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Summary 
 
Prostate cancer is a commonly diagnosed non-cutaneous malignancy and one of the leading 

causes of cancer-related deaths in men. Particularly, advanced prostate cancer is considered of 

high-risk with poor prognosis and survival. Several studies have identified that activation 

NOTCH pathway is associated with advanced stage of the disease and therapy-resistance in 

patients. However, the mechanism by which NOTCH pathway is activated in prostate cancer still 

remains unknown. Moreover, preclinical studies determining the therapeutic efficacy of NOTCH 

pathway inhibitors in prostate cancer is lacking. Here, in this study we show that loss of PTEN, a 

frequently altered tumour suppressor gene in prostate cancer, upregulates the expression of 

ADAM17, thereby activating NOTCH signalling in prostate tumours. Mechanistically, loss of 

PTEN triggers the accumulation of an oncogenic isoform of the transcription factor CUX1 that 

favours ADAM17 transcription. Notably, over-expression of the oncogenic isoform of CUX1 

(p110 CUX1) both in vitro and in vivo resulted in up-regulation of ADAM17 and activation of 

NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with 

preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that 

Pten-deficient prostate tumours are addicted to the Notch signalling. Importantly, we demonstrate 

that pharmacological inhibition of 
 
Notch pathway using g-secretase inhibitor promotes growth arrest and restricts tumour-

invasiveness in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular 

senescence. 

Taken together, our study describes a novel pro-tumorigenic network that links PTEN-loss to 

ADAM17 and NOTCH signalling in a PI3K-independent manner, thus providing the 

rationale for the use of NOTCH pathway inhibitors in advance prostate cancer patients. 
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Résumé 
 
Le cancer de la prostate est une maladie non-cutanée et l’une des causes majeures de décès 

par cancer chez les hommes. Le cancer de la prostate à stade avancé a notamment un mauvais 

pronostic vital et un taux de survie très faible. Plusieurs études ont montré que la voie de 

signalisation NOTCH était associée à l’état avancé de la maladie et à la résistance 

thérapeutique chez les patients traités. Cependant, le mécanisme par lequel la voie de 

signalisation Notch est activée dans le cancer de la prostate reste méconnu. De plus, les 

études précliniques déterminant l’efficacité thérapeutique des inhibiteurs de la voie Notch 

sont absents dans le cancer de la prostate. Notre étude montre que la perte de PTEN, un gène 

suppresseur de tumeur fréquemment altéré dans le cancer de la prostate, augmente 

l’expression de ADAM17, et de ce fait active la voie NOTCH dans les tumeurs de la prostate. 

La perte de PTEN enclenche l’accumulation d’un isoforme oncogénique du facteur de 

transcription CUX1 permettant la transcription de ADAM17. Plus précisément, la 

surexpression de l‘isoforme oncogénique de CUX1 (p110 CUX1) in vitro et in vivo, conduit à 

la surexpression de ADAM17 et à la voie de signalisation NOTCH. A l’aide de la technique 

d’inactivation conditionnelle de Pten et Notch dans la prostate, ainsi que d’essais précliniques 

effectué dans les modèles murins knock-out du gène Pten, nous avons démontré que les 

tumeurs de la prostate déficientes en Pten étaient dépendantes de la voie de signalisation 

NOTCH. Nous avons notamment démontré que l’inhibition de NOTCH par un inhibiteur de γ 

-sécrétase, permettait l’arrêt de la croissance tumorale et limitait l’invasion tumorale dans les 

modèles murins knock-out Pten et Pten/Trp53 du cancer de la prostate et ce en déclenchant la 

sénescence cellulaire. Notre étude décrit ainsi un nouveau réseau pro tumorigénique liant la 

perte de PTEN à ADAM17 et à la voie de signalisation NOTCH, de manière indépendante de 

la voie PI3K. Cette étude justifie ainsi l’utilisation d’inhibiteurs de la voie NOTCH pour les 

patients atteints du cancer de la prostate en stade avancé. 
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1. Introduction 
 
1.1 Prostate cancer: a brief overview 
 
Prostate cancer is one of the most common cancer-type and a leading cause of cancer-related 

deaths in men. As of 2017, American Cancer Society estimates nearly 161,360 new cases of 

prostate cancer with approximately 26,730 deaths related to prostate cancer1. A single most 

risk factor that is known to trigger prostate cancer is age. While there is a chance of 1 in 

10,000 men younger than 40 years to develop prostate cancer, this risk is augmented to 1 in 7 

by the age of 602. This relationship between prostate cancer and age is likely due to multiple 

risk factors such as environmental, physiological, genetic and ageing-related consequences3. 

While prostate cancer is an age-related disorder, various processes known to initiate prostate 

tumorigenesis remain oxidative stress and DNA damage, genetic and epigenetic alterations, 

inflammation, genetic factors and telomere-shortening. Many of the risk factors for prostate 

cancer such as age, race and family history cannot be controlled, however, early detection 

and screening methods have made it easier to treat such cancers4. 
 
Prostate cancer can be detected early by a highly accessible blood test for prostate-specific 

antigen (PSA) and digital rectal examination (DRE). Patients with elevated levels of PSA, 

typically undergo biopsies in order to detect the presence of any potential prostatic tumour 

lesions. Histopathologically, prostate tissues obtained from such biopsies are graded according to 

the ‘Gleason grades’ from most-differentiated to least-differentiated (Low-grade to high-grade 

respectively) on the scale of 1 to 55. A combination of Gleason grades from two most 

predominant patterns determines the Gleason score. Prostate tumours with a Gleason score 

between 2-4 are considered to be less aggressive, while the ones in the range of 7-10 accounts for 

the most aggressive ones6,7. Apart from the benefits of early diagnosis provided by PSA 

screening, most of which represent a latent or indolent form of the disease, it is still difficult to 
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distinguish between the ones that will eventually evolve into more aggressive forms. At present 

this poses an absolute need to develop better molecular and diagnostic markers and approaches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image1: Stages of human prostate cancer progression 
 

 
for effective management of prostate cancer along with the current histological analysis. 

Histopathological analysis of prostate biopsies still remains the major assessment criteria for 

prostate cancer to determine tumour grades and aggressiveness. Progression pattern for 

human prostate tumorigenesis is outlined in Image18. 
 
Histologically, prostatic-intraepithelial neoplasia (PIN) is considered to be a precursor of 

prostate tumorigenesis prone/susceptible to evolve into an advanced form of the disease upon 

a combination of multiple aforementioned risk factors. While hyperplasia precedes PIN, PIN 

accounts for the pre-invasive stage of adenocarcinoma, preceding the onset of carcinoma by 

over 10 years9. PIN is mainly characterized by luminal epithelial hyperplasia, enlargement of 

nuclei, reduction in basal cells and nuclear atypia. Increase in the proliferative index of the 

tumour cells with these characteristics result in the development of high-grade PIN (HG-

PIN)10. Studies using transgenic mouse models have successfully highlighted the role of 

several genetic alterations that result in development of PIN and subsequently prostate 

cancer. Some of these genetic alterations include complete loss of tumour suppressor genes 

such as PTEN and Nkx3.111,12,13. Moreover, overexpression of proto-oncogene c-Myc in 

prostatic epithelia, mimicking its aberrant expression levels, is also known to drive PIN14. 



14 
 

 
 

 
PhD Dissertation  
 
 
Most common type of prostate cancer corresponds to Adenocarcinoma, while mucinous 

carcinoma, signet-ring carcinoma and sarcoma are extremely rare forms of prostate cancer15. 

Adenocarcinoma, mainly of acinar type, has been distinguished into well-differentiated and 

poorly differentiated histological appearance8. In well-differentiated adenocarcinoma, most of the 

prostate glands lie in an irregular shape, loosely distributed in fibromuscular stroma with 

expansion in luminal cell compartment and reduction of basal cells16. Any stromal invasion of 

such glands is discernible and traceable while most of its structure remains intact. Basal 

membrane distinguishes tumour glands from stroma with no detectable necrosis17. On the other 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image 2. Histopathological images of H&E stained human and mouse prostate tumour sections.  
(A) Benign human prostate tissue with basal (bas) and luminal (lum) cells. (B) PIN human prostate 
tissue, arrows indicating hyperplastic regions. (C) Well-differentiated adenocarcinoma tumour tissue. 
(D) Poorly-differentiated human prostate cancer tissue section. (E) Normal mouse prostate tissues 
with the arrows pointing papillary tufts. (F) High-grade PIN. (G) Mouse prostate carcinoma. (H) 
Invasive prostate carcinoma. 

 
hand, poorly-differentiated form corresponds to no visible separation of glands from its 

surrounding stroma due to the complete invasion of epithelia-stroma. Gross destruction of 

prostatic tissue architecture is evident in most of the tumour areas with highly reactive stroma 

and inflammation (Image 2)8. 
 
The ultimate form of prostate carcinoma is the metastatic dissemination of prostatic tumour 

cells into the bloodstream and to distant organs. Although prostate cancer cells are reported to 

metastasize to lung, liver and pleura, the most frequent site of metastasis remains to be in 

bone, referred to as osteoblastic lesions18,19. Recent studies have highlighted the relevance of 
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circulating prostate tumour cells in clusters and their clinical implication on patients-

survival20,21. Prostate tumours are generally considered to have both a multifocal and a highly 

heterogeneous nature. Often, primary tumours exhibit multiple histological foci comprising of 

diverse genetic alterations. However, contrary to the heterogeneity of prostate tumours, various 

molecular and cytogenetic analyses in multiple metastases in the same patient show clonal-

relatability22. This is indicative of the monoclonal nature of the metastatic cells derived from the 

same heterogeneous prostate tumour, displaying a selective clonal advantage that occurs during 

tumour progression. Therefore, the factors that provide this clonal selection may emerge as an 

attractive or promising therapeutic target to treat patients of the rather ‘untreatable’ stage of this 

disease. The use of genetically engineered mouse models has significantly enhanced our 

understanding of different stages of the disease including the molecular mechanisms of 

metastasis8. One of the most frequently lost genes in advanced and metastatic prostate cancer is 

PTEN23. Loss of Pten alone gives rise to invasive adenocarcinoma however, its combination with 

other genetic alterations, such as mutation in KRas24 and loss of Smad425, triggers the metastatic 

potential of these tumours. Interestingly, constitutive activation of MAPK pathway through KRas 

mutation or loss of Smad4 alone does not lead to prostate carcinoma, suggesting a potential role 

of Pten-loss in initiating tumorigenesis. 

 
 
1.2 PTEN-loss: a key genetic and molecular event in prostate cancer initiation and 
 
progression 
 
PTEN is a tumour suppressor gene which is frequently lost or mutated in a variety of cancers, 

including prostate cancer which accounts for approximately 30% of prostate cancer patients26. 

Molecular and cytogenetic studies in the 1980s first revealed partial or complete loss of 

chromosome 10 in multiple cancers including prostate27. In 1997, PTEN was discovered to be 

one of the tumour suppressor genes located on chromosome 10q23 which is frequently altered 
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in sporadic tumours28,29. Following the discovery of PTEN, much of the emphasis has been in 
 

understanding its role in cell biology and the diverse processes that it controls30. PTEN is a  
 

principle negative regulator 
 

of phosphoinositide 3- 
 

kinase (PI3K) pathway 
 

through its catalytic 
 

phosphatase activity, 
 

wherein                  it 

dephosphorylates 

phosphatidylinositol-3,4,5-

triphosphate    (PIP3)    to 
 
 phosphatidylinositol-4,5- 

 bisphosphate (PIP2)31. 
Image 3. PTEN-PI3K-AKT pathway. PTEN opposes PI3K function, 

Upon   loss of PTEN, thereby  inhibiting  AKT  and  mTOR  pathway.  PTEN-loss  results  in      

accumulation of PIP3 thereby recruiting PDK1 which phosphorylates 
excessive PIP3  at plasma AKT  at  Thr308  while  mTORC2  phosphorylates  AKT  at  Ser473. 

Activation  of  AKT  leads  to  a.  Cell  survival,  proliferation  and  cell      
metabolism through inhibition of GSK3, FOXO, PGC1 and p27 and membrane recruits and 
through activation of ENTPD5, SREBP1, AS160 and SKP2 as in b. AKT      
also  activates  mTORC1  by  mediating  inhibitory  phosphorylation  of 

activates a subset of PRAS40 and TSC2 c. ERK is another kinase that phosphorylates and 
inhibits TSC2 thereby activating mTORC1 d. mTOR phosphorylates p70 

proteins, including PDK1 ribosomal  protein  S6  kinase  (S6K)  and  4EBP1  to  promote  protein 
translation and survival e. Inhibition of mTORC1 can activate AKT by      
preventing negative feedback loop mediated by GRB10 and IRS1 f, g. 

and AKT family members. Blue  and red  coloured  molecules  represent  activators  and repressors      

respectively. 
AKT kinase is activated at  

 

 

two different residues which further activate the PI3K-AKT pathway32. Activated PDK1 

phosphorylates AKT at Thr308 while mammalian target of rapamycin (mTOR) complex C2 

(mTORC2) phosphorylates AKT at Ser47333. Activated AKT isoforms (AKT1, AKT2, and 

AKT3) phosphorylate up to nearly 100 substrates thereby driving cell proliferation, survival, 

metabolism, angiogenesis and cellular architecture. AKT activation primarily drives anti- 
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apoptotic signals through inhibitory phosphorylation of BAD and Forkhead family proteins 

(FOXO), p27 and Glycogen synthase kinase 3 (GSK3). Secondly, active AKT also plays a 

role in activatory phosphorylation of series of proteins and protein complexes such as 

ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), sterol-responsive element-

binding protein 1C (SREBP1C), S phase kinase-associated protein 2 (SKP2) and mTORC1. 

Together, loss of PTEN through activation of PI3K-AKT pathway drive plethora of cellular 

responses which triggers diverse oncogenic signals34. 

 
Immediately after the discovery of PTEN-loss, generation of Pten knockout mice 

demonstrated the relevance of this tumour suppressor gene in multiple tissues. Over the past 

two decades, there have been several studies including the Pten transgenic mouse models to 

determine the functional role of PTEN. Some of the roles of PTEN as a tumour suppressor 

are outlined in brief below: 
 

• Cellular metabolism: Emerging evidence suggests that during cancer initiation and 

progression metabolic reprogramming plays a key role in rapid cell proliferation. Rapidly 

proliferating cancer cells require an abundance of glucose which is readily converted into 

lactate through anaerobic glycolysis regardless of the presence of oxygen35. Loss of 

PTEN is known to drive high rates of glycolysis, increased biosynthesis of 

macromolecules such as lipids and enhanced lactate production. Insulin-mediated glucose 

uptake and membrane translocation of glucose transporter GLUT4 are enhanced by loss 

of PTEN and activation of the PI3K-AKT pathway36. PI3K–AKT signalling inhibits 

gluconeogenesis through blocking FOXO and peroxisome proliferator-activated receptor-

γ (PPARγ) co-activator 1α (PGC1α)37,38. Furthermore, loss of PTEN activates the key 

lipogenic 38transcription factor SREBP1C thereby activating lipogenesis39. Moreover, 

PTEN-loss also promotes protein glycosylation and folding through ENTPD5 in the 

endoplasmic reticulum (ER) 
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which further increases ATP consumption40. While dietary restriction might inhibit 

PI3K-AKT activity, loss of PTEN or PI3K mutations displays resistance to such effects. 
 

• Cell motility and polarity: PTEN is mainly localized to the apical plasma membrane 

during epithelial morphogenesis, catalysing the conversion of PIP3 to PIP2 and 

recruiting Annexin 2 (ANXA2). Subsequently, CDC42 gets recruited to the plasma 

membrane and binds to partitioning defective 6 (PAR6)– atypical PKC (aPKC) 

complex to promote establishment of polarity41. Therefore, PTEN-loss may prevent 

normal development of apical surface and lumen. Thus, deregulation of PTEN-PI3K 

pathway may cause loss and gain of certain cellular characteristics such as loss of 

epithelial characteristics thereby increasing possible gain of mesenchymal properties 

allowing the EMT and increased cell motility42. 
 

• Cancer stem cells: Studies in understanding the role of PTEN in leukaemia and 

leukaemogenesis have shown that loss of PTEN causes depletion of Haematopoetic 

Stem Cells (HSCs) followed by generation of Leukaemia-initiating cells (LICs) 

promoting leukaemogenesis43,44. Treatment of rapamycin restored HSCs and thereby 

blocked the generation of LICs. These data highlighted the involvement of mTOR as 

a key mediator of this process. In addition to loss of PTEN, activation of b-catenin 

and recurring t (14;15) chromosomal translocation were also identified to cooperate 

and contribute to PTEN-deficient Leukaemogenesis45. Molecular insights revealed 

distinction between HSCs and LICs, and depending upon the PTEN status, specific 

targeted therapies can be designed to target PTEN pathway to suppress LICs. 
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• In nucleus: Several evidences demonstrate the nuclear role of PTEN protein and absence 

of which is associated with aggressive cancers. Given that PTEN plays a catalytic role on 

the membrane, its role in nucleus implies beyond its lipid phosphatase activity46. 

Numerous studies have defined critical functions of nuclear PTEN in genomic stability 

and cell cycle progression. Nuclear PTEN regulates DNA repair 
 
 

Image 4. Functional role of PTEN in 
the nucleus. Various processes lead to 
nuclear import of PTEN. Major vault 
protein (MVP)-mediated import is 
outlined which is dependent on 
monoubiquitylation of PTEN by E3 
ubiquitin ligases. This process can be 
reversed upon deubiquitylation by  
(DUB) herpesvirus-associated 
ubiquitin-specific protease (HAUSP) 
that results in PTEN nuclear export. In 
the nucleus, PTEN binds to APC/C 
and CDH1 to promote tumour 
suppression. PTEN in nucleus also 
promotes genomic stability by binding 
to CENPC and RAD51. In addition, 
PTEN induces p53 acetylation in 
response to DNA damage to inhibit 
cell proliferation through p300. 

 
 
 

through upregulation of RAD51which is involved in double-stranded break (DSB) 

repair47. Moreover, PTEN loss results in homologous recombination defects in 

human tumour cells. Importantly, nuclear PTEN is shown to promote APC/C 

association with CDH1 thereby enhancing E3 ligase activity of APC/C. This 

eventually promotes tumour suppression due to effective degradation of polo-like 

kinase1 (PLK1) and aurora kinases (AURKs) mediated by APC/C-CDH1 complex 

formation48,49. Altogether, these data indicate the phosphatase-independent activity 

of PTEN as a tumour suppressor in cells. 
 

• Cellular senescence: Cellular senescence is an irreversible cell cycle arrest that occurs 

during natural ageing, process due to telomere erosion upon cellular divisions, referred 
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to as replicative senescence, or in response to diverse cellular stresses, known as 

premature senescence50. One such premature senescence is elicited upon complete loss of 

PTEN, termed PTEN-loss induced cellular senescence (PICS). This is a novel type of 

senescence response, unlike OIS, which is characterised by absence of both hyper 

proliferation and DNA damage response51. Complete loss of PTEN at early stage of 

tumour is associated with p53-dependent cellular senescence that reduces the tumour 

growth; however, upon concomitant loss of p53 drives rapid tumour progression52. In 

PICS, p53 is upregulated mainly through translation driven by mTORC1. However, 

unlike in OIS, where p53 is mainly activated and stabilized by p19ARF, PICS doesn’t rely 

on p19 ARF for p53 stability53. Furthermore, concomitant loss of PTEN and 
 

transforming growth factor b (TGFb) – bone morphogenetic protein (BMP) – 

SMAD4 results in PICS bypass, enhancement of tumour cell proliferation and 

metastasis in vivo25. Moreover, concomitant loss of Pten and several other genetic 

events such as overexpression of proto oncogene c-Myc14,54, activation of KRas24, 

loss of tumour suppressor Nkx3.112 and oncogenic TMPRSS2-ERG55 fusion is also 

known to promote prostate tumour progression. 

 
Apart from activation of PI3K-AKT pathway, PTEN-loss is also involved in activation of 

several signalling pathways such as RAS-MAPK, JNK and RAC pathways56. Since it has 

been reported that Notch pathway is frequently altered in advanced PCa and loss of PTEN is 

also observed in the advance stage of the disease we aimed to determine the cross-talk 

between the two pathways. 

 
 
1.3 Notch signalling pathway 
 
Notch signalling pathway is a highly conserved signalling pathway during evolution and plays a 

critical role in development and tissue homeostasis. Since activated Notch pathway controls 
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diverse cellular and molecular processes, its role remains multifaceted and highly context 

specific. While Notch pathway has far-reaching impact on development and homeostasis, 

aberrant activation of this pathway is reported to initiate tumorigenesis and tumour 

progression57. The molecular mechanism of Notch pathway activation is discussed as below. 
 
Notch receptors: Notch receptors are type1 transmembrane proteins which are expressed as four 

paralogs in mammals (Notch1-4)58. Each of these cell surface receptors comprises of three 

structural domains such as extracellular domain, single transmembrane domain, and intracellular 

domain. Extracellular domain consists of 29-36 tandem Epidermal growth factor (EGF)-like 

repeat proteins of which some may interact with the Notch ligands. Interaction with 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image 5. Atomic resolution of Notch ligand and receptor. (A) Notch receptor with ligand binding domain 
containing EGF (11-13) centred by EGF repeat 12 which is suggested to interact with Jagged1 ligand on basis 
of computational docking models. (B) Notch ligand (Jagged) containing DSL, DOS and EGF repeat 3 domains. 
DSL domain, unlike EGF repeats contains regions in red that interact with Notch receptor. 

 
the ligands presented on the neighbouring cells is mediated by 11-12 proteins of the receptor 

EGF-like region which is called trans interaction. Whereas, an inhibitory interaction that 

occurs between the receptor and the ligand expressed on the same cell, mediated by 24-29 

repeats, is called cis interactions59,60. EGF repeats are followed by a unique negative 

regulator region (NRR) composed of three cysteine-rich Lin12-Notch repeats (LNR) and 

heterodimerization domain (HD)57. Upon translation, Notch receptor protein is glycosylated 

by O-fut and Rumi, a central process for production of functional receptor. The mature form 
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of the receptor is proteolytically cleaved by PC5/furin at site S1 which is eventually 

assembled together as a functional protein on the cell surface61. Single transmembrane 

domain comprises of a sequence terminated with ‘translational stop’ signal of 3-4 Arg/Lys 

residues. The Notch intracellular domain (NICD) consists of RBPjκ association module 

(RAM) that forms a high affinity binding module of 12-20 amino acids centred around a 

WxP module which is conserved motif. A long linker protein containing one nuclear 

localising sequence (NLS) links the RBPjκ association module (RAM) to the seven Ankyrin 

repeats (ANK) domain. Most ligands for the Notch receptors are type 1 transmembrane 

proteins, broadly presented mainly on neighbouring cells. Mainly, these ligands are 

structurally classified into three major protein domains: a. N-terminal Delta/Serrate/LAG-2 

(DSL) motif, b. Specialized tandem EGF repeats called DOS domain (Delta and OSM-11-

like proteins) and c. EGF-like repeats. While both DSL and DOS are involved in binding 

Notch receptor, DSL is reported to bind receptors during both trans and cis interactions. In 

addition, DSL ligands are classified into two categories mainly based on the presence 

(Jagged/Serrate) or absence (delta-like) of a cysteine-rich domain57. 

 
Notch-signalling pathway: 
 
Canonically, Notch pathway is activated upon its interaction with the membrane-bound ligands 

on the surface of the neighbouring cells. Upon ligand-receptor interaction, a series of proteolytic 

cleavages within the Notch receptor triggers the release of intra-cellular domain of Notch to the 

nucleus where it functions as transcriptional activator. Hierarchically, ligand binding leads to 

cleavage of Notch receptor by ADAM metalloprotease at site S2 which is nearly 12 amino acids 

before transmembrane domain within NRR region. Notch ligand-receptor binding causes the 

‘open’ conformation of receptor due to mechanical ‘pull’ in the direction of ligand-presenting 

cell. The open conformation allows the ADAM metalloproteases to access the inaccessible S2 

cleavage site and generate ectodomain shredding leaving Notch 
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extracellular domain (NEXT)62. This ectodomain shredding is prerequisite for subsequent 

receptor cleavage and Notch pathway activation. While certain mutations in Notch HD domain 

are reported in human malignancies, such as T-ALL, that may cause a constitutively ‘open’ 

conformation63, high amount of ADAMs may also result in Notch activation in a ligand- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image 6. Notch signalling pathway. A representation of series of 
proteolytic cleavages that leads to activatation of Notch signalling in 
cells. S1cleavage of the mature form of Notch receptor allows the 
assembly of the ligand and its presentation on the cell surface. S2 
cleavage of extracellular fragment generating NEXT fragment. This 
results in S3 cleavage mediated by GS complex resulting in release of 
NICD1 fragment in the nucleus. Nuclear NICD1 triggers transcription 
of Notch target genes by forming a complex with CSL, Co-A and 
MAML. The same complex in absence of NICD1 act as 
transcriptional repressor of these genes. 

 
independent manner. 
 
Upon S2 cleavage, an 
 
enzyme complex, named g- 
 
secretase complex, is 

activated that mediate S3 

cleavage on NEXT receptor 

in transmembrane domain 

(TMD) permitting the release 
 
of Notch intracellular 

domain (NICD) in the 
 
nucleus64. The g-secretase 

complex mainly consists of 

four subunits Presenilin1 

(PSEN1), Nicastrin (NCT), 
 
Presenilin enhancer 2 
 

(PEN2)     and     Anterior 

pharynx-defective1 

(APH1)65. The S3 cleavage is 

 
mainly catalysed by the catalytic subunit of g-secretase complex, namely Presenilin (PSEN1), 
 

mediating NICD1 protein domain release from Val174466. NICD upon translocation in the 

nucleus acts as a transcriptional activator of several genes, however, it is unable to bind the 
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DNA on its own. NICD binds to the DNA with help of a DNA-binding protein CSL (CBF1/ 

RBPjκ/Su(H)/Lag-1) via its RAM domain. The ANK domain of NICD recruits the 

coactivator Mastermind/Lag-3 (MAML). Mastermind recruits the MED8 mediator complex 

thereby leading to the upregulation of downstream target genes. While NICD binding to CSL 

is known to activate expression of Notch-target genes, in absence of NICD, these genes 

remain repressed due to the presence of CSL which functions as transcriptional repressor67. 

Several reports have highlighted the role of activated NOTCH signalling pathway in 

advanced and metastatic prostate cancer, which is also associated with frequent loss of 

PTEN. Thus, we aimed to determine the cross-talk between NOTCH pathway and 

PTEN/PI3K/AKT pathway in this study. 
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2. Results: 
 
Pten-loss triggers activation of Notch signalling pathway in prostate cancer 
 
To better understand the relevance of NOTCH signalling pathway as a consequence of loss of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Notch1 signalling is activated in Ptenpc-/- prostate tumours. (a) IHC showing NICD1 and Pten 
stainings in both Ptenpc+/+  normal prostate (8±3%) and Ptenpc-/-  prostatic intraepithelial neoplasia (PIN)  
lesions resected from 12-week-old mice (25±9%) (n=3) . Magnification 20x and 400x. (b) WB showing the 
protein levels of Pten, total Notch1, NICD1 and Hes1 in both Ptenpc+/+ prostate and Ptenpc-/- prostate tumours  
(n=5). (c) Quantification of b. (d) Gene Set Enrichment Analysis (GSEA) showing activation of Notch1 
signalling in Ptenpc-/- prostate tumours. 

 
PTEN in prostate cancer, we took an advantage of Pten prostate conditional mouse model 

(hereafter referred as Ptenpc-/-)52. At 12 weeks of age, Ptenpc-/- mice showed a marked increase 

in Notch intracellular domain 1 (NICD1), a marker of Notch pathway activation68, as observed 

by Immunohistochemical (IHC) and western blot (WB) analysis (Fig 1a-c). Consistently with 

these evidence, Gene Set Enrichment Analysis (GSEA) revealed a Notch signature in Ptenpc-/-

prostate tumours (Fig 1d). In addition, a human PCa data set also validated these results showing 

an inverse correlation between PTEN and HES1 (a downstream target of Notch1 
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pathway) mRNA levels (Fig 2a). Given the activation of Notch1 pathway in Ptenpc-/- prostate  
 
 

a b c 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Notch pathway activation observed in PTEN-deficient prostate tumours in patients and mouse 
models. (a) Inverse correlation between PTEN and HES1 mRNA levels in a human prostate cancer dataset.  
(b) Enzymatic in vitro assay showing the elevated activity of the g-secretase complex in Ptenpc-/- prostate 
tumours (n=3). (c) Quantification of b. 

 
tumours, we aimed to determine the role of g-secretase enzyme complex, a key mediator of 

intracellular Notch receptor cleavage that subsequently leads to the pathway activation. 
 
Enzymatic activity assay showed enhanced g-secretase complex activity in Ptenpc-/- prostate 

tumours compared to age-matched WT prostates (Fig 2b-c). These data conclusively 

explained the intracellular receptor shredding subsequently activating Notch1 pathway upon 

loss of Pten. Taken together, these results demonstrate that loss of PTEN activates NOTCH 

signalling in prostate tumours. 

 
 
Combined genetic inactivation of Notch1 and Pten promotes tumour inhibition and 
 
senescence activation 
 
To evaluate the relevance of Notch1 signalling in Ptenpc-/- prostate tumours, we generated a 

conditional concomitant knockout of Pten and Notch1 in prostatic epithelium. At first, we 

confirmed the prostate-specific deletion of both Pten (by western blot) and Notch1 (for its target 

genes by RT-PCR) (Fig 3a). To obtain the genetic evidence of how a combined loss of Notch1 

and Pten affects the murine prostate tumorigenesis, we performed a histopathological analysis. 

Mice at different ages were sacrificed and the prostates were resected from Ptenpc+/+, 
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Notch1pc-/-, Ptenpc-/- and Ptenpc-/-; Notch1pc-/-. Notably, genetic inactivation of Notch1 in Ptenpc-/- 

prostate tumours triggered a strong inhibition of tumour growth compared to the age-matched Ptenpc-

/- littermates. This evidence was evaluated based on the decreased number of glands 
 

a b 
 
 
 
 
 
 
 
 
 
 
 

c d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Combined genetic inactivation of Pten and Notch1 delay prostate tumorigenesis. (a) Fold change 
in mRNA levels of Hey1 and Cyclin D1 target genes of Notch pathway in Ptenpc-/-; Notch1 pc-/- tumours 
compared to Ptenpc-/- tumours. WB showing the protein level of Pten and Notch1 in Ptenpc+/+, Ptenpc-/- and  
Ptenpc-/-; Notch1pc-/- prostate tumours. (b) Histopathological characterization of normal prostates and prostate 
tumours in mice of the indicated genotypes (n=16 for each genotype). (c) H&E and Ki-67 staining of APs  
derived from 12-week-old Ptenpc-/- and Ptenpc-/-; Notch1pc-/- tumours (n=5). Magnification 20x and 40x, 
respectively. Insets represent H&E and Ki-67 images of Ptenpc+/+ and Notch1pc+/+. (d) Quantification of Ki-67  
staining of APs in mice of indicated genotypes. 

 
 
affected by high-grade prostatic intraepithelial neoplasia (HG-PIN) and invasive PCa (Fig 3b). 

Furthermore, Ptenpc-/-; Notch1pc-/- tumours showed reduced cell proliferation observed by 

decreased Ki67 staining (a marker of cell proliferation) as compared to the age-match Ptenpc-/-

tumours (Fig 3c-d). Of note, neither Ptenpc+/+ nor Notch1pc-/- developed any prostatic lesions 

(Fig 3c-d). Intriguingly, we observed a strong increase in p27 protein levels, a marker of 

senescence response, in Ptenpc-/-; Notch1pc-/- tumours compared to Ptenpc-/- tumours (Fig 4a, b). 
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These genetic evidence suggest an oncogenic role of Notch1 in Pten-null tumours and that 

loss of Notch1 can delay the tumorigenesis. 
 
 

a b 
4. Inactivation  of  Fig 

 Notch1 in Pten null 
 tumours elicit p27 driven 
 senescence  response.  (a) 
 WB showing the protein 

levels of Pten and p27 in 
Ptenpc+/+, Ptenpc-/- and  
Ptenpc-/-; Notch1pc-/- 
prostate tumours. (b) 
Quantification of a. 

 
 
 
 
 
PF-03084014, a potent g-secretase inhibitor, restricts tumour progression by promoting 

p27-driven senescence response in advanced PCa 
 
As guided by the genetic evidence, we questioned whether pharmacological targeting of Notch 
 
pathway could also induce similar response in advanced PCa. Therefore, we tested a potent g-  
 
 

a b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5. Pharmacological targeting of Notch pathway using PF-03084014 triggers senescence in Pten-
null MEFs. (a) SA-b-gal assay in Ptenfl/fl and Pten-/- MEFs after treatment with PF-03084014 at 2.5µm and 1µm. 
(b) WB showing effect of PF-03084014 on the protein levels of NICD1, p21, p27 and the Notch1 target gene Skp2. 

 

secretase inhibitor, PF-03084014 (currently under clinical evaluation)69,70 , in Pten-null 

mouse embryonic fibroblasts (MEFs). Treatment of Pten-/- MEFs with PF-03084014 showed 

significant increase in both p27 protein levels and senescence-associated beta-galactosidase 
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Fig 6. PF-03084014 constrains tumorigenesis of Ptenpc-/-prostate tumours. (a) Scheme of treatment. 
Mice have been treated twice a day for 4 weeks with either vehicle or PF-03084014 (100 mg/kg). (b) 
Picture showing the size of anterior (AP), dorso-lateral (DLP) and ventral prostates (VP) from Ptenpc+/+ 

 
WT prostates and Ptenpc-/- tumours treated with either vehicle or PF-03084014. (c) Quantification of b 
(n=5). (d) H&E, Ki-67 and pHP1g staining of APs derived from Ptenpc-/ - tumours treated with either 
vehicle or PF-03084014. Magnification 4x and 40x. (e,f) Quantification of d (n=5). ( g) WB on AP 
extracts Ptenpc-/- tumours showing the effect of PF-03084014 on Notch1 signalling. (h) Gene Set 
Enrichment Analysis (GSEA) showing reduced Notch1 signalling in Ptenpc-/ - prostate tumours treated 
with PF-03084014. Values are expressed as mean±s.e.m. *P<0.05; **P<0.01; ***P<0.001 by Student’s 
t-test. 

 
(SA-b-gal) activity, two markers of senescence, at low doses (2.5µm to 1µm) (Fig 5 a, b). This 
 

data prompted us to determine the in vivo efficacy of PF-03084014 using Ptenpc-/- transgenic 
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mice as a proof-of principle for pharmacological targeting Notch pathway in treating PCa. 
Having demonstrated the significance of Notch1 pathway activation genetically in 
prostate tumours and pharmacologically in vitro using PF-03084014, we next set-up a 
 

 

 

 

preclinical trial in Ptenpc-/- transgenic mice to determine the anti-tumour efficacy of g-secretase 
 

inhibitor in vivo. We treated a cohort of Ptenpc-/- mice at 8-weeks of age, at the onset of tumour 
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Fig 7. Pten pc-/-mice well tolerate PF-03084014 treatment. (a) Graph representing the total body 
weight of Ptenpc-/- mice treated with either vehicle or PF-03084014. (b) Image showing (yellow circles) 
the spotted white hair phenotype observed in Ptenpc-/- mice treated with PF-03084014. 

 

development, with PF-03084014 for a total of 20 days (Fig 6a). At the end of the treatment, mice 

were euthanized and the prostates were resected for analysis. Gross anatomy of the prostate lobes 

revealed a significant decrease in tumour size in Ptenpc-/- mice treated with PF-03084014 

compared to the control (Fig 6b, c). Decrease in tumour size was associated with reduction in cell 

proliferation as determined by Ki67 staining and increase in senescence, as 
 

determined by pHP1g staining and p27 protein levels (Fig 6d-f). Interestingly, we found 

reduction in the protein levels of S-phase kinase-associated protein 2 (Skp2), an inhibitor of p27 

(Fig 6g)53. Reduced levels of NICD1 and Notch target genes confirmed that PF-03084014 

efficiently reached the target (Fig 6g). Furthermore, GSEA analysis confirmed the decrease in 

Notch signalling pathway in Ptenpc-/- tumours upon treatment with PF-03084014 (Fig 6h). PF-

03084014 was well tolerated with no significant evidence of total body weight loss and normal 

 

 

 

 

 

 
Ptenpc-/- 
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behavioural patterns observed as per the state guidelines (Fig 7a). While mice treated with PF-

03084014 did not show any signs of distress or toxicity, we observed a spotted loss-of-hair 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. Anti-tumour activity of PF-03084014 in Ptenpc-/-; Trp53pc-/- prostate tumours. (a) Representative 
H&E, Ki-67 and Vimentin/E-Cadherin immunofluorescence stainings of Ptenpc-/-; Trp53pc-/ - prostate tumours 
treated with either vehicle or PF-03084014. White arrow shows an invasive area of epithelial tumour cells 
infiltrating the tumour stroma. Insets represent H&E, Ki-67 and Vimentin/E-Cadherin staining in Trp53pc-/- 
normal prostates treated with either vehicle or PF-03084014. (b) WB on AP extracts from Ptenpc-/-; Trp53pc-/- 
tumours showing the effect of PF-03084014 on Notch1 signalling. (c) Quantification of b. Values are expressed 
as mean±s.e.m. *P<0.05; **P<0.01 by Student’s t-test. 

 

pigmentation phenotype, an indicator of the activity of the compound in vivo (Fig 7b)71,72. 

Guided by the results obtained in the Ptenpc-/- mice, we further aimed to determine the 
 
efficacy of g-secretase inhibitor in more advanced and aggressive model of prostate tumours. 
 

We sought this aim by taking an advantage of Ptenpc-/-; Trp53pc-/- mice that fully develop 

invasive and aggressive prostate tumours and are also reported to be resistant to major 
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conventional therapies available in clinic for PCa52. Mice were treated for 5 weeks starting at 15 

weeks of age when the tumours were invasive. Notably, Ptenpc+/+ and Trp53pc-/- mice that do not 

develop any prostatic lesions were also included in this trial to determine any potential negative 

effect of PF-03084014 in normal-like prostate tissues and also in Trp53-null background52. At 

the end of the treatment mice were euthanized and prostates were resected 
  

a 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 9. Anti-proliferative effect of PF-03084014 in mouse tumours without affecting normal-like tissues. 
(a) Representative H&E and Ki67 staining images of Ptenpc+/+ (inset) and Ptenpc-/- tumours treated with 
vehicle and PF-03084014 (left panel). Arrows in black indicating stroma-infiltrating epithelial-tumour cells. 
Quantification of Ki67 in mice of indicated genotypes (right panel). Magnification 20x and 40x respectively 
(n=5). (b) Representative IF images for Vimentin/E-Cadherin staining in Ptenpc+/+ and Ptenpc-/- tumours 
treated with vehicle and PF-03084014. White arrows indicate stromal-invasion of tumour cells. Right panel 
quantification of percentage of tumours with invasive prostate glands in mice of indicated genotypes. 
Magnification 10x (n=5). **P<0.01; ***P<0.001 by Student’s t-test. 

 
 
for analysis. While PF-03084014 treatment did not have any effect on prostatic epithelium of 

Ptenpc+/+ and Trp53pc-/- mice, Ptenpc-/-; Trp53pc-/- tumours showed significant decrease in 

percentage of invasive glands as detected by Haematoxylin and Eosin (H&E) staining and 

immunofluorescence (IF) staining for Vimentin (stromal marker)/ E-cadherin (Epithelial 
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marker) (Fig 8a and Fig 9a, b). The reduction in aggressiveness was accompanied by decreased 

tumour cell proliferation measured by Ki67 staining (Fig 8a and Fig 9a, b). Of importance, we 

also observed a decrease in focal invasion in Ptenpc-/- tumours of 15 weeks of age upon treatment 

with PF-03084014, suggesting that targeting Notch pathway can restrict focal and complete 

tumour invasiveness (Fig 8a and Fig 9a, b). In line with the results from Ptenpc-/-trials, treatment 

of Ptenpc-/-; Trp53pc-/- tumours with PF-03084014 also showed increase in p27 

 
a b  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10. Anti-proliferative effect of PF-03084014 in human PCa cell lines. (a) 
Growth curve of LNCaP cells treated either with DMSO or PF-03084014. (b) 
Growth curve of PC3 cells treated either with DMSO or PF-03084014. Values 
are expressed as mean ± SEM. **p<0.01; ***p<0.001 by Student’s t- test. 

 
protein levels and 

decrease in skp2 

protein (Fig 8b, c). 

Finally, to 

validate our results 

in human samples 

we used LNCaP 

and PC3, two 
 
PTEN-deficient metastatic human PCa cell lines and treated them with varying doses of PF-

03084014. Treatment with PF-03084014 showed significant cell growth arrest in agreement with 

recent evidence73 and trial conducted in Ptenpc-/- and Ptenpc-/-; Trp53pc-/- mice (Fig 10). 

 
Taken together, our preclinical trials support the notion of using g-secretase inhibitor for 

treating prostate cancers with loss of PTEN which can be beneficial both at early and late 

stage of tumorigenesis. Having demonstrated the role of Notch pathway and the advantages 

of pharmacologically targeting it, we wanted to further investigate the molecular mechanism 

behind the activation of Notch pathway in PTEN-deficient tumours. 
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Loss-of-PTEN triggers upregulation ADAM17 that subsequently activates Notch 
 
pathway in PCa. Notch pathway activation is a tightly regulated process that relies on a 
 

hierarchically ordered proteolytic cascade57,68. Activation of Notch pathway involves  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 11. ADAM17 is upregulated in PCa. (a) WB showing the protein levels of Adam17 in Ptenpc-/-

tumours compared with Ptenpc+/+ WT prostates. (b) Quantification of a (n=3). (c) Adam17 and Pten 
mRNA levels in both Ptenpc+/+ prostates and Ptenpc-/- tumours. (d) WB showing the protein levels of  
ADAM17, NICD and PTEN in different PCa cell lines. (e) Quantification of ADAM17 of d. (f) 
ADAM17 mRNA levels in different PCa cell lines. (g) ADAM17 and PTEN staining on human prostate 
cancer tissue microarray (TMA). Table showing correlation between ADAM17 and PTEN staining 
quantification. Data of two different TMA were combined (total no. of samples=130). (h) Inverse 
correlation between the mRNA levels of PTEN and ADAM17 in human prostate cancers. (i) Bar graphs 
representing the correlation of ADAM17 and PTEN levels with tumour grade and Gleason score. (j) 
WB for ADAM17 and NICD1 in PC3 cells infected with either an shRNA control or shADAM17. (k) 
Growth curve of PC3 cells infected with either an shRNA control or shADAM17. Values are expressed 
as mean±s.e.m. **Po0.01; ***Po0.001 by Student’s t-test. 
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generation of intracellular NICD1 domain that is cleaved and released by g-secretase enzyme 

complex. This proteolytic cleavage follows and requires the initial extracellular cleavage of 

full-length Notch receptor by ADAM metalloproteases74. Since ADAM metalloprotease are 
 
essential  for g-secretase  enzyme  complex  to  cleave  the NICD1   domain,   we 
   

a b c   
 
 
 
 
 
 
 
 
 
 
 

d e 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 12. Loss of PTEN regulates ADAM17 expression. (a) WB showing the protein levels of Adam17 in 
Ptenpc+/+ WT prostate, Ptenpc-/- and Ptenpc-/-; Trp53 pc-/- prostate tumours. (b) HEY1 mRNA levels in 
different PCa cell lines. (c) WB showing the levels of ADAM17, NICD and PTEN in DU-145shPTEN cell  
line treated with Doxycycline (Dox). (d) Quantification of c. (e) Kaplan-Meier curve showing that 
prostate cancer patients with low levels of PTEN and high levels of ADAM17 have a worse prognosis. 
Values are expressed as mean ± SEM. **p<0.01; ***p<0.001 by Student’s t-test. 

 
 
determined the status of ADAM17 metalloprotease. ADAM17 is a metalloprotease involved in 

NOTCH activation, both in a ligand-dependent and independent manner. Since the ligand-

independent activation of NOTCH is strongly correlated with ADAM17 abundancy, we checked 

the levels of Adam17 in our mouse models. We observed a significant upregulation of Adam17 at 

both mRNA and protein levels in Ptenpc-/- tumours (Fig 11a-c) and protein levels in Ptenpc-/-; 

Trp53pc-/- tumours (Fig 12a). Similarly, ADAM17 was upregulated by mRNA and protein levels 

in human prostate cancer cell lines with functional loss of PTEN in either one 
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(DU-145) or both (LNCaP and PC3) alleles (Fig 11d-f). This increase in ADAM17 levels was 

also associated with increase in the levels of NICD1 (WB) (Fig 11d and e) and Notch1 target 

gene Hairy/Enhancer-of-split related YRPW motif protein (HEY1 by RT-PCR) (Fig 12b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13 Activation of Notch signalling pathway in PTEN-deficient cells is PI3K/AKT-independent. 
WB analysis in human PCa cell lines 22Rv1, DU145, LNCaP and PC3 showing protein levels of p-AKT, 
total AKT, NICD1, NOTCH1 and ADAM17 upon treatment with DMSO and PI3K inhibitor, AZD8186. 

 
 
Consistent with our mouse models and human cell lines data, we induced genetic inactivation of 

PTEN using shRNA in DU-145 cell line that led to an increase in the expression of ADAM17 and 

NICD1 levels (Fig 12c and d). To fortify our results with clinical relevance, we next checked the 

correlation between the protein levels of PTEN and ADAM17 in two independent tissue 

microarrays (TMAs) comprising of 130 cases in total of human PCa. We performed IHC 

stainings for ADAM17 and PTEN and analysed the samples for positivity and negativity based 

on the intensity. Our analysis revealed that majority of the samples displaying low levels of 

PTEN were stained positively for ADAM17 and vice versa (Fig 11g with P=0.039511). Given 

that loss of PTEN also triggered upregulation of ADAM17 mRNA levels we asked whether the 

inverse correlation between ADAM17 and PTEN is also applicable at the gene expression level. 

Indeed, our bioinformatic analysis confirmed the inverse correlation between gene expression 

levels of PTEN and ADAM17 in prostate tumours (Fig 11h). Importantly, while 
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targeting Notch pathway showed anti-tumour response, we aimed to determine how much does 
 

this inverse correlation of low levels and PTEN and high levels of ADAM17 affect the clinical 
 

outcome.  We  observed  that  low  
 

levels of PTEN and high levels of 
 

ADAM17 as determined by IHC 
 

staining in TMA samples 
 

correlated with High Tumour 
 

Grade (P<0.0001) and Gleason 
 

Score (P<0.0001) (Fig 11i). 
 

 Moreover,  patients with tumours 

 characterized  by  low  levels  of 

 PTEN and high levels of ADAM17 

 (PTENlow  ADAM17high) had worse 

 clinical    outcome    (Fig    12e). 

 Altogether, these data indicate that 

 loss of PTEN drives upregulation 

 of ADAM17 and consequently 

 activation of NOTCH pathway. 

 More importantly, to confirm 
Fig  14.  List  of  predicted  transcription  factors.  Top  25 

whether activation of NOTCH transcription factors predicted to bind the promoter region of 
both mouse and human ADAM17 gene based on SABiosciences' 

pathway is driven by upregulation proprietary  database  (DECODE,  DECipherment  Of  DNA 
Elements).  Indicated  by  font  color  are  other  common       
transcription factors while highlighted is the transcription factor 

of ADAM17, we  downregulated selected.       

 
ADAM17 using short-hairpin RNA. Silencing ADAM17 not only decreased NICD1 protein 

levels but also reduced the cell proliferation in PC3 cells (Fig 11j, k). These data suggest that 

PTEN-loss induced NOTCH pathway activation is driven by upregulation of ADAM17. 
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A transcription factor CUX1 promotes upregulation of ADAM17 in PTEN-deficient PCa 
 
tumours 
 
Our data demonstrates that PTEN-loss leads to increased mRNA and protein levels of 

ADAM17 that subsequently triggers NOTCH pathway activation. To assess whether this 

effect was PI3K/AKT dependent, since loss-of-PTEN triggers PI3K/AKT pathway, we 

treated four human PCa cell lines namely 22Rv1, DU-145, LNCaP and PC3 with PI3K 

inhibitor, AZD8186. Interestingly, PI3K/AKT inhibition did not affect ADAM17 levels, 

suggesting that ADAM17 upregulation in PTEN-deficient background was PI3K/AKT-

independent (Fig 13). While PTEN-deficiency results in upregulation of ADAM17 (both 

mRNA and protein) independently of PI3K/AKT, what leads to transcriptional upregulation 

of ADAM17 still remained elusive. We therefore looked for the transcription factor (TF) that 

could regulate ADAM17 expression in PTEN-deficient tumour cells. 
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As both human and mouse data pointed that this mechanism remains conserved, we 

screened for TFs in SABiosciences’ proprietary database (DECODE, DECipherment Of DNA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 15. CUX1 regulates ADAM17 expression in prostate tumour. (a) Schematic representation of the full-
length CUX1 (p200 CUX1) and its oncogenic isoform (p110 CUX1). WB for p200 Cux1, p110 Cux1, Pten and 
CathepsinL in both Ptenpc+/+ prostates and Ptenpc-/-tumours. (b) Quantification of a (n=3–5). (c) WB showing 
the levels of Cux1, CathepsinL and Pten in both Ptenfl/fl and Pten-/- MEFs. (d) IF images showing the localization 
of Cux1 in both Ptenfl/fl and Pten-/- MEFs. (e) Schematic representation of ADAM17. The blue dots indicate the 
CUX1 predicted binding sites. In green the region where the primers used for the ChIP experiments have been 
designed. (f) CUX1 and PTEN in different PCa cell lines. (g) CUX1 ChIP. Graph showing the fold enrichment of 
ADAM17 and PIK3IP1 (CUX1 target) genes in PC3 cells. (h) mRNA levels and WB for CUX1 and ADAM17 in 
PC3 cells. (i) ADAM17 luciferase activity upon knockdown of CUX1.  
Values are expressed as mean±s.e.m. *P<0.05; **P<0.01; ***P<0.001 by Student’s t-test. 

 
Elements) that were predicted to bind ADAM17 promoter in both mouse and human. Amongst 

the predicted TFs, CUX1 was the only validated and conserved TF in both the species (Fig 14). 

 



40 
 

PhD Dissertation  
 
 
Intriguingly, evidence exists that a cleaved form of CUX1 protein, from its full-length (p200 

CUX1), p110 CUX1 has a potential oncogenic and transcriptional activator role75. While 

transgenic mouse model overexpressing p110 CUX1 develops mammary carcinomas thereby 

confirming the oncogenic role of this isoform of CUX176, we aim to determine the status of 
  

a b c 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 16. CUX1 p110 isoform regulates ADAM17 expression thereby regulating NOTCH pathway. (a) 
CUX1-ChIP in DU-145 cells. Graph showing the fold enrichment for ADAM17 and PIK3IP1. (b) mRNA 
levels of ADAM17 and CUX1 in DU-145 cells transfected with siCUX1. (c) WB analysis showing the 
reduction in NICD1 and ADAM17 upon use of CathepsinL inhibitor in PC3 cells. Values are expressed as 
mean ± SEM. **p<0.01; ***p<0.001 by Student’s t-test. 

 
different isoforms of this transcription factor in prostate tumorigenesis. Initially, we determined 

the expression of CUX1 and its isoforms in Ptenpc-/- tumours compared to Ptenpc+/+ prostate 

tissues by western blot analysis. Surprisingly, we observed a marked decrease in the full-length 

form and a strong increase in oncogenic isoform p110 Cux1 in Ptenpc-/- tumours. WB (full blot) 

analysis revealed that the full-length form was mainly expressed in Ptenpc+/+ prostate tissues 

whereas the cleaved oncogenic isoform p110 Cux1 was predominantly expressed in Ptenpc-/- 
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tumours (Fig 15a, b). The p110 Cux1 isoform is reported to be a result of a proteolytic cleavage 

of the full-length p200 Cux1 protein mediated by Cathepsin L and plays a role as transcriptional 

activator77. Therefore, the we next determined the expression of Cathepsin L in Ptenpc-/-tumours. 

By WB analysis, consistent with p110Cux1 expression levels, Cathepsin L was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 17. Overexpression of p110CUX1 increases ADAM17 levels and the activity of NOTCH. (a) WB 
analysis in 22Rv1 cells transfected with p110 CUX1 or empty vector. (b) Quantification of a. (c) 
ADAM17 luciferase activity in cells transfected as in a evaluated at different time points. (d) 
Immunohistochemistry for NICD1 in p110 Cux1 breast tumors at both not invasive and invasive stage. 
Magnification 10x and 40x. (e) WB analysis for Adam17 and NICD1 in p110 Cux1 breast cancer and 
normal mammary glands. (f) Quantification of e. Values are expressed as mean ± SEM. *p<0.05; 
**p<0.01; ***p<0.001 by Student’s t-test. 

 

markedly upregulated in Ptenpc-/- tumours compared to Ptenpc+/+ prostate tissues (Fig 15a, 

b). These data showed that upon loss of Pten, Cathepsin L gets upregulated and mediate 

proteolytic cleavage of Cux1 to its oncogenic form that might be responsible for upregulation 

of Adam17 gene expression. These data were further confirmed in Pten-/- MEFs by WB and 

IF analyses (Fig 15c, d). Importantly, p110 CUX1 levels were found to be high in all PCa cell 

lines, DU-145, LNCaP and PC3, compared to non-tumorigenic immortal cell line RWPE1. 
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Conversely, the full length p200 CUX1 was barely detected in these PCa cells, while RWPE1 

showed high expression of the full-length form of CUX1 compared to its cleaved form (Fig 

15f). 

Next, we performed Chromatin Immunoprecipitation (ChIP) experiment in PC3 to 

assess the binding potential of CUX1 on the promoter of ADAM17 gene (Fig 15e). In 

agreement with CUX1-binding site prediction, we found that CUX1 strongly binds to the 

promoter of ADAM17 gene keeping PIK3IP1 gene as a positive control wherein CUX1 has 

been reported to bind on to78 (Fig 15g). Similar results were obtained in another PCa cell 

line, DU-145 where CUX1 binds to the promoter of ADAM17 gene (Fig 16a). Furthermore, 

to validate our results we used two different small-interfering RNAs (siRNAs) to knockdown 

the expression of CUX1 to determine its impact on ADAM17 expression levels. Strikingly, 

knockdown of CUX1 in PC3 strongly reduced the expression of ADAM17 both by mRNA 

and protein and ADAM17-luciferase activity (FIG 15h, i). Likewise, similar results were 

obtained in DU-145 cell line (Fig 16b). In line with the siRNA results, treatment of PC3 

using a Cathepsin L inhibitor77, which blocks the conversion of p200 CUX1 to p110 CUX1, 

decreased the levels of both ADAM17 and NICD1 (Fig 16c). 
 
In sum, our results highlight a novel role of a transcription factor which upon its conversion 

to its active oncogenic form results in transcriptional activation of ADAM17 and in turn 

NOTCH pathway activation selectively in PTEN-deficient background. 

 
 
Overexpression of oncogenic p110 CUX1 activates ADAM17/NOTCH pathway both in 
 
vitro and in vivo 
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To investigate whether the overexpression of p110 CUX1 can promote activation of NOTCH 

pathway, we overexpressed p110 CUX1 in 22Rv1 cells. Transient overexpression of p110 CUX1 

resulted in increase in ADAM17 and NICD1 protein levels as compared to the Empty vector 

(EV) (Fig 17a, b). Similarly, overexpression of p110 CUX1 also enhanced the luciferase activity 

of ADAM17 promoter by nearly 10-folds as compared to the Empty vector (EV) (Fig 17c). As 

previously published, overexpression of p110 CUX1 in mouse mammary tissue led 
 

to development of invasive 

breast cancer76, we therefore 

aimed to determine the levels of 

Adam17 in these tumour 

samples. WB and IHC analyses 
 

Fig 18. ADAM17 regulation in Hs578T cells before and   showed enhanced protein 
after overexpression and down regulation of p110 CUX1  

expression of Adam17 and 
 
NICD1 in mammary tumours compared to adjacent normal mammary glands (Fig 17d-f). 
 
Moreover, overexpression of p110 CUX1 in breast carcinoma cell line Hs578T also showed 
 

increased expression of ADAM17 and HEY1 (NOTCH1 target gene)79, whereas 
 
downregulation of p110CUX1 in the same cells decreased NOTCH1 signalling (Fig 18). In 
 
sum, our findings demonstrate that overexpression of p110 CUX1 enhances the transcriptional 
 
levels of ADAM17 thereby activating NOTCH1 signalling pathway validating our 
 
observations mentioned earlier using different in vitro and in vivo transgenic mouse models. 
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3. Discussion 
 
Prostate cancer (PCa) is the second most common cancer-type in men and the fourth most 

common cancer and cause of cancer-related deaths worldwide80. Recent molecular and genetic 

profiles are performed rapidly in order to categorize various subtypes of cancers and to precisely 

design targeted-therapy81. Despite the significant improvements made in our current 

understanding of prostate cancer and therapeutic interventions, most advanced, metastatic and 

recurrent forms of the disease still remain a challenge. Numerous studies have reported that 

activated NOTCH signalling is associated with advanced82,83 and metastatic prostate 

cancer84,85,86. However, the mechanism behind NOTCH activation in prostate tumours remained 

elusive so far. To address this question, we used Ptenpc-/- and Ptenpc-/-; Trp53pc-/-mouse models 

which develop HG-PIN and invasive prostate tumours respectively52. In line with human data, 

we observed an increased NOTCH signalling in the prostate tumours arising 
 
from these mouse models, showing increased g-secretase activity and upregulation of 

different NOTCH targeted genes (e.g. Hes1, Ccnd1). These data suggested that activation of 

Notch pathway could be a consequence of Pten-loss and that this might lead to progression of 

Pten-deficient prostate tumours. 
 

Therefore, to determine the role of Notch signalling in Pten-loss driven prostate 

tumorigenesis, we sought to obtain genetic evidence by generating a combined conditional 

inactivation of Pten and Notch1 in mouse prostatic epithelia. Strikingly, genetic inactivation of 

Notch1 in Ptenpc-/- mice hampered prostate tumorigenesis at early stage and tumour progression 

thereafter, by strongly reducing cell proliferation. These results demonstrate that prostate tumours 

driven by loss-of-Pten may in part require the activation of Notch1 signalling. Thus, we 

envisaged that in therapeutic setting, targeting NOTCH pathway in prostate tumours 

characterized by loss-of-PTEN might restrict tumorigenesis and subsequently the tumour 
 
invasiveness. Indeed, pharmacologically targeting Notch pathway using a g-secretase inhibitor 
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(GSI), PF-03084014, in Ptenpc-/- tumours (HG-PIN) and Ptenpc-/-; Trp53pc-/- tumours (invasive 

PCa), dampened tumorigenesis by inhibiting tumour cell proliferation. Notably, both genetic and 

pharmacological inhibition of Notch signalling were associated with upregulation of a p27-

mediated cellular senescence response in both Ptenpc-/- and Ptenpc-/-; Trp53pc-/- tumours. As 

previously documented, tumours affected by combined loss-of-Pten and Trp53 are insensitive to 

the majority of clinically available therapies for prostate cancer, such as androgen deprivation and 

docetaxel87, and it was therefore surprising to observe that PF-03084014 is highly effective in 

this tumour background. Activation of p27 in Pten-null tumours was associated to decreased 

Skp2 levels. SKP2 is a known NOTCH target gene and it is a regulator of p27 degradation. 

Treatment with PF-03084014 in both Ptenpc-/- and Ptenpc-/-; Trp53pc-/- mice, strongly decreased 

the protein levels of NICD1 and Hes1, thus confirming that the GSI reached its target. These 

findings are in line with a previous study demonstrating that treatment with a Skp2 inhibitor in a 

PC3 xenograft mouse model (PC3 cells lack both PTEN and p53) blocks tumorigenesis by 

upregulating both p27 and senescence53. Importantly, SKP2 inhibitors have been associated to 

several side effects in humans and their clinical development has been currently 

suspended88,89,90,91. Therefore, it is interesting to note that GSIs efficacy is comparable to the 

one obtained using Skp2 inhibitors but with less toxicity. Our data are also coherent with a recent 

report demonstrating the efficacy of PF-03084014 in combination with docetaxel, in two human 

prostate xenograft mouse models73. 

 
Another major advance of our findings is the characterization of the mechanism that 

links PTEN-loss to NOTCH activation in prostate cancer. Since upregulation of NOTCH 

occurred independently of its ligand in PTEN-deficient human prostate cancer cell lines, it 

remained unclear how aberrant Notch signalling was associated with development and 
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progression of prostate cancer. Moreover, the activation of g-secretase complex as observed in 
 
Ptenpc-/-  tumours, a complex which is activated only upon S2 cleavage mediated by ADAM  

 
metalloproteases, pointed towards 

investigating the role of ADAM17 in 

PTEN-loss driven PCa. Analysis of 

proteases involved in activation of 

Notch signalling has highlighted an 

increased S2 processing of Notch 

receptors mediated by the ADAM17 

metalloprotease. ADAM17 is involved 

in the first cleavage of the NOTCH 

receptor which results in the generation 

of the NOTCH extracellular domain 

(NEXT). This allows the subsequent 
 
cleavage of NOTCH by the g-secretase 
 
complex and translocation of NICD in 

the nucleus92,67,74. Intriguingly, high 

levels of ADAM17 result in S2 

cleavage followed by activation of Notch in a ligand-independent manner67,74. In our mouse 

models and PTEN-deficient human prostate cancer cell lines we observed increase ADAM17 

mRNA levels and an inverse correlation between PTEN and ADAM17, assessed by 

histological staining in two different TMAs of human prostate cancer. This finding was also 

confirmed by a bioinformatic analysis of additional human prostate cancer datasets. 

Furthermore, by knocking down ADAM17 in PC3 prostate cancer cells, we found decreased 

 
 
 
 
 

 

Fig 19. The Model. In prostate tumors with loss of PTEN, 
the high levels of CathepsinL promote the conversion of 
p200 CUX1 into its oncogenic isoform p110 CUX1, which 
in turn binds the promoter of ADAM17 and activates its 
transcription. ADAM17 then leads to the activation of 
Notch1 signaling which sustains tumor progression and 
may further reduce PTEN levels. This novel oncogenic 
network functions independently of PI3K/AKT pathway in 
the cells having loss of function of PTEN. This study may 
provide multiple entry points to design novel therapeutic 
intervention for PCa (e.g. CathepsinL inhibitors, ADAM17 
inhibitors, g-secretase inhibitors and AKT inhibitors). 
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NOTCH1 signalling along with impaired cell proliferation. Altogether, these data confirmed 

that NOTCH activation in PTEN-deficient cells is a consequence of ADAM17 up-regulation. 

While the regulation of NOTCH1 activity by ADAM17 has been extensively 

investigated92,57, the regulation of ADAM17 itself is a lesser-known phenomenon. Various 

studies on transcriptional factors involved in the up-regulation of ADAM17 have shown that 

under specific conditions, such as hypoxia, ADAM17 expression is up-regulated by different 

transcription factors93,94,95. In this study, we found that CUX1 was the only transcription factor 

conserved in both mouse and human predicted to bind to ADAM17. Multiple isoforms of CUX1 

have been identified out of which two are ubiquitously expressed. One is the full-length p200 

CUX1, known to function as a transcriptional repressor96, while the other one is a proteolytically 

cleaved p110 CUX1 isoform, often regarded as transcriptional initiator and found to be 

overexpressed in multiple cancers75. While p200 CUX1 is known to transiently bind to DNA, the 

p110 isoform can strongly bind to the promoter region of different genes thereby positively 

regulating their transcription97. In Pten-null prostate tumours and human cancer cells, we found 

manifold increase in p110 CUX1 isoform and an undetectable level of p200 CUX1 when 

compared to the control. In our ChIP analysis, we also found several fold-increase in binding of 

CUX1 to the promoter region of ADAM17 in prostate cancer cell lines, similar to PIK3IP1, a 

known target of CUX178. Furthermore, knockdown and over-expression of CUX1 in PCa cells 

also affected the levels of ADAM17, validating CUX1 as transcription activator of ADAM17. 

This has been also found in vivo in a different mouse model where over-expression of p110 

CUX1 is associated to NOTCH activation. Collectively, our observations demonstrate that 

PTEN-loss promotes the activation of NOTCH signalling by upregulating the levels of p110 

CUX1 that in turn promotes the transcription of ADAM17 (Supplementary Fig. 8). This may 

happen through an enhanced proteolytic activity of Cathepsin L, as shown in our study, or 

additional mechanisms such as unidentified proteases or non-coding RNAs that may 
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lead to either the cleavage or stabilization of p110 CUX1 mRNA. The results presented in 

this work strengthen the potential therapeutic benefits of targeting γ -secretase in prostate 

cancer and provide a rationale for stratifying patients that may be more responsive to this 

treatment due to loss of PTEN that mediates activation of NOTCH signalling. 
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4. Methods and materials 
 
Mice  

PtenloxP/loxP, PtenloxP/loxP; Notch1 loxP/loxP, Notch1 loxP/loxP, Trp53 loxP/loxP and PtenloxP/loxP; Trp53 
 
loxP/loxP mice (Jackson laboratory) were crossed with PB-Cre4 transgenic mice to generate 

prostate-specific knockout of Pten, Pten; Notch1, Notch1, Trp53 and Pten; Trp53 respectively52. 

All mice were maintained under specific pathogen-free conditions in the animal facilities of the 

IRB institute, and the experiments were performed according to the state 
 
guidelines and approved by the local ethical committee. g-secretase inhibitor PF-03084014, 
 

used for all the pre-clinical trials in a cohort of Ptenpc-/- and Ptenpc-/-; Trp53 pc-/- mice (8 and 15 
 
weeks of age respectively), was synthesized and provided by Pfizer. g-secretase inhibitor, 

PF-03084014, was dissolved in 10% Methyl cellulose solution in water prepared as follows: 

1. Heat about 1/3 of the required volume of water to at least 80 °C. 
 

2. Add the methyl cellulose powder (Sigma Aldrich – 09963) to the hot water with 

agitation. 

3. Agitate the mixture until the particles are thoroughly wetted and evenly dispersed. 
 

4. For complete solubilisation, the remainder of the water is then added as cold water or 

ice to lower the temperature of the dispersion. Once the dispersion reaches the 

temperature at which that particular methyl cellulose product becomes water soluble, 

the powder begins to hydrate and the viscosity increases. Solution should be cooled to 

0-5 °C for 20-40 min. 

5. Continue agitation for at least 30 min. After the proper temperature is reached add g-

secretase inhibitor, PF-03084014, to prepare the drug as per the need for treatments in 
 

vivo. 
 
Mice undergoing treatment were administered control vehicle or therapeutic dosage of PF-

03084014 (100mg/kg/twice-a-day) by oral gavage on a Monday through Friday schedule for a 
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total of 20 days. Mice were monitored for any suffering of distress or weight loss by 

measuring total body weight of mice biweekly and monitoring the behavioural changes every 

day for a total of 4-weeks of treatment. Upon completion of study, mice were euthanized by 

CO2 asphyxiation and tissues were procured for histological analysis, mRNA analysis and 

protein analysis. 

 
 
Autopsy and Histopathology 
 
Animals were autopsied, and all tissues were examined regardless of their pathological status. 
 
Normal and tumour tissue samples were fixed in 10% neutral-buffered formalin (Thermo 
 
Scientific, Cat No. 5701) for 24-36 hrs after which the Formalin was removed under running 
 
tap water and the tissues were kept in either 1x PBS or 70% Ethanol solution until to process. 
 
Tissues were processed by ethanol dehydration and embedded in paraffin according to standard 
 
protocols. For the normal sized tissues (most of the prostate samples were processed using the 
 
following steps: 
 
Program steps: 
 

1. Ethanol 70% - 10 mins (20 mins for bigger tisssues) 
 

2. Ethanol 80% - 10 mins (20 mins for bigger tisssues) 
 

3. Ethanol 95% - 10 mins (15 mins for bigger tisssues) 
 

4. Ethanol 95% - 10 mins (15 mins for bigger tisssues) 
 

5. Ethanol 100% - 10 mins (20 mins for bigger tisssues) 
 

6. Ethanol 100% - 10 mins (20 mins for bigger tisssues) 
 

7. Ethanol 100% - 10 mins (10 mins for bigger tisssues) 
 

8. Xylol - 15 mins (30 mins for bigger tisssues) 
 

9. Xylol - 10 mins (Same time of processing for the bigger tissues too) 
 

10. Xylol - 10 mins (Same time of processing for the bigger tissues too) 
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11. Paraffin - 35 mins (Same time of processing for the bigger tissues too) 
 

12. Paraffin - 35 mins (Same time of processing for the bigger tissues too) 
 
Sections (5µm) were prepared for antibody detection and Haematoxylin and Eosin (H&E) 

staining (C0303, Diapath) and (C0363, Diapath) respectively. To evaluate evidence of 
 
invasion, sections were cut at 20µm intervals and H&E stained. Slides were prepared 

containing three to five of these interval sections. 

 
 
g-secretase assay 
 
γ-Secretase assays using the recombinant human Notch and Amyloid precursor protein 

substrates Notch100-Flag and APP-C100-Flag were performed as previously 

reported98,99,100. Membrane proteins were extracted from Ptenpc+/+ and Ptenpc-/- null mice 

prostate samples in 50 mM HEPES (pH 7.0) with 1% CHAPSO. The protein content in the 

extracts was normalized by BCA and incubated in 0.2% (wt/vol) CHAPSO, 50 mM HEPES 

(pH 7.0), 150 mM NaCl, 5 mM MgCl2 and 5 mM CaCl2 and incubated at 37°C for 4 h with 1 

µm substrate, 0.1% (wt/vol) phosphatidylcholine and 0.025% (wt/vol) 

phosphatidylethanolamine. The generated products AICD (Amyloid Intracellular C-terminal 

Domain) -Flag and NICD (Notch Intracellular Domain) -Flag were analyzed by Western blot 

and detected with Flag-specific M2 antibody (Sigma-Aldrich). 

 
 
MEF production and cell culture 
 

Primary MEFs were obtained from individual embryos of PtenloxP/loxP genotype from a 

pregnant mouse at 13.5 days post-coitum. The embryos were harvested from the embryonic 

sac and the head, limbs, tail and internal organs such as foetal livers (Red dotted immature 
 
organs) were dissociated. These embryos were further chopped in 15-20 µl Trypsin-EDTA and 
 

were kept in the incubator at 37oC with 5% CO2 for 20-25 mins. Upon incubation, the trypsin 
 
 

 



52 
 

PhD Dissertation  
 
 
over the chopped embryos was deactivated using DMEM with 10% FCS and 1% Pen/Strep and 

the chopped embryos were transferred to a 10mm Petri dish and kept in the incubator. 24 hrs 

post-seeding, media was changed over the MEFs and were further incubated for additional 2 

days. Once the MEFs are ready either they can be freezed using 10% DMSO solution in FCS 

(Freezing media) or can be plated for infection. Primary Ptenlox/lox MEFs were infected with 

retroviruses expressing either pMSCV-CRE-PURO-IRES-GFP or pMSCV-PURO-IRES-GFP for 

48 hrs and selected with Puromycin at a concentration of 3 µg ml−1. 293t cells nearly 2x106 

 
were plated in 10mm dish and were transfected using the above-mentioned plasmids (5µg) 
 
with Pcl-Eco (1µg) as a helper and transfection was performed using Jetprime solutions and 

protocol as per manufacturer instructions. 

PTEN WT (RWPE-1, 22Rv1) human prostate cell lines and heterozygous or homozygous 

loss of PTEN function prostate cancer cell lines (DU-145, LNCaP and PC3) were obtained 

from ATCC and were cultured in RPMI (supplemented with 10% FCS and 1% Pen/Strep) 

according to the manufacturer instructions. 

 
 
Proliferation and senescence assays 
 
Proliferation assay in MEFs was performed by plating 104 cells per well of 24-well plate in 

triplicate while that in human PCa cell lines was performed by plating 1-2 x 104 cells per well of 

24-well plate in triplicate. Cells were treated with vehicle (DMSO) control, AZD8186 (PI3K 
 
inhibitor, Astrazeneca) at 3µM and 1µM and g-secretase inhibitor (Dissolved in DMSO only for 

in vitro studies) at aforementioned concentrations. Cell proliferation was monitored on days 0, 2, 

4 and 6 whereby cells were fixed for 15mins in a solution of 10% buffered formalin (Thermo 

Scientific, Cat No. 5701) washed with PBS (pH7.2) and subsequently stained with 0.01% Crystal 

violet solution. Excessive staining was removed by washing with distilled water and drying the 

plates overnight. Crystal violet stained cells were dissolved in 10% acetic acid 
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solution for 30mins on shaker and the extracted dye was read with a spectrophotometer at 

590 nm. Cellular senescence in vitro was performed using Senescence β -Galactosidase 

Staining Kit (Cell signalling, Cat No. 9860s) as per manufacturer instructions. 

 
 
siRNA and shRNA transfection 
 
Human ADAM17-directed shRNA was obtained from Sigma. To prepare lentiviral particles, 293t 

HEKs were transfected using Jetprime transfection reagents (Polyplus transfection) as per 

manufacturer instructions. PC3 cells were infected with the lentivirus from transfected 293t 
 
HEKs and were subsequently selected using puromycin (2μg/ml). 

shRNA:5’CCGGCCTATGTCGATGCTGAACAAACTCGAGTTTGTTCAGCATCGACAT 

AGGTTTTTG 3’ (Clone ID: NM_003183.3-2002s1c1). 
 
Human CUX1a sequence: 5’ AACAGGAGGACACAAGGCAAAGCUG 3’and CUX1b 

sequence: 5’ CAGGGUUUGUUUAAUACACUCCAUU 3’ were custom-siRNA synthesized 

(Dharmacon). siRNA transfection was performed using Jetprime transfection reagents 

(Polyplus transfection) as per manufacturer instructions. 

 
 
Western Blotting and histology 
 
Human tissue microarray (TMA) were purchased from Biomax, Inc (PR8011A and PR483B). 

The antibodies used for IHC analysis and western blot (WB) were anti-activated Notch1 (Abcam) 

(IHC), Cleaved Notch1 (Val 1744) (Cell Signaling Technology; 1:250 dilution), Notch1 (D1E11) 

(Cell Signaling Technology; 1:1000) (WB), PTEN (Cell Signaling Technology; 1:1000) (WB), 

PTEN (51-2400; Invitrogen) (IHC), Ki67(Clone SP6; Lab Vision) (IHC), HSP90 (Cell Signaling 

Technology; 1:1000), ADAM10 (Abcam; 1:1000), ADAM17 (Abcam; 1:1000) (IHC/WB), 

CathepsinL (Abcam; 1:1000) (WB) , CUX1 a.a. 1300 (Millipore, 1:2500) and CUX1 a.a. 861 

(Millipore; 1:1000) (WB), Skp2 (Santa Cruz; 1:500) (WB), p27 
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(Santa Cruz; 1:500) (WB), Hes1 (Santa Cruz; 1:500) (WB), c-Myc (Santa Cruz; 1:500) 

(WB), p21 (Santa Cruz; 1:500) (WB), β-actin (Sigma; 1:5000) (WB). 
 
Immunohistochemistry protocol (IHC) 
 

• Deparaffinization 
 

1. 5’ OTTIX plus solution (Diapath, Cat No. X0076) 
 

2. 5’ OTTIX plus solution (Diapath, Cat No. X0076) 
 

3. 5’ OTTIX shaper solution (Diapath, Cat No. X0096) 
 

4. 5’ dH2O 
 

• Unmasking/ Antigen retrieval 
 

- Antigen retrieval step was performed in respective pHs at 1X, pH 8 solution 

(10X stock solution, Diapath, Cat No. T0090), pH 6 (Citrate) solution (10X 

stock solution, Diapath, Cat No. T0050) and pH 9 solution (DAKO, High pH 

antigen retrieval solution 50X, Cat No. K800421-2). 

- Unmasking was performed by immersing the slides in cylindrical jars 

containing respective pH solutions boiled at 98oC in water bath. 
 

- The slides were cooled by removing the jar from water bath to room 

temperature removing the lid. Wait for 20-25’until the solution is cooled and 

then remove the slides from the solution/jar. 
 

• Staining procedure 
 

- Mark the slides around the edges of embedded tissue with hydrophobic pen. 
 

- Wash slides with PBST (0.5% Tween20) 2’ x 2. 
 

- Add drop-wise to cover the tissue fully with 3% H2O2 (30% stock solution, 

Company: VWR chemicals, Cat no: 23615.248) for 10’. 
 

- Wash slides with PBST (0.5% Tween20) 2’ x 2. 
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- Add Protein-Block solution (DAKO Agilent technologies, Cat No. X0909) for 

10’ at room temperature. 

- Drip off the solution and WITHOUT washing the slides, add 1o antibody at 

the desired concentration in Antigen-Diluent solution (Life technologies, Cat 

No. 003118) for 1 hour at room temperature. 
 

- Wash the slides with PBST 2’ x 2. 
 

- Add 2o antibody (Anti-Mouse Vector Laboratories, Cat No. BA-2000 and 

Anti-Rabbit for all the three in this case, Vector Laboratories, Cat No. BA-

1000, 1:200 dilution) in 1xPBS solution for 30’ at room temperature. 
 

- Wash the slides with PBST 2’ x 2. 
 

- Meanwhile, prepare Vectastain ABC solution (Company: Vector laboratories, 

Cat No. PK-6100) dilution of 1:150 of both Solution A and Solution B in 

1xPBS solution and leave the mixture for 30’ incubation at room temperature 

while waiting for the secondary staining. 

- Wash the slides with PBST 2’ x 2. Meanwhile, prepare DAB solution 

(Company: Vector laboratories, Cat No. SK-4105. One drop of Chromogen in 

1ml of Diluent solution). 

- Add the DAB solution for 4’ and immediately was the slides with PBST 2’ x 2. 
 

- Add Haematoxylin solution for 2’ and immediately after wash the slides with 

tap water. 

Perform the back-solutions procedure. 
 
 
 
 
Back-solutions procedure 
 

1. 2’ OTTIX plus solution (Cat No. X0076, Diapath) 
 

2. 2’ OTTIX plus solution (Cat No. X0076, Diapath) 
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3. 2’ OTTIX shaper solution (Cat No. X0096, Diapath) 
 

4. Mount the stained slides with mounting media and gently place coverslip. Avoid 
 

bubbles. 
 
Add mounting media on the top of the slides and place the coverslips and give a gentle tap to 

remove all the bubbles. 
 
Haematoxylin and Eosin staining (H&E) 
 
Deparaffinization procedure was performed in the beginning as mentioned in IHC protocol 

above. Upon Deparaffinization the H&E staining was performed as detailed below: 
 

• Staining procedure 
 

- Stain the slide with Haematoxylin solution (Diapath, Cat no. C0303) for 6-7 

mins. 

- Wash the slide with dH2O for two times. 
 

- Stain the slides with Eosin solution (1% aqueous) for 2-3 mins. 
 

- Wash immediately with tap water for three times and perform the back steps. 

Back-solution procedure was eventually performed as detailed in IHC protocol section. 
 
Add mounting media on the top of the slides and place the coverslips and give a gentle tap to 

remove all the bubbles. 

 
 
Chromatin immunoprecipitation assay 
 
Cells were cultured up to a confluence of 90–95% and were cross-linked with 1% formalin (Final 

concentration) for 10 min followed by addition of glycine (0.125M Final concentration) for 5 min 

at room temperature on slow swirling shaker. The culture medium was aspirated and the cells 

were washed twice with ice-cold PBS. Nuclear extracts were sonicated using a Misonix 3,000 

model sonicator to sheer crosslinked DNA to an average fragment size of ~500 bp. The sonicated 

samples were centrifuged at 12’000 rcm for 10mins at 4oC and 
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aliquoted. g-bind Plus sepharose beads (GE healthcare) were washed using 1x PBS thrice 

followed by rinsing with ChIP Dilution buffer. Sonicated chromatin was incubated for 
 
overnight at 4 °C with g-bind Plus sepharose beads (GE healthcare) conjugated with either anti-

CUX1 antibody (Santa Cruz; 200 µg/0.1ml) or IgG antibody (Millipore) by incubating overnight 

at 4 °C on a rotor. Approximately, 5ml (1% of the total volume of samples used for ChIP) of 

sonicated-centrifuged samples were separated to be used as Input (like housekeeper). Upon 

overnight incubation, beads were washed thoroughly using following procedure: 
 

- Low Salt buffer wash on rotor (Twice for 5 mins followed by centrifugation no 

more than 300 rpm). 

- High Salt buffer wash on rotor (Once for 5 mins followed by centrifugation no 

more than 300 rpm). 

- Lithium Chloride (LiCl) buffer wash (Once for 5 mins followed by 

centrifugation no more than 300 rpm). 

- TE buffer wash (Twice for 5 mins followed by centrifugation no more than 300 

rpm). 
 
The chromatin was eluted from the beads, and crosslinks were removed by incubation at 65 

°C for 5 h in Elution buffer. DNA was then purified using the QIAquick PCR Purification Kit 

(Qiagen, Cat No. 12643). The ChIP primers for ADAM17 EpiTect ChIP qPCR Primer Assay 

For Human ADAM17, NM_003183.4 (-)02Kb (Qiagen) and PIKChIP1f sequence: 5’ 

GAGGAAGGAAGGTACTGAACC 3’ and PIKChIP1r sequence: 

5’CCTGTAACTAAGACATTTATCAGC 3’. ChIP qPCR was performed using KAPA SYBR 

FAST ABI qPCR Master Mix solution (KAPA Biosystem) on Step One Real-Time PCR systems 

(Applied Biosystems). Primers for ADAM17 used in the ChIP experiments were 
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designed using the SABiosciences’ proprietary database (DECODE, DECipherment Of DNA 

Elements). 

Buffers used for this protocol were as follows: 
 

• ChIP Dilution buffer (Final concentrations): 

0.01% SDS 
 

1.1% Triton X-100 
 

1.2mM EDTA 
 

16.7mM Tris-HCl (pH 8.1) 

167mM NaCl 
 

• Low Salt buffer (Final concentrations): 

0.1% SDS 
 

1% Triton X-100 

2mM EDTA 

20mM Tris-HCl (pH 8.1) 

200mM NaCl 
 

• High Salt buffer (Final concentrations): 

0.1% SDS 
 

1% Triton X-100 

2mM EDTA 

20mM Tris-HCl (pH 8.1) 

500mM NaCl 
 

• LiCl buffer (Final concentrations): 

0.25M LiCl 
 

1% IGEPAL-CA630 (NP-40) 
 

1% Deoxycholic acid 
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1mM EDTA 
 

10mM Tris-HCl (pH 8.1) 
 

• TE buffer (Final 

concentrations): 1mM EDTA 
 

10mM Tris-HCl (pH 8.1) 
 

• Elution buffer (Final concentrations): 
 

10µl of 10% SDS 
 

10µl of 1M NaHCO3 (Stored at -20) 
 

80µl H2O 
 

4µl of 5M NaCl 
 

• Proteinase K. solution to add to Elution buffer (Final concentrations): 

4µl of 0.5M EDTA 

8µl of 1M Tris-HCl (pH 6.5) 
 

1µl of Proteinase K solution 
 

To a total of 104µl of Elution buffer add 13µl of proteinase K solution. 
 
 
 
 
Quantitative real-time PCR 
 
Quantitative real-time PCR was performed on RNA extracted from cells and respective 

tissues samples using Trizol (Ambion Life Technologies, Cat No. 15596026). 
 

a. RNA extraction protocol: Tissues were homogenised in 500µl of Trizol reagent using 

1.5ml Pre-sterilized pestle (Axygen, Cat No. PES- 15-B-SI) and the homogenised 

samples were incubated at room temperature for 5 mins. Similarly, cells grown in cultures 

as monolayers were scraped in 500µl of Trizol reagent followed by 5 mins incubation at 

room temperature. Upon incubation, 100µl of Chloroform (Sigma- 
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Aldrich, Cat No. C2432) was added and the samples were vortexed for 10-15 secs and 

incubated at room temperature for 2-3 mins. Samples were centrifuged at no more than 

12’000 RCF for 15 mins at 4oC to observe the phases (Lower red, Phenol-chloroform 

intermediate phase and colourless upper aqueous phase). The RNA is present in the upper 

phase which is carefully transferred to a new Eppendorf without disturbing the 
 

other two phases. Thereafter, 250µl of Isopropanol (2-propanol, Sigma-Aldrich, Cat No. 

I9516) was added to the upper phase and mixed well using a pipette. The samples were 

incubated at room temperature for 10 mins followed by centrifugation at no more than 

12’000 RCF for 10 mins at 4oC. This allows the formation of white pellet at the 

 
bottom of the tube which is washed in 500µl of 75% Ethanol twice separated by 

 

centrifugation at 7’500 RCF for 5 mins at 4oC. Finally, the pellet is allowed to dry 

which is dissolved in DEPC-water of appropriate volume. 
 

b. Complementary DNA and RT-PCR preparation: cDNA was prepared from 1µg of 

RNA using SuperScript III First-Strand Synthesis SuperMix (Invitrogen, Cat No. 

11752-050) as per manufacturer instructions. The cDNA samples were further diluted 

(Dilution rate: 1:2) before to use it for the RT-PCR. See Supplementary Table 2 for 

list of primers used for qRT-PCR. Quantitative Real-time PCR was performed using 

KAPA SYBR FAST ABI qPCR Master Mix solution (KAPA Biosystem) on Step 

One Real-Time PCR systems (Applied Biosystems). Following was the preparation of 

the respective primer mixes: 
 

1. Forward primer: 1.5 µl of 2µM intermediate stock (Prepared by diluting 1:50 

primer stock of 100 µM concentration) 

2. Reverse primer: 1.5 µl of 2µM intermediate stock 
 

3. DEPC-water: 1µl 
 

4. SyBR Green solution: 5µl 
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5. cDNA per well: 1µl (1:2 diluted) 
 
 
 
 
Correlation Analysis 
 
Correlation between gene-expression-derived values in the principle-component analysis PCa 

data sets was done using Pearson correlation test, which estimates a correlation value ‘‘r’’ and a 

significance p value (r > 0 < 1, direct correlation; r < 0 >1, inverse correlation). Correlation was 

also performed in TMA staining evaluation using the estimated percentage of positively stained 

cells. Correlation analyses Pearson r was calculated to assess potential positive (r > 0) or negative 

(r < 0) linear correlations between gene expression levels of PTEN and ADAM17, and PTEN and 

HES1 in the primary tumor biopsies (n=49) comprised in the Grasso human PCA dataset 

(GSE35988). Two tailed p-values smaller than 0.05 were considered significant 

 
 
Gene Expression Profiling 
 
Gene expression profiling (GEP) was done using the MouseRef-8 v2.0 Expression BeadChip 

(Illumina, San Diego, CA, USA), following the manufacturer’s protocol. Arrays were read on an 

Illumina HiScanSQ system. Data were first extracted with the Illumina GenomeStudio software 

and then imported in Genomics Suite 6.4 (Partek Incorporated, Saint Louis, MO USA) and 

quantile normalized. Transcripts with differences in expression were identified by ANOVA. 

Enrichment analysis was performed using Gene Set Enrichment Analysis (GSEA)101. Raw data 

have been deposited in National Center for Biotechnology Information’s Gene Expression 

Omnibus (GEO) and are accessible through GEO accession (GSE76822). GSEA was performed 

on entire gene list ranked according to fold changes observed between Ptenpc+/+ and Ptenpc-/- 

mice and also Ptenpc-/- and Ptenpc-/- treated with PF-03084014 mice. Functional analysis was 

performed on the collapsed gene symbol list using GSEA (Gene Set Enrichment Analysis) with 

the MSigDB_v4.0 (Molecular Signatures Database)102 C2-C7 
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gene-sets. Gene-sets with FDR <0.25 and Normalized Enriched Score103 higher than 1.25 or 

lower than -1.25 were considered significantly enriched. The VILIMAS_Notch_Targets104 

gene set include 52 genes up-regulated in bone marrow progenitors by constitutively active 

NOTCH1. Pearson correlation was used to study the association among genes in terms of 

gene expression. Analyses were performed using the R environment (R Studio console; 

RStudio, Boston, MA, USA). A p-value <0.05 was considered statistical significant. 

 
 
 
 
Secrete-Pair Dual Luminescence Assay 
 
Cells were co-transfected with ADAM17 promoter reporter clone (HPRM15027, 

Genecopoeia) along with control vector (pXJ Vector) and p110 CUX1 (pXJ p110). Media 

from these transfected cells from at different specified time points were collected after 

changing the media post-transfection. The secreted luciferase (GLuc and SEAP) was 

measured and analysed as per the manufacturer’s guide (SPDA-D010, Genecopoeia). 

 
 
Immunofluorescence analysis 
 

• Deparaffinization 
 

5. 5’ OTTIX plus solution (Diapath, Cat No. X0076) 
 

6. 5’ OTTIX plus solution (Diapath, Cat No. X0076) 
 

7. 5’ OTTIX shaper solution (Diapath, Cat No. X0096) 
 

8. 5’ dH2O 
 

• Unmasking/ Antigen retrieval 
 

- For Vimentin and E-Cadherin: 1X pH 9 solution (DAKO, High pH antigen 

retrieval solution 50X, Cat No. K800421-2). 

- Unmasking was performed by immersing the slides in cylindrical jars 

containing pH 9 solution and boiled at 98oC in water bath. 
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- Cool the slides by removing the jar from water bath to room temperature and 

remove the lid. Wait for 20-25’until the solution is cooled and then remove the 

slides from the solution/jar. 
 

• Staining procedure 
 

- Mark the slides around the edges of embedded tissue with hydrophobic pen. 
 

- Wash slides with PBST (0.5% Tween20) 2’ x 2. 
 

- Add Protein-Block solution (DAKO Agilent technologies, Cat No. X0909) for 

10’ at room temperature. 

- Add Biotinylated anti-mouse (Vector Laboratories, Cat No. BA-2000) to 

block unspecific binding of anti-mouse E-Cadherin antibody on mouse tissue 

which also gave non-specific background for 20’ at room temperature. 

- Drip off the solution and WITHOUT washing the slides, add 1o antibody in 

Antigen-Diluent solution (Life technologies, Cat No. 003118) for 1 hour at 

room temperature. 
 

- Concentration of respective primary antibodies is as below: 

Rabbit anti-Vimentin: 1:350 (Abcam, Cat No. ab92547) 

Mouse anti-E-Cadherin: 1:400 (BD Biosciences, Cat No. 610181) 
 

- Wash the slides with PBST 2’ x 2. 
 

- Add 2o antibody (Alexa Fluor 594 anti-mouse from Invitrogen, Cat No. A11005 

and Alexa Fluor 488 anti-rabbit from Life technologies, Cat No. A11008, both at 

1:200 dilution) in 1xPBS solution for 30’ at room temperature. 
 

- Wash the slides with PBST 2’ x 2. 
 

- Lastly, the samples were incubated with mounting media with DAPI 

(Vectashield, Cat no. H-1200). 
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Immunofluorescence images were acquired on a Leica TCS SP5 confocal microscope, using 

a 40X/1.25 N.A. objective (Leica HCX PL APO lambda blue 40X/1.25 oil UV). Several 

fields of views were acquired with tiling scan function, in order to get an area of 1000um 

x1000um. Image analysis was performed measuring total fluorescence of transcription factor 

both in nuclear and cytoplasmic region, with a customized pipeline in CellProfiler 

software103. Images for tissue samples stained for Vimentin/E-cadherin were acquired on a 

Leica TCS SP5 confocal microscope using 10X/1.25 oil 

 
 
Statistical Analysis 
 
For each independent in vitro experiment, at least three technical replicates were performed 

with an exception in western blot analysis. In the in vitro experiments, data groups were 

assessed for normal distribution and Student’s t test was performed for paired-comparison. 

The n values represent the number of mice used for the study of genetically engineered 

mouse model analysis and pre-clinical trials using PF-03084014. 
 
Data analysis was performed using a two-tailed unpaired Student’s t test. Values are 

expressed as mean ± SEM (*p<0.05; **p<0.01; ***p<0.001). 
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