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5.1 Introduction

Forensic scientists, lawyers and other participants of the legal process are routinely faced
with problems of making decisions under circumstances of uncertainty. Uncertainty relates
to propositions of interest that are not completely known by the decision-maker at the time
when a decision needs to be made. Propositions may relate to the source or nature of
forensic traces, marks and objects. For example, with friction ridge marks, propositions of
interest may be ‘Does this fingermark come from the person of interest (POI) or from some
unknown person?’. In forensic document examination, a scientist may ask ‘Is this a genuine
document or has it been modified (e.g., page substitution)?’. In forensic anthropology the
question ‘Are these human remains?’ may arise, and so on. Replying in one way or another
to such questions may be perceived as uncomfortable since knowledge about the relevant
underlying truth-state of the world is incomplete to some extent. For example, in typical
real-world applications of forensic science it is not known with certainty, when deciding to
consider a POI as the source of a particular fingermark, whether the POI is in fact the
source of the fingermark. Similarly, at an advanced stage of the legal process, the question
of whether to convict or acquit a POI (i.e. the verdict) needs to be made in the presence
of incomplete knowledge about whether or not the POI truly is the offender. There are
analogies between the above questions, in terms of their logical underpinnings, that can be
studied, analysed and described using formal methods, such as decision theory, which will
be the main aim of this chapter.

Around the middle of the past century, discussions intensified and several fields of study
emerged on decision-making concerning, for example, contexts where decisions have mone-
tary consequences. These developments gravitated around questions such as how decisions
should be made in order to be considered rational (Pratt et al., 1964). Though an impor-
tant area, economics was not the only branch with strong interests in decision-making and
decision analysis. Entire fields of study developed and interacted with each other in various
ways, including psychology, mathematics and statistics, the law and philosophy of science,
among others.

This chapter will primarily rely on statistical decision theory! as developed by Leonard
Savage (1954) and in subsequent treatises (e.g., Lindley, 1985; Luce and Raiffa, 1958; Raiffa,
1968) as the framework for studying the formal structure of decision problems arising in
forensic science and the law. Before proceeding with this presentation, an important pre-
liminary needs to be considered. It deals with the question of how to understand decision
analysis and the notion of theory of decision. To this point, the field of judgment and deci-
sion making, a branch of applied psychology, has contributed considerably by crystallizing
three main perspectives and approaches, known as the descriptive, the normative and the
prescriptive view (Baron, 2008; French et al., 2009). For a review of the history of these
terms, see Baron (2006). Broadly speaking, the descriptive approach focuses on peoples’
observable decision behaviour and extends to the development of psychological theories in-
tended to explain how individuals make decisions. Such research is valuable in that it allows
one to better understand the conditions under which decision behaviour departs towards
incoherence or, worse, logical error. However, revealing such departures requires reference
points against which observable decision behaviour can be compared. The provision of such
reference points, also called normative standards, is the object of study of the normative
approach. Decision theory and decision criteria (or, norms) derived from it, fall into this

n later parts of this chapter, the discussion will be extended to the notion of Bayesian statistical
decision theory, emphasizing the idea of using Bayesian inference procedures to inform decision makers, for
example based on experimental information (Parmigiani, 2001).
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category of study. It is mainly pursued by mathematicians, statisticians and philosophers
of science. The third perspective, the prescriptive approach, addresses the question of
what recommendations ought to be derived from normative insights in order to improve
practical decision making. For example, some strict normativists, such as Lindley (1985),
consider that the normative concept of probability — that is, a standard for reasoning under
uncertainty — and decision theory as its extension, are also prescriptive in the sense that
they provide direct prescriptions on how to arrange one’s reasoning and acting. Properly
distinguishing the different intentions and goals of these kinds of decision science research
is important for an informed discourse about notions of decision and decision analysis in
forensic science applications (Biedermann et al., 2014).

This chapter is structured as follows. Section 5.2 outlines standard elements of statistical
decision theory that will be exemplified in Section 5.3 for decision problems arising in
the law in general (Section 5.3.1) and forensic science in particular (Section 5.3.2). This
exposition will include examples such as decisions following forensic inference of source
(i.e., identification/individualization; Section 5.3.2.1). Discussion and conclusions will be
presented in Section 5.4. Further readings on applications of decision theory in forensic
science and treatments of decision theory in general are given in Section 5.5.

I
5.2 Concepts of statistical decision theory

5.2.1 Preliminaries: basic elements of decision problems

Decision theory is a mathematical theory of how to make decisions when there is uncertainty
about the true state of nature. The presence of uncertainty implies that a choice among
the alternative courses of action leads to uncertainty regarding which consequences will
effectively take place. In statistical terms, the states of nature may also be referred to as
parameters, commonly denoted by 6, which may be discrete or continuous. The collection
of all possible states of nature is denoted by ©, the parameter space, and represents a first
element of the formalization of decision problems. A second basic element is the feasible
decisions (or courses of action), denoted by d. The space of all decisions, called the decision
space, is denoted by D. The third basic element is the consequences c. They are defined
as the outcome following the combination of a decision d taken when the actual state of
nature is 0, formally written c¢(d, 8). The space of all consequences is denoted by C. Before
proceeding, in Section 5.2.2, with presenting a formal approach to qualifying and quantifying
the relative merit of rival courses of action, given the basic elements of the decision problem,
it is useful to devote a few more comments to the description of the decision space and the
parameter space.

Regarding the decision space, it is important for the decision maker to draw up an
exhaustive list of m decisions that are available, say di, ds, ..., d,, € D. As noted by Lindley:
“(...) it would not be a properly defined decision problem in which the only decision was
whether to go to the cinema, because if the decision were not made (that is, one did not go
to the cinema) one would have to decide whether to stay at home and read, or go to the
public-house, or indulge in other activities. All the possible decisions, or actions, must be
included (...)” (Lindley, 1965, p. 63). Further, it is convenient to make the requirement of
exclusivity, meaning that only one of the decisions can be selected. As noted by Lindley:
“Hence, the decisions are both exclusive and exhaustive: one of them has to be taken, and
at most one of them can be taken.” (Lindley, 1985, p. 6).

The second task for a decision maker is to draw up a list of n exclusive and exhaustive
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events or states of nature, say © = {0,0,,...,0,}. Regarding the latter list, the decision
maker may distinguish between situations of certainty and uncertainty. In the former case,
certainty, the decision maker has complete knowledge about the states of nature. Hence,
each alternative course of action leads to one and only one foreseeable consequence, and
a choice among alternatives is equivalent to a choice among related consequences. In the
latter case, uncertainty, the decision maker does not know which state of nature actually
holds, or what the future will be. Consequently, each available course of action will have one
of several consequences. It is possible, however, to measure uncertainty about the states
of nature using a suitable probability distribution Pr over ©. Note that in some fields,
such as business decision analysis and operations research , this situation is called ‘decision
making under risk’ and the expression ‘decision making under uncertainty’ is reserved to
situations in which the decision maker is unable to provide a list of all possible outcomes
and/or a probability distribution for the various outcomes. In this Chapter, however, this
interpretation will not be pursued.

5.2.2 Utility theory

The principal issue in decision making under uncertainty is the selection of a member in the
list of available decisions without knowing which state of nature is truly the case. The aim,
therefore, is to create a framework that allows decision makers to assess the consequences
of alternative courses of action in order to compare them and avoid irrational choices or
behavior.

The formulation of such a decision framework involves, first, the assumption that the
decision maker can express preferences amongst possible consequences. It is in fact assumed
that the space of consequences has a partial pre-ordering, denoted by <, meaning that the
decision maker must be able to specify, at any point, which consequence is suitable or
whether they are equivalent (Piccinato, 1996). When comparing any pair of consequences
(c1,c2) € C, ¢1 < ¢ indicates that the consequence cg is strictly preferred to consequence
c1, €1 ~ co indicates that ¢; and ¢y are equivalent (or equally preferred), while ¢1 < ¢
indicates that ¢y is not preferred to ca, that is either ¢; < ¢o , or ¢; ~ c¢o holds. The
measurement of preferences among decision outcomes is operated by a function, called
a utility function, denoted by U(-) that associates a utility value U(d,#) to each one of
the possible consequences ¢(d, ), also denoted U(c); it specifies the desirability of each
consequence on some numerical scale.

Second, the decision maker’s uncertainty about the states of nature, when they are
discrete, is expressed in terms of a probability mass function Pr(f | I), where I denotes
the relevant information available at the time when the probability assessment is made.
Combining the utilities U(d, #) for decision consequences and the probabilities for states of
nature leads to a measure of the desirability of alternative courses of action d in terms of
their expected utility (EU)2:

EU(d) = Y U(d,0) Pr(0 | I).
6co

A standard decision rule, based on EU, instructs one to select the action with the maximum

2The same idea can be applied when @ is continuos and takes values in ©., # € ©.. The probability mass
function Pr(6 | I) is replaced by a probability density function f(6 | I) and the expected utility of decision
d is:

EU(d) = / U(d, 0)£(0 | I)do.

c
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expected utility (see also Section 5.2.3). Hereafter, information I will be omitted to simplify
the notation, though it is important to keep in mind that it conditions all probability
assignments.

Some further conditions (axioms) must be imposed on the preference system in order
for there to exist a function U, the utility function, such that for any pair (¢1,c2) € C, the
relationship ¢; < ¢ holds if and only if U(ey) < U(es).

A.1 The first axiom requires that the preference system is complete. This amounts to assume
that for any pair of consequences (c1, c2) of the space of consequences C, it must always
be possible to express a preference or indifference among them (one of the following
relations must hold: ¢; < ¢a,¢2 < ¢1,¢1 ~ ¢32).

A.2 The second axiom requires that the preference system is transitive. This means that
for any (c1,c2,c3) € C, if one prefers ¢o to ¢; (¢4 < ¢2) and ¢35 to ¢ (c2 < ¢3), then
one prefers ¢z to ¢1 (¢1 < ¢3). In the same way, if one is indifferent between c¢; and co
(c1 ~ ¢2), and is indifferent between ¢y and c3 (c2 ~ ¢3), then one is indifferent between
c1 and ¢3 (¢1 ~ ¢3). Not all the consequences are equivalent to each other, that is, for
at least a pair of consequences (¢, ¢2), either ¢; < ¢o or ¢ < ¢1 holds.

A.3 The third axiom requires that the ordering of preferences is invariant with respect to
compound gambles. For any pair of consequences (c1,c2) € C, such that ¢; < co,
then, for any other consequence c3 € C, and any probability «, the gamble that offers
probability a of winning ¢g, and probability (1 — «) of winning cs is preferred (or it is
equivalent) to the gamble that offers probability « of winning ¢; and probability (1 — «)
of winning c¢s. Denote by (¢;, ¢;; o, 1 — a) the gamble offering ¢; with probability «, and
¢; with probability (1—«), ¢ # j. This axiom can then be formulated as follows: ¢; < ¢z
if and only if (¢1,c3;,1 — @) < (e2,¢3;0,1 — ), for any a € [0, 1] and any c3 € C.

A.4 The forth axiom requires that there are not (i) infinitely desirable or (ii) infinitely
undesirable consequences. Let (c1, o, ¢3) € C be any three consequences such that ¢; is
preferred to co and cg is preferred to ¢z (¢35 < ¢a < ¢1). Then there exist probabilities
a and 3, such that (i) co is preferred to the gamble (¢1,c3;a,1 — a); (i) the gamble
(c1,c3; 8,1 — B) is preferred to ca.

If (i) does not hold, then one will always prefer the possibility of obtaining the best
consequence ¢, no matter how small is the probability of obtaining it, to cs; that is,
one believes that ¢; is infinitely better than ¢ (and c¢g). If (ii) does not hold, then one
will prefer cp, no matter how small the probability of obtaining the worse consequence
c3 is; that is, one believes that c¢3 is infinitely worse than co (and ¢1).

If these four conditions are satisfied, then one can prove the expected utility theorem,
according to which there exists a function U on the space of consequences C such that for
any d; and dj belonging to the decision space D, d; is preferred (or equivalent) to dj if and
only if the expected utility of d;, EU(d;), is greater (or equal) than the expected utility of
di, EU(dy), that is, assuming 6 discrete, if

> U(di, 0) Pr(6) > > U(dy, 0) Pr(6).
e 0co

Consider, next, any consequence ¢ and a pair (¢1,¢3) € C such that ¢; < ¢g, and
¢1 <X ¢ = ¢y. Following the stated conditions, it may be proved (see De Groot (1970)) that
there exists a unique number « € [0, 1] such that

¢~ lacs + (1 — a)es], (5.1)
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and that
U(c) = aU(cr) 4+ (1 — a)U(cz). (5.2)

It can also be proved that the utility function is invariant under linear transformations.
This means that if U(c) is a utility function, then for any a > 0, aU(c) 4 b is also a utility
function preserving the same pattern of preferences.

Utility functions can be constructed in different ways. One possibility starts with a pair
of non-equivalent consequences (c1,cz) € C and assigns them a utility value. This will fix
the origin and the scale of the utility function. The desirability of each consequence ¢ € C
of interest will then be compared with those of ¢; and cy. Given that utility functions are
invariant under linear transformation, the choice of ¢; and co, and the choice of the scale
of the utility, are not relevant. They are, however, generally identified with the worst and
the best consequence, respectively. It is assumed, for example, that the utility of the worst
consequence is zero, U(cy) = 0, and the utility of the best consequence is one, U(cg) = 1.
The utilities of the remaining intermediate consequences are computed using Equation (5.2).
This will be discussed further in Section 5.3.

5.2.3 Implications of the expected utility maximisation principle

Consider taking a decision d when the true state of nature is 6, so that the consequence is
c(d,0). It is possible to show, using relation (5.1), that there exists some « such that the
consequence c¢(d, #) is equivalent to a hypothetical gamble offering the worst consequence
¢1 with probability o and the best consequence co with probability (1 — «)

c(d,0) ~ [acs + (1 — a)ea], 1 2 ¢(d,0) < ca.

The utility U(d, ) of the consequence c(d, ) can then be calculated using Equation (5.2)
as follows:

U(d, ) :ag(fg+(1 —a)&(@: 1-a.
0 1

According to this, for any d and any 6, selecting decision d is equivalent to assigning a
probability U(d,f) = 1 — «a to the occurrence of the most favorable consequence. This
hypothetical gamble can always be played. It can be played, in particular, after that
decision d has been taken and it is known which state of nature 6 holds. The term U(d, )
can be understood as the conditional probability of obtaining the consequence cs, given
decision d has been taken and the state of nature 6 occurred: Pr(cs | d,6) = U(d,6). Note
that probability Pr(cs | d) can be written in extended form as

Pr(cy | d) =Y Pr(cy | d,0) Pr(6). (5.3)

(<O

Therefore, (5.3) can be rewritten as

Pr(cy | d) =) _U(d,0)Pr(0), (5.4)
6co

namely, the expected utility that quantifies the probability of obtaining the best consequence
once decision d is taken (Lindley, 1985). The decision rule which instructs decision makers
to select the decision which maximizes the expected utility (MEU criterion) is optimal
because it is the decision which has associated with it the highest probability of obtaining
the most favorable consequence.
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States of nature: | 6, 02
Decisions: dy | C11 Cha

d2 CZI CV22

TABLE 5.1
A simple decision matrix with two decisions d; and ds, two states of nature #; and 0 and
corresponding decision consequences C;; (for 4,5 = {1,2}).

5.2.4 The loss function

An alternative way to express preferences among decision consequences ¢(d, 0) is the use of
non-negative loss functions. When a utility function is available, the loss function can be
derived as follows (Lindley, 1985):

L(d. 0) = max U(d. 0) — U(d. ) (5.5)

The loss L(d, 0) for a given consequence c(d, §) thus is defined as the difference between the
utility of the best consequence under the state of nature at hand and the utility for the
consequence of interest. That is, the loss measures the penalty for choosing a non-optimal
action, also called opportunity loss (Press, 1989, p. 26-27): the difference between the
utility of the best consequence that could have been obtained and the utility of the actual
one received.

Note that following Equation (5.5), losses cannot, by definition, be negative because
U(d, #) will be smaller or at best equal to maxgep U(d, 0). The expected loss, EL(d), thus
characterises the undesirability of each possible decision, and can be quantified as follows:

EL(d) = Y L(d,0) Px(0).

0cO

When using losses instead of utilities, the decision rule of maximising expected utility
becomes the rule instructing the selection of the decision that minimizes the expected loss
EL(d). It might be objected that assuming a non-negative loss function is too restrictive.
Note, however, that the loss function represents error due to an non-optimal choice. It thus
makes sense to consider that even the most favorable decision will induce at best a zero
loss.

5.2.5 Particular forms of the expected utility maximisation principle

For the remainder of this Chapter, it will be important to anticipate two particular forms in
which the MEU principle may be formulated. Consider, first, the utility-based perspective
of a two-action decision problem involving two states of nature, 6; and 6. The decision
maker’s probabilities for these states of nature are Pr(6; | -) and Pr(fy | -), respectively,
such that Pr(6; | -) +Pr(f2 | -) = 1. Note that | - is shorthand notation for the conditioning
on any relevant evidence E or background information I. The two possible decisions are d;
and ds, representing the decision maker’s acceptance of, respectively, ; and 65 as the true
states of nature. Hereafter, write C;; to denote the consequence c(d;, 6;) of taking decision
d; when 6; is the actual state of nature and denote the corresponding utility by U(Cj;).
The decision problem is summarized in Table 5.1.

According to the principle of maximization of expected utility, the decision maker should
select decision d; rather than ds if EU(d;) > EU(dy). This will be the case if

U(CH) Pr(61 | ) + U(Clg)PI‘(eg ‘ ) > U(Cgl) Pr(91 | ) + U(CQQ)PI‘(HQ ‘ ')7 (56)
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which can be rearranged to give

(61
(62

) _ U(C) ~ U(Cra)
)7 U(Cn) ~ U(Ca)’

Pr
Br (5.7)

The term U(Ca2) — U(Ch2) in the numerator on the right-hand side of (5.7) is the
additional utility involved in making the correct decision when 5 turns out to be the correct
state of nature. An alternative way to look at this term is to consider it as the potential
regret: it is the potential loss in utility when erroneously deciding d; instead of dy. The
term U(C11) — U(Ca1) similarly deals with the potential regret of deciding da when the true
state of nature is 67. Relation (5.7) thus states that decision d; should only be taken if the
odds in favour of #; are sufficient to outweigh any extra potential regret associated with
incorrectly deciding d; (Spiegelhalter et al., 2004).

Consider now the loss-based account. Recall, from Section 5.2.4, that the loss L(d;,0;) =
L(C;j) for a decision consequence Cj; is the difference between the utility of the outcome
of the best decision under the state of nature at hand, and the utility of the outcome of the
actual decision d; under the same state of nature. Therefore, the decision that minimizes the
expected loss is the same as the decision that maximizes the expected utility. Continuing
the example introduced above, assume that there is a positive loss L incurred when falsely
choosing a proposition that is not actually the case, that is L(C;;) > 0 if ¢ # j, and there
is no loss when accepting a proposition that is actually the case, that is L(C;;) = 0 if
i = j. The loss can be symmetric, L(C;;) = L(C};), or asymmetric, L(C;;) # L(Cj;),
i # j. The decision criterion depicted in (5.6) will become to select dy rather then dy if
EL(dy) < EL(d2), that is if

L(Cll) Pr(91 | ) + L(012)PI‘(92 ‘ ) < L(Cgl)PI‘(el | ) + L(C22) PI‘(@Q | ')7 (58)
and the expected loss of deciding d; will be:

EL(d; | ) = L(Ci) Pr(6; | ) + L(Cyy) Pr(60; | ) = L(Ciy) Px(0; | ), i #3.

0

Considering the principle of minimizing expected loss and given that
EL(d; | -) < EL(dz | -) if and only if L(Ci2) Pr(62 | -) < L(C21) Pr(6, | -),

the decision problem involves a comparison of odds with the ratio of losses associated with
erroneous decisions. Specifically, deciding d; rather than ds is optimal if and only if:

PI’(91 | ) L(Clg)

Pr(d, ) ~ L(Car) (59)
or, equivalently

Pr(02 ‘ ) L(Cgl)

Pr(6y| )~ L(Cwa)’ (510)

The loss ratio on the right-hand side in (5.9) and (5.10) fixes a threshold for odds. The
relation (5.9) specifies that if the odds in favor of 6; exceed the loss incurred from incorrectly
choosing decision d; divided by the loss incurred from incorrectly choosing decision ds, then
the decision maker should take decision d;.
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5.2.6 Likelihood ratios in the decision framework

So far it has been considered that the decision maker’s probabilities for the state of nature
are conditional probabilities written Pr(f; | -) and Pr(fy | -), incorporating all relevant
evidence E and background information I available at the time when the decision needs to
be made. The odds in (5.9) can therefore be interpreted as posterior odds. It is useful to
emphasize that likelihood ratios, commonly used in forensic science for quantifying the value
of forensic results (e.g., Aitken and Taroni, 2004), play an important role in the inference
process preceding the decision. Recalling that the posterior odds can be written as the
product of the prior odds and the likelihood ratio for the forensic results E, the relation
(5.9) can thus be rewritten as:

Pr(61 | LE) _ Pr(6y|I) ~Pr(E[6,]) _ L(Ci)
Pr(6; | 1.E)  Pr(0;|1) = PrE|6n1) ~ L(Car) -
~— ~— ~——

(5.11)

prior odds likelihood ratio loss ratio

Relation (5.11) defines the conditions under which the decision d; is preferable to dz, that
is when the relative losses on the right are smaller than the product on the left, containing
the likelihood ratio. Thus, it is now possible to reformulate the decision criterion, minimizing
expected loss (Section 5.2.5), with an emphasis on the likelihood ratio, as follows:

The decision dy is to be preferred to decision dy if the product of the likelihood
ratio and the prior odds is larger than the ratio of the losses associated with adverse
decision consequences.

A more intuitive form of (5.11) can be obtained when working with logarithms (e.g., Good,

1950):
Pr(6, | I)] {PY(E | 91,1)} {L(Cm)}
log | =————=| +log | =———=1| > 1o . 5.12
& {Pr(eg )] "8 | Pr(E | 0a,1) & | L(Coy) (5:12)
By re-arranging the terms one can isolate the log-likelihood ratio as follows:
Pr(E | 9171)} [L(Cm)] {Pr(el | 1)}
————— | >1lo —log | =———1=1 . 5.13
& {Pr(E 105, 1)~ 8 [L(Car)| [ Pr(6s | T) (5.13)

Note that following Good (1950), the logarithm of the likelihood ratio, the term on the
left, is commonly referred to as the weight of evidence. The decision criterion minimizing
expected loss (Section 5.2.5) thus becomes:

The decision dy is to be preferred to decision dy if and only if the weight of evidence is
greater than the difference between the logarithm of the ratio of the losses associated
with adverse consequences and the logarithm of the prior odds in favor of proposition

0:.

I
5.3 Decision theory in the law and forensic science

5.3.1 Legal applications

Decision theory offers a formal framework for thinking analytically about decision problems,
but this perspective — in particular the use of probability — is controversial both among
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some legal scholars and practitioners. Although formal decision theoretic discourses can
be dated back about half a century ago (Kaplan, 1968), there has been a concentration of
several article collections since the mid-1980s. See for example, Tillers and Green (1988),
especially the paper by Kaye (1988), and the collection of articles in the Internatinal Journal
of Evidence & Proof (Vol. 1, 1997) entitled ‘Bayesianism and Juridical Proof’, edited by
R. J. Allen and M. Redmayne.

A generic outline of applying the decision-theoretic elements presented in Section 5.2 to
legal decision problems proceeds among the following lines. Assume that in a case of interest
there are only two possible decisions: decision dy, finding for the plaintiff, and decision ds,
finding for the defense. Considering this decision problem in terms of expected utilities
requires the specification of probabilities of the states of nature and utilities for decision
consequences. Let #; and # denote versions of the case wherein the plaintiff or defendant,
respectively, is entitled to judgment. Let Pr(6;) be the decision maker’s probability, at a
given time, for a given state of nature ;. Deciding in favour of, respectively, the plaintiff
and the defendant may lead to accurate consequences, namely Cy; and Cao, or adverse
outcomes, namely C12 and Cy;. Then, comparing the relative merit of decisions d; and do
comes down to criterion (5.6), that is deciding in favour of the plaintiff rather than for the
defendant would require the expected utility of decision d; to be greater than the expected
utility of decision dy. The immediate question following this observation is ‘When is this
the case?’. As noted in Section 5.2.5, it can be helpful to illustrate the logic of the decision-
theoretic result by formulating the MEU principle in an alternative form, such as relation
(5.7), separating the thinking about probabilities from thinking about the utilities of the
various decision consequences. For a discussion of relation (5.7) see, for example, Friedman
(1997, 2017).

The decision-theoretic criterion may be more insightful if it is considered through a
loss-based perspective (Section 5.2.5) using, for example, relation (5.9). Let L(C}2) denote
the loss associated with wrongly deciding in favour of the plaintiff, and L(C5;) denote the
loss associated with wrongly deciding in favour of the defendant. It is then clear to see
that with a symmetric 0 — k loss function, that is with L(C13) = L(Ca1) = k for adverse
decision outcomes, and zero loss L(C11) = L(Ca) = 0 for accurate decision outcomes,
deciding in favour of, for example, the plaintiff is warranted if and only if the probability
Pr(6y | -) is greater than 0.5. This result is sometimes associated with the notions of
‘balance of probabilities’ and ‘more probable than not’ standards, translating common ideas
in civil litigation according to which a correct judgment for the plaintiff is as preferable as a
correct judgment for the defendant, and that erroneous verdicts for either side are equally
undesirable (e.g., Kaye, 1999).

The expression (5.9) can also capture the logical structure of the decision problem of the
typical criminal case where the prosecution has the burden of proving its case with respect
to a particular standard. In such situations, L(Cis) is the loss of falsely declaring the
defendant guilty, whereas L(Ca) is the loss associated with a false acquittal. A common
viewpoint is the preference ordering C12 < Co; according to which a false conviction is
more undesirable than a false acquittal. Consequently, this amounts to consider the loss
L(C12) of a false conviction to be greater, often considerably greater, than the loss L(Coa1)
associated with a false acquittal. For any loss ratio thus defined, depending on the nature
of the case and the stakes involved, the criterion (5.9) provides the minimal odds of liability
required in order for a conviction, decision dy, to be preferred to an acquittal, decision ds.
In this context, reference is sometimes made to Blackstone’s 10 to 1 criterion according to
which it is better that 10 truly liable defendants go free than 1 innocent defendant being
wrongly convicted. It has been noted, however, that this criterion does not easily map to
assignments of losses in a given singular case, but rather seems to refer to actual error rates
across multiple distinct trials (Kaye, 1999).
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It should be kept in mind that criterion (5.9) is an analytical result that can be thought
through in two different ways: either starting from a preference structure (i.e., a loss ratio for
adverse decision consequences) and derive the lower limit of the odds necessary to warrant
a conviction, or starting with a given value for the odds of liability and then work out
the loss ratio corresponding to these odds so that a given decision is warranted. Over the
past decades, this normative account has stimulated considerable empirical research on, for
example, what various subjects (e.g., judges, citizens, etc.) consider as required levels of
probability before deciding in one way or another. See Dane (1985) and Simon and Mahan
(1971), for example, and Hastie (1993) for a review. The quantitative values observed
in such studies, using various elicitation procedures and methodologies, vary over broad
ranges and depend largely on experimental conditions. Note, however, that this mismatch
between, on the one hand, consistency requirements for utilities and probabilities implied
by the theory, and, on the other hand, peoples’ intuitive feelings about these assignments
and their interdependency, does not invalidate the formal mathematical results. Similarly,
arithmetics is not abandoned simply because practically operating individuals might reply,
for example, with an answer other than 4 to the question of how much is 2 + 2 (see, e.g.,
Lindley in de Finetti (1974)). This is an instance of the difference between the normative
and the descriptive perspectives to decision mentioned in Section 5.1.

5.3.2 Forensic science applications
5.3.2.1 Forensic identification
Preliminaries

One of the most well known (Champod, 2000) but also most widely challenged (Cole,
2014) notions in forensic science is ‘individualization’, or ‘identification’. It is a conclusion
following inference of source and involves the claim to reduce a pool of potential donors
of a forensic trace to a single source. This section presents a decision-theoretic account of
forensic individualization based on analyses previously given in Biedermann et al. (2008,
2016). For presentations in the wider context of Bayesian data analysis and Bayesian
decision networks, see Taroni et al. (2010, 2014). More generally, examiners’ conclusions
in forensic identification practice now are, increasingly often, referred to as decisions (Cole
and Biedermann, 2020). See, for example, the reports issued by the PCAST (2016) and the
AAAS (Thompson et al., 2017). There is an interest, thus, to devote attention to the ways
in which decision may be understood and conceptualised from a scientific point of view.
Decision theory provides a mathematically rigorous account for this.

Suppose extraneous material (e.g., blood) or a mark (e.g., finger- or toolmark) is col-
lected at a crime scene and an individual is apprehended or a tool — called a potential
source — is found. Similarly, one may imagine a litigation case in which a contested sig-
nature is present on a questioned document (e.g., a contract) and the question is whether
or not the signature is from the POI. For the purpose of the current discussion, assume
two uncertain events defined as ‘The crime mark comes from the suspect’ (6;), and ‘The
crime mark comes from an unknown person’ (63). These two states of nature are discrete
and form the parameter space ©. Assume further that ‘identifying’ (sometimes also called
‘individualizing’) an individual as being the source of a crime mark can be considered as a
decision (d;) made by a person authorized to do so. For the remainder of the analysis, it
is not necessary to specify whether this authorized person is a (forensic) scientist or some
other participant in the legal process. As alternative decisions, consider the conclusions
‘inconclusive’ (d2) and ‘exclusion’ (dz). These forms of conclusion are currently used by
many forensic practitioners. Combining these elements leads to the decision matrix shown
in Table 5.2. The outcome of an ‘identification’ (‘exclusion’) conclusion, decision dy (d3), is
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States of nature

Decisions 6,: POI is donor f>: An unknown person is donor
dy: identification Ci;: correct identification Co: false identification
do: inconclusive  Cgq: neutral Cy9: neutral
ds3: exclusion C31: false exclusion (C'39: correct exclusion
TABLE 5.2

Decision matrix for a forensic identification problem with d;, i = 1,2, 3, denoting decisions,
0, 7 = 1,2, denoting states of nature and C; denoting the consequence of taking decision
d; when 6; turns out to be the true state of nature (Biedermann et al., 2008).

an accurate outcome if the POI is truly (is truly not) the origin of the crime mark. These
consequences are referred to as ‘correct identification’ and ‘correct exclusion’, respectively.
The outcome of an ‘identification’ (‘exclusion’) conclusion, decision d; (ds), can be adverse
if the POLI is truly not (is truly) the origin of the crime mark. These consequences are listed
as ‘false identification’ and ‘false exclusion’, respectively. Because the statement ‘incon-
clusive’; decision da, does not convey any information that tends to associate or otherwise
the POI with the issue of the source of the crime mark, the consequences following do are
referred to as ‘neutral’.

Preference ordering and construction of the utility function

Consider the following ordering of consequences:
Ci2 < C31 < Ca1 ~ Ca2 < U3 ~ C1y. (5.14)

This preference ordering states that the most preferred consequences are a correct identifica-
tion (C11) and a correct exclusion (Css), and the worst consequence is a false identification
(C12). To construct the utility function, after having chosen the scale, one starts by assign-
ing the maximum utility value to the best consequence, in this case the couple C35 and Cy1,
and the minimum utility value to the worst consequence, C15. Therefore, if a (0, 1) scale is
chosen, U(C41) = U(Cs2) = 1 and U(Cy2) = 0.

The next steps consist in assigning an utility value to the intermediate consequences.
Consider the consequence called ‘neutral’, Cy;, and the above preference ranking

Cha < Oy < Cq1.

In particular, it has been observed — see (5.1) and (5.2) — that if the preference system
respects given conditions, there exists, for the decision maker, a unique number 0 < a < 1
such that the consequence Cy; is equivalent to a hypothetical gamble where the worst
consequence, C1a, is obtained with probability «, and the best consequence, Cy; is obtained
with probability (1 — «):

Co1 ~ [04012 + (1 — 04)011], (5.15)
and the utility of Co; can be computed as

U(Cs1) = aU(C12) +(1 —a) U(Cr1) =1 —a.
0 1

Note that the utility of consequence Co; turns out to be the probability (1 — a) of
finishing with the best consequence in the space of all possible consequences. In particular,
note the equivalence of utility and probability in the latter sentence. Finding such an «
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is the most difficult part of the utility elicitation procedure. It involves answering the
question what would make the decision maker indifferent between a neutral consequence,
and a situation in which a false identification might occur. Specifically, the decision maker
must specify the value « so that the sure consequence Co; appears equivalent to the gamble
in which the worst consequence is obtained with probability o and the best consequence is
obtained with probability 1 — .

When thinking about the above question, one must be careful not to use as values for
« the assigned probabilities Pr(6;) and Pr(62) for the propositions of interest. In fact, the
number « is a limiting value, asking decision makers to crystallize what would be, in general,
their highest probability of running the risk of making the worse mistake they are willing
to exchange with the consequence of rendering an ‘inconclusive’ statement. Suppose, for
instance, as an extreme position, that the answer is zero, meaning that the decision maker
never wants to run such a risk. This would mean, however, that no matter how high the
probability of a correct identification is, the decision maker would consider that a neutral
conclusion is as good as a correct identification. It is also worth noting that since C3o ~ Ci1,
one can substitute C3o for Cp; in (5.15), so obtaining another hypothetical gamble:

Cop ~ [04012 + (1 — 04)032].

To ensure coherence, the decision maker should again consider a neutral conclusion as much
worth as a correct exclusion, no matter how high the probability of a correct exclusion is.
Thus, if the decision maker would indeed consider that the highest probability for incurring
the worst consequence, in exchange with the consequence of providing an ‘inconclusive’
statement, is strictly zero, then this belief cannot be coherent with the preference ranking
(5.14). It can be coherent only with the following ordering:

Cr2 < C31 =< C21 ~ Cyp ~ O3 ~ Ch1. (5.16)

Note that there is a change in the fourth preference sign from the left.

Consider the logical implications of the preference ordering (5.16) through the decision
matrix in Table 5.2. The preference ranking (5.16) implies that, if the proposition 6; is
true, then decisions d; (‘identification’) and da (‘inconclusive’) are equally preferred and
both better than decision dg (‘exclusion’). In turn, if the proposition 65 is true, then the
decisions do and ds are equally preferred and both better than decision d;. Thus, decision
ds is the best decision overall, because, if the proposition 6, is true, it is better than ds, and,
if the proposition 65 is true, it is better than d;. Therefore, if the decision maker considers
a strictly zero probability for the event of incurring the worst consequence, in exchange to
the consequence of rendering an ‘inconclusive’ statement, then the decision maker should
always take the decision ‘inconclusive’ (dz).

This does not correspond, however, to the way in which decision makers behave in
practice. Therefore, there must ezist for these decision makers a unique value 0 < a < 1
such that the hypothetical gamble (5.15) does make sense for them, despite the inherent
challenge to find the limiting value «. For the purpose of illustration, assume that the
decision maker considers that a = 0.001 is appropriate. Then

U(Cgl) = O(U(Clg) + (1 — Oé)U(Cll) =1—a=0.999.

Likewise, the utility of the consequence C3; can be elicited and quantified in comparison
with U(C12), the utility of the worst consequence, and U(Ci;), the utility of the best
consequence,

U(Cgl) = OZ*U(Clg) + (1 — CM*)U(Cll) =1-a".

Here, 1 — o* represents the decision maker’s highest probability for incurring the worst
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consequence in exchange with the consequence of rendering a ‘false exclusion’ statement.
For behaviour to be coherent, this limiting value o* must necessarily be higher then the
previous limiting value a = 0.001. The reason for this is that the decision maker is facing, on
the right-hand-side, a gamble with the same consequences as before and, on the left-hand-
side, a less preferred consequence: recall the ranking C3; < Co;. Assume, for example,
that o* = 0.01 is felt to be correct. Then U(C51) = 0.99. This value means that the
decision maker is indifferent between a false exclusion (Cs;) and a gamble in which the
worst consequence, a false identification (Ci2), is obtained with probability o™ = 0.01, and
a correct identification with probability 1 — a* = 0.99. Note that the order relation in the
space of consequences is preserved. However, this is not the end of the matter. It is a good
idea at this stage to check the appropriateness of the so-built utility function because there
is no guarantee that the quantified utility values are coherent (Berger, 1988). This question
can be examined by comparing different combinations of consequences as:

C31 <Oy <Cpy or Cia < C31 < Oy

Consider the case on the left, for instance. There must exist, at this stage, a unique value
o’ such that

Co1 ~ [0/031 + (1 — 0&’)011]. (517)
According to the illustrated gambling scheme, and the quantified utilities,

U(Cy1) = d'U(Cs1) + (1 —a")U(Cyy)
0.999 = a/0.99+ (1 — o).

When solving this equation one obtains o/ = 0.1. Now, if one believes that this value is
correct, in the sense that one is indifferent between a neutral consequence and a gamble
where a false exclusion may occur with probability 0.1, then the utility function is coherent.
Otherwise, one needs to go back and check previous assessments. For further discussion on
such comparisons, see also Biedermann et al. (2008).

Computing expected utilities

Consider Table 5.3 for a summary of the utility values derived above. Assume that
there is scientific evidence, denoted by F, available and used to inform the probabilities
of the competing propositions 6; and 65, leading to posterior probabilities Pr(6; | E) and
Pr(6s | E) at the time when the decision is made3. Start by considering the computation
of the expected utility of the decision dy (‘identification’),

EU(dl) = U(CH) Pr(91 | E) + U(Clg) PI‘(@Q ‘ E)

Given the assigned utility values, it is immediately seen that the expected utility of decision
dy reduces to: EU(dy) = Pr(6; | E). So, assuming a (0,1) utility function, and recalling
result (5.4) where the expected utility of a decision d is equated with the probability of
obtaining the best consequence once decision d is taken, it follows that

EU(d;) = Pr(correct identification | d1) = Pr(6y | E).

In the same way, one can compute the expected utilities of the decisions ‘inconclusive’ (dz)
and ‘exclusion’ (d3):
U(Cgl) = U(ng)

3Note again that information I is omitted to simplify the notation, though it is important to keep in
mind that it conditions all probability assignments.
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Uncertain events

Decisions 01 0o
dy: identification 1 0
ds: inconclusive 0.999 0.999
ds3: exclusion 0.99 1

TABLE 5.3

Hlustrative values for utilities U(C;;) = U(d;,6;), as discussed in the text, for a case of
forensic identification. The propositions of interest are #; ‘The crime stain comes from the
POI’ and 6, ‘The crime stain comes from an unknown person’ (Taroni et al., 2010, 2014).

EU(dg) = U(Cgl) Pr(01 ‘ E) + U(ng)[l — Pr(61 | E)]
= U(Csl)Pr(Gl ‘ E) + []. — PI‘(91 | E)]

The decision with the highest expected utility, that is the optimal decision, depends on the
relative magnitude of Pr(6; | E), U(Ca1) and U(Cs1).

Recall, from the above analysis, that the probability « in (5.1) is actually a limiting
value. Intuitively, this implies that, if the probability of 6 is higher than this limiting
value, then ‘identification’ cannot be the best decision. To examine this aspect, consider
the utility values given in Table 5.3 and assume that the probability of 6, is 0.0011 (i.e.,
slightly greater that «):

Pr(6 | E) =0.0011 > « = 0.001.

The following expected utility values can then be calculated:

EU(d)) = (1 x 0.9989) = 0.9989
EU(d) = (0.999 x 0.9989) + (0.999 x 0.0011) = 0.999
EU(ds) = (0.99 x 0.9989) + (1 x 0.0011) = 0.990011.

Thus, EU(d2) > EU(dy1) > EU(ds) and the decision ‘inconclusive’ (dz) is better than the
decision ‘identification’ (dy). ‘Inconclusive’ is the decision with the highest expected utility.

Comments

It is readily seen that the decision with the highest expected utility depends on the
interplay between probabilities and utilities, though merely looking at formulae in isolation
might not be helpful to get a sense of the interaction among the relevant factors. It may
thus be useful to graphically display the expected utilities of the various decisions as a
function of, for example, the probability of #;, the proposition according to which the crime
mark comes from the POI. Following the above computations, it is clear that EU(d;) is
an increasing linear function, corresponding to the probability of 6;. In turn, EU(dy) is
a constant, leading to a horizontal line at y = U(Ca1) = U(C2). Finally, EU(d3) is also
a linear function, but decreasing. This is illustrated in Figure 5.1 (left). Note that, for
illustrative purposes and improving readability, the computations plotted in Figure 5.1 are
based on slightly modified values for o and «*, that is 0.05 instead of 0.001 and 0.2 instead
of 0.01, respectively. The bold solid lines in Figure 5.1 (right) highlight the decision with
the maximum expected utility. Intersections between expected utility functions represent
transition points, indicating a change in the decision with maximum expected utility when
further increasing or decreasing the probability of 6;. So, it can be easily observed that, by
choosing a = 0.05 and o* = 0.2,% for Pr(; | E) smaller than 0.25 the optimal decision is

4This amounts to have U(Ca1) = U(C22) = 0.95 and U(C31) = 0.8.
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FIGURE 5.1

Illustrative expected utilities for a case of forensic identification with the propositions 6;
‘The crime stain comes from the POI’ and 6y ‘The crime stain comes from an unknown
person’ (left). The available courses of action are ‘identification’ (d;), ‘inconclusive’ (dz)
and ‘exclusion’ (d3). The expected utilities are computed as a function of the probability
of 0; (z-axis), using the utility values obtained by choosing o = 0.05 and o* = 0.2. The
bold solid lines (right) highlight, for each possible value of the probability of 61, the decision
with the maximum expected utility.

ds (exclusion), and for 0.25 < Pr(6; | E) < 0.95 the optimal decision is dy (inconclusive).
Finally, decision d; (identification) is optimal only whenever Pr(6; | E) is larger than 0.95.

It may be objected that these values may not be reasonable, and in fact decision makers
will build their utility function coherently with their preference systems. Expected utility
functions of decisions dy, de and d3 obtained with the original choices o = 0.001 and
«o* = 0.01 are plotted in Figure 5.2, where the z— and y— axes focus on the transition points
(i.e., on the left, the transition point from ds to ds is highlighted, fixed at Pr(6; | E) = 0.1;
on the right the transition point from ds to d; is shown, fixed at Pr(6; | E) = 0.999). In
particular, it is pointed out that according to this preference system, the probability of
61 must be at least equal to 0.999 to have d; (identification) as the optimal decision, or
equivalently, the probability of #; must be smaller than 0.001, the limiting value.

Note also that the decision-theoretic analysis of forensic identification can also be con-
ducted with only two decisions, such as d; (‘identification’) and ds (‘do not identify’) and/or
the quantification of decision consequences in terms of losses instead of utilities (Bieder-
mann et al., 2016). The decision criterion of minimizing expected loss then comes down to
criterion (5.9) with inferential properties as discussed previously in Section 5.2.5 and 5.3.1.
For a discussion on the application of the decision-theoretic account to forensic identification
in the particular area of fingermarks, see Champod et al. (2016). Identification decisions
following database searches are discussed in Gittelson et al. (2012). For a formulation of the
expected loss minimization decision criterion, and an explicit representation of the role of
the likelihood ratio in the inference process preceding the decision, the development given
in Section 5.2.6 applies, in particular (5.12) and (5.13). Consider, for example, the following
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FIGURE 5.2

Tllustrative expected utilities for in a case of forensic identification with the propositions
01 ‘The crime stain comes from the POI’ and 65 ‘The crime stain comes from an unknown
person’. The available courses of action are ‘identification’ (d;), ‘inconclusive’ (ds) and
‘exclusion’ (d3). The expected utilities are computed as a function of the probability of 6;
(z—axis), using the utility values given in Table 5.3. The bold solid lines highlight, for each
possible value of the probability of 81, the decision with the maximum expected utility.

abbreviated form of the criterion (5.12):
log(PO) + log(LR) > log(RL),

that is the requirement that the sum of the logarithm of the prior odds (PO) and the log-
arithm of the likelihood ratio (LR) must exceed the logarithm of the ratio of the losses of
adverse decision consequences (RL). Table 5.4 illustrates numerical examples of combina-
tions of values, in particular limiting values that the likelihood ratio must exceed, in order
to make decision d; (individualization) preferable to decision dy (not individualizing the

POI).

5.3.2.2 Understanding probability assignment as a decision: the use of proper
scoring rules

So far in this Section, probability has been encountered as a concept to express uncertainty
about the truth or otherwise of propositions or events that are not entirely known to the
decision maker at the time when a decision needs to be made. Interpreting probability as a
decision maker’s personal degree of belief, it will be unreasonable then to say that decision
makers do not know their own states of mind. Throughout this chapter, it is tacitly assumed
that the decision makers have, each of them in their own way, and at any point in time,
their own probability, depending on their extent of knowledge and background information.
However, a legitimate question that may arise is what it means for a given person to assign
a so-called personal probability. In this context proper scoring rules allow one to clarify the
probability elicitation process, pointing out that it can itself be understood as question of
decision making.

To illustrate the notion of proper scoring rule, consider a person who is asked to state
the probability that he or she assigns to a given event E. Assume further that part of
the question is the information that the declared probability will be scored with respect
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PO="Pr(0,|I)/Pr(62]I) LR RL |log(PO) log(LR) log(RL)
1/10 =0.1 100 10 -1 2 1
1/10=0.1 1000 100 -1 3 2

1/1000 = 0.001 10° 100 -3 5 2
1/1000 = 0.001 108 1000 -3 6 3

TABLE 5.4

Numerical examples, presented in Biedermann et al. (2016), of minimum likelihood ratio
(LR) values for satisfying the expected loss minimization decision criterion necessary to
make the decision d; (individualising the POI) preferable to dz (not individualizing the
POI), criteria (5.12) and (5.13), with PO denoting prior odds (odds in favour of the propo-
sition that the POI of interest is the source of the crime stain) and RL denoting the relative
losses (i.e., the ratio of the losses of adverse decision consequences). The values in columns
four to six are the logarithms (base 10) of the values presented in the first three columns.

to the actual truth or falsity of E, denoted by, respectively, 1 and 0. The purpose of
this added constraint is to motivate people to report their actual beliefs, rather than a
deliberately chosen value (i.e., a value that is different from the one they have in mind), in
a way that is made precise shortly below. Distorted probability assertions are sometimes
encountered in the context of forensic identification, for example when experts round off
small probabilities to zero, or high probabilities to 1. Another typical example is the notion
of relevance of trace material which expresses the relationship between a given trace or
stain and the offender. Typically, one cannot categorically assert relevance, as observed by
Stoney, because relevance “(...) may range from very likely to practically nil (...)” (Stoney,
1994, at p. 18). Formally, relevance refers to a proposition of the kind ‘the stain or mark
comes from (or, was left by) the offender’ and appears as a factor in various likelihood ratio
developments (e.g., Evett et al., 1998). Uncertainty about propositions regarding evidential
relevance is sometimes suppressed and evaluators declare a probability of relevance p’ = 1,
thus rounding up to 1 a probability actually smaller than one. Scoring rules allow one to
show that this distortion of probabilities is not advisable.

The notion of score, in the decision-theoretic context, refers to the square of the difference
between the probability p’ for the event E, as stated by the person, and the actual truth-
value of E, zero or one. Because of this squared difference the rule is also called ‘quadratic
scoring rule’. As an example, assume that the scientist, or any other person being asked
to state their probability for event E, declares the value p’ = 0.8. Thus, in the analysis
here, statement p’ = 0.8 is interpreted as a decision and the question is how to decide in an
optimal way (i.e., what value p’ to report). One can then distinguish two cases. In one case,
E is true and thus has the truth value 1. This situation leads to the score (1 —0.8)% = 0.22.
In the other case, the event F is not true and thus assumes the truth value 0, leading to
the score (0 — 0.8)% = (—0.8)2. However, these score calculations, leading to expressions of
actual penalty, are only hypothetical. Given that the scientist is uncertain about whether
or not F is true, the scientist cannot know the actual score. At best the scientist can
consider a prevision of the scoring and then seeking a way of proceeding that minimizes the
expected penalty. This leads to the notions of ‘prevision of the scoring’, ‘expected penalty’
and ‘expected loss’. These notions are based on the idea of combining the possible scores
and the probabilities p and (1 — p) with which the scores may be produced. Recall that the
general concept of expected value was introduced in Section 5.2.2.

In general, the expected loss for reporting probability p’ given the scientists’ actual belief
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pis
EL(p)) = L(p,, E = true) Pr(E = true) + L(p}, E = false) Pr(E = false),
or (1 —p')%p+ p(1 — p) for short. One can readily see that the expected loss is minimal

when the reported belief p’ corresponds to the scientist’s actual belief p. In the example
considered here, with p’ = p = 0.8, the expected loss is:

1-p)p+p%1—-p) = (1-08)?x08+0.8%x(1-0.8)
= 0.16.

It is left as an exercise for readers to verify that for any reported value p’ # p, the expected
penalty would be larger. It is thus in the interest of scientists to report their actual belief.
Note that the quadratic scoring rule can also be used for the elicitation of conditional
probabilities (e.g., for an event E given another event H) when supposing that the penalties
only apply if the conditioning event holds (e.g., de Finetti, 1972).

The quadratic scoring rule is a proper scoring rule because it implies that whatever
one’s true belief p, one should sincerely choose this value as one’s reported probability; it
is the choice with the minimal expected penalty. Other scoring rules may not necessarily
exhibit this property. For example, the simple difference between the actual truth value
of the event for which a probability is to be assessed and the reported probability p’ does
not imply optimality for sincerely reported beliefs. Historically, the quadratic scoring rule
appears in many writings of the subjective probabilist Bruno de Finetti (e.g. de Finetti,
1962, 1982). However, following a paper by Brier (1950) on an application in meteorology,
the rule is also known as ‘Brier’s Rule’. The quadratic scoring rule is one of the most
simple proper scoring rules, while others exist based on, for example, the logarithm (Good,
1952). See also Parmigiani and Inoue (2009) for further details on scoring rules and related
concepts, such as calibration. Biedermann et al. (2013) discuss scoring rules in the context
of forensic individualization and the use of influence diagrams (Bayesian decision networks)
for implementation. The implications of this viewpoint for the subjectivist interpretation of
probability is considered in Biedermann (2015), Biedermann et al. (2017) and Biedermann
and Vuille (2018).

5.3.2.3 Other forensic decision problems: consignment inspection

Secion 5.3.2.2 considered a problem in which the space of decisions covered any value in
the interval between zero and one, including these endpoints, while the states of nature
were binary. Consider now a situation in which the states of nature are continuous, but the
space of decisions is binary. Suppose an unknown proportion, denoted by 6, such as the
proportion of a consignment of individual items that are of a certain kind (e.g., contain an
illegal substance) is the object of interest.

The proportion § may take values in the range [0, 1], including the endpoints. Suppose
that the decision maker faces two available decisions, denoted by d; and dy. The first
decision, d;, amounts to accepting the view that the proportion 6 of ‘positive’ units (i.e.,
units with illegal content) in the consignment is not greater than some specified value 6*, for
example 0* = 0.95. The second decision, ds, is the view according to which the proportion
of positive units in the consignment is greater than the specified value 6*. Formally, the two
decisions d; and dy can be conceptualised as decisions to accept one of the two composite
hypotheses Hy; : 0 < 6* and Hy : 0 > 0*. A decision d; is accurate if the true value
of the unknown proportion 6 lies in the range of values defined by such a hypothesis H;.
Otherwise, it is an incorrect decision.

Assume that the undesirability of decision consequences is quantified in terms of losses.
There is no positive loss associated with accurate decisions, though incorrect decisions
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have an associated positive loss. Formally, denote by L(d;,®;) the loss associated with
the decision d;, for ¢ = 1,2, while ©;, for j = 1,2, is the true state of affairs. The term
©; is defined as follows: ©; = [0,6*] and ©, = (6*,1]. Thus, considering that accurate
decisions consequences have zero loss is expressed by L(d;,©;) = 0, for ¢,j € {1,2} and
i = j. Further, let /; denote the loss L(d;, ©,) associated with an erroneous conclusion when
decision d; is taken, i,j € {1,2} and ¢ # j. The so-built loss function is also called a 0 — I;
loss function.

Generally, there are different ways to implement a loss function considering both mon-
etary and non-monetary components. Unlike a 0 — 1 loss function, derived from the 0 — 1
utility function presented above, the analysis here will interpret the losses I; as purely mon-
etary values, with [; representing the loss when the decision maker falsely regards a case
as one in which # < #*. Similarly, [ represents the loss from falsely considering the pro-
portion 6 of a consignment to be greater than 6*. The monetary interpretation of losses
is based on the following considerations. Suppose that the decision maker is a member of
an investigative authority facing the practical problem of high workload. Thus, there may
be an interest to focus primarily on cases where the proportion of seized items is above a
certain threshold. The loss I, then, could consist of the funds or monetary value of property
that could have been confiscated by the investigative authority as a penalty, and given to
the public treasury. In turn, for assessing [, it is relevant to inquire about the consequence
of pursuing a case that is not ‘important’ enough (i.e., falsely considering 6 > 6*). Here, the
investigative authority might generate expenses which, when compared to the reduced funds
that may be seized in a non-priority case with 8 < 6*, could represent a net loss. Also, the
loss could represent the amount of compensation to be allocated to an erroneously pursued
individual. As an example, consider I; = I = 100K USD, but readers may choose their
own values, including asymmetric values Iy # [5.

To assign probabilities for the composite hypotheses Hy : § € ©1 and Hs : 0 € Oo, it
is necessary to specify a probability distribution for 8. When the number of units in the
consignment is large, it is possible to assume a continuous probability density function, such
as a beta distribution with parameters o and 5. Note that a beta distribution is chosen here
because it allows one to readily incorporate sampling information regarding the number of
positive units (i.e., units with illegal content), using a standard updating rule (Bernardo and
Smith, 1994). For further discussion in forensic contexts see, for example, Aitken (1999),
Aitken and Taroni (2004) and Taroni et al. (2010).

Initially, before inspecting any items of the consignment, suppose that all possible values
the proportion € may assume are considered equally probable, expressed in terms of a so-
called uniform prior probability distribution. The probability of the hypothesis Hy : 0 <
0.95 is then given by the integral of the uniform beta density with parameters a = 8 =1,
with endpoints 0 and 0* = 0.95:

0.95
Pr(f < 0.95) = / f@|a=1,8=1)d0 =0.95 (5.18)
0

From this result it follows that a priori Pr(f > 0.95) = 0.05. On the basis of these prob-
abilities one can calculate the expected loss of each decision d;, for ¢ = 1,2. The result is
written, for short, ELO(di), where the superscript 0 refers to the ‘initial” point of time, that
is before any items are inspected. This loss is also sometimes called prior expected loss,
whereas the posterior expected loss (i.e, after considering sampling information) is based
on the posterior probability density for 6. In the case considered here, prior to considering
sampling information, the assumed uniform probability distribution implies that the deci-
sion d; to accept the proposition Hy: 6 < 0.95 involves a 0.95 probability for a zero loss,



Decision theory 21
and a 0.05 probability for a loss ;. Therefore, the prior expected loss of decision d; is

EL%(d;) = Pr(f <0.95) x L(dy,0;) + Pr(f > 0.95) x L(dy, ) (5.19)
= 0.95x040.05 x1; =0.05x1; .

The prior expected loss of decision dy to accept the proposition Ha: € > 0.95 is obtained in
the same way:

ELO(dg) = Pr(6 <0.95) x L(d2,01) + Pr(f > 0.95) x L(d2, 02) (5.20)
= 095 x%x15+0.1x0=0.95x%x15.

The optimal decision dj,, will be the one which minimizes EL’(d;). The losses I} = I =
100K USD defined above thus lead to the following result:

EL’(dy) = 5 000, EL°(d2) = 95 000, = db,, = di.

This result means that in a situation in which (i) the decision maker has not yet inspected
any items of the consignment, (ii) prior beliefs about 6 are based on an uniform prior
distribution, and (iii) the loss function is symmetric (therefore the decision is based entirely
on the prior beliefs about ), it is preferable to conclude d;, that is the proportion is smaller
than 0.95.

It is important to note that the above result is crucially dependent on the decision
maker’s prior beliefs about the proportion # and on the choice of the loss function. The
optimal decision may change depending on the assigned probabilities and losses. To illus-
trate this dependency, suppose now that the initial beliefs of the decision maker (based on
knowledge about previous consignments, domain expertise, and other sources of informa-
tion) are represented by a beta(3,0.3) distribution, a distribution that places more density
to high values of 6. Specifically, this distribution implies that approximately 60% of prior
belief weight is given to values of 6 that are greater than 0.95:

1
Pr(6 > 0.95) = f(6]3,0.3)dd = 0.6.
0.95
It follows from this that Pr(6 < 0.95) = 0.4 and the prior expected losses of decisions dy
and do become:

EL’(d;) = 0.6 x 100K = 60K,
EL’(dy) = 0.4 x 100K = 40K, = dJ,, = do.

The result now is that it is advisable for the decision maker to decide ds, that is the decision
to consider 6 > 0.95, because the expected loss associated with this decision is lower than
that for d;.

A particular assumption in the above example is that the loss function is taken to be
symmetric. There is no requirement for this, however, and it is possible to formulate the
decision theoretic criterion more generally. In particular, decision d; should be taken when
the expected loss EL(d;) is minimal, that is when

Pr(0 € ©,) x I, < Pr(0 € ©1) x I.

By rearranging terms, this criterion can be reformulated as follows: decide d; whenever
Pr(0 € ©3) < lz/(l1 +12). Thus, when the losses for adverse outcomes are considered equal,
the action with the minimum expected loss is the one in which the associated parameter
values have the higher probability.



22 Handbook of Forensic Statistics

Besides computing expected losses and determining optimal decisions, before or after
taking into account sampling information, the above framework presents a starting point for
a variety of further analyses and the development of additional concepts. For example, the
expected loss of the a priori optimal action is also sometimes referred to as the expected value
of perfect information (EVPI) about the true state of 6. Although, in many situations, it
may not be possible to obtain perfect information about the true state of nature, the EVPI
may be a useful measure to think about the decision problem. In particular, it allows one
to indicate the maximum amount of money that one should be willing to pay for (expert)
information that is such that it would allow one to determine the true state of nature
with certainty. In the above example, where the a priori optimal decision dgpt had an
expected loss of 40K, the decision maker should accept additional information about the
true proportion only if the cost for that information does not exceed 40K.

Another notion of interest in this context is the wvalue of sample information (VSI),
defined as the difference between the expected losses of the optimal actions before and after
considering sampling information. Yet another concept are pre-posterior analyses that take
into account the probabilities for various outcomes of item inspection (i.e., the proportion
of inspected items that are of a certain kind). Such analyses may be conducted for fixed
or variable sample sizes, and by taking into account or not the cost of inspecting items
from the consignment. This leads to further notions, such as the expected value of sample
information (EVSI) and the expected net value of sample information (ENVSI). See, for
example Biedermann et al. (2012), Taroni et al. (2014) and Gittelson (2013) for a discussion
of these concepts and the use of graphical models, such as decision trees and Bayesian
decision networks (influence diagrams) for practically implementing these approaches. More
generally, decision-theoretic approaches to sampling can be found, for example, in Schlaifer
(1959) and Raiffa and Schlaifer (1961).

Note also that the discussion in this section concentrated on a binary decision among
two composite hypotheses regarding a parameter space. A different decision problem is to
consider the whole parameter space as the space of possible decisions. That is, given a
parameter space and a posterior probability distribution over the possible values that the
parameter may take, the question is which single value to select is, in some sense, optimal.
This amounts to considering a problem of parameter estimation, that is inference, as a
decision. In this case, other mathematically tractable non-constant loss functions, such as
the quadratic loss or the piecewise linear loss function, can be implemented (Press, 2003).
For general theory on this perspective, see Berger (1985), and for forensic applications
Taroni et al. (2010).

5.4 Discussion and conclusions

The core topic of this book, the application of statistics in forensic science, is primarily
concerned with questions of inference — that is the reasonable reasoning in the face of un-
certainty. This involves procedures for the coherent use of relevant data for revising and
informing beliefs about competing propositions of interest. Propositions may be formulated
at different levels regarding, for example, the source of particular (forensic) trace material
(e.g., DNA, fibres, etc.), or at a more advanced stage, regarding alleged activities of partic-
ular individuals, such as the defendant (Cook et al., 1998). Two complications arise when
taking this abstract account too literally. One is the occasionally raised claim that statistics
can only be applied if data are available. This is not so. Reasoning methods, in particular
the specification of conditions for coherence, reply to general questions of formal analysis
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that can be approached with whatever amount of information and new data — whereas the
latter may be nil — there may be. The second complication is the flawed idea that inference
is the end of the matter. Again, this is not so. As noted by Lindley (2000), inference is a
preliminary to decision, an idea that started to expand more widely since the middle of the
last century:

“Years ago a statistician might have claimed that statistics deals with the processing
of data. As a result of relatively recent formulations of statistical theory, today’s
statistician will be more likely to say that statistics is concerned with decision making
in the face of uncertainty. Its applicability ranges from almost all inductive sciences
to many situations that people face in everyday life when it is not perfectly obvious
what they should do.” (Chernoff and Moses, 1959, at p. 1)

The neat connection between, on the one hand, informing beliefs through collected evidence
and data, and addressing the question of how to decide, on the other hand, is also at the
heart of applications in forensic science and the law. In these areas, decision theory has,
over the past few decades, been considered by many authors as an analytical framework for
studying selected decision problems. Though not as expanded as in economics and opera-
tions research, existing studies in the law are more numerous and also more controversially
debated than applications to forensic science problems, which have a more recent history.
It is widely acknowledged that decision theory provides a rigorous framework for thinking
about decision problems, but it is also widely uncontested that the direct application in
practice may not be immediate. The main reason for this is that additional argument needs
to be invoked in order to interpret the formal elements of the theory with respect to the
defining features of practical decision problems. This is a general challenge, however, that
is equally encountered with other formal concepts, such as probability and Bayes’ theorem.
In the particular context of forensic science, decision theory is currently used to critically
review understandings of traditional concepts, such as individualisation/identification, and
practice thereof. Insight that is gained from such analyses helps better understand where
current forensic practice makes assumptions that go above and beyond forensic examin-
ers’ areas of competence (Biedermann et al., 2016). Typical examples for this include
assumptions about probabilities for propositions of interest and utilities/losses for decision
consequences. The current role of decision theory in forensic science thus is advisory, by
providing a reference point — in a normative sense (Section 5.1) — for delineating areas that
require attention in ongoing reform efforts (Cole and Biedermann, 2020).

5.5 Further readings

Forensic science

Practising forensic scientists may encounter questions of decision making at various
stages in their daily work. For example, scientists may need to decide about whether or not
to use a particular analytical apparatus, apply a particular chemical substance or search
for a particular type of transferred trace material. Several publications have addressed
such questions, in particular in the context of forensic DNA analyses. Taroni et al. (2005)
considered the question of whether or not to perform DNA analyses in a case of questioned
kinship involving two individuals who are uncertain about whether they are full siblings or
unrelated. Another question related to DNA analysis, addressed by Taroni et al. (2007),
concerns the number of DNA loci that ought to be analyzed. Planning problems in forensic
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DNA analyses are also addressed in Mazumder (2010). Gittelson et al. (2014) used a
decision-theoretic approach for the topic of genotype designation, that is a decision problem
characterised by complications due to phenomena such as drop-in and drop-out. Decision-
theoretic computations can readily become complex, in particular when computations need
to be extended beyond one-stage analyses. An example for a staged decision analysis
regarding the question of processing or not processing a fingermark is given in Gittelson et al.
(2013), focusing on the expected value of information (EVOI) and the cost of processing
the fingermark. Other examples of sequential decisions are presented in Taroni et al. (2010,
2014). General forensic applications of Bayesian decision theoretic criteria, for example in
the context of kinship analyes and handwriting examinations, are presented in Biedermann
et al. (2018). A Bayesian classification criteria is presented in Bozza et al. (2014) to address
the problem of determining plant’s chemotype.

General

Ramsey (1931) is credited with pioneering expected utility, along with de Finetti (1937),
followed by works of von Neumann and Morgenstern (1953) and Marschak (1950) on the
axiomatization in terms of ‘gambles’. Classical textbooks are Savage (1954), Luce and
Raiffa (1958), Raiffa (1968) and De Groot (1970). More recent texbooks are Berger (1988),
French (1988), Smith (1988, 2010), Parmigiani and Inoue (2009) and Robert (2007).
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