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Abstract

We study correspondences that choose an interval of alternatives when agents have

single-peaked preferences over locations and ordinally extend their preferences over

intervals. We extend the main results of Moulin (1980) to our setting and show that

the results of Ching (1997) cannot always be similarly extended.

First, strategy-proofness and peaks-onliness characterize the class of generalized

median correspondences (Theorem 1). Second, this result neither holds on the dom-

ain of symmetric and single-peaked preferences, nor can in this result min/max con-

tinuity substitute peaks-onliness (see counter-Example 3). Third, strategy-proofness

and voter-sovereignty characterize the class of efficient generalized median correspon-

dences (Theorem 2).
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1 Introduction

We study the problem where an interval of alternatives is chosen from the interval [0, 1] based

on the preferences of a finite number of agents. This interval can be considered as the political
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spectrum, while the chosen interval can in turn be considered as the legislative constitution

or the governmental coalition (in the sense that some “extreme” views are not accounted for

by the constitution or are not represented by any member(s) of the governmental coalition).

We assume that agents have single-peaked preferences defined over all alternatives on [0, 1];

that is, an agent’s welfare is strictly increasing up to his “peak” (his favorite alternative),

and is strictly decreasing thereafter. Other examples for the type of social choice problems

we are interested in would be the planning of public parking zones where an agent knows

that he will (eventually) find a parking spot in the designated parking zone but he does not

know where this will be, or the drafting of an “if-needed” list of candidate locations to build

a public facility, e.g., a hospital. The motivation behind our model also resembles that of

two-stage voting procedures such as, for example, Black’s procedure (e.g. Fishburn, 1977)

or the “rule of k names” (e.g. Barberà and Coelho, 2000), or situations where voters select

subsets of the outcome space (e.g. Nuñez and Xefteris, 20170). We assume that decisions are

made under ignorance (Peterson, 2009, p. 40) and that agents, when comparing sets, focus

on their best (most favorite) point(s) and their worst (least favorite) point(s) in each set.

We consider voting mechanisms that guarantee that the agents announce their true pre-

ferences; in other words, we are interested in voting mechanisms or (choice) correspondences,

that are strategy-proof. Although the classic result of Gibbard and Satterthwaite establishes

that on the full domain of preferences -with more than two possible outcomes- strategy-

proofness and non-dictatorship are incompatible (Gibbard, 1973; Satterthwaite, 1975), this

is not true for the domain of single-peaked preferences. This compatibility between the

two aforementioned properties has been well studied in the context of (choice) functions

that, based on agents’ (single-peaked) preferences, chose one alternative. Specifically, it

has been shown that strategy-proofness and peaks-onliness (the agents only announce their

peak) characterize the class of generalized median rules (Moulin, 1980). Moreover, when also

requiring (Pareto) efficiency, the sub-class of efficient generalized median rules is characte-

rized (Moulin, 1980). A similar result also holds when the range of the function is closed

and not connected (Barberà and Jackson, 1994). For symmetric single-peaked preferences,

peaks-onliness can be substituted by unanimity (when a common best alternative exists, it

is chosen) (Border and Jordan, 1983); furthermore, it turns out that in these results two of

the required properties can be weakened; specifically, peaks-onliness and efficiency can be

substituted by continuity (a small change in the announced preferences does not change the

outcome a lot) and voter-sovereignty (no alternative is a priori excluded from being chosen)
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respectively (Ching, 1997).1

Our main results also make use of either the additional property of peaks-onliness or

a version of continuity adapted for our context (i.e., where an interval of alternatives is

chosen). Furthermore, we also study the case where correspondences are efficient. Concisely,

our results are the following. First, strategy-proofness and peaks-onliness characterize the

class of generalized median correspondences (Theorem 1). Second, this result does not

hold on the subdomain of symmetric and single-peaked preferences, nor can in this result

continuity substitute peaks-onliness (see counter-Example 3). Third, strategy-proofness,

voter-sovereignty, and either peaks-onliness or continuity characterize the class of efficient

generalized median correspondences (Theorem 2).

The paper proceeds as follows. We introduce the model and choice correspondences and

their properties in Section 2. Section 3 contains the definition of generalized median cor-

respondences and efficient generalized median correspondences and their characterizations.

We conclude with a discussion of some model assumptions and by reviewing some related

literature (Section 4).

2 The model

Consider a coalition (of agents) N ≡ {1, . . . , n} (n ≥ 2) and a set of alternatives A ≡ [0, 1].

We denote generic agents by i and j and generic alternatives by x and y. Each agent i is

equipped with complete, transitive, and reflexive preferences Ri over A. As usual, x Ri y is

interpreted as “x is at least as desirable as y”, x Pi y as “x is preferred to y”, and x Ii y as

“x is indifferent to y”. Moreover, for preferences Ri there exists a number p(Ri) ∈ R, called

the peak (level) of i, with the following property: for each pair x, y ∈ R such that either

y < x ≤ p(Ri), or y > x ≥ p(Ri), we have x Pi y. We call such preferences single-peaked and

denote the domain of single-peaked preferences by R. Preferences Ri ∈ R are symmetric if

for each pair x, y ∈ R, |x− p(Ri)| = |y − p(Ri)| implies x Ii y. Let RN be the set of profiles

R ≡ (Ri)i∈N such that for each i ∈ N , Ri ∈ R. Given R ∈ RN and j ∈ N , we use R and

(R−j, Rj) interchangeably. For each R ∈ RN , we denote the vector of peaks by p ≡ (pi)i∈N ,

the smallest peak by
¯
p ≡ min{pi}i∈N , the largest peak by p̄ ≡ max{pi}i∈N , and the convex

hull of peaks by Conv(p) ≡ [
¯
p, p̄].

1Although technically continuity is not weaker than peaks-onliness, loosely speaking, it imposes fewer re-

strictions on the result.
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Denote the class of closed intervals in A by A, generic sets in A by X and Y , the

minimum of X by
¯
X, and the maximum of X by X̄. For each Ri ∈ R denote the set of

best alternative(s) of i in X by bRi
(X) ≡ {x ∈ X : for each y ∈ X, x Ri y} and the set of

worst alternative(s) of i in X by wRi
(X) ≡ {x ∈ X : for each y ∈ X, y Ri x}. By single-

peakedness, bRi
(X) ⊆ {

¯
X, pi, X̄} and |bRi

(X)| = 1. By single-peakedness, wRi
(X) ⊆ {

¯
X, X̄}

and if wRi
(X) = {

¯
X, X̄} (only if p(Ri) ∈ (

¯
X, X̄)), then

¯
X Ii X̄. With some abuse of

notation, we treat sets bRi
(X) and wRi

(X) as if they are points and for each x ∈ X, we write

bRi
(X)Ri x Ri wRi

(X).

We will consider choice correspondences that assign outcomes in A under complete un-

certainty (or ignorance) with the interpretation that any agent “knows the set of possible

outcomes . . ., but has no information about the probabilities of those outcomes or about their

likelihood ranking” (Bossert et al., 2000, p. 295).2 We assume that agents when evaluating

outcomes focus exclusively on the best and worst points of the outcomes. Various preference

extensions with different degrees of optimism or pessimism do so: consider, for example,

• either very optimistic agents who only focus on the best alternative(s) in the outcome

set (max extension) or (lexicographically) first on the best alternative(s) and then on

the worst alternative(s) (max-min extension)

• or very pessimistic agents who only focus on the worst alternative(s) in the outcome

set (min extension) or (lexicographically) first on the worst alternative(s) and then on

the best alternative(s) (min-max extension),

see Klaus and Protopapas (2020, Appendix A) for a more detailed discussion. All these

preference extensions have in common that given X, Y ∈ A, if an agent prefers his best

alternative(s) in X to his best alternative(s) in Y and his worst alternative(s) in X to

his worst alternative(s) in Y , then he prefers X to Y . To strike a balance between the

opposite assumptions of optimistic versus pessimistic preferences, we use the following best-

worst extension of preferences over sets (we use the same symbols to denote preferences over

points and preferences over sets).

Best-worst extension of preferences to sets. For each i ∈ N with Ri ∈ R and each

X, Y ∈ A, we have

X Ri Y if and only if bRi
(X)Ri bRi

(Y ) and wRi
(X)Ri wRi

(Y )

2For a survey of criteria and methods for ranking subsets of a set of outcomes under complete uncertainty

we refer to Barberà et al. (2004, Section 3).
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and

X Pi Y if and only if X Ri Y and [bRi
(X) Pi bRi

(Y ) or wRi
(X) Pi wRi

(Y )].

This extension of preferences is transitive; however, it is not complete (there exist sets

X, Y ∈ A such that neither XRiY nor Y RiX). In Klaus and Protopapas (2020, Appendix A)

we also give a normative foundation of our preference extension based on Bossert et al. (2000,

Theorem 1) and illustrate it with the example of public parking allocation.

We use the standard notion of Pareto optimality/efficiency as our efficiency notion.

Efficient sets. Given R ∈ RN , set X ∈ A is (Pareto) efficient if and only if there is no set

Y ∈ A such that for each i ∈ N , Y RiX, and for at least one j ∈ N , Y Pj X; we denote the

class containing all efficient sets at R by E(R).

The next characterization of efficient sets follows from Klaus and Protopapas (2020)

and it coincides with the well-known characterization of (Pareto) efficient points for choice

functions. Note that the original result is a little more complicated since it holds for all

compact sets.

Proposition 1 (Klaus and Protopapas (2020)). At R ∈ RN , a closed interval is efficient if

and only if it is a subset of the convex hull of peaks.

A (choice) correspondence F assigns to each R ∈ RN a set F (R) ∈ A, i.e., F : RN → A.

Given R ∈ RN , we denote the minimum of F (R) by
¯
F (R) and the maximum of F (R) by

F̄ (R). We denote the family of correspondences by F . Moreover, if F ∈ F assigns to each

R ∈ RN an interval consisting of a single point we will refer to it as a function and use

notation f ∈ f, i.e., f : RN → A.

The first two properties we consider are related; the first is (Pareto) efficiency for corre-

spondences while the second, being weaker than the first, requires no alternative in A to be

a priori excluded from being selected.

Efficiency. For each R ∈ RN , F (R) ∈ E(R).

Voter-sovereignty. For each x ∈ A, there exists R ∈ RN such that F (R) = {x}.

The next property, which is central in our results, requires no agent to gain by deviating;

it also implies comparability between the chosen sets before and after an agent’s deviation.
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Note that it is a strong extension of strategy-proofness to correspondences in line with the

one introduced by Duggan and Schwartz (2000) (see Barberà, 2011, for a comprehensive

survey on strategy-proof social choice correspondences).

Strategy-proofness. For each i ∈ N , each R ∈ RN , and each R′i ∈ R, F (R)RiF (R−i, R
′
i).

The next property expresses a considerable reduction or simplification of the information

used by a correspondence by requiring the chosen set to depend only on the vector of peaks.

Peaks-onliness. For each pair R,R′ ∈ RN such that p = p′, F (R) = F (R′).

So far we have introduced typical “economic” properties. Our last two properties are

a bit more technical (although commonly considered in various economic contexts). First,

we adapt continuity to our context; loosely speaking, it requires that when the announced

preferences of an agent change “a little”, the minimum and maximum alternatives chosen do

not change “a lot”. Before describing it formally, we first define the three following notions.

First, the indifference relation rRi
: [0, 1]→ [0, 1], given preferences Ri ∈ R, loosely speaking

maps each alternative x to an alternative y that i finds indifferent to x, according to Ri,

i.e., for each x ∈ [0, pi], rRi
(x) = y if y ∈ [pi, 1] exists such that y Ii x, or rRi

(x) = 1

otherwise; while for each x ∈ [pi, 1], rRi
(x) = y if y ∈ [0, ri] exists such that y Ii x, or

rRi
(x) = 0 otherwise. Second, the distance between a pair Ri, R

′
i ∈ R is measured by

d(Ri, R
′
i) ≡ maxx∈[0,1] |rRi

(x)− rR′
i
(x)|. Finally, a sequence {Rk

i }k∈N+ in R converges to Ri,

if k →∞ implies that distance d(Ri, R
k
i )→ 0. We denote this convergence by Rk

i → Ri.

Min/max continuity. For each R ∈ RN , each i ∈ N , and each {Rk
i }k∈N+ in R,

if Rk
i → Ri, then

¯
F (R−i, R

k
i )→ ¯

F (R), and

F̄ (R−i, R
k
i )→ F̄ (R).

Min/max continuity for functions is equivalent to the regular continuity property for

functions and Protopapas (2018, Appendix A) shows that it is equivalent to upper-hemi

continuity and lower-hemi continuity for correspondences.

A choice correspondence satisfies uncompromisingness (Border and Jordan, 1983) if whe-

never an agent’s preferences change such that his peaks, before and after this change, both lie

on the same side of the minimum (maximum) point chosen, then the minimum (maximum)

point chosen does not change.
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Uncompromisingness. For each i ∈ N and each pair R,R′ ∈ RN such that R′−i = R−i,

(i) if [pi <
¯
F (R) and p′i ≤ ¯

F (R)] or [pi >
¯
F (R) and p′i ≥ ¯

F (R)], then
¯
F (R) =

¯
F (R′) and

(ii) if [pi < F̄ (R) and p′i ≤ F̄ (R)] or [pi > F̄ (R) and p′i ≥ F̄ (R)], then F̄ (R) = F̄ (R′).

3 Generalized median rules and correspondences

Before defining the classes of functions and correspondences that our results revolve around,

the following definition is necessary: for each odd and positive integer k, and each vector

T ∈ Rk, label the coordinates of T such that t1 ≤ · · · ≤ tk; we define the median (coordinate)

of T by med(T ) ≡ t k+1
2

.

The class of functions we consider was introduced and characterized by strategy-proofness

and peaks-onliness (Moulin, 1980, Proposition 3). It was later shown that peaks-onliness

can be substituted with the “weaker” property of continuity (Ching, 1997, Theorem). In

order to provide an intuition in understanding this class, we present an example inspired by

the one provided in Arribillaga and Massó (2016, p. 564).

Example 1. Let N = {1, 2} and α = (α∅, α{1}, α{2}, αN) such that αN ≤ α{1} ≤ α{2} ≤ α∅.

Define fα ∈ f as follows. For each R ∈ RN , if p1 ≤ p2, choose α̃p = (α∅, α{1}, αN) and set

fα(R) = med(α̃p, p), and if p1 > p2, choose α̃p = (α∅, α{2}, αN) and set fα(R) = med(α̃p, p).

The range of fα equals [αN , α∅]. Note that if α{1} 6= α{2}, then the agents have asymmetric

power in influencing the chosen alternative; since α{1} ≤ α{2}, agent 1 has a greater power

than agent 2 in influencing the chosen alternative: agent 1 can make sure that the chosen

alternative is not larger than α{1} and not smaller than p1 (by announcing p1 ≤ α{1}), or that

it is not larger than p1 and not smaller than α{1} (by announcing p1 ≥ α{1}). In addition,

he is a dictator on the interval [α{1}, α{2}].

Next, agent 2 only has the power to influence the chosen alternative if agent 1 “allows”

him to do so. That is, if αN ≤ p1 ≤ α{1}, then agent 2 can choose an alternative in [p1, α{1}],

and if p1 ≤ αN ≤ α{1}, then agent 2 can choose an alternative in [αN , α{1}]. Similarly, if

α{2} ≤ p1 ≤ α∅, then agent 2 can choose an alternative in [α{2}, p1], and if α{2} ≤ α∅ ≤ p1,

then agent 2 can choose an alternative in [α{2}, α∅].

The general n-agent case is defined next. We use the terminology of generalized median

rules (see Border and Jordan, 1983). Moulin (1980) was the first to introduce this class

of rules using a “minmax representation.” Ching (1997) refers to augmented median voter
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schemes and explains “Moulin (1980) first characterized the class of solutions satisfying

strategy-proofness and peak only as the class of minmax solutions. We show how to relate

a minmax solution and an augmented median-voter solution in terms of their parameters.”

Generalized median rules. Let α ∈ A2n be such that α ≡ (αM)M⊆N , where for each

pair of sets L ⊆ M ⊆ N , αL ≥ αM . Also, for each R ∈ RN , let bijection π : N → N be

such that pπ(1) ≤ · · · ≤ pπ(n) and construct vector α̃p = (α∅, α{π(1)}, α{π(1),π(2)}, . . . , αN). We

denote the generalized median rule associated with vector α by fαG, where for each R ∈ RN ,

fαG(R) ≡ med(p, α̃v). We denote the class of generalized median rules by fG.

Clearly, if all agents announce different peaks, a unique ordering of them by their an-

nounced peak exists. Moreover, for the case where some agents announce the same peak and

hence such a unique ordering does not exist, the chosen alternative does not depend on the

particular ordering chosen; as shown in Ching (1997, Remark 1) (see also Protopapas, 2018,

Lemma 1).

The following class of correspondences extends the spirit of generalized median rules to

correspondences.

Generalized median correspondences. Let α, β ∈ A2n be such that α ≡ (αM)M⊆N and

β ≡ (βM)M⊆N , with α ≤ β, where for each pair of sets L ⊆M ⊆ N , αL ≥ αM and βL ≥ βM .

Also, for each R ∈ RN , let bijection π : N → N be such that pπ(1) ≤ · · · ≤ pπ(n) and construct

vectors α̃p = (α∅, α{π(1)}, α{π(1),π(2)}, . . . , αN) and β̃p = (β∅, β{π(1)}, β{π(1),π(2)}, . . . , βN). We

denote the generalized median correspondence associated with vectors α and β by Fα,β
G , where

for each R ∈ RN , Fα,β
G (R) ≡ [med(p, α̃p),med(p, β̃p)]. We denote the class of generalized

median correspondences by FG.

Remark 1. By definition of FG and fG, a generalized median correspondence Fα,β
G can be

decomposed into two generalized median rules fαG and fβG, i.e., for each R ∈ RN , Fα,β
G (R) ≡

[med(p, α̃p),med(p, β̃p)] = [fαG(R), fβG(R)].

Given Fα,β
G ∈ FG, if for each R ∈ RN , Fα,β

G (R) ∈ E(R), we say that Fα,β
G is an effi-

cient generalized median correspondence and denote the class of efficient generalized median

correspondences by FEG. We obtain the following characterization.

Proposition 2. A generalized median correspondence Fα,β
G is an efficient generalized median

correspondence if and only if α, β are such that α∅ = β∅ = 1 and αN = βN = 0.
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Proof. Let Fα,β
G ∈ FG. First, assuming that Fα,β

G ∈ FEG such that α, β are not as described

above, results in a contradiction as follows. If αN 6= 0 or βN 6= 0, choose R ∈ RN such

that p = (0, . . . , 0). By Proposition 1, E(R) = {0} and by the definition of FG, Fα,β
G (R) =

[αN , βN ]. Hence, Fα,β
G (R) 6∈ E(R). Similarly, if α∅ 6= 1 or β∅ 6= 1, choose R ∈ RN such that

p = (1, . . . , 1), E(R) = {1}, Fα,β
G (R) = [α∅, β∅], and Fα,β

G (R) 6∈ E(R).

Second, if αN = βN = 0 and α∅ = β∅ = 1, then for each R ∈ RN , med(p, α̃p) ∈
Conv(p) and med(p, β̃p) ∈ Conv(p). Hence, Fα,β

G (R) ⊆ Conv(p), and thus, by Proposition 1,

Fα,β
G (R) ∈ E(R).

Generalized median correspondences are strategy-proof, similar to the results on functions

by Moulin (1980). However, in contrast to Moulin’s results these correspondences are not

group strategy-proof.3 The following example illustrates this.

Example 2 (Group strategy-proofness counter-example).

Let N = {1, 2, 3} and define F ′ ∈ F such that for all R ∈ RN , F ′(R) =

[med(0, 0, 0, p1, p2, p2, 1),med(0, 0, p1, p2, p3, 1, 1)], i.e.,
¯
F ′ selects the smallest peak and F̄ ′

the second smallest peak. Note that F ′ = Fα,β
G ∈ FEM with α∅ = β∅ = 1, α{i} = 0, β{i} = 1,

α{i,j} = β{i,j} = 1, and αN = βN = 0.

Now, consider symmetric R,R′ ∈ RN such that p1 = p′1 = 0, p2 = 0.5, p′2 = 0.6, and

p3 = p′3 = 1. Then, F ′(R) = [0, 0.5] and F ′(R′) = [0, 0.6]. Hence, agent 2 is indifferent when

changing preferences from R2 to R′2 while agent 3 is strictly better off after this deviation; a

contradiction to group strategy-proofness.

We now present our first main result, which generalizes Moulin (1980, Proposition 3).4

Theorem 1. The following three statements for a correspondence F ∈ F are equivalent.

(i) F satisfies strategy-proofness and peaks-onliness.

(ii) F satisfies uncompromisingness.

(iii) F is a generalized median correspondence.

3No group of agents can deviate such that all members of the group are weakly better off and at least one

member of the group is strictly better off.
4Note that this result only holds on the full domain of single-peaked preferences that we consider here but

not on the subdomain of symmetric single-peaked preferences. We explain this aspect of our result after

discussing the logical independence of characterizing properties and in Remark 2.
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We prove Theorem 1 in Appendix A. The properties in the above characterization are

independent: first, correspondence F ∗ proposed in the following example satisfies strategy-

proofness but neither peaks-onliness nor uncompromisingness; second, F̃ (R) = {¯
p+p̄

2
} satis-

fies peaks-onliness but neither strategy-proofness nor uncompromisingness.

Ching (1997, Theorem) provided an alternative characterization to Moulin (1980, Pro-

position 3) by replacing peaks-onliness with continuity. Next, we show that this result does

not extend to correspondences. We illustrate this with a correspondence satisfying strategy-

proofness and min/max continuity but violating peaks-onliness and uncompromisingness.

Moreover, the example also demonstrates that the equivalence of (i) and (ii) in Theorem 1

does not hold on the subdomain of symmetric single-peaked preferences (see also Remark 2).

Example 3 (Counter-example corresponding to Ching (1997, Theorem)).

Let |N | ≥ 1 and define r∗R ≡ max{rRi
(0)}i∈N , that is, at profile R, among the indifferent

announced alternatives to 0 of each agent i ∈ N , r∗R is the largest one. Next, define F ∗ ∈ F
as follows. For each R ∈ RN , F ∗(R) = [0, r∗R]. By definition, it follows that F ∗ satisfies

min/max continuity. Note that F ∗ satisfies neither peaks-onliness, nor voter-sovereignty,

nor efficiency.

To show that F ∗ satisfies strategy-proofness let R ∈ RN and R′i ∈ R such that R′i 6= Ri.

Case 1 (rRi
(0) = r∗R). By single-peakedness, bRi

(F ∗(R)) = {pi}, implying i’s best point does

not improve by deviating at R, and 0 ∈ wRi
(F ∗(R)). By the definition of F ∗, 0 ∈ F ∗(R−i, R′i),

hence i’s worst point(s) does not improve by deviating at R. Therefore, F ∗(R)RiF
∗(R−i, R

′
i).

Case 2 (rRi
(0) < r∗R). By single-peakedness, bRi

(F ∗(R)) = {pi}, implying i’s best point

does not improve by deviating at R, and wRi
(F ∗(R)) = {r∗R}. By the definition of F ∗,

r∗R ∈ F ∗(R−i, R
′
i), hence i’s worst point does not improve by deviating at R. Therefore,

F ∗(R)Ri F
∗(R−i, R

′
i).

To show that F ∗ does not satisfy uncompromisingness let N = {1, 2, 3} and consider

symmetric profiles R,R′ ∈ RN such that p1 = 0.2, p′1 = 0.3, and p2 = p′2 = p3 = p′3 = 0.

Hence, r∗R = rR1(0) = 0.4 and r∗R′ = rR′
1
(0) = 0.6. Therefore, F (R) = [0, 0.4] and F (R′) =

[0, 0.6] and F ∗ does not satisfy uncompromisingness.

We conclude this section by presenting the “efficient version” of Theorem 1. Notice that

now strategy-proofness and voter sovereignty imply peaks-onliness and min/max continuity ;

this generalizes a result by Ching (1997, Proposition 2).
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Theorem 2. The following three statements for a correspondence F ∈ F are equivalent.

(i) F satisfies strategy-proofness and voter-sovereignty.

(ii) F satisfies uncompromisingness and voter-sovereignty.

(iii) F is an efficient generalized median correspondence.

We prove Theorem 2 in Appendix B. The properties in the above characterization are

independent: first, a constant choice correspondence that always chooses a fixed set satisfies

strategy-proofness and uncompromisingness, but not voter-sovereignty. Second, F̃ (R) =

{¯
p+p̄

2
} satisfies voter-sovereignty but neither strategy-proofness nor uncompromisingness.

4 Conclusion

We have presented two characterization results when agents have single-peaked preferences

over locations and ordinally extend their preferences over intervals. First, strategy-proofness

and peaks-onliness characterize the class of generalized median correspondences (Theorem 1).

Second, strategy-proofness and voter-sovereignty characterize the class of efficient generali-

zed median correspondences (Theorem 2). Furthermore, in both characterizations, strategy-

proofness (and peaks-onliness) can be replaced by uncompromisingness. We next discuss

two extensions of these results.

Remark 2 (Results for symmetric single-peaked preferences). On the subdomain

of symmetric single-peaked preferences, peaks-onliness is vacuously satisfied. Then, Exam-

ple 3 illustrates that Theorem 1 does not hold on the subdomain of symmetric single-peaked

preferences since correspondence F ∗ satisfies strategy-proofness but neither satisfies uncom-

promisingness, nor is it a generalized median correspondence. In contrast, Theorem 2 does

hold on the subdomain of symmetric single-peaked preferences (Protopapas, 2018, Theo-

rem 5).

Remark 3 (Results with anonymity). Moulin (1980, Proposition 3) also characterized

the set of choice functions satisfying strategy-proofness, peaks-onliness, and anonymity5

(introduced as strategy-proof and anonymous voting schemes). The extension to our model

is as follows: let vectors a, b ∈ An+1 be such that a ≡ (a1, . . . , an+1) and b ≡ (b1, . . . , bn+1),

5The names of the agents do not affect the chosen alternative.
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with a ≤ b, a1 ≤ · · · ≤ an+1, and b1 ≤ · · · ≤ bn+1. We define the median correspondence

associated with vectors a and b for each R ∈ RN by F a,b
M (R) ≡ [med(p, a),med(p, b)].

Based on Theorem 1 and Moulin (1980, Proposition 3) (anonymity also applies to the

functions
¯
F and F̄ ), we obtain the following characterization: a choice correspondence satis-

fies strategy-proofness, peaks-onliness, and anonymity if and only if it is a median correspon-

dence (Protopapas, 2018, Theorem 2). By adding voter sovereignty and using Theorem 2, an

“efficient version” of this characterization where a1 = b1 = 0 and an+1 = bn+1 = 1 is obtained

(Protopapas, 2018, Theorem 4). Finally, on the domain of symmetric single-peaked preferen-

ces, the class of efficient median correspondences is characterized by strategy-proofness (un-

compromisingness), voter-sovereignty, and anonymity (Protopapas, 2018, Theorem 6).

Related Literature

When choosing a single alternative from a finite set (of alternatives), strategy-proofness

and voter-sovereignty characterize, on the domain of strict preferences, a class of functions

similar to the class of efficient generalized median rules (Barberà et al., 1993). Moreover, the

admissible preferences of all agents being top-connected6 characterizes the maximal domain

in which (i) every strategy-proof and unanimous function is a generalized median rule, and

(ii) every generalized median rule is strategy-proof (Achuthankutty and Roy, 2018).

When departing from the setting where agents have single-peaked preferences and only

one alternative is chosen, a few more results should be mentioned. First, in the case of

probabilistic functions,7 where the agents’ single-peaked preferences are ordinarily extended

over probability distributions via first-order stochastic dominance, similar results to Moulin’s

results (1980) were achieved (Ehlers et al., 2002). Next, if agents have single-dipped prefe-

rences,8 strategy-proofness and unanimity characterize the class of collections of 0-decisive

sets with a tie-breaker 9 (Manjunath, 2014). Klaus and Storcken (2002) consider location

6For every agent and every pair of “neighboring” alternatives (a, b), there exist admissible preferences such

that a is the most favorite alternative and b is the second most favorite alternative.
7Given the agents’ preferences, a probability distribution over all alternatives is chosen.
8An agent’s welfare is strictly decreasing up to his “dip” (his least favorite alternative), and is strictly

increasing thereafter.
9Each such function chooses either the minimum or the maximum alternative. Loosely speaking, if all

agents are indifferent between the two alternatives the choice depends on the preference profile (over all

other alternatives). Otherwise, the choice depends on the number of agents preferring the minimum over

the maximum alternative, their identities, and their preferences.
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problems in Euclidean space when agents have separable quadratic single-peaked preferen-

ces but in contrast to Border and Jordan (1983), they consider choice correspondences and

characterize the class of “coordinatewise median voting schemes” as an extension of the me-

dian without using additional and fixed coordinates (so-called phantom voters in Border and

Jordan, 1983). Klaus and Storcken (2002) also use the best-worst extension of preferences

to sets we use here. In a predecessor paper, Klaus and Protopapas (2020), for the same

model as in this paper, considered so-called solidarity properties and show that efficiency

and replacement-dominance10 characterize the class of target point functions while efficiency

and population-monotonicity11 characterize the larger class of target set correspondences.

Finally, we would like to discuss two results when preferences are single-peaked and two

alternatives can be chosen, with the agents comparing different pairs of alternatives using the

max-extension, i.e., when comparing two pairs of alternatives X = {x1, x2} and Y = {y1, y2},
an agent first locates in each pair the alternative he ranks higher, say x∗ and y∗. If he prefers

x∗ to y∗, then he also prefers X to Y . If he is indifferent between x∗ and y∗, then he is also

indifferent between X and Y .

(Heo, 2013, Theorem 1) Strategy-proofness, continuity, anonymity, and users-only12

characterize the class of double median functions13.

(Miyagawa, 2001, Theorem 1) If |N | > 3, then efficiency and replacement-dominance

characterize the class of rules comprised of the left-peaks function and the right-peaks

function14.

The class of generalized median correspondences and the class of median corresponden-

ces discussed in Remark 3 share the property of decomposability into two functions with

the double median functions characterized in Heo (2013) and the left-peaks (right-peaks)

functions characterized in Miyagawa (2001). However, there are some notable differences

between our and their results.

10Replacement-dominance: if the preferences of an agent change, then the other agents, whose preferences

remained unchanged, should all be made at least as well off as they were initially, or they should all be

made at most as well off.
11Population-monotonicity : if additional agents join a population, then the agents who were initially present

should all be made at least as well off as they were initially, or they should all be made at most as well off.
12For each pair of chosen alternatives (a, b), the choice of a depends only on agents preferring a over b.
13A double median function can be decomposed into two median rules, where for each preference profile each

one selects one alternative.
14The left (right) peaks function chooses the two unique left-most (right-most) peaks.
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First, by using the max-extension of preferences in our setting, as is the case in the two

aforementioned papers, the only efficient correspondence would be the one always choosing

the interval of the peaks, that is, for all R ∈ R, F (R) = [
¯
p, p̄]. This follows from the fact

that agents only care about their best alternative in a set and that in our setting we do not

a priori limit the number of alternatives that may be chosen at a given profile.

Second, the class of double median functions of Heo (2013) seems to be equivalent to the

class of median correspondences (see Remark 3). Specifically, the pair of alternatives (x1, x2)

chosen by a double median function are essentially the minimum and maximum alternatives

of the interval chosen by a median correspondence. However, Heo’s characterization result

makes use of users-only, a property that partitions each coalition of agents into two sub-

coalitions; one preferring x1 over x2, and everyone else, with only the first partition (second

partition) influencing the choice of alternative x1 (x2). In our setting, for each F a,b ∈ FM ,

the choice of both vectors a and b depends on the preferences of all agents.

Third, although the left-peaks function of Miyagawa (2001) seems to be a special case

of a median correspondence (see Remark 3), this is not the case; the left-peaks function

always chooses the two distinct left-most peaks, and moreover, Miyagawa’s setting requires

that at least two distinct peaks exist in each profile. In our setting, the median correspon-

dence that looks “similar” to the left-peaks function is F a,b ∈ F where a = (0, . . . , 0) and

b = (0, . . . , 0, 1). Although this correspondence seems to choose the two left-most peaks,

when two or more agents share the minimum peak, it only chooses the minimum peak.

Furthermore, in Klaus and Protopapas (2020) the same properties as in Miyagawa (2001)

(namely, efficiency and replacement-dominance) are considered, for (almost) the same set-

ting as in this paper. There, it is shown that each correspondence satisfying said properties

is essentially a function, reconfirming a characterization of Vohra (1999) for target-point

functions.15

15Each target point function is determined by its target point: if the target point is efficient, it is chosen; if

it is not efficient, the closest efficient point is chosen.

14



Appendix

A Proof of Theorem 1

Before starting the proof of Theorem 1 we show that following an agent’s preference deviation,

there are restrictions on the chosen set.

Lemma 1. For each F ∈ F satisfying strategy-proofness and peaks-onliness, each i ∈ N ,

and each R,R′ ∈ RN such that R−i = R′−i, the following hold.

(a) If pi < F̄ (R), then F̄ (R) ≤ F̄ (R′), and if in addition pi <
¯
F (R), then

¯
F (R) ≤

¯
F (R′).

(b) If pi >
¯
F (R), then

¯
F (R) ≥

¯
F (R′), and if in addition pi > F̄ (R), then F̄ (R) ≥ F̄ (R′).

Proof. (a) Let F ∈ F satisfy strategy-proofness and peaks-onliness. Let R,R′ ∈ RN and

i ∈ N be such that R−i = R′−i and pi < F̄ (R). By peaks-onliness it is without loss of

generality to assume that Ri is such that 0 Pi F̄ (R). Hence, wRi
(F (R)) = F̄ (R). Then, by

strategy-proofness, F̄ (R) Ri wRi
(F (R′)). Hence, since for all y ∈ [0, F̄ (R)), y Pi F̄ (R), we

have wRi
(F (R′)) ≥ F̄ (R) and F̄ (R′) ≥ F̄ (R).

If in addition pi <
¯
F (R), then by peaks-onliness it is without loss of generality to ad-

ditionally assume that Ri is such that 0 Pi
¯
F (R). Hence, bRi

(F (R)) =
¯
F (R). Then, by

strategy-proofness,
¯
F (R) Ri bRi

(F (R′)). Hence, since for all y ∈ [0,
¯
F (R)), y Pi

¯
F (R), we

have bRi
(F (R′)) ≥

¯
F (R) and

¯
F (R′) ≥

¯
F (R).

The proof of statement (b) is based on symmetric arguments.

Proof of Theorem 1: (i) ⇒ (ii). Let F ∈ F satisfy strategy-proofness and peaks-

onliness. We show that F satisfies uncompromisingness. Let R,R′ ∈ RN and i ∈ N be

such that R−i = R′−i. Since by peaks-onliness pi = p′i implies F (R) = F (R′), let pi < p′i.

There are four (partially overlapping) cases.

Case 1.1 (pi < p′i ≤ ¯
F (R)). By Lemma 1(a),

¯
F (R) ≤

¯
F (R′). Moreover, assuming

¯
F (R) <

¯
F (R′) results in a contradiction since then p′i < ¯

F (R′) and by Lemma 1(a),
¯
F (R′) ≤

¯
F (R).

Therefore,
¯
F (R) =

¯
F (R′).

Case 1.2 (
¯
F (R) < pi < p′i). By Lemma 1(b),

¯
F (R′) ≤

¯
F (R). Hence,

¯
F (R′) < p′i and by

Lemma 1(b),
¯
F (R) ≤

¯
F (R′). Therefore,

¯
F (R) =

¯
F (R′).

Case 2.1 (pi < p′i ≤ F̄ (R)). By Lemma 1(a), F̄ (R) ≤ F̄ (R′). Moreover, assuming F̄ (R) <

F̄ (R′) results in a contradiction since then p′i < F̄ (R′) and by Lemma 1(a), F̄ (R′) ≤ F̄ (R).

Therefore, F̄ (R) = F̄ (R′).
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Case 2.2 (F̄ (R) < pi < p′i). By Lemma 1(b), F̄ (R′) ≤ F̄ (R). Hence, F̄ (R′) < p′i and by

Lemma 1(b), F̄ (R) ≤ F̄ (R′). Therefore, F̄ (R) = F̄ (R′).

Before continuing the proof of Theorem 1 we prove the following result.

Lemma 2. If F ∈ F satisfies uncompromisingness, then it satisfies peak-monotonicity, i.e.,

for each i ∈ N and each R,R′ ∈ RN such that R′−i = R−i, if pi ≤ p′i, then
¯
F (R) ≤

¯
F (R′)

and F̄ (R) ≤ F̄ (R′).

Note that peak-monotonicity implies peaks-onliness.

Proof. Let F ∈ F satisfy uncompromisingness. Let i ∈ N and R,R′ ∈ RN be such that

R′−i = R−i and pi ≤ p′i. There are three cases.

Case 1 (pi <
¯
F (R)). We first consider

¯
F (R). If p′i ≤ ¯

F (R), then by uncompromisingness,

¯
F (R) =

¯
F (R′). Let R1

i ∈ R be such that p1
i =

¯
F (R). Then, by uncompromisingness,

¯
F (R−i, R

1
i ) =

¯
F (R). If p′i > ¯

F (R), then assuming
¯
F (R′) <

¯
F (R) leads to a contradiction

as follows. Beginning from R′, change i’s preference to R1
i . Since

¯
F (R′) <

¯
F (R) = p1

i < p′i,

by uncompromisingness,
¯
F (R′−i, R

1
i ) =

¯
F (R′). However, since R′−i = R−i, we also have

¯
F (R′−i, R

1
i ) =

¯
F (R−i, R

1
i ) =

¯
F (R), contradicting

¯
F (R′) <

¯
F (R). Therefore, we have

¯
F (R′) ≥

¯
F (R).

Next, we consider F̄ (R). Note that pi < F̄ (R). Then, the arguments to show that

F̄ (R′) ≥ F̄ (R) are the same as above with F̄ in the role of
¯
F .

Case 2 (
¯
F (R) ≤ pi < F̄ (R)). First, F̄ (R′) ≥ F̄ (R) follows by Case 1 (the argument there was

based on pi < F̄ (R)). Next, if
¯
F (R′) <

¯
F (R), then

¯
F (R′) < pi ≤ p′i and uncompromisingness

imply
¯
F (R′) =

¯
F (R), a contradiction. Hence,

¯
F (R′) ≥

¯
F (R).

Case 3 (F̄ (R) ≤ pi). If F̄ (R′) < F̄ (R), then F̄ (R′) < F̄ (R) ≤ pi ≤ p′i and uncompromising-

ness imply F̄ (R′) = F̄ (R), a contradiction. Hence, F̄ (R) ≤ F̄ (R′).

Next, we consider
¯
F (R). Note that

¯
F (R) ≤ pi. Then, the arguments to show that

¯
F (R′) ≥

¯
F (R) are the same as above with

¯
F in the role of F̄ .

Proof of Theorem 1: (ii) ⇒ (iii). Let F ∈ F satisfy uncompromisingness. By

Lemma 2, F satisfies peak-monotonicity and hence peaks-onliness. For each i ∈ N , let

Rmin
i , Rmax

i ∈ R be such that pmin
i = 0 and pmax

i = 1. We proceed in three steps.
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Step 1. Let i ∈ N , R ∈ RN , and consider profiles Rmin := (R−i, R
min
i ) and Rmax :=

(R−i, R
max
i ). Since R−i = Rmin

−i = Rmax
−i and pmin

i ≤ pi ≤ pmax
i , by Lemma 2,

¯
F (Rmin) ≤

¯
F (R) ≤

¯
F (Rmax).

We show that

¯
F (R) = med(

¯
F (R−i, R

min
i ), pi,

¯
F (R−i, R

max
i )).

Case 1 (pi <
¯
F (Rmin) ≤

¯
F (R)). Then, med(

¯
F (Rmin), pi,

¯
F (Rmax)) =

¯
F (Rmin). Since 0 =

pmin
i ≤ pi <

¯
F (R), uncompromisingness implies

¯
F (Rmin) =

¯
F (R). Therefore,

¯
F (R) =

¯
F (Rmin) = med(

¯
F (Rmin), pi,

¯
F (Rmax)).

Case 2 (pi >
¯
F (Rmax) ≥

¯
F (R)). Then, med(

¯
F (Rmin), pi,

¯
F (Rmax)) =

¯
F (Rmax). Since

1 = pmax
i ≥ pi >

¯
F (R), uncompromisingness implies

¯
F (Rmax) =

¯
F (R). Therefore,

¯
F (R) =

¯
F (Rmax) = med(

¯
F (Rmin), pi,

¯
F (Rmax)).

Case 3 (
¯
F (Rmin) ≤ pi ≤

¯
F (Rmax)). Then, med(

¯
F (Rmin), pi,

¯
F (Rmax)) = pi. Assu-

ming pi <
¯
F (R) and thus

¯
F (Rmin) <

¯
F (R) results in a contradiction as follows. Since

0 = pmin
i ≤ pi <

¯
F (R), uncompromisingness implies

¯
F (Rmin) =

¯
F (R). Similarly, as-

suming
¯
F (R) < pi and thus

¯
F (R) <

¯
F (Rmax) results in a contradiction as follows.

Since
¯
F (R) < pi ≤ pmax

i , uncompromisingness implies
¯
F (R) =

¯
F (Rmax). Therefore,

¯
F (R) = pi = med(

¯
F (Rmin), pi,

¯
F (Rmax)).

The arguments to show that

F̄ (R) = med(F̄ (R−i, R
min
i ), pi, F̄ (R−i, R

max
i ))

are the same as above with F̄ in the role of
¯
F .

Step 2. We construct two vectors α and β. We will use a different letter (U instead of R)

to label the following profiles.16 For each M ⊆ N , let UM ∈ RN be such that all agents in

M announce 0 as their peak and all other agents announce 1 as their peak, i.e.,

uM = (0, . . . , 0︸ ︷︷ ︸
i ∈M

, 1, . . . , 1︸ ︷︷ ︸
i ∈ N \M

).

Next, let vectors α = (αM)M⊆N and β = (βM)M⊆N be such that

αM =
¯
F (UM) and βM = F̄ (UM) (note that αM ≤ βM).

16This is done to distinguish different types of profiles in Step 3 of the proof.
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Let L,M ⊆ N be such that L ( M . Then, for each i ∈ M \ L, UL
i 6= UM

i (because

uLi = 1 > 0 = uMi ), and for each i 6∈ M \ L, UL
i = UM

i . Beginning from profile UL,

(sequentially) change the preferences of agents i ∈ M \ L to UM
i . Since for each i ∈ M \ L,

uLi > uMi , by (sequentially) applying peak-monotonicity, we conclude that αL ≥ αM and

βL ≥ βM .

Step 3. We show that F is a generalized median correspondence associated with vectors α

and β that were constructed in Step 2.

Let R ∈ RN . Without loss of generality, index the agents in N such that p1 ≤ p2 ≤
· · · ≤ pn. Recall vectors α, β and profiles UM (M ⊆ N) defined in Step 2. Let vectors

α̃p, β̃p ∈ An+1 be such that

α̃p = (α∅, α{1}, α{1,2}, . . . , αN) and β̃p = (β∅, β{1}, β{1,2}, . . . , βN).

Since the coordinates of α̃p and β̃p are such that 0 ≤ αN ≤ · · · ≤ α∅ ≤ 1 and 0 ≤
βN ≤ · · · ≤ β∅ ≤ 1, and u∅ = (1, . . . , 1), we have

¯
F (U∅) = med(u∅, α̃p) = α∅ and F̄ (U∅) =

med(u∅, β̃p) = β∅. Moreover, for each i ∈ {1, . . . , n},

u{1,...,i} = ( 0, . . . , 0︸ ︷︷ ︸
j ∈ {1, . . . , i}

, 1, . . . , 1︸ ︷︷ ︸
j ∈ {i+ 1, . . . , n}

)

implies

¯
F (U{1,...,i}) = med(u{1,...,i}, α̃p) = α{1,...,i} and F̄ (U{1,...,i}) = med(u{1,...,i}, β̃p) = β{1,...,i}.

Next, for each i ∈ {1, . . . , n}, let Ri ∈ RN be such that

Ri = (R1, . . . , Ri, R
max
i+1 , . . . , R

max
n ) (note that Rn = R).

Note that at profiles Ri the order of agents’ peaks does not change, i.e., for each i ∈
{1, . . . , n}, we have pi1 ≤ pi2 ≤ · · · ≤ pin. Hence, for each i ∈ {1, . . . , n}, α̃pi = α̃p and

β̃pi = β̃p; in the sequel we will therefore use α̃p and β̃p instead of α̃pi and β̃pi .

We show that F (R) = Fα,β
G (R) = [med(p, α̃p),med(p, β̃p)] by induction.

Induction basis. We show that F (R1) = Fα,β
G (R1).

Consider profileR1 = (R1, R
max
2 , . . . , Rmax

n ). Recall profiles U{1} = (Rmin
1 , Rmax

2 , . . . , Rmax
n )

and U∅ = (Rmax
1 , . . . , Rmax

n ). Hence, U{1} = (R1
−1, R

min
1 ) and U∅ = (R1

−1, R
max
1 ). By Step 1,

¯
F (R1) = med(

¯
F (U{1}), p1,

¯
F (U∅)) and F̄ (R1) = med(F̄ (U{1}), p1, F̄ (U∅)).
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Hence,

¯
F (R1) = med(α{1}, p1, α{∅}) and F̄ (R1) = med(β{1}, p1, β{∅}).

Moreover, since

αN ≤ · · · ≤ α{1}︸ ︷︷ ︸
n terms

≤ α∅ ≤ p1
2 = · · · = p1

n︸ ︷︷ ︸
n terms

= 1 and βN ≤ · · · ≤ β{1}︸ ︷︷ ︸
n terms

≤ β∅ ≤ p1
2 = · · · = p1

n︸ ︷︷ ︸
n terms

= 1,

we have that

¯
F (R1) = med(p1, α̃p) and F̄ (R1) = med(p1, β̃p).

Therefore, F (R1) = Fα,β
G (R1).

Induction hypothesis. For i ∈ {2, . . . , n}, F (Ri−1) = Fα,β
G (Ri−1).

Induction step. We show that F (Ri) = Fα,β
G (Ri). More specifically, we show

¯
F (Ri) =

¯
Fα,β
G (Ri). The proof that F̄ (Ri) = F̄α,β

G (Ri) is obtained by using the same arguments with

F̄ in the role of
¯
F and β̃p in the role of α̃p. Recall that

Ri−1 = (R1, . . . , Ri−1, R
max
i , . . . , Rmax

n ) and Ri = (Ri−1
−i , Ri).

There are three cases.

Case 1 (pi >
¯
F (Ri)). Since Ri−1

−i = Ri
−i and

¯
F (Ri) < pi = pii ≤ pi−1

i = pmax
i = 1,

by uncompromisingness,
¯
F (Ri) =

¯
F (Ri−1) = med(pi−1, α̃p). Thus, Ri−1

−i = Ri
−i and

med(pi−1, α̃p) < pi = pii ≤ pi−1
i = 1 implies med(pi−1, α̃p) = med(pi, α̃p). Hence,

¯
F (Ri) = med(pi, α̃p) =

¯
Fα,β
G (Ri).

Case 2 (pi <
¯
F (Ri)). Recall that U{1,...,i} = (Rmin

1 , . . . , Rmin
i , Rmax

i+1 , . . . , R
max
n ). Since p1 ≤

· · · ≤ pn and pi = pii < ¯
F (Ri), for each j ∈ {1, . . . , i}, 0 = pmin

j ≤ pj = pij < ¯
F (Ri). Hence,

by uncompromisingness,
¯
F (Ri

−j, R
min
j ) =

¯
F (Ri). Beginning from profile Ri, (sequentially)

change the preferences of agents j ∈ {1, . . . , i} to Rmin
j . Then, by (sequentially applying)

uncompromisingness,
¯
F (Ri) =

¯
F (U{1,...,i}). We have shown at the beginning of Step 3

that
¯
F (U{1,...,i}) = α{1,...,i}. Thus,

¯
F (Ri) = α{1,...,i}. Then, pi1 ≤ . . . ≤ pii < α{1,...,i} and

pii+1 = . . . = pin = 1 ≥ α{1,...,i}. This implies med(pi, α̃p) = α{1,...,i}. Hence,
¯
F (Ri) =

med(pi, α̃p) =
¯
Fα,β
G (Ri).

Case 3 (pi =
¯
F (Ri)). Since Ri−1

−i = Ri
−i and pi = pii ≤ pi−1

i = pmax
i = 1, by peak-

monotonicity,
¯
F (Ri) ≤

¯
F (Ri−1). Thus, p1 ≤ · · · ≤ pn and pi = pii =

¯
F (Ri) imply pii−1 =

pi−1
i−1 ≤ ¯

F (Ri−1). There are two sub-cases.
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Case 3.1 (pii−1 =
¯
F (Ri−1)). Thus, pii−1 = pii = pi =

¯
F (Ri) =

¯
F (Ri−1). Hence,

¯
F (Ri−1) =

¯
Fα,β
G (Ri−1) implies med(pi−1, α̃p) = pi = pii ≤ pi−1

i = 1. This implies

med(pi, α̃p) = med(pi−1, α̃p). Hence,
¯
F (Ri) = med(pi, α̃p) =

¯
Fα,β
G (Ri).

Case 3.2 (pii−1 < ¯
F (Ri−1)). Recall that U{1,...,i−1} = (Rmin

1 , . . . , Rmin
i−1 , R

max
i , . . . , Rmax

n ) with

¯
F (U{1,...,i−1}) = α{1,...,i−1}. By the same arguments as at the beginning of Case 2, pii−1 <

¯
F (Ri−1) implies that

¯
F (Ri−1) =

¯
F (U{1,...,i−1}) = α{1,...,i−1}. Since pi =

¯
F (Ri) ≤

¯
F (Ri−1), it

follows that pi ≤ α{1,...,i−1}.

Recall that U{1...,i} = (Rmin
1 , . . . , Rmin

i , Rmax
i+1 , . . . , R

max
n ) with

¯
F (U{1,...,i}) = α{1,...,i}. Begin-

ning from profile U{1,...,i}, (sequentially) change the preferences of all agents j ∈ {1, . . . , i} to

Rj and obtain profile Ri = (R1, . . . , Ri, R
max
i+1 , . . . , R

max
n ). Since for each j ∈ {1, . . . , i}, pij ≥

pmin
j = 0, by (sequentially) applying peak-monotonicity, we obtain

¯
F (Ri) ≥

¯
F (U{1,...,i}) =

α{1,...,i}. Hence, pi ≥ α{1,...,i} and it follows that α{1,...,i} ≤ pi ≤ α{1,...,i−1}.

Thus, since αN ≤ · · · ≤ α∅, vector α̃p contains at least n + 1 − i coordinates not larger

than pi (i.e., coordinates α{1,...,i}, . . . , αN) and at least i coordinates not smaller than pi

(i.e., coordinates α∅, . . . , α{1,...,i−1}). In addition, since p1 ≤ · · · ≤ pn, at least i agents

announce peaks not larger than pi (i.e., agents 1, . . . , i) and n − i + 1 agents announce

peaks not smaller than pi (i.e., agents i, . . . , n). This implies med(pi, α̃p) = pi. Hence,

¯
F (Ri) = pi = med(pi, α̃p) =

¯
Fα,β
G (Ri).

Proof of Theorem 1: (iii) ⇒ (i). Let Fα,β
G ∈ FG. By definition, Fα,β

G satisfies peaks-

onliness. By Moulin (1980, Proposition 3),
¯
Fα,β
G and F̄α,β

G are strategy-proof and by Border

and Jordan (1983, Proposition 1),
¯
Fα,β
G and F̄α,β

G satisfy uncompromisingness. Then, by

Lemma 2,
¯
Fα,β
G and F̄α,β

G satisfy peak-monotonicity. To show that Fα,β
G satisfies strategy-

proofness let i ∈ N , R,R′ ∈ RN such that R−i = R′−i.

Case 1 (pi ≤
¯
Fα,β
G (R)). First, if pi > p′i, by uncompromisingness,

¯
Fα,β
G (R) =

¯
Fα,β
G (R′) and

F̄α,β
G (R) = F̄α,β

G (R′). Hence, Fα,β
G (R) = Fα,β

G (R′).

Second, if pi ≤ p′i, by peak-monotonicity,
¯
Fα,β
G (R) ≤

¯
Fα,β
G (R′) and F̄α,β

G (R) ≤ F̄α,β
G (R′),

which implies Fα,β
G (R)Ri F

α,β
G (R′).

Case 2 (pi ≥ F̄α,β
G (R)). Symmetric to Case 1.

Case 3 (
¯
Fα,β
G (R)) < pi < F̄α,β

G (R)). Then, bRi
(Fα,β

G (R)) = pi Ri bRi
(Fα,β

G (R′)). Next,

wRi
(Fα,β

G (R)) ∈ {
¯
Fα,β
G (R), F̄α,β

G (R)}. By strategy-proofness of
¯
Fα,β
G and F̄α,β

G ,
¯
Fα,β
G (R) Ri

¯
Fα,β
G (R′) and F̄α,β

G (R) Ri F̄
α,β
G (R′), which implies wRi

(Fα,β
G (R)) Ri wRi

(Fα,β
G (R′)). Hence,

Fα,β
G (R)Ri F

α,β
G (R′).
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B Proof of Theorem 2

Before proving Theorem 2, we prove some intermediate results.

Lemma 3. If F ∈ F satisfies strategy-proofness and voter-sovereignty, then it satisfies

unanimity, i.e., for each R ∈ RN such that p = (x, . . . , x), F (R) = {x}.

Proof. Let F ∈ F satisfy strategy-proofness and voter-sovereignty. We show that F satisfies

unanimity. Let a ∈ A and Ra ∈ RN be such that pa = (a, . . . , a). By voter-sovereignty, there

exists R0 ∈ RN such that F (R0) = {a}. First, consider profile R1 := (Ra
1, R

0
−1). By strategy-

proofness, F (R1)Ra
1F (R). Since F (R0) = {a} = {pa1}, we then have F (R1) = {a}. Next, for

each i ∈ {2, . . . , n} (sequentially) consider profile Ri := (Ra
i , R

i−1
−i ). By strategy-proofness

we again obtain F (Ri) = F (Ri−1) = {a}. Therefore, since Rn = Ra, F (Ra) = {a}.

Lemma 4. If F ∈ F satisfies strategy-proofness and voter-sovereignty, then F satisfies

efficiency.

Proof. Let F ∈ F satisfy strategy-proofness and voter-sovereignty. By Lemma 3, F satisfies

unanimity. We show that F satisfies efficiency. The proof proceeds in two steps.

Step 1. Let R ∈ RN such that p1 = p2 ≤ . . . ≤ pn and F (R) ∈ E(R). By Proposition 1,
¯
p =

p1 ≤
¯
F (R) ≤ F̄ (R) ≤ pn = p̄. Consider R′1 ∈ R such that p′1 ≥ pn and let R′ := (R′1, R−1).

If p′1 = p1, then p1 = . . . = pn and by unanimity, F (R′) = {p1} ∈ E(R′). Assume p′1 > p1.

We show that F (R′) ∈ E(R).

If
¯
F (R′) < p1 =

¯
p′, then

¯
F (R′) <

¯
F (R) ≤ F̄ (R) ≤ p′1. Hence, wR′

1
(F (R)) =

¯
F (R) P ′1 ¯

F (R′). Thus, wR′
1
(F (R)) P ′1 wR′

1
(F (R′)), contradicting strategy-proofness. The-

refore,
¯
F (R′) ≥

¯
p′.

Recall that p1 = p2 < p′1. If F̄ (R′) > p′1 = p̄′, then p2 ≤
¯
F (R′) ≤ F̄ (R′) and wR2(F (R′)) =

F̄ (R′). Consider R̂2 ∈ R such that p̂2 = p′1 and p2 Î2 F̄ (R′). Note that wR̂2
(F (R′)) Î2 F̄ (R′).

Let R̂ := (R̂2, R
′
−2). By strategy-proofness, wR̂2

(F (R̂)) R̂2wR̂2
(F (R′)). Hence, wR̂2

(F (R̂)) Î2

F̄ (R′) R̂2 p2. Thus, wR̂2
(F (R̂)) ∈ [p2, F̄ (R̂)]. Then, wR2(F (R̂)) = F̄ (R̂). If F̄ (R̂) ≤ p̂2, then

wR2(F (R̂)) P2 wR2(F (R′)), contradicting strategy-proofness. Hence, F̄ (R̂) > p̂2 = p′1.

Set R̂2 ≡ R̂. Thus, F̄ (R̂2) > p̂2
2 = p′1. We now (sequentially) consider for each j ∈

{3, . . . , k} with pj < p′1 preferences R̂j ∈ R such that p̂j = p′1 and pj Îj F̄ (R̂j−1). Let

R̂j := (R̂j, R̂
j−1
−j ). Then, by the same arguments as above for R̂j instead of R̂2, we obtain

that F̄ (R̂j) > p′1. In particular, for the final profile R̂k, F̄ (R̂k) > p′1. However, profile
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R̂k is such that for all agents i ∈ N , p(R̂k
i ) = p′1. Thus, by unanimity, F (R̂k) = {p′1}, a

contradiction. Hence, F̄ (R′) ≤ p′1 = p̄′.

Therefore,
¯
p′ ≤

¯
F (R′) ≤ F̄ (R′) ≤ p̄′ and F (R′) ∈ E(R′).

Step 2. Let R ∈ RN such that p1 ≤ · · · ≤ pn. Let R1 ∈ RN be such that R1 := (R1, . . . , R1).

By unanimity, F (R1) = {p1}. Hence, by Proposition 1, F (R1) ∈ E(R1). Next, consider

profile R2 := (R2, R
1
−2) where p2 ≥ p1

2 = p1,
¯
p2 =

¯
p1, and p̄2 ≥ p̄1. Since F (R1) ∈ E(R1), by

Step 1 (with agent 2 in the role of agent 1) we conclude F (R2) ∈ E(R2). We (sequentially)

consider for each i = {3, . . . , n} profile Ri := (Ri, R
i−1
−i ). Since F (Ri−1) ∈ E(Ri−1), by Step 1

(with agent i in the role of agent 1) we conclude F (Ri) ∈ E(Ri). Therefore, since Rn ≡ R,

F (R) ∈ E(R).

Lemma 5. If F ∈ F satisfies strategy-proofness and voter-sovereignty, then for each R,R′ ∈
RN and each i ∈ N such that R−i = R′−i the following holds:

(a) if pi <
¯
F (R) and p′i ≤ ¯

F (R), then F (R) = F (R′) and

(b) if pi > F̄ (R) and p′i ≥ F̄ (R), then F (R) = F (R′).

Proof. Let F ∈ F satisfy strategy-proofness and voter-sovereignty. By Lemma 4, F satisfies

efficiency. Let R,R′ ∈ RN and i ∈ N be such that R−i = R′−i. Assume that p1 ≤ · · · ≤ pn.

(a) Let pi <
¯
F (R) and p′i ≤ ¯

F (R). We have that bRi
(F (R)) =

¯
F (R) and wRi

(F (R)) = F̄ (R).

If
¯
F (R′) >

¯
F (R), then bR′

i
(F (R)) =

¯
F (R) P ′i ¯

F (R′) = bR′
i
(F (R′)), contradicting strategy-

proofness. Hence,
¯
F (R′) ≤

¯
F (R). If

¯
F (R′) ∈ [pi,

¯
F (R)), then bRi

(F (R′)) =
¯
F (R′)Pi

¯
F (R) =

bRi
(F (R)), contradicting strategy-proofness. Hence,

¯
F (R′) =

¯
F (R) or

¯
F (R′) < pi.

Assuming
¯
F (R′) < pi leads to a contradiction as follows. If F̄ (R′) ≥ pi, then bRi

(F (R′)) =

pi Pi
¯
F (R) = bRi

(F (R)), contradicting strategy-proofness. Hence, F̄ (R′) < pi. By efficiency,

p1 ≤
¯
F (R′) ≤ F̄ (R′) < pi <

¯
F (R) ≤ F̄ (R).

Hence, 1 6= i. Consider R̂1 ∈ R such that p̂1 = pi and F̄ (R′) P̂1
¯
F (R) and let

R1 := (R̂1, Ri, R−1,i) and R̃1 = (R̂1, R
′
i, R−1,i). Note that R̃1 = (R̂1, R

′
−1) = (R̂i, R

1
−i).

By efficiency, p1 ≤
¯
F (R1). Then, p1 < p̂1 <

¯
F (R) ≤ F̄ (R) and strategy-proofness imply

F (R1) = F (R).

Now, starting from R̃1 = (R̂1, R
′
−1), strategy-proofness implies that bR̂1

(F (R̃1)) R̂1

bR̂1
(F (R′)) = F̄ (R′). Since F̄ (R′) P̂1

¯
F (R) =

¯
F (R1), we have bR̂1

(F (R̃1)) P̂1
¯
F (R1) =

bR̂1
(F (R1)). Hence, bR̂1

(F (R̃1)) ∈ [F̄ (R′),
¯
F (R1)). Recall that R̃1 = (R̂i, R

1
−i). Hence, if
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bR̂1
(F (R̃1)) ∈ [pi,

¯
F (R1)), then bRi

(F (R̃1)) Pi bRi
(F (R1)) =

¯
F (R1), contradicting strategy-

proofness. Thus, bR̂1
(F (R̃1)) ∈ [F̄ (R̂), pi) and F̄ (R̃1) < pi <

¯
F (R).

We now (sequentially) consider for each j ∈ {2, . . . , k} with pj ≤ F̄ (R̃j−1) < pi <
¯
F (Rj−1)

preferences R̂j ∈ R such that p̂j = pi and F̄ (R̃j−1) P̂j
¯
F (Rj−1). Let Rj := (R̂j, R

j−1
−j ) and

R̃j := (R̂j, R̃
j−1
−j ). Then, for each pair of profiles Rj and R̃j, by the same arguments as

above, we obtain that F̄ (R̃j) < pi = p̂j <
¯
F (Rj). However, final profile R̃k is such that

F̄ (R̃k) < pi =
¯
p̃k, contradicting efficiency.

We can now conclude that
¯
F (R′) =

¯
F (R). Then, p′i ≤ ¯

F (R′) =
¯
F (R) ≤ F̄ (R) and

strategy-proofness imply F̄ (R′) = F̄ (R). Hence, F (R′) = F (R).

(b) Let pi > F̄ (R) and p′i ≥ F̄ (R). By symmetric arguments to the ones presented in

Part (a) for F̄ instead of
¯
F it follows that F (R) = F (R′).

Lemma 6. If F ∈ F satisfies strategy-proofness and voter-sovereignty, then F satisfies

peaks-onliness.

Proof. Let F ∈ F satisfy strategy-proofness and voter-sovereignty. By Lemma 4, F satisfies

efficiency. Let R,R′ ∈ RN and i ∈ N be such that R−i = R′−i. Assume that p1 ≤ · · · ≤ pn

and that pi = p′i. We prove that F (R) = F (R′). There are three cases.

Case 1 (pi <
¯
F (R)). Hence, p′i < ¯

F (R) and by Lemma 5 (a), F (R) = F (R′).

Case 2 (pi > F̄ (R)). Hence, p′i > F̄ (R) and by Lemma 5 (b), F (R) = F (R′).

Case 3 (
¯
F (R)) ≤ pi ≤ F̄ (R)). If

¯
F (R) = pi = F̄ (R), then bR′

i
(F (R)) = wR′

i
(F (R)) = pi = p′i

and by strategy-proofness, bR′
i
(F (R′)) = wR′

i
(F (R′)) = p′i. Hence, F (R) = F (R′).

Without loss of generality, assume that
¯
F (R) < pi ≤ F̄ (R) (the case

¯
F (R) ≤ pi < F̄ (R) is

proven symmetrically). Then, bR′
i
(F (R)) = pi = p′i and by strategy-proofness, bR′

i
(F (R′)) =

p′i. Hence,
¯
F (R′) ≤ p′i ≤ F̄ (R′). We prove that

¯
F (R) =

¯
F (R′) by contradiction. Assume

that
¯
F (R) 6=

¯
F (R′). More specifically, assume that

¯
F (R) <

¯
F (R′) (the case

¯
F (R′) <

¯
F (R)

is then proven by exchanging the roles of R and R′). If F̄ (R′) < F̄ (R), then
¯
F (R) <

¯
F (R′) ≤ F̄ (R′) ≤ F̄ (R) and wRi

(F (R′)) Pi wRi
(F (R)), contradicting strategy-proofness.

Hence, F̄ (R) ≤ F̄ (R′). By Lemma 5, it is without loss of generality to assume that p1 =
¯
F (R)

and pn = F̄ (R′). Hence,

p1 =
¯
F (R) <

¯
F (R′) ≤ pi = p′i ≤ F̄ (R) ≤ F̄ (R′) = pn.

If pi = pn = p̄, then by efficiency,
¯
F (R) <

¯
F (R′) ≤ pi = p′i = F̄ (R) = F̄ (R′). Thus,

wRi
(F (R′)) =

¯
F (R′)Pi

¯
F (R) = wRi

(F (R)), contradicting strategy-proofness. Hence, pi < pn.
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Consider R̂n ∈ R such that p̂n = pi and F̄ (R′) P̂n
¯
F (R). Then, wR̂n

(F (R′)) P̂n
¯
F (R).

Let Rn := (Ri, R̂n, R−n,i) and R̃n := (R′i, R̂n, R−n,i). Note that Rn = (R̂n, R−n) and R̃n =

(R̂n, R
′
−n).

Since bR̂n
(F (R)) = p̂n, by strategy-proofness, bR̂n

(F (Rn)) = p̂n and
¯
F (Rn) ≤ p̂n ≤

F̄ (Rn). Since Rn = (R̂n, R−n) and wRn(F (R)) =
¯
F (R), by strategy-proofness,

¯
F (Rn) ≤

¯
F (R) = p1. Then, by efficiency,

¯
F (Rn) =

¯
F (R).

Since R̃n = (R̂n, R
′
−n) and bR̂n

(F (R′)) = p̂n, by strategy-proofness, bR̂n
(F (R̃n)) = p̂n and

¯
F (R̃n) ≤ p̂n ≤ F̄ (R̃n). By efficiency, p1 =

¯
F (R) ≤

¯
F (R̃n). Recall that wR̂n

(F (R′)) P̂n
¯
F (R).

Hence, if
¯
F (R) =

¯
F (R̃n), then wR̂n

(F (R′)) P̂nwR̂n
(F (R̃n)), contradicting strategy-proofness.

Hence, p1 =
¯
F (R) <

¯
F (R̃n). Similarly as before, by Lemma 5, we can assume that

p1 =
¯
F (Rn) <

¯
F (R̃n) ≤ pi = p′i ≤ F̄ (Rn) ≤ F̄ (R̃n) = pn−1.

We now (sequentially) consider for each j ∈ {n−1, n−2, . . . , k} with pi < pj preferences

R̂j ∈ R such that p̂j = pi and F̄ (R̃j+1)P̂j
¯
F (Rj+1). Let Rj = (R̂j, R

j+1
−j ) and R̃j = (R̂j, R̃

j+1
−j ).

Then, for each pair of profiles Rj and R̃j, by the same arguments as above, we obtain that

p1 =
¯
F (Rj) <

¯
F (R̃j) ≤ pi = p′i ≤ F̄ (Rj) ≤ F̄ (R̃j) = pj−1.

However, the final profiles Rk and R̃k are such that Rk
−i = R̃k

i and

p1 =
¯
F (Rk) <

¯
F (R̃k) ≤ pi = p′i = F̄ (Rk) = F̄ (R̃k).

Thus, wRi
(F (R̃k)) =

¯
F (R̃k) Pi

¯
F (Rk) = wRi

(F (Rk)), contradicting strategy-proofness. We

can now conclude that
¯
F (R′) =

¯
F (R). Assuming F̄ (R′) 6= F̄ (R) leads to a contradiction in

a symmetric fashion. Hence, F (R′) = F (R).

Proof of Theorem 2. We start with statement (i) and F satisfying strategy-proofness

and voter sovereignty. Then, by Lemma 6, F satisfies peaks-onliness. Hence, by Theorem 1

((i) ⇒ (iii)), F ∈ FG. Since F satisfies peaks-onliness, by Lemma 4, F satisfies efficiency.

Hence, F ∈ FEG and statement (i) implies statement (iii).

Second, we show that statement (iii) implies statement (ii). By Theorem 1 ((iii) ⇒ (ii)),

each F ∈ FG satisfies uncompromisingness. Since F satisfies efficiency it also satisfies the

weaker property of voter-sovereignty. Hence, statement (iii) implies statement (ii).

Finally, by Theorem 1 ((ii) ⇒ (i)), uncompromisingness implies strategy-proofness and

peaks-onliness. Hence, statement (ii) implies statement (i).
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Barberà, S. (2011): Handbook of Social Choice and Welfare, chapter 25 “Strategyproof social

choice”. Elsevier, Amsterdam, NL.
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