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One of the most conserved traits in the evolution of biomineraliz-
ing organisms is the taxon-specific selection of skeletal minerals.
All modern scleractinian corals are thought to produce skeletons
exclusively of the calcium-carbonate polymorph aragonite. De-
spite strong fluctuations in ocean chemistry (notably the Mg/Ca
ratio), this feature is believed to be conserved throughout the
coral fossil record, spanning more than 240 million years. Only
one example, the Cretaceous scleractinian coral Coelosmilia (ca.
70 to 65 Ma), is thought to have produced a calcitic skeleton. Here,
we report that the modern asymbiotic scleractinian coral Paraco-
notrochus antarcticus living in the Southern Ocean forms a two-
component carbonate skeleton, with an inner structure made of
high-Mg calcite and an outer structure composed of aragonite. P.
antarcticus and Cretaceous Coelosmilia skeletons share a unique
microstructure indicating a close phylogenetic relationship, consis-
tent with the early divergence of P. antarcticuswithin the Vacatina
(i.e., Robusta) clade, estimated to have occurred in the Mesozoic
(ca. 116 Mya). Scleractinian corals thus join the group of marine
organisms capable of forming bimineralic structures, which re-
quires a highly controlled biomineralization mechanism; this capa-
bility dates back at least 100 My. Due to its relatively prolonged
isolation, the Southern Ocean stands out as a repository for extant
marine organisms with ancient traits.
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The ability to form a calcium carbonate skeleton represents an
evolutionary innovation of major importance that dates back

to the onset of the Phanerozoic (ca. 540 Ma) (1). Since that time,
multiple groups of marine metazoans became highly efficient
reef builders, creating the structural foundation for the richest
and most biodiverse ecosystems in the ocean (2). In our modern
ocean, carbonate reef building is dominated by scleractinian
corals, which produce ∼1012 kg of skeleton carbonate every year
(3). Based on available empirical evidence, it is widely accepted
that pristine skeletons of modern scleractinians, grown in natural
environments, consist exclusively of the carbonate polymorph
aragonite, which is metastable at ambient conditions typical of
the Earth’s surface.
In vitro experiments under ambient temperatures show that

abiotic precipitation of calcium carbonate polymorphs from
seawater is controlled primarily by the Mg/Ca ratio (4). With
present-day ionic strengths and atmospheric CO2 concentration
(pH ca. 8), the seawater Mg/Ca ratio (today 5.2 mol/mol) sepa-
rates two regimes of inorganic carbonate polymorph precipita-
tion: the regime of low-magnesium calcite (LMC) at Mg/Ca <
2 mol/mol (“calcitic seas”) and the regime of aragonite and/or

high-Mg calcite (HMC) precipitation at Mg/Ca > 2 mol/mol
(“aragonitic seas”) (5, 6). During the mid-Cretaceous, the Mg/Ca
ratio is thought to have been well below 2 mol/mol (7, 8), creating
conditions conducive to calcite precipitation. Despite that, only one
scleractinian coral, Coelosmilia from Upper Cretaceous chalk de-
posits, has, to date, been documented to have a bona fide primary
calcitic skeleton (9). This observation is consistent with biomineralizing
organisms exerting stronger control over polymorph selection than a
simple inorganic precipitation process.
Coral skeletal microstructural patterns are highly conserved

through evolution and have often been used to elucidate phy-
logenetic relationships in the absence of genetic information
(10). Corals exhibiting similar microstructure very likely share a
similar origin. Indeed, the biomineralization process has proven
to be robust enough to withstand dramatic environmental changes
throughout geological time, including substantial changes in sea-
water chemistry (11, 12).
In this context, we report the discovery that the extant, deep-

sea, solitary, scleractinian coral Paraconotrochus antarcticus,
which is ubiquitous in the Southern Ocean around Antarctica
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(13) at depths between 50 and 700 m and at temperatures be-
tween ca. 0.5 and 3 °C, forms a two-component calcite–aragonite
skeleton with microstructural features very similar to the Cre-
taceous Coelosmilia (Fig. 1 and SI Appendix, Fig. S1).

Results
The samples of P. antarcticus studied here include both bare
skeletons and specimens collected alive, obtained from material
dredged from the Weddell, Ross, and Cooperation seas, re-
spectively (SI Appendix, Fig. S2 and Table S1). The skeleton of P.
antarcticus is shaped like a regular cone, which is a few centi-
meters in both diameter and height (Fig. 1 A and B and SI Ap-
pendix, Fig. S1 A and B). Its septa are hexamerally arranged in
five cycles, and the central portion of the calice is occupied by
labyrinthine projections (so-called columella).
In transversal cuts (n = 31), all examined P. antarcticus con-

sistently revealed a distinct boundary between two main skeletal
regions, hereafter referred to as the inner and outer skeleton
(Fig. 1 E, F, and H–J). The inner skeleton is relatively narrow
(ca. 50 to 100 μm thick) and forms the central parts of the septa
and wall (Fig. 1 E and H–J). This inner skeleton is also observ-
able at the distalmost (upper) growth front of the calice, where it
is deposited quasi-contemporaneously with the outer skeleton
(Fig. 1 C and D). Microstructurally, the inner skeleton consists of
rapid accretion deposits (RADs; ca. 10 μm in diameter, also
referred to as “centers of calcification”) that define the central
axis, and “fibrous” skeleton, or thickening deposits (TDs) ca. 20
to 30 μm thick, which consist of relatively broad ca. 10 μm
bundles of fibers, completely transparent in transmitted light and
flanking the RAD region (Fig. 2 A and B).
A sharp crystallographic boundary delineates the transition

from the inner skeleton to the outer skeleton (Fig. 2 F–H). In
those regions where the outer skeleton is in direct contact with
the inner skeleton, the former typically consists of long (often >
100 μm) and relatively narrow (ca. 5 μm) bundles of crystal fibers
(Fig. 2G). However, as the outer skeleton continues to form
beyond the inner skeleton, it consists of the same two classical
microstructural components (i.e., RADs overgrown by fibrous
TDs, such as in Fig. 2J and SI Appendix, Figs. S3B, S5C, and S7 E
and F). In contrast to the majority of other modern scler-
actinians, but in close structural analogy with Cretaceous Coe-
losmilia, the outer skeleton is gradually covered with a third
carbonate structure that progressively infills the entire lumen of
the calice bottom-up (SI Appendix, Figs. S1, S3–S6, and S9 A and
B). All of these skeletal regions and components exhibit the
nanoparticulate texture characteristic of biogenic minerals (14)
when observed by scanning electron microscopy (SEM) and
atomic force microscopy (AFM) (Fig. 2 C–E).
However, the observation of different calcium-carbonate

polymorph compositions between the inner (calcite) and outer
(aragonite) skeletons sets P. antarcticus apart from all other
living scleractinian corals. The calcitic mineralogy of the inner
skeleton is unequivocally demonstrated by both electron back-
scatter diffraction and Raman spectroscopy imaging of thin
sections (Figs. 1G and 2J and SI Appendix, Fig. S10). The density
difference between calcite and aragonite (2.65 to 2.71 g/cm−3

versus 2.94 g/cm−3) makes these polymorphs distinguishable with
high-resolution three-dimensional (3D) tomography, which
revealed that the calcitic inner skeleton is a corrugated (and
occasionally perforated/discontinuous) structure forming the
central plane of the septa and wall (Fig. 1 E and F). Both 3D
tomography and serial thin sectioning showed that the inner
calcitic skeleton is usually present throughout the skeletal on-
togeny (SI Appendix, Figs. S3–S6), although some specimens
exhibited discontinuities in the development of the inner skeletal
structure, typically accompanied by concentrically grown de-
posits (SI Appendix, Figs. S7 and S8). As expected, there is a
sharp difference in chemical composition between the calcitic

and aragonitic regions (Fig. 2 L and M). The calcitic inner
skeleton is depleted in Sr and Na and enriched in Mg, averaging
ca. 11 mole percent (mol%) of MgCO3 and thus compositionally
HMC, which is consistent with the observed Raman peak shifts
relative to the LMC (Fig. 2I). The aragonitic outer skeleton
contains ca. 1.2 mol% SrCO3, with MgCO3 below the electron
microprobe detection limit, that is, similar to aragonitic skele-
tons of other deep-sea corals (15).
Both aragonitic and calcitic crystals have the a and b axis ro-

tated around the c axis (turbostratic distribution) in the plane
(222) of aragonite and (1014) of calcite (Fig. 2 F–H). Raman
spectra in RADs and neighboring TD regions indicated disor-
dered material in both calcite and aragonite RADs (Fig. 2 I–K).
The aragonitic RADs showed stronger fluorescence than RADs
in the calcitic inner skeleton (SI Appendix, Fig. S9 A and B).
The measured average 44Ca/40Ca isotope ratios of the arago-

nitic and calcitic skeletal parts were −1.51 ± 0.21‰ and −1.24 ±
0.14‰ (relative to seawater, 2σ). The mean δ44/40Ca value of the
inner calcitic skeleton is consistent with that observed in other
biomineralizers that form HMC and have sophisticated control
over biomineralization. The average δ44/40Ca value of the ara-
gonitic outer skeleton is consistent with other biogenic arago-
nites. The difference in the average oxygen isotopic composition
between the calcitic inner and the aragonitic outer skeletons is
less than 1‰ (SI Appendix, Fig. S15).
All these unique skeletal features of the P. antarcticus point to

a distinct position of this taxon in the phylogeny of Scleractinia.
To investigate this, we performed a mitophylogenomic analysis
that involved all mitochondrial protein-encoding genes of P.
antarcticus aligned to those from 57 other scleractinians and 12
corallimorpharians, the latter used as an outgroup (SI Appendix,
Table S2). The resulting phylogeny placed P. antarcticus in an
early diverging position within the Vacatina (Robusta) clade,
with time calibration indicating a Cretaceous (ca. 116 Ma) di-
vergence of its lineage (Fig. 3).

Discussion
Although calcitic deposits can be observed in adult skeletons of
modern scleractinians, these are invariably considered to be
secondary calicite cements or products of calcite precipitation
induced by other organisms, such as skeletal borers and/or mi-
crobes (16, 17). The occurrence of HMC in P. antarcticus skel-
eton was noted previously (18) but interpreted as diagenetic
infilling of microborer cavities. It is, however, highly unlikely that
the calcitic inner skeleton of P. antarcticus is the result of al-
teration by the postformation processes for a number of reasons.
1) The examined skeletons of P. antarcticus exhibit no signs of
borings. Other corals collected alive from the same localities at
the same time (e.g., Flabellum flexuosum and Javania antarctica)
show no signs of calcite or other diagenetic alteration (SI Ap-
pendix, Figs. S11 and S12). 2) The calcitic inner skeleton of P.
antarcticus shows microstructural components typical of scler-
actinian corals with regularly arranged axial RADs and associ-
ated TD fibers. Diagenetic alteration of orthorhombic aragonite
to hexagonal LMC is fabric destructive. Furthermore, neo-
morphism from aragonite to HMC is very unlikely because HMC
is more soluble and less stable. Metastable aragonite and HMC
invariably neomorphose to more stable LMC (or dolomite). 3)
The inner skeleton shows no trace of red luminescence (cath-
odoluminescence) typical of carbonates from diagenetic envi-
ronments enriched with activator ions, such as Mn2+ (SI
Appendix, Fig. S9). 4) The presence of disordered material
in both calcitic and aragonitic RADs is revealed by Raman
spectroscopy and is suggestive of putative protocalcite and pro-
toaragonite, respectively (19). In combination with the nano-
particulate texture of all skeletal components (Fig. 2), this is
consistent with a biogenic, nonclassical mineralization process
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with a continuous assemblage of amorphous intermediate pre-
cursors (i.e., amorphous calcium carbonate [ACC]) (14, 20–23).
If a diagenetic process had transformed ACC into calcite and

aragonite postmortem, that is, in the absence of a continued
biomineralization process, the difference in molar volume be-
tween the ACC (ca. 54 cm3/mol) and calcite or aragonite (both

Fig. 1. Extant specimen of the solitary scleractinian coral Paraconotrochus antarcticus with a two-component calcitic (inner)–aragonitic (outer) skeleton.
Distal (A) and lateral (B) views of the calice are shown. (C and D) The growth edges of the septa and wall exhibit a calcitic inner skeleton (white arrows)
overgrown by an aragonite (outer) skeleton (yellow arrows); blue- and red-crossed circles mark the position of micro-Raman analyses. (F) A Raman map
(region marked in E) showing the distribution of calcite (blue) and aragonite (beige) in a skeleton sectioned transversely. (G) Raman spectra (from 0 to
1,500 cm−1 that include both lattice and internal [v1, v4], vibrational modes) of coral aragonite (beige) and calcite (blue) collected from regions indicated in C.
(H–J) Transverse sections of adult (H), juvenile (I), and early juvenile (J) parts of the calice. Distinct boundaries (i.e., heteroepitaxy) between the crystal-
transparent calcitic regions (with dark RADs) and the brownish aragonitic regions are visible. (K and L) X-ray computed tomography visualization of the
calcitic inner (blue) and the aragonitic outer skeleton (semitransparent beige) up to the level indicated with a dashed line in B. (A–C, E, and G) ZPAL H.25/114;
(D) ZPAL H.25/115; (E and F) ZPAL H.25/116; (H, I, and J) ZPAL H.25/117.
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Fig. 2. The microstructural, crystallographic, and geochemical features of calcitic and aragonitic regions of Paraconotrochus antarcticus skeleton. (A and B)
The calcitic inner skeleton consists of RADs (arrows) and fibrous layers (i.e., TDs). (C–E) SEM of a transversely sectioned skeleton with a dashed frame indicating
the region enlarged in A, whereas blue (D) and black (E) circles mark areas observed by AFM. Both calcitic (D) and aragonitic (E) skeletal parts have a
nanogranular texture, typical of biominerals. (F–H) The sharp crystallographic boundary between the inner calcitic and outer aragonitic skeleton (G); in both
regions, crystals have their a and b axes rotating around a c axis (turbostratic distribution: calcite (F) in the plane 1014 and aragonite (H) in the plane 222. (I–K)
The Raman spectra in RADs and neighboring TD regions (numbers in Jmark measurement points) indicate disordered material in both calcite (I) and aragonite
RADs (K), consistent with biogenic formation from amorphous precursors. (J) A Raman map. (L–O) Back-scattered electron (BSE) and electron microprobe
images show the expected contrasting trace-element distributions, with calcite enriched in Mg (M) and depleted in Sr (N) and Na (O) compared with ara-
gonite. (A–E and L–O) ZPAL H.25/117; (F–K) ZPAL H.25/116.
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ca. 37 cm3/mol) would result in clearly visible porosity, which was
not observed. 5) A primary origin of the P. antarcticus skeleton is
also supported by the crystallographic arrangement of aragonitic
and calcitic crystals that have a and b axes rotated around the c
axis (turbostratic distribution), which is considered to be a bio-
genic strategy to prevent crystal cleavage (Fig. 2) (24). 6) The
distalmost edge of the septa, which represents the growth-edge,
and hence the most recently formed skeleton, exhibits the same
calcitic component as septal regions deeper in the calice (inner
skeleton). If the inner skeleton is the result of a transformation
from aragonite, or another precursor (for example, ACC), this
transformation must be nearly instantaneous.
A primary biogenic origin of the inner calcitic skeleton is also

supported by its stable isotopic compositions. The measured
average 44Ca/40Ca isotope ratios of the aragonitic and calcitic
skeletal parts are consistent with the values observed for bio-
calcifiers with skeletons of similar mineralogy and recognized to
exert strong control over their biomineralization process (25, 26)
(SI Appendix, Figs. S13 and S14 and Table S3). In addition, low
Sr/Ca and high Mg/Ca ratios indicate that the calcite δ44/40Ca did
not result from closed-system diagenetic recrystallization of
aragonite to calcite (27, 28). Open-system diagenetic recrystal-
lization would have shifted calcium isotope ratios to much higher
values (δ44/40Ca > −1‰) (SI Appendix, Fig. S13). The average
oxygen isotopic composition between the calcitic inner and the
aragonitic outer skeletons is less than 1‰, which is consistent with
observations of, for example, bimineralic bivalves (29). Further-
more, the oxygen isotopic variability observed at the micrometer
scale in the inner- and outer-skeletal parts is similar to that ob-
served in other coral skeletons (30, 31) and can only be ascribed to
vital effects (SI Appendix, Figs. S15 and S16 and Table S4) (15, 30).
We thus conclude that the inner calcitic skeleton in P. antarcticus is

pristine and the result of a highly controlled biomineralization
mechanism as opposed to secondary alteration.
The evolutionary stability of skeletal mineralogy and bio-

mineralization patterns of scleractinian corals is now widely
recognized (32). With regard to Paraconotrochus and Coelosmi-
lia, this implies that they may very well have had a common
evolutionary history. The mitophylogenomic analysis indicated a
Cretaceous (ca. 116 Ma) divergence of its lineage (Fig. 3), co-
inciding with the lowest ocean Mg/Ca ratio during the Phaner-
ozoic (<1 mol/mol). Culturing experiments have suggested that
low-Mg seawater chemistry strongly affects the expression of
genes related to coral skeletal formation and may trigger a change
from aragonite to calcite mineralogy (33). Other experiments have
demonstrated a physiologically controlled calcite-to-aragonite
mineralogical switch triggered by changes in the growth solution
Mg/Ca ratio (21, 34, 35). Although the majority of coral lineages
that survived through the major changes in the oceanic Mg/Ca ratio
continued to produce aragonitic skeletons, Cretaceous Coelosmilia
was capable of developing a purely calcitic corallum (9). P. ant-
arcticus, which has skeletal morphology and microstructure very
similar to Coelosmilia (SI Appendix, Fig. S1), may be a direct de-
scendant of this (or another) Mesozoic coral lineage capable of
depositing a calcitic skeleton.

Conclusions and Perspective
This discovery of a two-component calcite–aragonite skeleton
produced by extant P. antarcticus offers an opportunity to greatly
enhance the understanding of the scleractinian biomineralization
process, which, necessarily, is highly controlled by the animal. It
also provides a unique window into the evolutionary history of
scleractinian corals and changes the basis for theories about
scleractinian coral evolution through geological time (during
which ocean chemistry varied substantially to favor either ara-
gonite or calcite production) by removing the obstacle that
skeletal mineralogy defines an impassable boundary between
higher level anthozoan taxonomic units.
Despite dramatic physicochemical changes of the marine en-

vironment(s) surrounding the Antarctic continent since the
Mesozoic (36), the Southern Ocean is recognized as an evolu-
tionary refuge for numerous benthic invertebrates. Among these,
about 30 modern Southern Ocean molluscan genera already
existed in the late Cretaceous–early Paleogene (37). The long-
term survival of these benthic metazoans in the Southern Ocean
can be ascribed to its relative isolation and unique environmental
conditions over the last 100 Myr (38). The presence of early-
diverging P. antarcticus in the Southern Ocean suggests that
this region has also played an important role as refuge for the
evolution of asymbiotic scleractinian corals. The corals living
there may carry the answer to a series of fundamental evolu-
tionary questions: what are the genetic and/or environmental
underpinnings of the calcite-forming capability in corals? Is the
Paraconotrochus the only living scleractinian capable of calcite
skeleton formation? Was there a higher diversity of such corals
in the geological past? Is the mineralogical difference still to be
considered a major obstacle for evolutionary transition between
Paleozoic rugosan and scleractinian corals (39)?
Today, anthropogenic climate change and ocean acidification

is rapidly impacting the polar regions. High-latitude seawater is
predicted to become undersaturated with respect to aragonite
and high-Mg calcite within a few decades because of ocean up-
take of anthropogenic CO2. Such changes represent an existen-
tial threat to marine calcifying organisms (40, 41) endemic to
these regions. The observations presented here further empha-
size the uniqueness of the Southern Ocean as a repository for
ancient traits and an important window into the evolutionary
history of marine benthic organisms. We have much more to
learn from these environments and their inhabitants, which
further enhances the need for their preservation.

Fig. 3. The position of Paraconotrochus antarcticus (arrow) in phylogeny of
the scleractinia. The early-diverging Gardineria hawaiiensis (“Basal”), the
Vacatina (Robusta), and Refertina (Complexa) are shown. P. antarcticus has
an early-diverging position within the Vacatina clade, from which it di-
verged in the Mesozoic (Cretaceous) ca. 116 Ma. The diagram is based on
maximum likelihood (ML) and Bayesian inference of concatenated nucleo-
tides from all mitochondrial protein-coding genes. Small red circles on nodes
indicate ML and posterior probability support of 100 and 1, respectively. The
numbers close to some nodes indicate estimated divergence times using a
relaxed molecular clock (uncorrelated log-normal).
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Materials and Methods
Materials. Detailed information about the examined material is provided in
the SI Appendix, SI Materials. This study is based on the examination of a
large collection of P. antarcticus from three major regions of the Southern
Ocean (Weddell Sea, Ross Sea, and Cooperation Sea). In addition to the
specimens housed as dry skeletons, we also examined skeletons of P. ant-
arcticus collected alive in Weddell Sea and Cooperation Sea and preserved in
70% ethanol. Because of their excellent preservation condition, molecular
analysis of specimens collected alive by the RRS James Clark Ross (British
Antarctic Survey) off Antarctica in March 2016 was possible.

Methods: Skeletal Analyses.
Atomic Force Microscopy. The AFM allows for the determination of the 3D
surface topology of the biomineral at nanometer resolution. Following
established procedures (42), measurements were performed using the Multi-
mode 5 Atomic Force Microscopy instrument (Veeco) upgraded to Multimode 8
version (Bruker). The images have been acquired in ScanAsyst mode.
Cathodoluminescence microscopy. Cathodoluminescence microscopy is a
method to determine the spatial distribution of primary and secondary
features of carbonate samples. Diagenetic environments enriched with ac-
tivator ions such as Mn are usually reducing (low Eh). Secondary calcite that
was altered within a reducing diagenetic environment—in contrast to
original carbonate skeleton—typically contains a high concentration of
Mn2+ (the main activator of luminescence in carbonates) and exhibits strong
orange to red luminescence. Cathodoluminescence of the thin-sectioned
skeleton of P. antarcticus was examined with a hot cathode microscope
HC1-LM at the Institute of Paleobiology, Polish Academy of Sciences, oper-
ated with an electron energy of 14 keV and a beam current density of
0.1 μA/mm−2.
Confocal laser scanning microcopy. Confocal laser scanning microcopy (CLSM) is
a type of high-resolution fluorescence microscopy that facilitates the gen-
eration of high-resolution images from relatively thick sections. CLSM ob-
servations were conducted on sectioned skeletons of P. antarcticus using a
Nikon Eclipse Ti inverted fluorescence microscope from the Laboratory of
Electron and Confocal Microscopy at the Faculty of Biology (University of
Warsaw) equipped with 488 nm lasers; a 32-channel spectral detector with a
resolution of 2, 5, 6, or 10 nm; and mode Virtual Filter linked to Nikon’s
DS-5Mc video camera with charged-coupled device detector with a resolu-
tion of 5 Mpx.
Electron microprobe analysis. The electron microprobe analysis mapping en-
ables simultaneous analysis of different elements and the generation of
distribution maps for each element with ca. 1-μm lateral resolution. The
measurements were conducted on polished and C-coated thin sections with
a JEOL Superprobe JZA-8900 equipped with five wavelength-dispersive
spectrometers at the National Centre of Electron Microscopy (the Uni-
versidad Complutense of Madrid, Spain). Four elements (Ca, Mg, Sr, and Na)
were mapped (800 × 800 points) (Fig. 2 K–M). An accelerating voltage of 20
kV with a beam current of 50 nA and a spot size and step interval of 1 μm in
diameter (dwell time = 20 ms) were used.
Electron backscatter diffraction. The electron backscatter diffraction (EBSD) is a
scanning electron microscope–based microstructural–crystallographic char-
acterization technique that can provide information about, for example, the
phase and crystal orientation in the material. Thin-sectioned samples were
polished with alumina of 9 μm, 1 μm, and 0.3 μm and then with colloidal
silica (0.05 μm). Before analysis, samples were cleaned, dried, and coated
with a conducting carbon layer ca. 3 nm in thickness using a BALTEC SCD 005
sputter coater. The EBSD study was carried out with an Oxford NordlysMax
detector mounted on a scanning electron microscope JEOL JSM-6610LV at
the Institute of Materials Engineering, Łód�z University of Technology. EBSD
data were collected with AztecHKL software at high vacuum, 20 kV, large
probe current, and 20 mm of working distance. EBSD patterns were col-
lected at a resolution of 0.22 μm step size for crystallographic maps using the
unit cell settings characteristic of aragonite and calcite as follows: “Pmcn”
symmetry and a = 4.96 Å, b = 7.97 Å, and c = 5.75 Å estimated for Favia coral
using X-ray powder diffraction with synchrotron radiation (43) and a = b =
4.99 Å, and c = 17.06 Å, respectively. EBSD data were processed using
CHANNEL 5 software from Oxford Instruments. The EBSD data are repre-
sented as phase maps (showing the distribution of the different mineral
phases), band contrast images (showing the quality of the material diffrac-
tion), and color-coded crystallographic orientation images with corre-
sponding pole figures of aragonite and calcite in selected regions. The
MATLAB toolbox MTEX (44) was used for the stereographic projection of
crystallographic planes in reference to the (001), (010), (100), and (222) for

aragonite and (0001), (0110), (1010), and (1014) for calcite.

Feigl’s solution chemical staining. This staining technique allows us to distin-
guish aragonite from other calcium carbonate polymorphs. The Feigl’s
method is based on slightly different dissolution rates of calcite and ara-
gonite in water, and the larger reactive surface of fine-crystalline aragonite
regions results in their intense black staining. Accordingly, aragonite regions
were darkly stained, whereas calcite remained uncolored. The surfaces of
coral skeletons were polished with an aluminum oxide suspension with a
0.25-μm particle size and rinsed with distilled water. The specimens were
next immersed in several milliliters of Feigls’s solution (45) and stained for 10
to 15 min.
Isotope analyses (calcium isotopes). Calcium isotope preparation and analyses
were performed at Princeton University. The specimenwasmicrodrilled using
a Brasseler scriber point carbide drill bit (H1621.11.008 HP) on an ESI
MicroMill. The smallest available drill diameter (∼100 μm) was used to drill
precisely in the inner calcite skeleton and minimize introduction of the outer
skeleton aragonite. Microdrilled carbonate was dissolved directly in 0.2%
nitric acid for chromatography. Calcium was isolated from matrix elements
on an automated Dionex ICS-5000+ ion chromatography system coupled
with a Dionex AS-AP fraction collector using previously published methods
(26, 27, 46, 47). Following ion separation, samples were treated with con-
centrated HNO3 and then dried and rediluted in 2% HNO3 for mass
spectrometry.

Calcium isotope ratios weremeasured on a Thermo Scientific Neptune Plus
multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS).
Sample solution concentrations were carefully matched to a standard solu-
tion concentration of 2 ppm Ca to minimize concentration-dependent iso-
tope effects. The analyses were performed with an ESI Apex-IR sample
introduction system using medium resolution mode to avoid isobaric 87Sr2+

and ArHH+ interferences. Measured δ44/42Ca values were converted (48) to
δ44/40Ca values assuming a mass-dependent fractionation with a slope of
2.05 and assuming no excess radiogenic 40Ca. All Ca isotope values were
plotted in 3-isotope space (δ44/42Ca versus δ43/42Ca) to verify that the Ca
isotopes fall along the expected mass-dependent line.

All data are reported in delta notation relative to modern seawater
(δ44/40Caseawater = 0‰). δ44/40Caseawater = +1.92‰ on the Standard Reference
Material 915a (SRM915a) scale and +0.98‰ on the bulk silicate Earth scale
(48). We report long-term external reproducibility using the measured value
of SRM915b relative to modern seawater, both of which are taken through
the full chemical procedure (column chromatography and mass spectrome-
try) with each batch of samples. Our measured δ44/40Ca value for SRM915b
relative to modern seawater is −1.22 ± 0.14‰ (2σ; n = 39), indistinguishable
from published values determined by both MC-ICP-MS and thermal ioniza-
tion mass spectrometry (TIMS) (48, 49).
Isotope analyses (oxygen isotopes). Oxygen isotope ratios were measured by
secondary ion mass spectrometry (SIMS) using the CAMECA IMS 1280-HR at
the SwissSIMS laboratory (University of Lausanne, Switzerland). A focused
high-density Cs+ primary beam (Gaussian mode, 1.3 nA) at 10 kV was used to
analyze oxygen isotope ratios. The spot size was 10 to 15 μm, and no raster
was used. 16O− and 18O− were collected simultaneously on Faraday cups with
a mass resolution of ca. 2200. The electron flood gun, with normal incidence,
was used to compensate charges. Mass calibration was performed at the
beginning of the session. Each analysis took ∼4 min, including presputtering
(30 s) and automated centering of secondary electrons. Each data point
consisted of 10 measurements; the error of the mean was always better than
0.3‰ (2 SDs). Instrumental mass-fractionation was determined using a calcite
and an aragonite standard, mounted together with the sample. Because the
Mg content of carbonate affects the instrumental mass fractionation, the
δ18O value of the high-Mg calcite was corrected using the calibration of
Rollion-Bard and Marin-Carbonne (50). The reproducibility of the calcite
standard was 0.38‰ (2 SDs), and the reproducibility of the aragonite stan-
dard was 0.23‰ (2 SDs) over the session. No drift correction was applied.
δ18O is referenced to the standard mean ocean water Pee Dee Belemnite
(PDB) 18O/16O ratio of 2,005.2 × 10−6.
Optical microscopy. Polished sections were examined using a Nikon Eclipse 80i
transmitted light microscope fitted with a DS-5Mc cooled camera head.
Observations were conducted in transmitted and polarized light. The mi-
cromorphological details of calcite–aragonite contact at distal parts of the
septa and wall were examined by the Keyence VHX-5000 Digital Microscope
at the Institute of Paleobiology, Warsaw, Poland (the help of Łucja
Fostowicz-Frelik is greatly appreciated).
Raman microscope. The Raman measurements were performed with LabRAM
800 HR confocal microscope (Horiba Jobin Yvon) equipped with a diode-
pumped Nd:YAG laser (Spectra-Physics) operating at 532.3 nm (ca. 2 mW
power on the sample). The individual spectra were recorded using 1,800
groove/mm holographic grating, while for the acquisition of maps, the
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600-groove/mm grating was used. The most convenient signals allowing for
identification of the calcite and aragonite polymorphs are grouped in the
100 cm−1 to 300 cm−1 region. These peaks, associated with lattice vibrations,
appear at 205 cm−1 and 153 cm−1 for aragonite and at 281 cm−1 and
153 cm−1 for calcite. The analysis of the maps was performed employing the
modeling option of the Labspec software (Horiba Jobin Yvon).
SEM. Polished sections were lightly etched in Mutvei’s solution following
described procedures (51) and then rinsed with Milli-Q water and air-dried.
After drying, the specimens were put on stubs with double-sticking tape and
sputter-coated with conductive platinum film. Analyses were made using a
Phillips XL20 scanning electron microscope at the Institute of Paleobiology,
Warsaw, Poland.
X-ray microtomography. The density difference between inner calcitic and outer
aragonitic skeleton [in theory, 2.71 g/cm−3 versus 2.93 g/cm−3, but slightly
lower in biominerals that contain organic inclusions (52)] makes these skel-
etal regions distinguishable with high-resolution 3D tomography. Micro
computed tomography data were collected with Zeiss XRadia MicroXCT-400
system at the Faculty of Materials Science and Engineering, Warsaw Uni-
versity of Technology system. Scans of a lower portion of ZPAL H.25/114
specimen of P. antarcticus were performed using the following parameters:
voltage: 80 kV, power: 10 W, exposure time: 3 s, pixel size: 19.26 μm, 1,000
projections. Radial projections were reconstructed with XMReconstructor
software provided with the Zeiss Xradia system. The 3D images of calcitic
inner and aragonitic outer skeleton were obtained by processing with the
AVIZO7.1 Fire Edition software.

Methods: Molecular and Phylogenetic Analyses. P. antarcticus total genomic
DNA was extracted following a modified cetyltrimethylammonium bromide
(CTAB) protocol (53) with an additional cleanup step using the Qiagen
Power Clean Kit. Extracted DNA quality and yield were assessed and mea-
sured on a 1% agarose gel and Qubit 2.0 fluorometer, respectively. Library
preparation, target enrichment of ultraconserved elements and exons, and
sequencing details followed those provided in Quattrini et al. (54).

Resulting sequences were assembled using Spades 3.10 (55), and the
mitogenome was annotated in MITOS2 (56) and Geneious R10.2.3 (57). The
P. antarcticus mitogenome was aligned using MAFFT version 7 (58) to
57 other scleractinians and 12 corallimorpharians previously published
mitogenomes, of which corallimorpharians were used as the outgroup (SI

Appendix, Table S2). The final alignment consisted of 10,860 bp and con-
tained the nucleotide sequences from all mitochondrial protein coding
genes. Mitophylogenomic Maximum Likelihood (ML) analyses were based
on approximate likelihood ratio test using PhyML 3.0 (59) and 100 bootstrap
replicates using RAxML (60) implemented at CIPRES (61) under the General
Time Reversible (GTR) + G + I model of nucleotide substitution. Bayesian
inference was performed on MrBayes also implemented at CIPRES with two
runs each containing 100,000 generations saved at every 1,000, with a burn-
in factor of 0.25. Uncorrelated relaxed molecular clock with a log-normal
distribution was run on BEAST2 (62) under the Yule speciation process (63)
and calibrated using the following time points: Acropora, 55 My; Den-
drophylliidae, 127 My; Poritidae/Dendrophylliidae, 130 My; Agariciidae, 220
My; and Pocilloporidae, 70 My. Normal distribution was selected for each
calibration point with an SD of 10%. For this analysis, the same model of
nucleotide substitution was used in two separated runs, each with
10,000,000 generations saved every 10,000. The first 300 generations from each
run were discarded as burn-in, and the remaining generations from each run
were combined using LogCombiner version 1.10.4. The root from the recovered
topology/molecular clock estimates was scaled to 470 My.

Data Availability. Mitogenome sequences data have been deposited in
GenBank (MT409109). All other study data are included in the article text
and supporting information.
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