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Abstract: Let {Xn(t), t ∈ [0,∞)}, n ∈ N be a sequence of centered dependent stationary Gaussian processes. The limit

distribution of supt∈[0,T (n)] |Xn(t)| is established as rn(t), the correlation function of {Xn(t), t ∈ [0,∞)}, n ∈ N, satisfies

the local and long range strong dependence conditions, which extends the results obtained by Seleznjev (1991).
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1 Introduction

Let {X(t), t ∈ [0,∞)} be a standard (mean zero and unit variance) stationary Gaussian process with continuous sample

paths, and let {r(t), t ≥ 0} denote its correlation function. Assume that the correlation function r(t) of the process satisfies

r(t) = 1− |t|α + o(|t|α) as t→ 0, and r(t) < 1 for t > 0 (1.1)

for some α ∈ (0, 2], and further assume

r(t) log t→ 0, as t→∞. (1.2)

For the study of the asymptotic properties of the supremum of Gaussian processes the local condition (1.1) is a standard

one, whereas the condition (1.2) is the weak dependence condition, or the so-called Berman’s condition, see e.g., Piterbarg

(1996). Under these two conditions on the correlation function r(t), it is well-known (see e.g., Leadbetter et al. (1983) or

Berman (1992)) that

lim
T→∞

sup
x∈R

∣∣∣∣P
{
aT

(
sup
t∈[0,T ]

X(t)− bT

)
≤ x

}
− exp(−e−x)

∣∣∣∣ = 0, (1.3)

where

aT =
√

2 log T , bT =
√

2 log T +
log(Hα(2π)−1/2(2 log T )−1/2+1/α)√

2 log T
. (1.4)

Here Hα denotes the Pickands constant defined by Hα = limλ→∞ λ−1Hα(λ), where

Hα(λ) = E
{

exp

(
max
t∈[0,λ]

√
2Bα/2(t)− tα

)}
and Bα is a fractional Brownian motion (a mean zero Gaussian process with stationary increments such that E

{
B2
α(t)

}
=

|t|2α, t ∈ R). It is also well-known that 0 < Hα <∞, see e.g., Berman (1992), and Piterbarg (1996).

In this paper, the following Pickands exact asymptotics plays a curial role in deriving the limit relation of (1.3). Specifically,

for some fixed constant h > 0

P

{
sup
t∈[0,h]

X(t) > u

}
= hµ(u)(1 + o(1)), as u→∞, (1.5)
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provided that the correlation function r(t) satisfies (1.1) and

µ(u) = Hαu2/αΨ(u), (1.6)

where Ψ(·) is the survival function of a standard Gaussian random variable. For more details see Leadbetter et al. (1983)

and Piterbarg (1996). A correct proof of Pickand’s theorem (see Pickands (1969)) was given in Piterbarg (1972); for the

main properties of Pickands and related constants, see Adler (1990), Berman (1992), Shao (1996), Dieker (2005), Dȩbicki

and Kisowski (2009) and Albin and Choi (2010).

A uniform version of (1.5) for stationary Gaussian processes has been established by Seleznjev (1991), where the author

investigated the limit distribution of the error of approximation of Gaussian stationary periodic processes by random

trigonometric polynomials in the uniform metric. Next, we formulate the aforementioned result.

Theorem A. Let {Xn(t), t ∈ [0,∞)}, n ∈ N be standard stationary Gaussian processes with a.s. continuous sample paths

and correlation function rn(t). Let T (n) > 0, un, n ≥ 1 be constants such that limn→∞min(T (n), un) = ∞. Suppose

further that

(A1). rn(t) = 1− cn|t|α + εn(t)|t|α, 0 < α ≤ 2, where cn → 1 as n→∞ and εn(t)→ 0 as t→ 0, uniformly in n;

(A2). for any ε > 0, there exists γ > 0 such that sup{|rn(t)|, T ≥ |t| ≥ ε, n ∈ N} < γ < 1;

(A3). rn(t) log(t)→ 0 as t→∞, uniformly in n.

(i). If (A1) and (A2) hold, then for any fixed h > 0 and µ(·) defined in (1.6)

lim
n→∞

P
{

supt∈[0,h] |Xn(t)| > un

}
2hµ(un)

= 1.

(ii). If additionally limn→∞ T (n)µ(un) = θ ∈ (0,∞] and (A3) hold, then

lim
n→∞

P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ un

}
= e−2θ,

where we set e−2θ = 0 if θ =∞.

(iii). If instead of Assumptions (A1)-(A3), the correlation functions rn(t) are such that

1− rn(t) ≤ |t|α, t ∈ [0, T (n)],

with α ∈ (0, 2] and T (n) ≥ T0 > 0 for all large n, then

lim
n→∞

P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ un

}
= 1,

provided that limn→∞ T (n)µ(un) = 0.

(iv). Let aT (n), bT (n) be defined as in (1.4). If (A1), (A2) and (A3) hold, then

lim
n→∞

sup
x∈R

∣∣∣∣P
{
aT (n)

(
sup

t∈[0,T (n)]

|Xn(t)| − bT (n)

)
≤ x

}
− exp(−2e−x)

∣∣∣∣ = 0.

The above result has been extended by Seleznjev (1996) to a certain class of non-stationary Gaussian processes. For further

extensions and related studies, we refer to Hüsler (1999), Hüsler et al. (2003) and Seleznjev (2006).

With impetus from Seleznjev (1991), in this paper we present the corresponding version of Theorem A for a sequence of

strongly dependent stationary Gaussian processes (see definition below).

The paper is organized as follows. Section 2 displays the main result, followed then by Section 3 where we present the

proofs.
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2 Main Results

In this section, we extend Theorem A to a sequence of strongly dependent stationary Gaussian processes. A sequence of

standard stationary Gaussian process {Xn(t), t ∈ [0,∞)}, n ∈ N is called strongly dependent if the correlation function

rn(t) satisfies one of the following assumptions:

(B1). rn(t) log t→ r ∈ (0,∞) as t→∞, uniformly in n;

(B2). rn(t) log t→∞ as t→∞, uniformly in n.

Indeed, Assumptions (B1) and (B2) are natural extensions of Assumption (A3). For related studies on extremes for

strongly dependent Gaussian process, we refer to Mital and Ylvisaker (1975), Piterbarg (1996), Ho and McCormick (1999)

and Stamatovic and Stamatovic (2010).

Let in the following ϕ and Φ denote the probability density function and the distribution function of a standard Gaussian

random variable W, respectively, and set

Λr(x) = E
{

[Λ(x+ r)]e
√

2rW+e−
√

2rW
}
, x ∈ R, (2.7)

with Λ(x) = exp(− exp(−x)), x ∈ R the unit Gumbel distribution function.

Next, we state our main results.

Theorem 2.1. Let {Xn(t), t ∈ [0,∞)}, n ∈ N be a standard stationary Gaussian processes with a.s. continuous sample

paths and correlation function rn(t) satisfying (A1),(A2) and (B1).

(i). If limn→∞ T (n)µ(un) = θ ∈ (0,∞], then

lim
n→∞

P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ un

}
= Λr(− log θ), (2.8)

where Λr(− log θ) =: 0 if θ =∞.

(ii). Let aT (n), bT (n) be defined as in (1.4), for x ∈ R we have

lim
n→∞

sup
x∈R

∣∣∣∣P
{
aT (n)

(
sup

t∈[0,T (n)]

|Xn(t)| − bT (n)

)
≤ x

}
− Λr(x)

∣∣∣∣ = 0. (2.9)

Remarks 2.1. (a) From the proof of Theorem 2.1, it follows that both (2.8) and (2.10) can be shown to hold also for

r = 0, retrieving thus the result of Theorem A.

(b) Assertion (iii) of Theorem A still holds under the conditions of Theorem 2.1.

Theorem 2.2. Let {Xn(t), t ∈ [0,∞)}, n ∈ N be a standard stationary Gaussian processes with a.s. continuous sample

paths and correlation function rn(t) satisfying (A1) with 0 < α ≤ 1, (A2) and (B2). Assume that rn(t) is convex for t ≥ 0

and rn(t) = o(1) uniformly in n. If further rn(t) log t is monotone for large t, then with bT (n) as in (1.4), we have

lim
n→∞

sup
x∈(0,∞)

∣∣∣∣P
{
r−1/2n (T (n))

(
sup

t∈[0,T (n)]

|Xn(t)| − (1− rn(T (n)))1/2bT (n)

)
≤ x

}
− 2Φ(x) + 1

∣∣∣∣ = 0. (2.10)

Remarks 2.2. Theorem 2.2 is a uniform version of Theorem 3.1 of Mittal and Ylvisaker (1975).

3 Further Results and Proofs

We begin with some auxiliary lemmas needed for the proofs of Theorem 2.1 and 2.2.

For given ε > 0, we divide interval [0, T (n)] onto intervals of length 1, and split each of them onto subintervals Iεj , Ij of

length ε, 1 − ε, j = 1, 2, · · · , [T (n)], respectively, where [x] denotes the integral part of x. It can be easily seen that a

possible remaining interval with length smaller than 1 plays no role in our consideration. We denote this interval with J .
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Let {X(i)
n (t), t ≥ 0}, i = 1, 2, · · · be independent copies of {Xn(t), t ≥ 0} and {ηn(t), t ≥ 0} be such that ηn(t) = X

(j)
n (t)

for t ∈ Ij . Let ρ(T (n)) := r/ log T (n) and define

ξn(t) = (1− ρ(T (n)))1/2ηn(t) + ρ1/2(T (n))W, t ∈ ∪[T (n)]
j=1 Ij ,

where W is a standard Gaussian random variable independent of {ηn(t), t ≥ 0}. Note that {ξn(t), t ∈ ∪[T (n)]
j=1 Ij} is a

standard non-stationary Gaussian process with correlation function %n(·, ·) which is given by

%n(t, s) =

{
rn(t, s) + (1− rn(t, s))ρ(T (n)), t ∈ Ij , s ∈ Ii, i = j,

ρ(T (n)), t ∈ Ij , s ∈ Ii, i 6= j.

In the sequel, assume that a, un, vn are positive constants, and set

q := q(un) = au−2/αn , µ(un) := Hαu2/αn Ψ(un), δ(a) := 1− Hα(a)

Hα
.

Further, C1 − C6 shall denote positive constants whose values may vary from place to place.

Lemma 3.1. If the Assumptions (A1) and (A2) hold, then for each interval I of fixed length h > 0

0 ≤ P
{

max
jq∈I
|Xn(jq)| ≤ un

}
− P

{
sup
s∈I
|Xn(s)| ≤ un

}
≤ 2hδ(a)µ(un) + o(µ(un)) (3.11)

and

0 ≤ P
{

max
jq∈I

Xn(jq) ≤ un
}
− P

{
sup
s∈I

Xn(s) ≤ un
}
≤ hδ(a)µ(un) + o(µ(un)), (3.12)

where δ(a)→ 0 as a ↓ 0.

Proof. Both claims above are established in the proof of Theorem 1 of Seleznjev (1991).

Lemma 3.2. Suppose that (A1) and (A2) hold. If T (n)µ(un) = O(1) and T (n)µ(vn) = O(1), then

P

{
sup

s∈[0,T (n)]

|Xn(s)| ≤ un

}
− P

{
sup
s∈∪Ij

|Xn(s)| ≤ un

}
→ 0 (3.13)

and

P

{
−vn ≤ inf

s∈[0,1]
Xn(s), sup

s∈[0,1]
Xn(s) ≤ un

}
− P

{
−vn ≤ inf

s∈I1
Xn(s), sup

s∈I1
Xn(s) ≤ un

}
→ 0 (3.14)

as n→∞ and ε ↓ 0.

Proof. By the stationarity of {Xn(t), t ∈ [0, T (n)]} and Theorem A (i) we obtain∣∣∣∣∣P
{

sup
s∈[0,T (n)]

|Xn(s)| ≤ un

}
− P

{
sup
s∈∪Ij

|Xn(s)| ≤ un

}∣∣∣∣∣
≤

[T (n)]∑
j=1

P
{

max
s∈Iεj
|Xn(s)| > un

}
+ P

{
max
s∈J
|Xn(s)| > un

}
≤ 2([T (n)]ε+ 1)µ(un)(1 + o(1))

= O(1)ε(1 + o(1))

→ 0

as u→∞ and ε ↓ 0, which completes the proof of (3.13). Note in passing that∣∣∣∣∣P
{
−vn ≤ inf

s∈[0,1]
Xn(s), sup

s∈[0,1]
Xn(s) ≤ un

}
− P

{
−vn ≤ inf

s∈I1
Xn(s), sup

s∈I1
Xn(s) ≤ un

}∣∣∣∣∣
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≤

∣∣∣∣∣P
{

sup
s∈[0,1]

Xn(s) ≤ un

}
− P

{
sup
s∈I1

Xn(s) ≤ un
}∣∣∣∣∣

+

∣∣∣∣P{ inf
s∈[0,1]

Xn(s) ≥ −vn
}
− P

{
inf
s∈I1

Xn(s) ≥ −vn
}∣∣∣∣ .

The proof of (3.14) is similar to that of (3.13), and therefore omitted.

Lemma 3.3. Under the assumptions of Lemma 3.2 we have

P

{
sup
s∈∪Ij

|Xn(s)| ≤ un

}
− P

{
max
kq∈∪Ij

|Xn(kq)| ≤ un
}
→ 0 (3.15)

and

P
{
−vn ≤ inf

s∈I1
Xn(s), sup

s∈I1
Xn(s) ≤ un

}
− P

{
−vn ≤ min

kq∈I1
Xn(kq), max

kq∈I1
Xn(kq) ≤ un

}
→ 0 (3.16)

as n→∞ and a ↓ 0.

Proof. By Lemma 3.2 ∣∣∣∣∣P
{

sup
s∈∪Ij

|Xn(s)| ≤ un

}
− P

{
sup

kq∈∪Ij
|Xn(kq)| ≤ un

}∣∣∣∣∣
≤ T (n) max

j

(
P
{

max
kq∈Ij

|Xn(kq)| ≤ un
}
− P

{
sup
s∈Ij
|Xn(s)| ≤ un

})
≤ 2(1− ε)[T (n)]µ(un)δ(a) + T (n)o(µ(un))

= 2(1− ε)O(1)δ(a) + o(1)

→ 0

as n→∞ and a ↓ 0. Hence the first claim follows. Note that∣∣∣∣P{−vn ≤ inf
s∈I1

Xn(s), sup
s∈I1

Xn(s) ≤ un
}
− P

{
−vn ≤ min

kq∈I1
Xn(kq), max

kq∈I1
Xn(kq) ≤ un

}∣∣∣∣
≤

∣∣∣∣P{max
kq∈I1

Xn(kq) ≤ un
}
− P

{
sup
s∈I1

Xn(s) ≤ un
}∣∣∣∣+

∣∣∣∣P{min
kq∈I1

Xn(kq) ≥ −vn
}
− P

{
inf
s∈I1

Xn(s) ≥ −vn
}∣∣∣∣ .

We omit the proof of (3.16) since it is similar to that of (3.15).

Lemma 3.4. Suppose that (A1),(A2) and (B1) hold. If T (n)µ(un) = O(1), then

lim
n→∞

∣∣∣∣P{ max
kq∈∪Ij

|Xn(kq)| ≤ un
}
− P

{
max
kq∈∪Ij

|ξn(kq)| ≤ un
}∣∣∣∣ = 0. (3.17)

Proof. Applying the generalized Berman inequality (cf. Theorem 1.2 of Piterbarg (1996)), we have (set next T := T (n))∣∣∣∣P{ max
kq∈∪Ij

|Xn(kq)| ≤ un
}
− P

{
max
kq∈∪Ij

|ξn(kq)| ≤ un
}∣∣∣∣

≤
∑

kq∈Ii, lq∈Ij

4

2π
|rn(kq, lq)− %n(kq, lq)|

∫ 1

0

1√
1− r(h)(kq, lq)

exp

(
− u2n

1 + r(h)(kq, lq)

)
dh

≤
∑

kq∈Ii, lq∈Ii,
i∈{1,2,··· ,[T (n)]}

A(n, k, l, q) +
∑

kq∈Ii, lq∈Ij,i 6=j
i,j∈{1,2,··· ,[T (n)]}

A(n, k, l, q), (3.18)

where ϕ(x, y, r(h)) is a Gaussian two-dimensional density with the covariance r(h), the variance equal to one and zero mean

and

r(h)(kq, lq) = hrn(kq, lq) + (1− h)%n(kq, lq), h ∈ [0, 1].
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In the following part of the proof, let $n(kq, lq) = max{|rn(kq, lq)|, |%n(kq, lq)|} and ϑ(t) = supt<|kq−lq|≤T {$n(kq, lq)}. By

Assumption (A2) and the definition of %n(t, s), we have ϑ(ε) = supε<|kq−lq|≤T {$n(kq, lq);n ∈ N} < 1 for sufficiently large

T . Further, let β be such that 0 < β < 1−ϑ(ε)
1+ϑ(ε) for all sufficiently large T .

Next, we estimate the upper bound of (3.18) in the case that kq and lq belong to the same interval I. Note that in this

case, %n(kq, lq) = rn(kq, lq) + (1− rn(kq, lq))ρ(T ) ∼ rn(kq, lq) for sufficiently large T . Split the first term of (3.18) into two

parts as ∑
kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}

0<|kq−lq|≤ε

A(n, k, l, q) +
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}
ε<|kq−lq|≤1−ε

A(n, k, l, q) =: Jn1 + Jn2. (3.19)

The Assumption (A1) implies for all |t| ≤ ε < 2−1/α

1− rn(t) ≤ 2|t|α.

From the assumption that Tµ(un) = T (n)µ(un) = O(1), we have

un ∼ (2 log T )1/2, e−
u2n
2 ∼ (2π)1/2H−1α u1−2/αn T−1O(1). (3.20)

Consequently, with q := au
−2/α
n ∼ a(log T )−1/α we obtain

Jn1 ≤ C1

∑
kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}

0<|kq−lq|≤ε

|rn(kq, lq)− %n(kq, lq)| 1√
1− %n(kq, lq)

exp

(
− u2n

1 + %n(kq, lq)

)

≤ C1

∑
kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}

0<|kq−lq|≤ε

|(1− rn(kq, lq))ρ(T )| 1√
1− rn(kq, lq)

exp

(
− u2n

1 + rn(kq, lq)

)

≤ C1ρ(T )
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}
0<|kq−lq|≤ε

√
1− rn(kq, lq) exp

(
− u2n

1 + rn(kq, lq)

)

≤ C1ρ(T )
T

q

∑
0<kq≤ε

√
1− rn(kq) exp

(
−u

2
n

2

)
exp

(
− (1− rn(kq))u2n

2(1 + rn(kq))

)

≤ C1ρ(T )
T

q
T−1(log T )1/2−1/α

∑
0<kq≤ε

(kq)α/2 exp

(
−1

8
|kq|α

)
≤ C1(log T )−1/2, (3.21)

which implies limn→∞ Jn1 = 0. By (3.20) for large T we have

Jn2 ≤ C2

∑
kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}

ε<|kq−lq|≤1−ε

|rn(kq, lq)− %n(kq, lq)| exp

(
− u2n

1 +$n(kq, lq)

)

≤ C2

∑
kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T (n)]}

ε<|kq−lq|≤1−ε

exp

(
− u2n

1 + ϑ(ε)

)

≤ C2
T

q

∑
ε<kq≤1−ε

exp

(
− u2n

1 + ϑ(ε)

)

≤ C2
T

q2

(
exp

(
−u

2
n

2

)) 2
1+ϑ(ε)

≤ C2T
− 1−ϑ(ε)

1+ϑ(ε) (log T )
2ϑ(ε)+α
α(1+ϑ(ε)) . (3.22)

Hence since ϑ(ε) < 1, then limn→∞ Jn2 = 0.

We continue with an estimate for the upper bound of (3.18) where kq ∈ Ii and lq ∈ Ij , i 6= j. Note that in this case, the

distance between any two intervals Ii and Ij is large than ε. Split the second term of (3.18) as∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

ε<|kq−lq|≤Tβ

A(n, k, l, q) +
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

Tβ<|kq−lq|≤T

A(n, k, l, q) =: In1 + In2. (3.23)
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Similarly to the derivation of (3.22), we have

In1 ≤ C3

∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

ε<|kq−lq|≤Tβ

|rn(kq, lq)− %n(kq, lq)| exp

(
− u2n

1 +$n(kq, lq)

)

≤ C3

∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

ε<|kq−lq|≤Tβ

exp

(
− u2n

1 + ϑ(ε)

)

≤ C3
T

q

∑
ε<kq≤Tβ

exp

(
− u2n

1 + ϑ(ε)

)

≤ C3
T 1+β

q2

(
exp

(
−u

2
n

2

)) 2
1+ϑ(ε)

≤ C3T
β− 1−ϑ(ε)

1+ϑ(ε) (log T )
2ϑ(ε)+α
α(1+ϑ(ε)) . (3.24)

Thus, limn→∞ In1 = 0, since β < 1−ϑ(ε)
1+ϑ(ε) . Further, Assumption (B1) implies that there exists a positive constant K such

that $n(kq) ≤ K/ log T β for kq > T β . Using (3.20) again, for q = au
−2/α
n ∼ a(log T )−1/α we have

T 2

q2 log T
exp

(
− u2n

1 + ϑ(T β)

)
≤ T 2

q2 log T
exp

(
− u2n

1 +K/ log T β

)
≤ C4 exp

(
2K log T

K + β log T
− (1− 2/α)

K log log T

K + β log T

)
= O(1).

Hence, following the argument of the proof of Lemma 6.4.1 of Leadbetter et al. (1983) we may further write

In2 ≤ C5

∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

Tβ<|kq−lq|≤T

|rn(kq, lq)− %n(kq, lq)| exp

(
− u2n

1 +$n(kq, lq)

)

≤ C5

∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T (n)]}

Tβ<|kq−lq|≤T

|rn(kq, lq)− ρ(T )| exp

(
− u2n

1 + ϑ(T β)

)

= C5
q log T

T

∑
Tβ<kq≤T

|rn(kq)− ρ(T )| T 2

q2 log T
exp

(
− u2n

1 + ϑ(T β)

)

≤ C5
q log T

T

∑
Tβ<kq≤T

|rn(kq)− ρ(T )|

≤ C5
q

βT

∑
Tβ<kq≤T

|rn(kq) log kq − r|+ C6r
q

T

∑
Tβ<kq≤T

|1− log T

log kq
|. (3.25)

By Assumption (B1), the first term of the right hand-side of (3.25) tends to 0. Furthermore, the second term therein also

tends to 0, which follows by an integral estimate as in the proof of Lemma 6.4.1 of Leadbetter et al. (1983). Consequently,

the proof is established by (3.18)-(3.19) and (3.21)-(3.25).

Lemma 3.5. Suppose that (A1) and (A2) hold. If T (n)µ(un) = O(1) and T (n)µ(vn) = O(1), then

P

{
sup
s∈[0,1]

Xn(s) > un, inf
s∈[0,1]

Xn(s) < −vn

}
= o(µ(un) + µ(vn)), n→∞. (3.26)

Proof. The proof is similar to that of Lemma 11.1.4 in Leadbetter et al. (1983).

Proof of Theorem 2.1. We only prove case (i), since case (ii) is a special case of (i).

(1). Case θ ∈ (0,∞). The definition of {ξn(t), t ∈ ∪[T (n)]
j=1 Ij} implies

P
{

max
kq∈∪Ij

|ξn(kq)| ≤ un
}

= P
{

max
kq∈∪Ij

|(1− ρ(T (n)))1/2ηn(kq) + ρ1/2(T (n))W| ≤ un
}
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= P
{
−un ≤ (1− ρ(T (n)))1/2ηn(kq) + ρ1/2(T (n))W ≤ un, kq ∈ ∪Ij

}
=

∫ +∞

−∞
P
{
−un − ρ1/2(T (n))z

(1− ρ(T (n)))1/2
≤ ηn(kq) ≤ un − ρ1/2(T (n))z

(1− ρ(T (n)))1/2
, kq ∈ ∪Ij

}
ϕ(z) dz.(3.27)

Since as n→∞

u(z)n :=
un − ρ1/2(T (n))z

(1− ρ(T (n)))1/2
= un +

r −
√

2rz

un
+ o(u−1n )

and

v(z)n :=
un + ρ1/2(T (n))z

(1− ρ(T (n)))1/2
= un +

r +
√

2rz

un
+ o(u−1n ).

So, the assumption limn→∞ T (n)µ(un) = θ ∈ (0,∞) implies that

lim
n→∞

T (n)µ(u(z)n ) = θe−r+
√
2rz, lim

n→∞
T (n)µ(v(z)n ) = θe−r−

√
2rz. (3.28)

Next, by the definition of {ηn(t), t ≥ 0}, (3.14), (3.16) and (3.28) we have

P
{
−v(z)n ≤ ηn(kq) ≤ u(z)n , kq ∈ ∪Ij

}
=

[T (n)]∏
j=1

P
{
−v(z)n ≤ X(j)

n (kq) ≤ u(z)n , kq ∈ Ij
}

= P
{
−v(z)n ≤ Xn(kq) ≤ u(z)n , kq ∈ I1)

}[T (n)]

= P
{
−v(z)n ≤ Xn(t) ≤ u(z)n , t ∈ I1

}[T (n)]

(1 + o(1))

= P
{
−v(z)n ≤ Xn(t) ≤ u(z)n , t ∈ [0, 1]

}[T (n)]

(1 + o(1))

=

(
1− P

{
inf

s∈[0,1]
Xn(s) < −v(z)n

}
− P

{
sup
s∈[0,1]

Xn(t) > u(z)n

}

+P

{
inf

s∈[0,1]
Xn(s) < −v(z)n , sup

s∈[0,1]
Xn(t) > u(z)n

})[T (n)]

(1 + o(1)) (3.29)

as n→∞. In the light of Theorem A(i) and Lemma 3.5

P
{
−v(z)n ≤ ηn(kq) ≤ u(z)n , kq ∈ ∪Ij

}
=

(
1− µ(u(z)n )− µ(v(z)n ) + o(µ(u(z)n ) + µ(v(z)n ))

)[T (n)]

(1 + o(1))

=

(
1− θe−(r−

√
2rz) + θe−(r+

√
2rz)

T (n)
+ o

(
1

T (n)

))[T (n)]

(1 + o(1))

= exp
(
−θe−(r−

√
2rz) − θe−(r+

√
2rz)
)

(1 + o(1))

as n→∞. Combining the last result with (3.17),(3.27) and applying the dominated convergence theorem we have

lim
n→∞

P
{

max
kq∈∪Ij

|Xn(kq)| ≤ un
}

=

∫ +∞

−∞
exp

(
−θe−(r−

√
2rz) − θe−(r+

√
2rz)
)
ϕ(z) dz.

Consequently, the proof follows by utilising further (3.13), (3.15) and (3.17).

(2). Case θ =∞. From the definition of µ(·), we know that for arbitrarily large θ′ <∞, there exist a real sequence vn such

that limn→∞ nµ(vn) = θ′. Clearly, for n sufficient large, un ≤ vn, hence

P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ un

}
≤ P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ vn

}
→ Λr(− log θ′), n→∞.

Since this holds for arbitrarily large θ′ <∞, by letting θ′ →∞ we see that

lim
n→∞

P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ un

}
= 0,
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which completes the proof. 2

For the proof of Theorem 2.2 we need a result which is formulated in the next lemma. By Polya’s criterion (see e.g., (3.10)

in Durrett 2004) if we assume the convexity of the correlation functions rn(t) (hence 0 < α ≤ 1, cf. Theorem 3.1 of Mittal

and Ylvisaker (1975)), then there exists a separable standard stationary Gaussian process Yn(t), n ∈ N with correlation

function

ρn,T (n)(t) =
rn(t)− rn(T (n))

1− rn(T (n))
, for t ≤ T (n).

Let

MT (n)(Y ) = max
0≤t≤T (n)

Yn(t), MT (n)(−Y ) = max
0≤t≤T (n)

−Yn(t).

Lemma 3.6. Let Yn(t) be defined as above. Under the conditions of Theorem 2.2 for any ε > 0

lim
n→∞

P
{
|MT (n)(Y )− bT (n)| > εr1/2n (T (n))

}
= 0 (3.30)

and

lim
n→∞

P
{
|MT (n)(−Y )− bT (n)| > εr1/2n (T (n))

}
= 0 (3.31)

are valid.

Proof. Since the proofs are similar, we only give the proof of (3.30). By the assumptions

ρn,T (n)(t) =
rn(t)− rn(T (n))

1− rn(T (n))
= 1− cn(T (n))|t|α + εn(t)|t|α

as t→ 0, where cn(T (n)) = cn
1−rn(T (n)) → 1, as n→∞, and εn(t) = εn(t)

1−rn(T (n)) → 0 as t→ 0, uniformly in n. Furthermore,

for any ε > 0, there exists γ > 0 such that sup{|ρn,T (n)(t)|, T ≥ |t| ≥ ε, n ∈ N} < γ < 1. Utilising the stationarity of

{Yn(t), 0 ≤ t ≤ T (n)}, Theorem A (i) and the definition of bT (n), we have

P
{
MT (n)(Y )− bT (n) > εr1/2n (T (n))

}
≤ ([T (n)] + 1)P

{
max
0≤t≤1

Yn(t) > εr1/2n (T (n)) + bT (n)

}
≤ C6([T (n)] + 1)(εr1/2n (T (n)) + bT (n))

2
α−1e−

1
2 (r

1/2
n (T (n))+bT (n))

2

≤ C6([T (n)] + 1)(log T (n))
2−α
2α e−

1
2 (2 log T (n)+ 2−α

α log log T (n)+2(rn(T (n)) log T (n))1/2)

≤ C6e
−(rn(T (n)) log T (n))1/2 .

Assumption (B1) and the fact that limn→∞ rn(T (n)) log T (n) =∞ imply

lim
n→∞

P
{
MT (n)(Y )− bT (n) > εr1/2n (T (n))

}
= 0.

Next, repeating the proof of equation (3.9) in Mital and Ylvisaker (1975), we have

lim
n→∞

P
{
MT (n)(Y )− bT (n) < −εr1/2n (T (n))

}
= 0,

hence (3.30) holds, and thus the claim follows.

Proof of Theorem 2.2. Represent Xn(t) as

Xn(t) = (1− rn(T (n)))1/2Yn(t) + r1/2n (T (n))W,

where W is a standard Gaussian random variable independent of the process {Yn(t), t ≥ 0}. Using Lemma 3.6 and setting

a(n) :=
√

1−rn(T (n))
rn(T (n)) we obtain

P

{
r−1/2n (T (n))

(
sup

t∈[0,T (n)]

|Xn(t)| − (1− rn(T (n)))1/2bT (n)

)
≤ x

}
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= P

{
sup

t∈[0,T (n)]

|Xn(t)| ≤ r1/2n (T (n))[a(n)bT (n) + x]

}
= P

{
−x ≤ a(n)(Yn(t) + bT (n)) +W, a(n)(Yn(t)− bT (n)) +W ≤ x, t ∈ [0, T (n)]

}
= P

{
a(n)(−Yn(t)− bT (n))−W ≤ x, a(n)(Yn(t)− bT (n)) +W ≤ x, t ∈ [0, T (n)]

}
= P

{
a(n)(MT (n)(−Y )− bT (n))−W ≤ x, a(n)(MT (n)(Y )− bT (n)) +W ≤ x

}
→ P {−W ≤ x,W ≤ x} , n→∞,

and hence the claim follows. 2
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