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Abstract

A longstanding question in ecology concerns the prediction of the fate of mountain species

under climate change, where climatic and geomorphic factors but also endogenous species

characteristics are jointly expected to control species distributions. A significant step forward

would single out reliably landscape effects, given their constraining role and relative ease of

theoretical manipulation. Here, we address population dynamics in ecosystems where the

substrates for ecological interactions are mountain landscapes subject to climate warming.

We use a minimalist model of metapopulation dynamics based on virtual species (i.e. a suit-

able assemblage of focus species) where dispersal processes interact with the spatial struc-

ture of the landscape. Climate warming is subsumed by an upward shift of species habitat

altering the metapopulation capacity of the landscape and hence species viability. We find

that the landscape structure is a powerful determinant of species survival, owing to the spe-

cific role of the predictably evolving connectivity of the various habitats. Range shifts and

lags in tracking suitable habitat experienced by virtual species under warming conditions

are singled out in different landscapes. The range of parameters is identified for which these

virtual species (characterized by comparable viability thus restricting their possible fitnesses

and niche widths) prove unable to cope with environmental change. The statistics of the pro-

portion of species bound to survive is identified for each landscape, providing the temporal

evolution of species range shifts and the related expected occupation patterns. A baseline

dynamic model for predicting species fates in evolving habitats is thus provided.

Introduction

Little dispute exists regarding the major impacts on biodiversity expected from climatic

changes [1–4], but predictive studies blending landscape and population ecology still face seri-

ous challenges, especially when related to complex topographies [5–7]. As the rate of warming
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over the past 50 years (0.13±0.03 ˚C per decade [8]) is approximately twice that observed for

the previous 50 years, extinction dynamics are likely to be challenged by evolving geophysical

drivers almost everywhere [9], a special threat to mountain species owing to their high rate of

local endemism [5, 10]. Shifts of geographic distributions may be rapid [11] and heterogeneous

[12, 13], also in response to habitat fragmentation [14]. Species are facing two survival options:

stay or go [7, 15], i.e. adapt to the new imposed local conditions or track the displaced suitable

climate. Then, species that could potentially live in the new ecological landscapes created by

climate warming may fail to track the displacements of their habitat and go extinct [16, 17],

and those that persist, even if coping with the new conditions, might still be affected by extinc-

tion debts [18, 19].

By taking into account upward shifts of suitable species habitats [20], effects of climate

warming would be reflected in the increase/decrease of suitable occupied sites along elevation

gradients [17, 21] and the resulting displacements of species [3, 15]. Field evidence on changes

in species lower and upper range limits, optima, and abundances [4] may thus be examined

for specific landscapes. Whereas environmental drivers affecting species ranges are various

and competing, at progressively larger spatial scales, air temperature, tightly linked to eleva-

tion, emerges as a key player [22, 23]. General frameworks in the literature frequently consider

many other drivers. Some of them change predictably with elevation (for instance, anthropo-

genic pressure and, to a lesser extent, precipitation [24, 25]), while others are not elevation-

dependent (such as moisture, clear-sky turbidity and cloudiness, sunshine exposure and

aspect, wind strength and exposed lithology to name a few without specific taxa in mind [24,

26]). However, theoretical analyses aimed specifically at geomorphic factors are essential to

inch towards the prediction of spatial biota responses [5, 27, 28].

The structure of the environmental matrix is known to affect biodiversity patterns [29–34].

Mountain landscapes provide a complex matrix, often shaped chiefly by fluvial erosion and

geologic uplift [35], resulting in the majority of their surface to lie at intermediate elevations

[6]. Owing to the ubiquitous fractal nature of their topographies [35], in such landscapes one

may find peaks or troughs at the same elevation, resulting in different degrees of isolation and

connectivity [36]. Warming temperatures would prompt species to experience alterations of

the spatial configuration of their habitat, as well as an alteration of the microclimatic heteroge-

neity [7], because of the change in the area available at the elevation yielding optimal fitness,

and hence of the proximity of areas with similar ecological characteristics (connectivity) and

the dispersal ability [37], crucial determinants of species persistence [4, 6, 38]. This also implies

that deriving species distribution patterns from linear elevational gradients, for simplistic geo-

metric shapes with same relief, is ecologically useful mostly as a null model against which to

compare patterns derived from real landscapes [5, 6].

Here, we use a metapopulation modelling framework [39], generalized by the incorporation

of a specific fitness function describing how suitable the local landscape features are for a

virtual species to thrive in (i.e. the quality of a cell [14]), similarly to what is done in habitat

suitability models (HSMs) involving virtual species [40–42]. For the main purpose of this man-

uscript, which is to highlight the impact of different topographies on species occupancy and

survival to climate warming, we make the minimalist assumption that fitness depends only on

elevation. While one should be careful in using terminology like habitat when the models only

consider elevation as an environmental layer, we justify our choice by a twofold argument: on

the one hand, we keep ecological detail to a minimum to be capable of sorting out true land-

scape effects; on the other hand, extensions of our framework to include other environmental

covariates, as typically done in HSMs [43] and other dynamical ecological models [44], is

straightforward (see S4 File for an example directly incorporating additional landscape attri-

butes), although outside the main scope of this paper. Landscapes are thus fully characterized
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by their elevation structure that defines the local species fitnesses and the processes governing

species occupancy. By contrasting the occupancy results for a selection of landscapes, the influ-

ence of the elevational structure is studied.

The regional persistence of the virtual species studied here stems from balancing coloniza-

tion and extinction processes [7] driven by local suitability specific to each landscape for an

exactly identified range of species parameter values. In order to consistently investigate the

geomorphological influence of different landscapes, these virtual species are characterized by

comparable viability (i.e. the same metapopulation capacity [45]) in unbiased conditions, thus

restricting their possible fitnesses and niche widths to specific parameter values. These virtual

species have either large niche breadth but low fitness everywhere, or the opposite.

The overarching goal of this study is to systematically investigate how topography interplays

with species parameters to concert their survival as a result of given climatic warmings (Fig 1).

Owing to its deliberate simplicity and minimal parameter use, the metapopulation model is

used extensively to explore the spatial occupancy of the various species. Even with such simple

structure, enough degrees of freedom exist to produce realistic occupancy results.

Materials and methods

A metapopulation framework

A spatially explicit stochastic patch occupancy model (SPOM [14, 46]) is employed to simu-

late the distribution of a virtual species in a landscape. Building on a DEM with N cells,

SPOM computes a possible distribution of occupied cells at every simulation time t by con-

sidering extinction and colonization processes, whose rates depend on the species properties

and on the landscape features. A binary state variable pi(t) is set to 1 when the cell i is occu-

pied and 0 when empty (i = 1, . . ., N). Starting from a given initial distribution of occupied

cells, at each time step, the model allows unoccupied cells to be colonized by surrounding

occupied cells with probability PC,i(t + Δt) = P[pi(t + Δt) = 1|pi(t) = 0]. Then, the cell

becomes occupied at time t + Δt depending on a random sample from a Bernoulli distribu-

tion with parameter PC,i(t). Similarly, species in occupied cells can go extinct with probability

PE,i(t + Δt) = P[pi(t + Δt) = 0|pi(t) = 1]. SPOM works as a Markov chain, where, for each cell,

the probabilities of colonization and extinction events are modelled with the following expo-

nential distributions (and the probabilities of these events not happening as their respective

complements):

PC;iðt þ DtÞ ¼ P½piðt þ DtÞ ¼ 1 j piðtÞ ¼ 0� ¼ 1 � exp ð� CiðtÞ � DtÞ; ð1aÞ

PE;iðt þ DtÞ ¼ P½piðt þ DtÞ ¼ 0 j piðtÞ ¼ 1� ¼ 1 � exp ð� Ei � DtÞ; ð1bÞ

where Δt is the simulation time step and Ei and Ci(t) are the extinction and colonization

rates (with dimension 1/t) for cell i at time t. Note that Ci(t) is time-dependent because it

depends on the current distribution of the species. The colonization and extinction mecha-

nisms are directly related to a fitness function, fi (described in the next section), which mea-

sures the suitability of the features of patch i for the species. The local extinction rate on a

cell i is inversely proportional to the fitness, i.e., Ei = e/fi, where e is the extinction constant.

The colonization rate of an unoccupied cell is driven by the sum of the contributions from

surrounding occupied cells and is defined by a two-dimensional exponential kernel multi-

plied by the fitness associated with the source cells, i.e. the connectivity to the different cells

A minimalist virtual mountain species model

PLOS ONE | https://doi.org/10.1371/journal.pone.0213775 March 18, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0213775


as defined by metapopulation theory [39, 46–49]:

CiðtÞ ¼ c
X

j6¼i

pjðtÞ
exp ð� dij=DÞ

2pD2
fj; ð2Þ

where dij is the distance between cells i and j, D the dispersal distance and c the colonization

constant. Notice that connectivity is solely based on Euclidean distance and does not depend

on the suitability of the path between cells.

Fig 1. Landscapes used in the simulation and overview of the simulation. (a) The four synthetic landscapes used in the

simulations meant to single out geomorphic effects: 1) a virtual realistic landscape based on the Optimal Chanel Network model

(OCN, see S2 File), 2) a cone-in-a-square, 3) a pyramid and 4) a roof. (b) Hypsographic curves, defined as the area distribution at

the various elevations. (c) A sketch of the three phases of the experiment: an initial phase (green) to select regional species; a climate

warming phase (red) characterized by an upward shift in species optimal elevations, which discriminates between species able and

unable to track climate warming; and post-climate warming phase (blue) exploring if the surviving species are suited to the new

conditions, or experience extinction debt. The smooth lines depicted in the figure are meant as schematic representations of

possible pathways of ensemble averages of several realizations (d) for a given species.

https://doi.org/10.1371/journal.pone.0213775.g001
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Fitness

We represent the species suitability at cell i having elevation zi by the following fitness function

fi [6, 14]:

fi ¼ fmax exp �
ðzi � zoptÞ

2

2s2

 !

; ð3Þ

where: zopt describes the elevation where the species shows its maximal fitness; σ is the niche

width, which sets how fast fitness decreases departing from zopt; and fmax is the maximum

value of the fitness of the chosen pool of species. Once these species-specific parameters are

assigned, the heterogeneity of the landscape matrix dictates the spatial distribution of fitness.

In the ensuing simulations, fitness is assumed to depend strictly on elevation. In another

context, where geomorphic effects were not the main subject of inquiry, such a condition

could be relaxed by considering other environmental covariates, making fitness more realisti-

cally dependent on habitat suitability (see e.g. [43]).

A number of approaches have used similar fitness functions [6, 14, 50]. For example, in

studies of adaptation dynamics of spatially heterogeneous metapopulations, individuals have

been assumed to be classified with respect to their phenotypes. Phenotypes are characterized

by the value, or the strategy, xi of a continuous trait x [50], where each habitat encountered in

each patch determines the probability of survival of the phenotype, typically via Eq 3. Therein,

differences between optimal traits (analog to zopt) for the different habitats generate tradeoffs

and selective maladaptations.

Comparable species viability

The overarching goal of this paper is to highlight the effects of geomorphology on species sur-

vival in the context of a minimalist metapopulation model. In order to single out these effects,

we designed a framework where, for selected combinations of fmax and σ (Eq (3)), the consid-

ered species all display a comparable viability (i.e. metapopulation capacity sensu Hanski [45]).

This is done in a geomorphologically unbiased environment, i.e. a landscape which does not

favor selected species under mean-field assumptions (infinite dispersal). This ensures that a

hypersurface in parameter space is postulated that contains only species with comparable via-

bility, such that differences in species fate computed in various landscapes are directly related

to different geomorphologies.

We define such geomorphologically unbiased environment moving from a 1D-landscape

with a constant slope and infinite length where the metapopulation capacity is influenced by

neither niche width nor optimal elevation. Within these assumptions, we center the landscape

on the optimal elevation (i.e., z(x = 0) = zopt) and consider a finite domain of size [−L, L],

with L large enough. The spatial discretization of the domain consists of N + 1 elements,

x0 = −L, . . ., xN/2 = 0, . . ., xN = L, with the distance between two points defined as Δx (Δx = 1 in

this paper) and corresponding elevations zi(xi) = xi for i = 0, . . ., N.

The related metapopulation capacity, λM, defines the theoretical threshold of the extinction

to colonization ratio above which the population has no chance of survival (i.e., a species per-

sists in the domain if and only if λM> e/c) [45], and is computed as the leading eigenvalue of

the landscape matrix M, derived from the Jacobian of the system J = c M − e I [45, 51]. The

matrix M contains information about the landscape and the quality of the patches. In the con-

text of a geomorphologically unbiased landscape, and considering the mean-field theory, the

elements of M are mij = fi fj if i 6¼ j and mij = 0 if i = j. The values of the largest eigenvalue can-

not be computed analytically. However, the Perron-Frobenius theorem provides an upper
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bound to the largest eigenvalue. Such upper bound is given as the maximum of the sums of the

absolute value in a single row (or column) of the matrix. Considering the definition of M, the

maximum of the row sum is obtained for the row corresponding to z = zopt, i.e. i = N/2:

lM ðf Þ �
XN

j¼0

f ðzoptÞf ðzjÞDx; ð4Þ

where f is the fitness function for a given species described in Eq (3). Letting L go to1 and

reducing the size of the single elements to zero, the series in Eq (4) converges to the following

integral:

Z 1

� 1

f ðzoptÞf ðzðxÞÞdx;

¼ ðfmaxÞ
2

Z 1

� 1

exp �
ðzðxÞ � zoptÞ

2

2s2

 !

dx;

¼ ðfmaxÞ
2
s
ffiffiffiffiffiffi
2p
p

;

ð5Þ

which, in order to constrain the largest eigenvalue of M to the same value for all niche widths,

yields:

fmax ¼
1
ffiffiffi
s
p ; 8s: ð6Þ

By incorporating this result in Eq 3, we obtain an ensemble of species having the same

metapopulation capacity (i.e., same probability of surviving) in this theoretical domain. Thus,

comparing virtual species having the proposed fitness function permits to understand the

real structural effects of the landscapes, given initially unbiased species in the sense of survival

ability.

Climate warming

To simulate climate warming impacts, the optimal elevation of each species is gradually

shifted. The IPCC reports different possible long-term greenhouse gas concentration trajec-

tories, representative concentration pathways [9]. The worst-case scenario, RCP 8.5, predicts

an increase in temperature in the range of ΔT = 4˚C over the next century (Δtc). This sce-

nario is chosen in order to enhance as much as possible, yet not unrealistically, the impact of

climate warming on the metapopulation model. We choose to uniformly change the optimal

elevation of each species in the landscape: assuming a typical average global environmental

lapse rate for air temperature of γw = 1/150˚C/m [52], the optimal elevation thus changes at a

speed of Δz/Δt = ΔT/(γw � Δtc) = (4�150)/100 = 6 m/year, leading to a new optimal elevation

zoptðt þ DtÞ ¼ zoptðtÞ þ DT
gwDtc

� �
Dt after each time step.

While the choice of lapse rate is justified based on rates of environmental change, empirical

evidence suggests that many species, mostly plants [53] and birds [54], shift in elevation at

slower paces than those assumed here for the drivers [55]. Note that lags can differ greatly in

intensity for different altitudes [53]. Lags are obtained here by simulation and depend on the

transient states given the imposed warming.

A minimalist virtual mountain species model
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Simulations

We generated a pool of 4000 virtual species with the parameter range for dispersal distances,

niche widths and optimal elevations assumed such that they cover the scope of the regional

species parameter, determined by running the first step of the simulation several times before-

hand (zopt 2 [0, 3000], σ 2 [25, 600] and D 2 [0.1, 12]) for fixed values of e = 0.02 and c = 15

years−1. From this pool, a subset of virtual species, starting from a fully occupied landscape (i.e.

each cell is occupied by the species, initial condition), persist in the landscape after a simula-

tion is carried out until stationarity under constant climatic condition (Fig 2, step 1). Species

belonging to this regional pool serve as initial condition for the evaluation of the effects of

warming scenarios. Owing to the stochastic nature of SPOM, the persistence of a species is

evaluated by repeating the simulation 100 times for each set of parameters (i.e., species) and

landscape. Species that are still present in the landscape at the end of at least half of the 100 ran-

dom runs are considered as regional species (Fig 2, Step 1).

In order to have 100 occupancy configurations for each of these species, runs leading to spe-

cies disappearing from the landscape during step 1 are replaced by randomly selecting an equi-

librium configuration from the remaining ones.

Starting from the occupancy of species obtained in step 1, we apply climate warming (step

2) as an upward shift of the niche for approximately 100 years.

Step 2 identifies species unable to track climate warming, i.e. thus initial species that go

extinct during climate warming. Climatic conditions are then frozen and the experiment con-

tinues until the extinction debt has been paid off (step 3) which identifies the species unable to

cope with the new temperatures (i.e. species affected by extinction debt [18]).

The last two steps (steps 4-5) consist in understanding whether the species which went

extinct during the climate warming phase would be able to survive given their new optimal ele-

vation (extinct suited), or if they would have gone extinct anyway due to loss of suitable habitat

(extinct unsuited). In step 4, species are allowed once again to fully occupy the landscape, but

their optimal elevations are shifted to the value after climate warming. The simulation is then

run until reaching a steady state (step 5), allowing us to find the species surviving in the new

conditions, and by comparison with state 2b, identifying the fate extinct suited/unsuited.

This method underpins observations of species transient states, and therefore singles out

specific fates. Such fates can be the disappearance of species suitable to post-climate warming

conditions due to their inability to track favourable conditions, or species survival for some

time after climate warming, only to go extinct later. Note that the induced understanding of

transient effects distinguishes metapopulation studies from habitat suitability and species dis-

tribution models (SDMs) [43, 56]. Note also that dynamical models sitting on top of SDMs

[57] in order to capture the transient states and take advantage of the powerful SDMs tools

exist.

The coefficients of extinction e and colonization c have been chosen such that all the possi-

ble species fates are observed in the simulations. Other choice would have been possible

because, as long as the ratio between the coefficients stays constant, the outcome of the simula-

tion remains the same (for small enough values of dt [45]). Other coefficient values would

have generate a different pool of regional species, but the landscape occupancy would have

been preserved (c.f. Fig 3 in the results section).

Landscapes used in the simulation

We consider three different types of landscapes: synthetic (roof, cone-in-a-square and pyra-

mid), realistic synthetic (Optimal Chanel Networks (OCNs)) and real (the Gran Paradiso

National Park—GPNP, Italy and the Vaud Alpes, Switzerland). OCNs, synthetic landscapes

A minimalist virtual mountain species model
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with periodic boundary conditions previously used for ecological applications in the context of

climate warming [58], are obtained by a metaheuristic approach by looking for a local mini-

mum of total energy dissipation by iterating over different configurations of drainage direc-

tions corresponding to different topographic slopes [35, 59–61] (S2 File). The DEM of the real

landscapes (GPNP and Vaud) are extracted from the online earth explorer tool, courtesy of the

NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth

Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://

earthexplorer.usgs.gov/). The results are computed on the administrative limits of GPNP and

Fig 2. Overview of the different states and steps of the simulation. For simplicity the landscape is displayed as a

cone. 100 random solution of the SPOM model are generated for all different combinations of parameters and

landscapes. In Step 1 of each run, SPOM reaches an equilibrium occupancy starting from full occupancy (State 0).

Species belonging to the regional pool, i.e. surviving Step 1, are utilized (State 1b) and climate warming is applied (Step

2) leading to survival (State 2a) or extinction (State 2b). Extinction debt is evaluated by computing the equilibrium

condition for the species surviving to climate warming (Step 3). Additionally, new simulations are started (Steps 4-5)

by computing their equilibrium occupancy starting from full occupancy and considering the optimal elevation after

climate warming. This step identifies species unable to track climate warming but which would have been able to

survive the new conditions (extinct suited), and species which went extinct with climate warming and for which these

conditions would not have been suited anyway (loss of suitable habitat, extinct unsuited).

https://doi.org/10.1371/journal.pone.0213775.g002
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Fig 3. Outcome of the metapopulation runs depends on the initial optimal elevation zopt, niche width σ and

dispersal distance D. Colors represent the fate of the virtual species (same color-code as in Fig 1 with detailed

explanation of the fates in Fig 2), which is determined by the most probable outcome after 100 random model runs.

Results are presented for the following landscapes: (a) OCN; (b) pyramid; (c) cone in a square; and (d) roof-like

landscape. The range of parameters shown has been chosen to contain the areas where significant change is detected.

See S3 File for the complete set of results.

https://doi.org/10.1371/journal.pone.0213775.g003
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Vaud Ales, while the simulations are performed over a square with a buffer around the area to

avoid border effects. The elevation fields are rescaled such that the relief would match to the

synthetic landscapes (0-3000 meters).

These different landscape shapes are designed to probe boundary and structural geomor-

phic effects. For instance, the typical hump-shaped distribution of hypsographic curves

(defined as the area distribution at the various elevations) found in nature [5, 6] (GPNP, Vaud

Alpes) can be constructed in unrealistic geometries (Fig 1b, cone in a square) and realistic syn-

thetic landscapes (OCN). The comparison among the different occupancies provided by the

metapopulation model for a virtual species on these different landscapes highlights the influ-

ences of the spatial complexity of the topography on the habitat connectivity and fragmenta-

tion (e.g. comparing cone and OCN) and the possible impact of boundary problems (e.g.

comparing OCN and real landscapes). Geometric landscapes are further used to understand

how relief boundaries interact with niche width (comparing pyramid and roof), and how con-

nectivity changes with constant hypsographic curves, as in the case of the roof. Comparative

studies on real topographies and OCN landscapes are employed to highlight the influence of

steep slopes characteristic of real landscapes, which are not present in OCNs where fluvial ero-

sion is the dominant factor.

Results

Initial occupancy patterns

We analyze how landscape features control the persistence of species with specific parameter

values. In all landscapes, and for all the optimal elevations characterizing the different species,

only a subset of the considered species persisted after the initial phase with constant climatic

conditions (regional species, color-coded in Fig 3). The various landscape shapes have differ-

ing presence patterns even if endowed with similar elevation distributions, like the OCNs and

the cone in a square (Figs 1 and 4). The OCNs showed a limited region of parameter constitut-

ing the regional pool of species, suggesting an important effect of spatial aggregation of suitable

habitat/landscape fragmentation (Fig 3).

Climate change effects

In all considered landscapes, a subset of the parameters leads to the extinction of the species

after climate change (Fig 3 (red) and Fig 4 (dashed line)). Results show that extinction debt is

frequent for large niche widths and dispersal distances (Fig 3 (yellow) and Fig 4 (dotted line)).

Part of the regional pool of species having an initial optimal elevation facing a rising hypso-

graphic curve, that is, an increase of area of suitable habitat resulting from the upslope shift,

i.e. when zopt is located below the position of the peak (species in dark blue in Fig 3a and 3c)

experienced an increase in their occupancy and range, whereas species ending up around

peaks in the landscape after climate change, or when zopt is located above the peak in the hyp-

sometric curve, were unequivocally affected by a strong occupancy reduction and range reduc-

tion (all colors except dark blue in Fig 3a and 3c for zopt > (500/1000) m). Thus, for a hump-

shaped hypsographic curve, where the majority of land lies at intermediate elevations (OCNs,

cones, real landscapes), the fate of a species depends on the relative position of the peak eleva-

tion compared to its initial zopt.

Extinction due to inability to track change has many causes. Species unsuited to new condi-

tions are found where suitable habitat shrinks or disappears (loss of suitable habitat). Interest-

ingly, however, in real landscapes and OCN replicas, species with small niche width are

confronted with this likely outcome even if they gain habitat area or connectivity [39] with cli-

mate change. Species unable to track, but that would have been capable of surviving under
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altered conditions, i.e., lagging behind the rate of climate change [53, 55] (extinct suited, Fig 3,

dark red), were found only for a small number of parameter sets, mostly for species with small

niche width and relatively large dispersal values, and almost exclusively on species with opti-

mal elevations situated in the decreasing part of the hypsographic curves. Species surviving cli-

mate warming (Fig 3, blue, Fig 4, straight line) were found to adjust their occupancy compared

to their initial states. Species with a decreasing presence (Fig 3, light blue) were found when

suitable area and/or proximity/connectivity decreased or when their niche ranges exceeded

the maximum elevations. This pattern was commonplace for the pyramid where area mono-

tonically decreases with elevation (Fig 1b).

Extension to real landscapes

We analyzed real landscapes using DEMs for GPNP and Vaud Alps (Fig 5). We looked at how

the geographic range of a pool of regional species shifts in response to climate warming. Fig 5

shows the temporal changes in the percentage of occupied area by a species compared to the

initial median occupation. We do not consider in this analysis species that can immigrate from

Fig 4. Progression of the parameter limits during the simulation. Parameter limits (niche width σ, dispersal D) of the initial pool of regional virtual

species (dashed), species present after climate change (dotted) and species present at steady state after climate change (line). The figures show species with

initial optimal elevations (zopt) of 0, 666 and 1333 m.

https://doi.org/10.1371/journal.pone.0213775.g004
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Fig 5. Species occupancy during (2017-2117) and after climate warming (after 2117) relative to the initial median

occupancy. The dashed line represents the median percentage of occupied area by regional virtual species that

decreases during and after climate warming. The red lines in the DEMs represent the limits where area was considered.

https://doi.org/10.1371/journal.pone.0213775.g005
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outside the system (e.g., from lower elevations) but focus only on the fates of regional species.

As expected, occupancy decreased during climate warming. Interestingly, a long period is

required to stabilize the occupancy after the imposed change. Species occupancy continued to

decrease after the climate stabilized, and the median occupancy tended to zero in GPNP and

Vaud Alpes. Owing to its geomorphological attributes, the GPNP region, which has the major-

ity of land close to the maximum elevation, suffered the most from the loss in occupancy.

Discussion

Given our parameter set, three intertwined factors govern the fate of the species at any site in a

landscape: the initial occupancy distribution, the distance at each site from areas sharing simi-

lar fitness, and the available area around the optimal elevation, the main niche factor. Taken

separately, we find that their effects do not suffice in predicting the fate of a species under cli-

mate warming. For example, the hypsographic curve alone does not subsume all processes

governing species presence. Even in the simple, unrealistic geometric landscapes designed to

distinguish geomorphic effects, the entanglement of those processes generates unforeseen out-

comes (Figs 3 and 4). For instance, species endowed with their niche partially outside the land-

scape elevation range before climate warming, may actually exploit increased geographic range

projection even if the specific hypsographic curve is steadily decreasing (Fig 1b, see also S3

File). Occupancy thus reflects a complex balance between area availability, connectivity and

realized niche (see also [43] for an analogous effect captured by habitat suitability models).

One may note that connectivity does not refer to dispersal alone. In fact, it typically incorpo-

rates some measures of land cover, land use, or landscape ‘permeability’ and is considered

more a feature of the landscape rather than simply of the species ecology (like the dispersal dis-

tance) [5].

Our results suggest that equally viable species endowed with very large niche widths σ suc-

cessfully track climate warming but often do not survive afterwards. In fact, under the imposed

constraint on species parameters, such species have a relatively low fitness everywhere, which

only allows survival if enough surface is colonized. Strong colonization is thus required to

grant species survival relative to large dispersal distances. Otherwise, colonization will not

compensate the low fitness and most of such areas—even if large—will slowly become unsuit-

able, leading to extinction debts. This particularly affects strong dispersers, whereas weak dis-

persers are more subject to landscape fragmentation because they rely on close-by areas to

persist. Species with smaller niche and higher fitness are less affected by extinction debts, but

may go extinct before the end of the imposed temperature rise, i.e., they might either track cli-

mate warming, and thus thrive given the new conditions, or go extinct during the process

despite being suitable to the new conditions because of their isolation and the lag in tracking

the new conditions. For such species, the local conditions are of utmost importance, because

the fitness in a single patch suffices to make them survive without help from surrounding

occupied cells (reduced available area), which causes them to be particularly sensitive to

changes in available, close-by suitable habitats, and fragmentation (lack of short distance

escape opportunities [53]). Such species are highly sensitive to microclimatic heterogeneity

[7].

Realistic landscape heterogeneities are found to strongly impact species survival (Fig 4).

The domain of parameters describing surviving species proves much smaller than that

obtained for simple geometries. The defining role of connectivity is confirmed by noting that

OCNs and the cone-in-a-square construct exhibit a rather similar hypsographic curve (Fig 1b)

but rather different species fates (Fig 3). Local effects, such as mid-elevation plateaus or iso-

lated peaks, influence the spatial projection of the niche, the geographical range and the
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proximity of similar areas (as in [62]), thus locally reducing the fitness of the species. If a land-

scape has a self-affine structure like many mountain ranges [35], highly fragmented connectiv-

ity is generated whereby species with larger niches but lower fitness struggle to subsist due

to the weaker mutual rescue effect of occupied cells owing to meta-population processes of

patch colonization-extinction. The differences between real and model landscape results are

explained by the fact that OCNs imply large drainage densities (small ratios of the total river

length to the catchment area normalized by the landscape characteristic size) and thus flatter

slopes than in the real mountain landscapes studied here.

Certain assumptions of the minimalist model may be relaxed. They concern:

• the lack of incorporation of actual habitat suitabilities, here subsumed by the model Eq (3)

chosen to strengthen the signals due to landscape effects. Although generalizable, such

assumptions prevent a detailed ecological study of the species surviving the range shift

beyond broad-brush statistics of their survival—however useful;

• the choice of characterizing climate warming as uniform and driven only by air temperature.

Such assumption may be relaxed by using suitable climate and weather generators of

various origins. This, however, would come at the risk of clouding the geomorphic effects

highlighted in this work;

• the lack of heterogeneity of range shifts at the landscape scale [12, 13], here modeled by a

simple upslope shift;

• the parameter choices describing local fitnesses, which is related to the constraints placed to

maximal fitness (fmax) to approximately conserve metapopulation capacity (Methods). This

assumption reduces the number of species analyzed and yields a comparison in that similar

viability of the species is assumed. Such assumption, like for instance the introduction of

super-species with large width and high fitness that would colonize any landscape at every

elevation, could be be introduced for specific studies at no change in the procedure (see S1

File for an example of a simulation with such a species);

• the neglect of invasions of species from lower elevations, unrepresented here. While we

stand by our choice in view of the scopes of this paper, we note that neglecting them prevents

a specific ecological study of how generalist or specialist species fare under the same circum-

stances in a given landscape. To that end, forthcoming metapopulation studies will be based

on field evidence, possibly using generalized fitnesses that include all relevant covariates. S4

File gives more details about the effects of the factors we currently neglect in the mainstream

discussion, and about technicalities on possible generalizations.

Moreover, long term evolution of populations can lead to local adaptation to environmental

conditions (see e.g. [50] for a dynamic study based on spatially heterogeneous metapopula-

tions). However, in the minimalist model pursued herein we assume that ecological timescales

are much smaller than evolutionary ones. Phenotipic evolution of spatial metapopulations

could instead be a possible development of the present approach, where heterogeneities might

be provided by habitat suitability models [56] tailored to mountain ecosystems.

We nonetheless suggest, from the bulk of our extensive calculations, that strong influences

are waged by broad geomorphic features of a landscape not only for biodiversity in equilib-

rium with the current climate [5, 6], but also for the long-term impact of climate warming on

species survival. This is likely to be true in general, but especially so locally for heterogeneous

landscapes. The extinction debt [17–19], which is hardly measurable as an ongoing process, is

found to be a dominant feature in species dynamics according to our modeling approach for

any realistic landscape. This feature would make it difficult (if not impossible) to predict
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changes before they actually happen without models. Especially alarming seems the suggestion

that the effects of warming would not be limited to phasing, but would rather be also charac-

terized by the disappearance of large amounts of occupied areas long time after the actual

change in the driver. The timescales of the ecological response triggered by the imposed geo-

graphic range shift, in fact, are suggested to be much longer than that of the phasing itself, as

extinction debts may be operating even centuries later.

Conclusion

Our main conclusions can be summarized as follows.

Computational studies on the effects of climate warming prove essential to sort out genu-

ine landscape effects on metapopulation range dynamics and spatial occupation of species

under climate warming, not simply in terms of stationary states but also of transients defin-

ing the range of possible extinction timescales. Geomorphic effects on species survival can be

sorted out because a climate warming scenario was applied to a regional pool of species pre-

viously filtered for the initial temperature regime under the discriminating (and defining)

requirement of equal ecological viability (i.e. same metapopulation capacity). This results

in a specific constraint on the virtual species’ fitnesses sensitive to the geomorphic effects

sought after.

Minimalist models of the type explored here allow us to quantitatively show how extinction

debts unfold. This is due to their computational ease that allows extensive search in the space

of species parameters.

Future work will exploit the proposed framework to include other dimensions of habitat

suitability in generalized fitness models. This may be done by correlating fitness to a number

of environmental covariates (e.g., precipitation, soil type, aspect (S4 File), resources, land-use,

etc.) rather than simply to elevation, or allowing metapopulation capacity to vary, i.e., incorpo-

rating species with both small/large niche breadth/fitness.
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