 - - 
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