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a b s t r a c t 

The benefits, opportunities and growing availability of ultra-high field magnetic resonance imaging (MRI) for 
humans have prompted an expansion in research and development efforts towards increasingly more advanced 
high-resolution imaging techniques. To maximize their effectiveness, these efforts need to be supported by pow- 
erful computational simulation platforms that can adequately reproduce the biophysical characteristics of MRI, 
with high spatial resolution. In this work, we have sought to address this need by developing a novel digital 
phantom with realistic anatomical detail up to 100-μm resolution, including multiple MRI properties that affect 
image generation. This phantom, termed BigBrain-MR, was generated from the publicly available BigBrain histo- 
logical dataset and lower-resolution in-vivo 7T-MRI data, using a newly-developed image processing framework 
that allows mapping the general properties of the latter into the fine anatomical scale of the former. Overall, 
the mapping framework was found to be effective and robust, yielding a diverse range of realistic “in-vivo-like ”
MRI contrasts and maps at 100-μm resolution. BigBrain-MR was then tested in three imaging applications (mo- 
tion effects and interpolation, super-resolution imaging, and parallel imaging reconstruction) to investigate its 
properties, value and validity as a simulation platform. The results consistently showed that BigBrain-MR can 
closely approximate the behavior of real in-vivo data, more realistically and with more extensive features than a 
more classic option such as the Shepp-Logan phantom. Its flexibility in simulating different contrast mechanisms 
and artifacts may also prove valuable for educational applications. BigBrain-MR is therefore deemed a favor- 
able choice to support methodological development and demonstration in brain MRI, and has been made freely 
available to the community. 
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. Introduction 

The growing availability of ultra-high field (UHF) magnetic reso-
ance imaging (MRI) systems is expected to bring substantial benefit
o diverse applications in neuroscience research and clinical practice
 Kraff et al., 2015 ). Among its most promising contributions, UHF-MRI
an offer increased signal-to-noise ratio (SNR), as well as specific en-
ancements in sensitivity for certain contrast mechanisms, such as those
ased on magnetic susceptibility ( Duyn, 2012 ), which underly some of
he most important structural and functional modalities available for
rain imaging ( Haacke et al., 2004 ; Ogawa et al., 1993 ). The increased
ensitivity can then be flexibly traded for shorter acquisition times, as
ell as for higher spatial resolution, greatly increasing specificity down

o the level of cortical columns and layers, for example ( Deistung et al.,
013 ; Dumoulin et al., 2018 ; Polimeni et al., 2010 ). 
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The promising benefits of UHF-MRI and its growing availabil-
ty have prompted an expansion in research and development of in-
reasingly more advanced UHF imaging techniques, and in improv-
ng their robustness to enable their translation to routine clinical prac-
ice ( Trattnig et al., 2016 ). To be effective, these efforts can critically
enefit from numerous theoretical and computational tools. Amidst
he latter, a clear need exists for powerful computational simulation
latforms that can adequately reproduce the biophysical characteris-
ics and mechanisms underlying brain MRI, with high spatial resolu-
ion. While well-established tools already exist to simulate the evo-
ution of a magnetization signal based on known MR properties (e.g.
 1 and T 2 relaxation, B 0 and B 1 field inhomogeneities) ( Kwan et al.,
996 ; Benoit-Cattin et al., 2005 ), it is also crucial for imaging sim-
lations to account for how these properties are distributed across
he brain in a realistic manner. More precisely, an effective simula-
rch 2023 
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ion platform for high-resolution brain MRI presents two important
equirements: 

1. The need for realistic anatomical detail at sub-millimeter scale, while
covering the whole brain. Ideally, the spatial specificity should be
substantially finer than the resolution limits of the imaging method-
ology under investigation, so as to better model features such as par-
tial volume effects, sub-voxel behavior and motion. 

2. The need to incorporate, at this fine scale, the diverse biophysical
properties that affect the outcome of MR image acquisitions. This
includes relaxation properties such as T 1 , T 2 , and T 2 

∗ , susceptibility-
induced effects, B 0 and B 1 inhomogeneities. 

The requirements described above for a simulation platform, or
n other words, a digital phantom, can be tackled with different ap-
roaches. A number of fine-scale in-vivo ( Federau and Gallichan, 2016 ;
üsebrink et al., 2021 ) and ex-vivo ( Edlow et al., 2019 ; Kim et al., 2021 )
RI datasets are publicly available, obtained with long-duration acqui-

itions at UHF, and resolutions up to 100 μm ( Edlow et al., 2019 ). Other
fforts have instead focused on in-vivo data at lower-resolution, but with
ore diverse modalities, allowing the definition of probability maps for
ultiple tissue types (e.g. gray and white matter, dura, skull, etc.), for
ore flexible simulations at moderate resolution with diverse contrasts

 Collins et al., 1998 ; Aubert-Broche et al., 2006 ; Cocosco et al., 1997 ).
uch approaches do offer, by nature, realistic anatomical information
or simulations, with realistic MRI properties. However, they also have
mportant limitations: (i) the available resolution remains limited by
rohibitively increasing acquisition time requirements, caused not only
y the additional k-space readout steps but also by the need for more
veraging repetitions, to achieve a usable SNR ( Lüsebrink et al., 2017 );
ii) linked to (i), most available datasets, especially at higher resolutions,
nly provide a limited repertoire of MRI properties for the same anatom-
cal sample, (iii) the acquisitions will be affected by artifacts (e.g. motion
nd breathing in-vivo ( van Gelderen et al., 2007 ; Lüsebrink et al., 2017 ),
icroscopic air bubbles and altered MR properties ex-vivo ( Shatil et al.,
016 ; Tovi and Ericsson, 1992 )), which can be reduced by dedicated
ethods ( Maclaren et al., 2012 ; Jorge et al., 2020 ), but not fully sup-
ressed; (iv) the use of parallel imaging techniques ( Deshmane et al.,
012 ) to reduce acquisition time may introduce biases on the image
roperties, which could affect the validity of certain simulations (espe-
ially those investigating parallel imaging methods). 

In contrast with real brain datasets, some simulation phantoms have
een designed based on purely mathematical models. A classic exam-
le is the Shepp-Logan phantom, composed of a simple set of ellipsoids
f different intensities ( Shepp and Logan, 1974 ). Some more complex
odels have also been created to better approximate the anatomy and

eometry of the brain ( Guerquin-Kern et al., 2012 ; Ngo et al., 2016 ), in-
luding models with well mathematically-defined formulations in both
he image and Fourier domains, for improved simulation of k-space-
ased acquisitions ( Guerquin-Kern et al., 2012 ). Mathematical models
an incorporate diverse MRI properties as required ( Gach et al., 2008 ),
ffer full control over the noise incidence and properties, and can be
ontinuously improved and built upon. However, by design, the models
an only approximate the intricate complexity of brain anatomy up to a
xed level of detail; hence, although such models are defined in the con-
inuous domain and can be discretized with arbitrarily high resolution,
he actual level of fine-scale detail remains limited. 

More recently, a high-quality whole-brain histological dataset named
igBrain has been collected at 20 μm resolution and made publicly
vailable in digital format ( Amunts et al., 2013 ). This ex-vivo histo-
ogical brain image has excellent quality and tissue contrast, and sub-
tantial ongoing efforts have been dedicated to the development of soft-
are tools to increase its value, including dedicated structure segmen-

ations ( Paquola et al., 2021 ), non-linear warping to standard space
 Amunts et al., 2013 ) and cross-modal integration ( Amunts et al., 2019 ).
owever, as a potential platform for MRI simulations, BigBrain lacks
 direct correspondence to MRI properties – its contrast is based on
2 
 staining for cell bodies, and is imaged by optical methods, not MRI
 Amunts et al., 2013 ). 

In the present work, we have sought to develop a new platform for
rain MRI simulations, which can also be viewed as a digital phantom,
ffering high-quality realistic anatomical detail down to 100 μm, and in-
luding multiple MRI properties that affect image generation – thereby
ulfilling the two main requirements described before, and overcoming
mportant limitations of the existing phantoms. The fine-scale anatomi-
al detail is derived from BigBrain; a new image processing framework
as developed for mapping lower-resolution real in-vivo data (including

.g. T 1 and magnetic susceptibility maps, complex coil sensitivities, etc.)
nto the fine-scale anatomical space of BigBrain, resulting in novel, 100-
m resolution “in-vivo-like ” images and maps of these MRI properties.
his level of spatial specificity is substantially higher than the current
esolution achieved with 7T MRI acquisitions in-vivo, and is therefore
xpected to provide an appropriate base for UHF simulations. Having
stablished the framework and generated a series of property maps for
he phantom, which we have named BigBrain-MR, we then investigated
ts properties, value and validity as a simulation platform, in three dif-
erent applications: 

1. Simulation of motion effects and interpolation errors – studying the
importance of the source image resolution when simulating motion
and then generating displaced (and downsampled) images via inter-
polation. 

2. Super-resolution imaging based on sub-voxel shifting along the slice
encoding direction between multiple 2D acquisitions – a popular ap-
proach to increase resolution beyond the possibilities of individual
acquisitions ( Yue et al., 2016 ). 

3. Parallel imaging reconstruction of 3D acquisitions, employing differ-
ent undersampling schemes and acceleration levels – an almost ubiq-
uitous component of modern imaging in diverse applications, rang-
ing from fast acquisitions of moving samples ( Zhang et al., 2015 ),
to high-resolution scans that would otherwise require prohibitively
long acquisition times ( Federau and Gallichan, 2016 ). 

The behavior of BigBrain-MR in these simulations was compared to
hat of real in-vivo data obtained under similar conditions, serving as a
eference, and also to a more conventional Shepp-Logan-based compu-
ational phantom ( Gach et al., 2008 ). 

. Methods 

This study was approved by the local ethics committee (KEK Bern)
nd involved the participation of 2 healthy adult volunteers, who pro-
ided written informed consent. The data from one of the partici-
ants was used to develop BigBrain-MR ( Section 2.1 ), and that of the
ther participant was used for testing ( Section 2.1.2 ). All in-vivo data
ere acquired on a 7T Magnetom Terra scanner (Siemens Healthi-
eers, Erlangen, Germany), equipped with a single-channel transmit,
2-channel receive head coil (Nova Medical, Wilmington MA, USA). All
hantom development, processing and simulation steps were performed
n Python, combined with tools from SigPy ( Ong and Lustig, 2019 ),
NTs ( Avants et al., 2008 ), FSL ( Jenkinson et al., 2012 ) and ITK-SNAP
 Yushkevich et al., 2006 ). The resulting phantom dataset has been made
vailable in Zenodo, at https://zenodo.org/record/7432527 , including
ll generated images and maps. 

.1. BigBrain-MR development 

The framework for mapping lower-resolution in-vivo MRI contrasts
nd maps into the fine-scale anatomy of BigBrain involved several
ethodological steps ( Fig. 1 ), which are described in detail in the sec-

ions below. Briefly, each in-vivo acquisition (in this work the MP2RAGE
nd ME-GRE, described in 2.1.1 ) is first registered to the BigBrain
natomy ( 2.1.2 ). Then, for each of 20 regions of interest (ROIs) previ-
usly defined for BigBrain ( 2.1.3 ), a moving average and moving stan-

https://zenodo.org/record/7432527
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Fig. 1. Schematic outline of the BigBrain-MR framework for mapping lower-resolution in-vivo MRI contrasts and maps into the finer-scale anatomy of the BigBrain 
histological image, at 100-μm isotropic resolution. The in vivo input (top-left) is first brain-extracted and registered to BigBrain (MNI) space, using an ICBM brain 
image as registration template; the ICBM contrast (T 1 w, T 2 w or PDw) can be chosen according to the characteristics of the input image, to maximize the registration 
performance. The MNI-registered in-vivo image then undergoes a moving average and moving standard deviation procedure (top-right) to obtain maps of ROI-specific 
local mean intensity (termed offset, μiv ) and standard deviation (termed variation, 𝜎iv ). These in-vivo offset and variation maps are then fed to a contrast mapping 
model (bottom) to generate an “in vivo-like ” image with realistic structural detail at 100-μm resolution (bottom-right). The mapping procedure incorporates the 
fine-scale features from the BigBrain histological image ( I cd ), its respective offset and variation maps ( μiv and 𝜎iv ), and atlas information delineating the ROIs; at ROI 
borders, a partial volume model is applied to create smooth intensity transitions. 
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ard deviation procedure is applied to obtain region-specific local offset
nd local variation maps, respectively, for that contrast (2.1.4). Finally,
he in-vivo contrast is mapped into the fine-scale anatomy of BigBrain at
00 μm, based on a voxel-wise modulation by the offset and variation
aps of the in-vivo and BigBrain contrasts ( 2.1.6 ); this procedure in-

ludes a partial volume model for voxels at the interface between ROIs,
o create more realistic transitions ( 2.1.5 ). 

.1.1. Source data 

BigBrain: The 100-μm cell-density image (16-bit) and classification
olume ( “cls ”, 8-bit) in Montreal Neurological Institute (MNI) Interna-
ional Consortium for Brain Mapping (ICBM) 152 space were obtained
rom the 2015 data release of BigBrain ( https://bigbrainproject.org/ ). 

ICBM: T 1 -, T 2 - and PD-weighted brain images in MNI space, as well
s accompanying tissue probability maps for gray matter (GM), white
atter (WM) and cerebrospinal fluid (CSF), were obtained from the

CBM 152 atlas, version 2009c ( http://nist.mni.mcgill.ca/atlases/ ). 
3 
In-vivo: The in-vivo MRI data were acquired from one of the partici-
ants at 0.6-mm isotropic resolution using: (i) a 3D MP2RAGE sequence
 Marques et al., 2010 ) with 154 ×192 ×192-mm (whole-brain) field-of-
iew, TE/TI 1 /TI 2 /TR = 4.94/800/2700/6000 ms, 𝛼1 / 𝛼2 = 7°/5°, 240
z/Px bandwidth, 3 × GRAPPA acceleration in the first phase encod-

ng (PE) direction and 6/8 partial Fourier in both PE directions, and
cquisition time (TA) of approximately 10 minutes, and (ii) a flow-
ompensated 3D multi-echo gradient-recalled echo (ME-GRE) sequence
ith 173 ×230 ×144-mm (whole-brain) field-of-view, four echoes at
E 1 /TE 2 /TE 3 /TE 4 = 4.97/13.17/21.37/29.57 ms, TR = 34 ms, 𝛼 = 10°,
50 Hz/Px bandwidth, 2 × GRAPPA acceleration and 7/8 partial Fourier
n both PE directions, TA ≈ 8 min. The MP2RAGE acquisition was re-
onstructed online to yield a T 1 -weighted (T 1 w) image and a T 1 map.
he ME-GRE raw data were reconstructed offline using Python tools de-
eloped in-house together with SigPy, to obtain the four T 2 

∗ -weighted
T 2 

∗ w) magnitude and phase images, an R 2 
∗ map and offset ( “TE 0 ”) im-

ge, a background field map, a quantitative susceptibility map (QSM),
nd 32 complex coil sensitivity maps. The sensitivity maps were esti-

https://bigbrainproject.org/
http://nist.mni.mcgill.ca/atlases/
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Table 1 

Labeled regions of interest in ICBM and BigBrain anatomy. 

Label Name ICBM source BigBrain source 

1 White matter a d + e 
2 Gray matter a d + e 
3 Cerebrospinal fluid a + b a + b 
4 Cerebellum white matter a + b d 
5 Cerebellum gray matter a + b d 
6 Thalamus c c 
7 Caudate c c 
8 Putamen c c 
9 External pallidum c c 
10 Internal pallidum c c 
11 Basal forebrain b g 
12 Accumbens c c 
13 Brainstem b f + g 
14 Hippocampus c c 
15 Ventral diencephalon b f 
16 Amygdala c c 
17 Subthalamic nuclei c c 
18 Red nuclei c c 
19 Substantia nigra c c 
20 Pineal gland g f 

a ICBM tissue probability maps ( http://nist.mni.mcgill.ca/atlases/ ) 
b ICBM CerebrA labels for ICBM 2009c ( Manera et al., 2020 ) 
c ICBM and BigBrain subcortical atlas ( Xiao et al., 2019 ) 
d BigBrain classification volume ( “cls ”, https://bigbrainproject.org/ ) 
e Locally-adaptive GM/WM thresholding (Supp. Fig. 1) 
f Corresponding ICBM label 
g Manual segmentation (ITK-SNAP ( Yushkevich et al., 2006 )) 
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ated using ESPIRiT ( Uecker et al., 2014 ). After this, as done in previ-
us work ( Jorge et al., 2020 ), the coil sensitivities were combined with
 virtual “body coil-like ” channel estimated via block coil compression
 Bilgic et al., 2017 , 2016 ), and the full GRE images (magnitude and
hase) were thereby reconstructed using SENSE ( Uecker et al., 2014 )
ith wavelet-based regularization. The R 2 

∗ map and offset image were
stimated with a weighted least-squares fit of mono-exponential T 2 

∗ re-
axation across echoes. The background field map was obtained from
he phase data using V-SHARP after phase unwrapping ( Li et al., 2011 ).
inally, QSM was performed using the single-orientation STAR-QSM ap-
roach ( Wei et al., 2015 ). A bias field map was also estimated from the
rst-echo T 2 

∗ w magnitude image using FSL-FAST ( Zhang et al., 2001 ). 

.1.2. Pre-processing and registration 

The in-vivo source images were first brain-extracted using ITK-SNAP,
nd then registered to BigBrain (MNI) space using non-linear Symmetric
ormalization ( “SyN ”, comprising affine + deformable transformations)

rom ANTs, with a mutual information criterion and the recommended
efault parameters ( Fig. 1 , top-left). The two acquisitions, MP2RAGE
nd ME-GRE, were registered separately, using as input the T 1 w image
nd the 3 rd -echo T 2 

∗ w image, respectively. Notably, the ICBM brain im-
ges, not BigBrain, were used as registration template (the ICBM T 1 w for
he MP2RAGE and the ICBM T 2 w for the ME-GRE); this approach was
ound more robust, most likely because the ICBM images offer closer
ontrasts to those of the in-vivo MRI data, as well as a more similar
rain geometry (e.g. narrower fissure spaces) than BigBrain. The Big-
rain and ICBM anatomies were confirmed to be well aligned overall,
hus permitting this approach. Once estimated, the registration param-
ters for each in-vivo acquisition were then applied to all contrasts and
aps deriving from the same acquisition (apart from the exception cases
etailed in Section 2.1 .7). 

.1.3. Region labeling 

A set of 20 different ROIs were labeled for both the BigBrain and
CBM datasets by combining different segmentation sources and tech-
iques ( Table 1 ). For ICBM, the cortical GM and WM, CSF, and cerebel-
ar GM and WM labels were generated from the tissue probability maps,
ombined with information from the CerebrA atlas for ICBM 2009c
4 
 Manera et al., 2020 ) to separate these regions. A total of 11 subcor-
ical ROIs (e.g. thalamus, caudate, putamen) were obtained from the
CBM atlas created by ( Xiao et al., 2019 ), and 3 from CerebrA (basal
orebrain, brainstem, ventral diencephalon). The pineal gland was man-
ally segmented using ITK-SNAP. 

For BigBrain, a first estimate of the GM and WM labels was obtained
rom the “cls ” volume; the GM/WM boundary was then refined with
 locally-adaptive thresholding approach, to accommodate the large-
cale drifts in GM and WM intensity across BigBrain ( Supp. Fig. 1 ).
he cerebellar GM and WM were directly obtained from cls. The same
1 sub-cortical structures obtained from ( Xiao et al., 2019 ) for ICBM
ere likewise available from the same work for the BigBrain anatomy.
he superior part of the brainstem, the ventral diencephalon and pineal
land were obtained from the corresponding ROIs of the ICBM anatomy,
ligned in the same space; the basal forebrain and inferior part of the
rainstem were obtained by direct manual segmentation in ITK-SNAP.
inally, the CSF ROI was created to fill-in the ventricles and form a real-
stic envelope around the brain – optimized by visual inspection since no
SF is present in the BigBrain dataset. This was achieved using the ICBM
SF mask as starting point, adding non-labeled inner regions, excluding
lready labeled regions, and then applying morphological dilation and
rosion steps to create a smooth envelope around the brain. 

In both ICBM and BigBrain, most ROI labels were further tuned with
orphological operations (binary erosion, dilation, opening, closing),

ncluding intensity-selective dilations and erosions where allowed by
he contrast. The choice of operations and parameters for each ROI was
et empirically so as to obtain optimal anatomical delineations. 

.1.4. Offset and variation mapping 

Having warped a given in-vivo image to BigBrain space, a procedure
as then applied to obtain maps of ROI-specific local mean intensity

termed offset ) and standard deviation (termed variation ) for that in-vivo
ontrast ( Fig. 1 top-right, Supp. Fig. 2 ). In more detail, for each voxel of
ach BigBrain ROI, the offset was computed as the average in-vivo im-
ge intensity in a selection of nearby voxels. The selected voxels had to
bey three criteria: (i) being within a radius W of the voxel of interest,
ii) belonging to the same ROI, and (iii) having their intensity within a
ertain defined range (in cases where the in-vivo contrast allowed clear
ifferentiations between ROIs based on histogram inspection). Condi-
ion (i) defined the “local ” nature of the maps, with W controlling the
evel of spatial detail that is retained from the in-vivo data; a radius W
f 5 mm was chosen so as to afford some robustness against noise in
he input, knowing that the in-vivo 7T data used for this work had sub-
illimeter voxels. For condition (ii), the voxels were required to belong

o the same ROI as the center voxel in both the BigBrain labelling and
he ICBM labelling; this conservative approach was intended to better
ccount for imperfections in the spatial alignment between the in-vivo
natomy and BigBrain (also considering local differences between the
atter and the ICBM brain), and thereby reduce the inclusion of voxels
rom other brain regions, which would bias the estimates. Condition (iii)
as also implemented to further mitigate such “leakage ” effects. 

The estimation was performed for every voxel in each of the 20 ROIs
efined for BigBrain ( Table 1 ), and was also repeated to estimate the
ariation map, simply by replacing the mean estimate by a standard de-
iation ( Supp. Fig. 2 ). Besides the input (in-vivo) images, the procedure
as also applied to the BigBrain cell density contrast itself, to generate

ts offset and variation maps. 

.1.5. Partial volume model 

Alongside the ROIs, the BigBrain-MR framework included a partial
olume map at 100 μm to create smooth intensity transitions between
hose regions in the generated images ( Supp. Fig. 3 ). To estimate this
ap, every border between any two neighboring ROIs was identified,

nd a “transition area ” was delineated by expanding the border by a
ength L into each of the neighboring ROIs; L was chosen empirically:
00 μm for borders with the CSF, 400 μm for all others. Considering

http://nist.mni.mcgill.ca/atlases/
https://bigbrainproject.org/
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ny two neighbor ROIs A and B, and a voxel v from ROI A inside the
ransition area, the intensity of v was considered to be a composition of
ontributions from both ROIs: 

 

𝑣 = 𝜌𝑣 
𝐴 

𝐼 𝑣 
𝐴 
+ 

(
1 − 𝜌𝑣 

𝐴 

)
𝐼 𝑣 
𝐵 

(1)

here 𝐼 𝑣 
𝐴 

and 𝐼 𝑣 
𝐵 

are the (unknown) tissue intensities stemming from
issue A and B, respectively, and 𝜌𝑣 

𝐴 
is the proportion of tissue from A in

 , which is in the range [ 0 , 1 ] and constitutes the parameter of interest
or partial volume mapping. The necessary voxel intensities were taken
rom the BigBrain cell density image at 100 μm. To estimate 𝜌𝑣 

𝐴 
, the in-

ensity 𝐼 𝑣 
𝐴 

(and respectively 𝐼 𝑣 
𝐵 

) was approximated as the intensity of the
losest voxel to v that belongs to A (resp. B) but lies outside the transition
rea (and is therefore considered to be a “pure tissue ” intensity). Since
 

𝑣 is known, Eq. 1 can then be solved for 𝜌𝑣 
𝐴 

. This approach, which we
amed intensity-based model , was found effective for all borders where
he neighboring regions have sufficiently distinct intensity (e.g. puta-
en vs. WM, most of the cortical GM-WM interface). For region pairs
ithout sufficient contrast, i.e. where 𝐼 𝑣 

𝐴 
∼ 𝐼 𝑣 

𝐵 
(e.g. putamen vs. globus

allidus, some parts of the cortical GM-WM interface), however, the in-
ensity model ( Eq. 1 ) becomes less determined, and the resulting 𝜌𝑣 

𝐴 
es-

imates were noisy. This would then result in noisy-looking, inaccurate
orders in the final generated images, especially if the corresponding
n-vivo input data did have a clear contrast between the regions in ques-
ion. To avoid this issue, the intensity-based model was complemented
ith a distance-based model , where 𝜌𝑣 

𝐴 
for a voxel v is given by: 

𝑣 
𝐴 
= 

𝑑 𝑣 
𝐵 

𝑑 𝑣 
𝐴 
+ 𝑑 𝑣 

𝐵 

(2)

here 𝑑 𝑣 
𝐴 

(and respectively 𝑑 𝑣 
𝐵 

) is the distance to the closest voxel to v
hat belongs to A (resp. B) but lies outside the transition area. This model
herefore does not depend on intensities and produces robust results re-
ardless of the ROI contrast; conversely, because it is mainly driven by
ow the transition area is defined, the model is bound to be inaccurate
hen contrast does exist and the border can be depicted. We therefore

ought to combine and leverage both methods by weighting their con-
ribution for each voxel based on the existence/absence of contrast, i.e.,
n the absolute difference |𝐼 𝑣 

𝐴 
− 𝐼 𝑣 

𝐵 
|, as follows: 

𝜌𝑣 
𝐴 

|||𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 
= 𝛽𝑣 

𝐴 
𝜌𝑣 
𝐴 

|||𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 

(
1 − 𝛽𝑣 

𝐴 

)
𝜌𝑣 
𝐴 

|||𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (3)

here the weighting 𝛽𝑣 
𝐴 

is estimated by a sigmoid function of the inten-
ity difference: 

𝑣 
𝐴 
= 

1 
1 + 𝑒𝑥𝑝 

(
− 𝑎 

(
𝛿𝑣 
𝐴𝐵 

− 𝑏 
)) (4)

here 𝛿𝑣 
𝐴𝐵 

= |𝐼 𝑣 
𝐴 
− 𝐼 𝑣 

𝐵 
|, and a and b were fixed parameters (same for

very voxel) that controlled the sigmoid shape. For the data in question
BigBrain histological contrast), values of a = 0.002 and b = 4000 were
hosen empirically by visual inspection so as to favor the intensity-based
odel as far as possible, while still suppressing “noisy ” regions where

he contrast was poor ( Supp. Fig. 3a ). 

.1.6. Contrast mapping 

Having obtained the offset and variation maps in BigBrain space for
 given in-vivo input image ( Section 2.1 .4), a contrast mapping proce-
ure was then applied to generate an “in-vivo-like ” image with real-
stic structural detail at 100-μm resolution ( Fig. 1 , bottom). The map-
ing procedure was performed for each voxel in each of the BigBrain
OIs (described in 2.1.3 ), and included a partial volume composition
odel for voxels in transition areas ( 2.1.5 ). For a voxel v inside an
OI A and outside transition areas, the final image intensity 𝐼 𝑣 

𝑖𝑣 
was

omputed as: 

 

𝑣 
𝑖𝑣 
= 

(
𝐼 𝑣 
𝑐𝑑 

− 𝜇𝑣 
𝑐𝑑 

) 𝜎𝑣 
𝑖𝑣 

𝜎𝑣 
𝑐𝑑 

+ 𝜇𝑣 
𝑖𝑣 

(5)

here 𝐼 𝑣 
𝑐𝑑 

is the intensity of the same voxel in the BigBrain cell density
mage (100 μm), 𝜇𝑣 

𝑐𝑑 
and 𝜎𝑣 

𝑐𝑑 
are the offset and variation values from the

ell density contrast, and 𝜇𝑣 and 𝜎𝑣 are the offset and variation from

𝑖𝑣 𝑖𝑣 

5 
he in-vivo contrast. Thus, Eq. 5 effectively generates the new contrast
y removing the local offset from the BigBrain contrast, re-scaling to the
n-vivo contrast variation, and adding the in-vivo offset. Given how the
ffset and variation maps are estimated ( Section 2.1 .4), this approach
hereby introduces all (ROI-specific) contrast features from the in-vivo
ata that are constant or vary over spatial scales larger than 5 mm (the
indow width W ) as part of the offset 𝜇𝑣 

𝑖𝑣 
, while retaining the finer

eatures of the BigBrain image, modulated by the variation 𝜎𝑣 
𝑖𝑣 

. 
For a voxel v in ROI A and inside a transition area with respect to a

eighbor ROI B, the image intensity 𝐼 𝑣 
𝑖𝑣 

was computed as: 

 

𝑣 
𝑖𝑣 
= 𝜌𝑣 

𝐴 
𝐼 𝑣𝐴 
𝑖𝑣 

+ 

(
1 − 𝜌𝑣 

𝐴 

)
𝐼 𝑣𝐵 
𝑖𝑣 

(6)

here 𝜌𝑣 
𝐴 

is the tissue proportion from ROI A given by the partial volume
ap ( Section 2.1 .5), and 𝐼 𝑣𝐴 

𝑖𝑣 
(respectively 𝐼 𝑣𝐵 

𝑖𝑣 
) is the image intensity

or the closest voxel to v that belongs to A (resp. B) but lies outside the
ransition area, with its intensity obtained through Eq. 5 . 

.1.7. Exceptions 

The contrast mapping procedure described above (and outlined in
ig. 1 ) was not applied to the complex coil sensitivity maps, background
eld and bias field maps, given the particular nature of these data. For
hese cases, the in-vivo input data was simply linearly registered to ICBM
 BigBrain space (relying on magnitude images from the same acquisi-
ions), resampled to 400-μm resolution (deemed sufficiently high, given
heir general smoothness), and adjusted to the anatomical boundaries
f BigBrain ( Supp. Fig. 4 ). 

.2. BigBrain-MR tests 

.2.1. Interpolation errors and source resolution 

The goal of this test was to investigate the incidence of image in-
ensity errors that can be introduced by interpolation when simulating
otion of a (non-parametric) computational phantom, and how the er-

or evolves depending on the resolution of the source and the output
 Fig. 2 , Test 1). Having no preference for a specific contrast/map within
he dataset, we opted to take the BigBrain 100-μm histological image
cell density contrast) as source data, and lower-resolution versions were
btained by downsampling to 200, 400, 800, and 1600 μm ( Fig. 2 , Test
, blue path). In a first test, each of these “source ” versions was then sub-
itted to a rotation of 45° in the axial plane, and regridded by trilinear

nterpolation. The resulting matrices were then further downsampled
o 200, 400, 800, and 1600 μm (as far as allowed by the starting res-
lution), to yield the output data. In parallel, a reference version was
btained by rotating the 100-μm source image directly (no prior down-
ampling), then regridding by trilinear interpolation, and finally down-
ampling to 200, 400, 800, and 1600 μm ( Fig. 2 , Test 1, violet path).
ll downsampling steps were performed by voxel averaging. Each of the
esults from the simulated lower-resolution sources was then compared
o the respective reference result from the 100-μm source (at the same
nd resolution) by computing their normalized root-mean-squared error
NRMSE), in percentage: 

 𝑅𝑀 𝑆𝐸 = 100 

√ √ √ √ √ 

(
𝐼 𝐿 − 𝐼 𝑅 

)2 
𝑣𝑎𝑟 

(
𝐼 𝑅 

) (7)

here 𝐼 𝐿 represents the image resulting from a lower-resolution source
nd 𝐼 𝑅 the corresponding reference from the 100-μm source. The mean
nd variance operations were restricted to voxels from the brain (based
n a previously generated mask). Besides the 45°-rotation in the axial
lane, three other motion types were studied: 45°-rotation in the sagit-
al plane, 100μm-translation in the posterior-to-anterior direction, and
00μm-translation in the inferior-to-superior direction. Moreover, the
est was also repeated for the T 1 w-like BigBrain-MR image, to evaluate
or potential differences with respect to the base BigBrain contrast. 

.2.2. Super-resolution imaging 

Here, we investigated the behavior of BigBrain-MR when used to sim-
late a super-resolution (SR) approach for 2D multi-slice images that
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Fig. 2. Schematic outline of the three different applications explored in this work to investigate the properties, value and validity of BigBrain-MR as a simulation 
platform. Test 1 investigated the incidence of image intensity errors introduced by interpolation when simulating motion, and their dependence on the resolution of 
the source data and the output. In the violet lane (reference case), motion and interpolation are applied directly to the 100-μm source data, and only downsampled 
afterwards; in the blue lane (test case), an initial downsampling step is performed to simulate lower-resolution source data, which then undergoes a similar procedure; 
the resulting images are then compared to the respective reference (at the same end resolution) based on the normalized root-mean-squared error (NRMSE). Test 2 
aimed to investigate the behavior of BigBrain-MR when simulating a SR approach for 2D multi-slice images, based on multiple stacks acquired with systematic position 
shifts along the slice axis (yellow, blue and orange). The result of this estimation (blue lane) was then compared to a simulated ground-truth obtained by direct 
downsampling of the 100-μm data (violet lane). Test 3 aimed to investigate the behavior of BigBrain-MR when used to simulate PI reconstructions, under different 
undersampling schemes and acceleration levels. Accelerated acquisitions with multiple RF-receive channels (blue lane) were simulated by modulating the source 
BigBrain-MR complex image data with its coil sensitivity maps, and then undersampling in Fourier space using various schemes; the multi-channel undersampled 
data was then reconstructed using wavelet-regularized SENSE, and compared against the fully-sampled BigBrain-MR complex image (violet lane). For Test 2 and 
Test 3, the simulation procedures were also applied to a computational Shepp-Logan phantom. For the comparisons to in-vivo data, in Test 2, real acquisitions were 
performed to obtain both the shifted set of thicker-slice images and the thinner-slice ground-truth image, with all other parameters kept equal; for Test 3, an in-vivo 
fully-sampled 3D image was acquired, and then retrospectively undersampled. 
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3  
llows reducing the slice thickness based on multiple stacks acquired
ith systematic position shifts along the slice axis ( Greenspan et al.,
002 ; Yue et al., 2016 ) ( Fig. 2 , Test 2). The performance of BigBrain-MR
as compared to that of real in-vivo data; a more basic Shepp-Logan-
ased computational phantom was also added for comparison, to inves-
igate whether BigBrain-MR does constitute a closer approximation to
6 
eal data than more conventional phantoms. For this test, a resolution
f 0.4 ×0.4 ×2.4 mm was considered for the acquisitions, to then obtain
.4 ×0.4 ×8.0 mm. 

In-vivo data: 2D multi-slice GRE data (TR/TE = 1900/13ms) were
cquired from a human participant at 7T, consisting of three 2D stacks of
3 axial slices at 0.4 ×0.4 ×2.4 mm resolution, each positioned with a 0.8
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m displacement in the slice direction. A separate stack at 0.4 ×0.4 ×0.8
m resolution, 99 slices, was acquired to serve as ground truth. 

Phantom data: The SR experiment performed in vivo was identi-
ally simulated in BigBrain-MR using one of its T 2 

∗ -weighted magnitude
mages (TE = 13ms), multiplied by the bias field, and downsampled
rom the original 100-μm resolution. The same simulation was also per-
ormed with a computational 3D Shepp-Logan phantom ( Gach et al.,
008 ), as implemented by Tomoyuki Sadakane ( https://github.com/
sadakane/sl3d ), “Toft-Schabel ” type. This phantom was normalized so
s to better approximate the in-vivo data: its ellipsoid form was given
hysical dimensions close to those of the in-vivo brain overall (by vi-
ual adjustment), and the intensities of its ROIs were manually adjusted
o more closely match the average T 2 

∗ -weighted intensities in GM, WM
nd CSF observed in vivo. To simulate the 2D acquisitions, a rectangu-
ar slice profile was adopted ( Greenspan et al., 2002 ), which in this case
mounted to simply averaging sets of 24 slices (respectively 8 slices for
he ground truth) from the 100-μm source to obtain 2.4mm slices (re-
pectively 0.8mm) ( Supp. Fig. 5a ). 

SR estimation: The estimation of an 8mm-thick image 𝑥 from a set
f three 24mm-thick acquisitions 𝑌 𝑘 was performed by minimization of
he following cost function: 

 ( 𝑥 ) = 

3 ∑
𝑘 =1 

||𝑌 𝑘 − 𝐻 𝑘 𝑥 ||2 2 + 𝜆 𝑅𝑒𝑔 ( 𝑥 ) (8)

here the operator 𝐻 𝑘 applies an appropriate displacement in the slice
irection (a multiple of 0.8mm) followed by averaging of slices in sets
f 3, and 𝑅𝑒𝑔 is a regularization function of 𝑥 , with a weighting factor
. Two different options were tested for regularization: (i) total vari-
tion (TV), based on the L 1 -norm of the image gradient ( Strong and
han, 2003 ), and (ii) the L 1 -norm of the Daubechies-4 wavelet transform
WT) ( Lustig et al., 2007 ). SigPy ( Ong and Lustig, 2019 ) was used to
mplement and iteratively solve the minimization problem (primal-dual
ybrid gradient method for the TV-regularized approach, 1 st -order gra-
ient method for the WT case). Afterwards, the estimation performance
or each case was evaluated based on the NRMSE ( Eq. 7 ) between each
stimated image and the respective ground-truth (as in 2.2.1, the mean
as restricted to voxels inside the brain). In order to test all datasets

in-vivo and phantoms) with the same range of 𝜆 values, each dataset
as normalized by the mean value of 𝑥 prior to the SR estimation. 

.2.3. Parallel imaging reconstruction 

In this test, we investigated the behavior of BigBrain-MR when used
o simulate parallel imaging (PI) reconstructions, under different under-
ampling schemes and acceleration levels ( Fig. 2 , Test 3). A 3D imaging
ase was considered, with readout along the anterior-posterior direc-
ion and acceleration along one or both phase encoding directions. Four
ifferent undersampling schemes were tested: regular ( Blaimer et al.,
004 ), CAIPIRINHA (hereafter named CAIPI) ( Breuer et al., 2003 ), ran-
om ( Lustig et al., 2007 ) and Poisson disk sampling ( Vasanawala et al.,
011 ). For the regular and CAIPI cases, undersampling rates of 2 ×1,
 ×2, 3 ×2 and 3 ×3 were tested; for the random and Poisson disk schemes,
orresponding total rates of 2, 4, 6 and 9 were used. A calibration area of
6 ×16 lines at the center of k-space was kept fully sampled. For simplic-
ty, no other acceleration methods (e.g. partial-Fourier undersampling)
ere considered. As in 2.2.2 , the performance of BigBrain-MR was com-
ared to that of real in-vivo data and a Shepp-Logan phantom. 

In-vivo data: A fully-sampled 3D GRE sequence (TR/TE = 24/18ms)
overing the whole brain at 1.4-mm isotropic resolution was acquired to
erve as ground truth. As in 2.1.1 , the complex sensitivity maps of its 32
eceive channels were estimated directly from the data using ESPIRiT
 Uecker et al., 2014 ), and the magnitude and phase image from the brain
as estimated with the aid of block coil compression ( Bilgic et al., 2017 ;

orge et al., 2020 ). From the resulting fully-sampled complex data, the
ifferent undersampling cases were then simulated by retrospectively
electing the desired k-space readout lines (including the calibration
rea) and discarding the rest ( Supp. Fig. 5b ). 
7 
Phantom data: The PI experiment performed in vivo was identically
pplied to BigBrain-MR, downsampled to 1.4mm. For this test, a com-
lex brain image was created using one of the T 2 

∗ -weighted magnitude
mages (TE = 21ms), multiplied by the bias field, and combined with an
ppropriate phase image, generated for the same TE based on the QSM
nd background field map of BigBrain-MR. The Shepp-Logan phantom
as generated and normalized as for the SR test ( Section 2.2.2 ), with its
hase component set to zero. Since Shepp-Logan does not provide coil
ensitivity data, the complex sensitivity maps from BigBrain-MR were
sed for both phantoms. As for the in-vivo data, the different undersam-
ling cases were simulated from the fully-sampled complex phantom im-
ges by retrospective selection of the corresponding k-space lines ( Supp.
ig. 5b ). 

PI reconstruction: The estimation of the underlying non-aliased
mage 𝑥 from the set of 32 undersampled k-space acquisition chan-
els 𝑌 𝑘 was performed with a wavelet-regularized SENSE approach
 Lustig et al., 2007 ), by minimizing the following cost function: 

 ( 𝑥 ) = 

32 ∑
𝑘 =1 

||𝑌 𝑘 − 𝑈𝐹 𝑆 𝑘 𝑥 ||2 2 + 𝜆 𝑅𝑒𝑔 ( 𝑥 ) (9)

here the operator 𝑆 𝑘 performs a multiplication by the respective sen-
itivity map, 𝐹 performs a Fourier transform, 𝑈 is the sampling mask,
nd 𝑅𝑒𝑔 implements the L 1 -norm of the Daubechies-4 wavelet trans-
orm of 𝑥 ( Lustig et al., 2007 ). SigPy ( Ong and Lustig, 2019 ) was used
o implement and iteratively solve the minimization problem (1 st -order
radient method). After estimation, as in the SR test ( Section 2.2 .2),
he performance was evaluated based on the NRMSE ( Eq. 7 ), with the
ully-sampled images as ground-truth. In order to test all datasets with
he same 𝜆 range, each dataset was normalized by the mean value of
 , and the coil sensitivity maps were normalized by 

∑||𝑆 𝑘 𝑥 ||2 2 , prior to
econstruction. 

. Results 

.1. BigBrain-MR development 

In general, the processing framework developed for mapping lower-
esolution in-vivo MRI data to the finer anatomy of BigBrain was found
o perform effectively, resulting in images and maps with visibly realis-
ic intensity and contrast properties, consistent with the source in-vivo
ata, yet with highly enhanced anatomical detail ( Fig. 3a ). The par-
ial volume model included in the framework visibly enabled adequate
ransitions between brain regions, and between the brain and the back-
round; it could be confirmed by visual inspection that both neighboring
egions with different, as well as with similar intensities, were appro-
riately handled. 

While the mapping framework performed generally well, it did oc-
asionally introduce small local imperfections in the generated images.
hese occurrences were most frequently caused by flaws in the region la-
eling, often in difficult regions of the cortex such as narrow sulci ( Supp.
ig. 6a ) and areas with unclear GM/WM boundaries ( Supp. Fig. 6b ). A
ew imperfections could also be attributed to the partial volume estima-
ion approach ( Supp. Fig. 6c ). Apart from this, certain flaws present in
he BigBrain histological preparation itself, such as e.g. local damage to
he thalamus ( Supp. Fig. 6d ) and staining artifacts ( Supp. Fig. 6e ), were
y design included in the generated images as well. 

Altogether, the framework allowed the successful mapping of a di-
erse set of images and maps, including T 1 - and T 2 

∗ -weighted images,
nd T 1 , R 2 

∗ and susceptibility maps ( Fig. 3b ). Additional maps to simu-
ate the background field, bias field and coil sensitivity maps (magnitude
nd phase) were also successfully generated for the same anatomical
pace ( Fig. 3b ), using the complementary approach described in 2.1.7 .
hese maps contributed to considerably expand the simulation possibil-

ties and realism offered by the phantom. 

https://github.com/tsadakane/sl3d
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Fig. 3. MR-realistic dataset generated by the BigBrain-MR mapping framework at 100 μm resolution. a) Example of the fine-scale detail of an image generated 
from in-vivo T 1 -weighted data originally acquired at 600 μm resolution. The in-vivo data is here shown in its native space (not registered) to more clearly depict its 
difference in resolution and the coarseness of its voxel grid in comparison to the final generated T 1 w-like image. b) Illustration of the diverse contrasts and properties 
mapped in this work, including T 1 - and T 2 

∗ -weighted images, T 1 and R 2 
∗ maps, magnetic susceptibility (QSM), background static magnetic field contribution, image 

bias field, and complex coil sensitivity maps (32-channel receive array). 
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.2. BigBrain-MR tests 

.2.1. Interpolation errors and source resolution 

As expected, when simulating brain motion and generating the re-
ulting images by interpolation, the starting resolution of the source im-
ge had a measurable impact on the precision of the result ( Fig. 4 ). Over-
8 
ll, the rotations tested achieved larger NRMSE values than the transla-
ions. For the rotations, the error steadily increased with the voxel size
f the source, while decreasing with the voxel size of the output. As a
esult, the highest errors were obtained at the largest source voxel size
ested, 1.6 mm, with 1.6 mm output: 17.1% for the axial plane rotation,
nd 20.4% for the sagittal. 
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Fig. 4. Image intensity errors introduced by interpolation 
when simulating motion, and their dependence on the reso- 
lution of the source data and that of the output. The analy- 
sis is based on the original BigBrain histological image. The 
source and output resolutions are indicated in mm. The er- 
ror is expressed as the normalized root-mean-squared error 
(NRMSE), in percentage. The error is computed with respect 
to the case that uses 100-μm source data (i.e. no downsam- 
pling before motion and interpolation, only after) – this case 
is itself also included in the matrices (1 st row, thereby yield- 
ing null errors). 
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v  
In the translation tests, for a given source resolution, the error also
onsistently decreased with the voxel size of the output. Unlike rota-
ions, however, the error did not steadily increase with the source voxel
ize; for the range under analysis, the largest error was obtained at a
ource of 0.4mm: 6.4% for the posterior-to-anterior translation, and
.7% for the inferior-to-superior – and then decreased again. 

Altogether, similar effects and patterns were observed for the
igBrain-MR T 1 w-like image ( Supp. Fig. 7 ). 

.2.2. Super-resolution imaging 

Upon visual inspection, the simulations of lower-resolution slice-
hifted acquisitions and higher-resolution ground-truth generated for
igBrain-MR and Shepp-Logan were in good agreement with the real
easurements obtained in vivo ( Supp. Fig. 5a ). As expected for the

hosen voxel dimensions, the lower-resolution acquisitions showed
moother borders between structures, especially in regions where these
order surfaces were rapidly bending in the axial plane as a function of
he slice height. This effect was well visible in numerous border regions
f the gray matter and the ventricles for BigBrain-MR and in-vivo, and
ven more accentuated for the ellipsoid borders of Shepp-Logan ( Supp.
ig. 5a ). 

For all three source datasets, and both regularization types, the es-
imation performance (quantified as the NRMSE with respect to the
igh-resolution ground truth) showed a clear dependence on the reg-
larization weighting factor 𝜆, with an initial decrease towards an op-
imal weighting, followed by a new increase past that optimal point
 Fig. 5 ). Altogether, the implemented SR approach was found effective,
chieving NRMSE values as low as 36% for the in-vivo dataset, 10% for
igBrain-MR and 4% for Shepp-Logan, whereas a more basic approach
f simply up-sampling by linear interpolation could only achieve values
f 47%, 24% and 32%, respectively. 

In all three sources, the TV approach achieved a better performance
lower NRMSE) than WT ( Fig. 5 ). Moreover, the behavior of NRMSE as
 function of 𝜆 was more consistent across the three datasets with TV
han with WT; in particular, the WT curve for the in-vivo data had a rel-
9 
tively similar shape to that of TV, whereas for the phantoms it varied
ubstantially, showing a considerably smaller optimal weighting and a
arkedly more abrupt increase past that value. Besides this discrepancy
ith WT-regularization between the in-vivo case and the phantoms, an-
ther important difference observed in the tests was the scale of the
RMSE variations; for example, in the TV case, the NRMSE decrease

rom 𝜆 = 0 to the optimal value was found to be 41 to 36% for in-vivo,
8 to 10% for BigBrain-MR, and 13 to 4% for Shepp-Logan. Overall, be-
ween the two phantoms, BigBrain-MR consistently showed the closest
ehavior to the in-vivo case, including: (i) a closer range of NRMSE, (ii)
 visibly more similar NRMSE behavior as a function of 𝜆, with both TV
nd WT regularization, and (iii) substantially closer optimal regulariza-
ion factors, which were found at 0.025 (TV) and 0.035 (WT) for the
n-vivo case, 0.020 and 0.005 for BigBrain-MR, and 0.010 and 0.001 for
hepp-Logan. 

A direct visual inspection of the estimation results for different reg-
larization weightings indicated that the NRMSE variations observed as
 function of 𝜆 were consistent with conditions of under-, optimal and
ver-regularization in the image quality ( Fig. 6 ). For all three sources,
nder-regularization led to results with a stronger degree of random
oise, while over-regularization suppressed random noise but resulted
n excessive smoothing of certain borders and features, along with a sup-
ression of finer, but true, anatomical features. This important suppres-
ion effect occurred in vivo and was effectively captured by BigBrain-
R as well, but not by Shepp-Logan, which contained only a few ba-

ic shapes. The reconstructions performed with optimal weighting (i.e.,
t the NRMSE minimum) visually yielded the closest estimates to the
espective ground truths in all three datasets, clearly sharper than the
espective low-resolution acquisitions. This also confirmed the effective-
ess of the implemented SR framework for recovering higher-resolution
mages. 

.2.3. Parallel imaging reconstruction 

The undersampled multi-channel measurements simulated for the in-
ivo and BigBrain-MR data were found to produce considerably similar
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Fig. 5. Super-resolution estimation performance for different sources (in-vivo and digital phantoms) and different regulation approaches (total variation and wavelet 
decomposition), shown as a function of the weighting factor 𝜆 of the regularization term. The performance is quantified as the root-mean-squared error with respect 
to the ground truth image, normalized by the standard deviation of the ground truth, in percentage (NRMSE). 

Fig. 6. Examples of super-resolution estimates for the in-vivo, BigBrain-MR and Shepp-Logan source datasets. The examples were chosen based on the NRMSE results 
of the SR simulations, and represent cases of under- (3 rd column), optimal (4 th column) and over-regularization (5 th column). The high-resolution ground truth (1 st 

column) and one of the low-resolution acquisitions used as input for SR (2 nd column) are shown as well for comparison. 

10 
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ffects in both cases, including the aliasing patterns introduced by each
ndersampling scheme and the intensity modulations introduced by the
patially varying receive coil sensitivities. The same effects could also
e observed in the Shepp-Logan phantom, albeit imposed on a simpler,
onsiderably less anatomically realistic source sample ( Supp. Fig. 5b ). 

For all three source datasets, and across all tested undersampling
chemes and acceleration factors, the PI reconstruction performance
quantified as the NRMSE with respect to the ground truth) showed
 clear dependence on the regularization weighting factor 𝜆, with an
nitial decrease towards an optimal weighting, followed by a new in-
rease past that optimal point ( Fig. 7a ). In all cases tested, the NRMSE
onsistently increased with the undersampling rate; at the same time,
he dependence on regularization, i.e., the relative decrease in NRMSE
chieved between 𝜆 = 0 and the optimal value, became visibly more
ccentuated. Additionally, the optimal weighting factor tended to de-
rease with the undersampling rate, except for the Poisson disk sampling
cheme ( Fig. 7b ). 

While all three sources exhibited the above-described general pat-
erns, deviations were present as well. The main difference observed in
hese tests resided in the scale of the NRMSE variations, which followed
 similar trend to that observed in the SR tests; for instance, the mini-
um NRMSE across undersampling schemes and rates was at 8–34% for

n-vivo, 4–22% for BigBrain-MR, and 5–11% for Shepp-Logan ( Fig. 7a ).
etween the two phantoms, BigBrain-MR consistently showed the clos-
st behavior to the in-vivo case, including: (i) a closer range of NRMSE,
ii) a more similar impact of regularization (see e.g. the 3 ×3 regular un-
ersampling scheme curves for 𝜆 between 0 and the optimum, Fig. 7a ),
nd (iii) substantially closer optimal regularization factors ( Fig. 7b ). 

As observed for SR, a direct visual inspection of reconstruction re-
ults for different regularization weightings indicated that the NRMSE
ariations observed as a function of 𝜆 were consistent with conditions
f under-, optimal and over-regularization in the image quality ( Fig. 8 ).
or all three sources, under-regularization led to results with a stronger
egree of random noise, while over-regularization suppressed random
oise but resulted in more “cartoonish ” images, with excessive smooth-
ng of certain anatomical features, and in some cases the accentuation of
tructured, yet artifactual patterns. The reconstructions performed with
ptimal weighting (i.e., at the NRMSE minimum) did visually yield the
losest estimates to the respective ground truths. 

. Discussion 

In this work, we have developed a novel platform for brain MRI
imulations, comprising a digital phantom with high-quality realistic
natomical detail up to 100-μm resolution, and including multiple MRI
roperties that affect image generation. This phantom, termed BigBrain-
R, was generated from the BigBrain histological dataset ( Amunts et al.,

013 ) and a series of lower-resolution in-vivo 7T MRI data, using a
ewly-developed image processing framework that allows mapping the
eneral properties of the latter into the fine anatomical scale of the for-
er ( Fig. 1 ). This framework was found to be effective overall, yielding
 diverse range of “in-vivo-like ” MRI contrasts and maps at 100 μm
 Fig. 3 ). Following its development, BigBrain-MR was tested in three
ifferent imaging applications, to investigate its value and validity as a
imulation platform ( Fig. 2 ). Overall, the phantom was found to behave
elatively similarly to real in-vivo data, and substantially more so than
 more conventional Shepp-Logan phantom ( Figs. 5–8 ). The advantages
f working with a high-resolution source to simulate effects such as head
otion were also well evinced ( Fig. 4 ). 

.1. BigBrain-MR framework 

Overall, the contrast mapping framework was found to work effec-
ively and robustly, allowing the generation of diverse contrasts and
aps that were found to be of very good quality overall, upon visual

xamination ( Fig. 3 ). It is likely that this robustness is, to some extent,
11 
ided by the relative simplicity of the framework, which relies on three
ey modules: the mapping of offset and variation maps (2.1.4), the con-
rast mapping model ( 2.1.6 ), and the partial volume model ( 2.1.5 ). Al-
ogether, this framework is mainly regulated by two parameters: (i) the
adius of the spherical window used for local offset and variation map-
ing, W , described in 2.1.4, and (ii) the length L defining the “transi-
ion area ” between neighboring regions for the partial volume model,
escribed in 2.1.5 . As previously noted, W controls the scale of anatom-
cal information that is extracted from the input image ( Supp. Fig. 2 );
 smaller radius will preserve finer-scale changes in the image proper-
ies (mean intensity and variability) within each region, but at the same
ime will be more sensitive to spurious contributions as well, such as
rom image noise and from “cross-region leakage ” effects due to imper-
ect registration. For the input data explored in this work, the chosen
adius of 5 mm was found to yield an adequate trade-off, and result in
uality maps for all tested images. Naturally, despite the observed ro-
ustness, it is entirely possible that new input data may benefit from
edicated adjustments in this parameter, especially if the source resolu-
ion is markedly different from that explored in this work. Additionally,
ifferent values could also be employed for the offset and variation es-
imates, increasing the flexibility of the approach. Regarding the partial
olume model, the parameter L controls the spatial extent of what we
ermed “transition area ”, whose voxels are assumed to potentially con-
ain tissue contributions from both interfacing regions ( Supp. Fig. 3 ); a
arger value (wider transition area) will in general ensure a more thor-
ugh coverage of the interfaces, as well as a more conservative selection
f the reference “pure tissue ” intensities (i.e., 𝐼 𝑣 

𝐴 
and 𝐼 𝑣 

𝐵 
in Eq. 1 ), which

ill thereafter be picked from voxels deeper within the ROIs (beyond
he transition area); the downside to a larger L is a heavier computa-
ional cost in the model estimation, and potentially more imperfections
n the estimation for “tight ” interface areas such as narrow cortical sulci
e.g. Supp. Fig. 6a ), where there are multiple borders in close proxim-
ty. The values chosen in this work (200 μm for borders where one of
he ROIs is CSF, 400 μm for all others) were found appropriate for the
issue properties and geometry of BigBrain, barring occasional local im-
erfections ( Supp. Fig. 6c ). The smaller L value for borders with CSF was
ound sufficient for the generally sharp transitions between tissue and
ackground in this dataset, while more effectively avoiding problems
t the cortical sulci. As with the parameter W , the framework remains
exible with respect to L , and different values could be explored if new
ource datasets different from BigBrain are introduced. 

Despite its general effectiveness, the proposed mapping framework
oes present noteworthy limitations. For instance, across different ROIs,
he approach does effectively capture the differences that are expected
or different image contrasts – e.g., in the R 2 

∗ -like map both the puta-
en and globus pallidus are hyperintense with respect to WM, while in

he T 1 w-like image only the putamen differs from WM ( Fig. 3b ). Within
ach ROI, however, the finer-scale features/textures are bound to be
imilar for all generated contrasts, by design, since they are all derived
rom the BigBrain histological image. Moreover, these fine-scale features
eflect the presence of cell bodies, given the staining used in BigBrain
 Amunts et al., 2013 ), and are thus only indirectly related to MRI con-
rast features. This is a necessary limitation to allow the phantom to
ave anatomically-realistic spatial information up to a level of speci-
city that, to our knowledge, has not been achieved to date by any MRI
ethods at a whole-brain scale and with favorable SNR. As such, the
roposed phantom is effectively meant to be a tool for imaging methods
evelopment and demonstration; it is not designed to help studying the
ne-scale relationship between MRI contrasts and anatomical (micro-
structure – which can be pursued with other powerful tools such as
.g. BigBrainWarp ( Paquola et al., 2021 ). Also importantly, because Big-
rain is a scalar image, the framework, in its current form, cannot gen-
rate maps of tensorial properties such as related to diffusion, flow or
usceptibility. While the limitation of having similar fine-scale features
or all generated contrasts could potentially be overcome in a relatively
traightforward manner by using a multi-contrast high-resolution source
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Fig. 7. a) Parallel imaging reconstruction performance for different source datasets (in-vivo and digital phantoms), undersampling schemes and acceleration factors, 
shown as a function of the weighting factor 𝜆 of the wavelet-based regularization term in the SENSE reconstruction. The performance is quantified as the root- 
mean-squared error with respect to the fully sampled image, normalized by the standard deviation of the fully sampled image, in percentage (NRMSE). b) Optimal 
weighting factor 𝜆 found for each of the tests reported in (a), corresponding to the minimum point of each of the NRMSE curves. 
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Fig. 8. Examples of parallel imaging reconstructions for the in-vivo, BigBrain-MR and Shepp-Logan datasets using 3 ×3 CAIPI undersampling and different weightings 
of wavelet-based regularization ( 𝜆). The examples were chosen based on the NRMSE results of the PI simulations, to represent cases of under- (2 nd column), optimal 
(3 rd column) and over-regularization (4 th column). The fully-sampled ground truth is shown as well for comparison (1 st column). 
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e.g. histological data with multiple stainings from the same brain), the
nadequacy for mapping tensors would likely require more dedicated
xtensions to the framework methodology. Another limitation of this
esign resides in the partial volume model, which was built to consider
nterfaces of only two ROIs for any given position. While this was in-
eed the case for the larger part of the (relatively coarse) set of 20 ROIs
efined in this work, there were still select areas where the assumption
as less valid (e.g. tight interface areas including the caudate, thalamus,
M and CSF, Supp. Fig. 3b ); the difficulty in establishing a transition

rea in these and other geometrically-challenging regions also led to
apping imperfections in some cases ( Supp. Fig. 6c ). Importantly, we
ote that the proposed framework benefits from a relatively modular
rchitecture ( Fig. 1 ); its different steps can be independently improved,
xtended, or even replaced with relative ease, which may allow over-
oming or mitigating the afore-mentioned limitations in future efforts,
epending on the application needs. 

Besides the mapping framework, certain flaws in the generated im-
ges could be attributed to the source data itself, including issues re-
ated to imperfect ROI labeling ( Supp. Fig. 6a,b ) and to artifacts from
he histological preparation ( Supp. Fig. 6d,e ). Naturally, future work
ould be dedicated to improving the labeling, and going to even higher
patial resolutions could help in this regard as well (e.g. for finer sulci
elineation). Also regarding the labeling, another particularly interest-
ng improvement could be the definition of different cortical layers as
eparate ROIs, which could rely on already available segmentations for
13 
igBrain ( Wagstyl et al., 2018 ), to potentially enable the generation of
RI-like contrasts and maps with more realistic intensity profiles across

he cortical depth. Importantly, such an addition would require consid-
rably high resolution in-vivo data, and would carry new challenges
or the mapping framework as well, namely the partial volume model,
here the narrow geometry of the layer ROIs would impose impor-

ant constraints on the delineation of transition and inner areas (de-
cribed in 2.1.5 ). It is likely that specific adaptations of the partial vol-
me and/or contrast mapping model would be needed for intra-cortical
OIs. Nonetheless, the results could prove very valuable to the com-
unity, since the cortex is a strong focus of interest for neuroimaging

esearch. 
Regarding the histological imperfections of BigBrain, their incidence

s clearly far from outweighing the remarkable value of the dataset,
nd the overall quality of the source and the generated images. One
ther, potentially more important limitation of the BigBrain dataset,
owever, is the lack of certain brain and non-brain structures that can
lay central roles in some methodological applications. Key examples
nclude the brain vasculature, the skull, skin, fat layers, muscles and
yes – these structures can be of interest in themselves, or may be
mportant sources of artifacts in certain imaging modalities, or play
mportant roles in image processing tasks such as segmentation and
egistration, and therefore should be accounted for in the respective
imulations. Importantly, while we adopted BigBrain as the source of
ne-scale anatomical information for this work, the proposed mapping
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tory. 
ramework is flexible with respect to the source, and thus could be
sed with other datasets as well, depending on the application needs.
nother interesting idea could be to attempt to insert and conciliate
dditional structures with the BigBrain space and anatomy, such as
asculature maps from other high-resolution sources ( Bollmann et al.,
022 ; Duvernoy, 1999 ). This could potentially allow valuable future im-
rovements and extensions to the phantom, while retaining its current
dvantages. 

.2. BigBrain-MR validation 

Although far from covering all the possible applications of such a
omputational phantom, the three tests explored in this work ( Fig. 2 )
rovided diverse valuable insights with regard to the properties, practi-
al value and validity of BigBrain-MR as a simulation platform. Test 1
as dedicated to the study of motion simulations, and the resulting er-

ors introduced by interpolation. In in-vivo MRI, head motion during ac-
uisitions cannot be fully avoided, and its impact becomes increasingly
ritical as higher resolution acquisitions are pursued ( Jorge et al., 2018 ;
aclaren et al., 2012 ). For this reason, extensive research has been ded-

cated to the development of effective imaging methods to monitor and
ompensate for the effects of motion, and for which simulations can be
xtremely valuable ( Zaitsev et al., 2015 ). The results obtained in Test
 demonstrate, very clearly, that the resolution of the available source
ata and of the desired output images can have a strong impact on the
ntroduction of errors with interpolation, which may prove large enough
o affect the validity of the simulation results, depending on the applica-
ion and methodology. Notably, the rotation case produced the strongest
rrors in the analysis (up to 20% of the intrinsic variations in the image);
his may be due to the fact that the tested rotations introduced a contin-
ous range of displacements across the image voxels (scaling with the
istance of each voxel to the rotation axis) in two dimensions (the plane
f rotation), whereas the tested translations only introduced a displace-
ent along one dimension of the grid. It is important to note that the ref-

rence adopted for NRMSE estimation was not an absolute ground truth,
ut the “next best ” available option – the 100 μm-resolution source data,
hich also suffered from interpolation errors in the rotation case (the

ranslation, of 100 μm magnitude along one of the axes, was exempt
rom interpolation effects in practice). Despite this caveat, the very reg-
lar increase in NRMSE with the source resolution for the rotations indi-
ates that the above choice was indeed the most accurate, and that valid
nterpretations can be drawn. Overall, the results strongly confirm that
his type of simulations will benefit from using source data at the high-
st possible resolution, and the introduced errors will also be mitigated
y setting for a relatively lower output resolution, whenever possible. In
he future, extended tests could potentially explore whether such errors
an be further minimized using higher-degree interpolation (e.g. cubic
plines) and/or other downsampling approaches (e.g. k-space cropping
fter non-uniform Fourier transform) – though likely with significant
dded computational costs. 

Tests 2 and 3 explored two extensively researched methodological
pplications: super-resolution imaging and parallel imaging reconstruc-
ion, respectively ( Fig. 2 ). In both tests, all three source datasets behaved
n generally good agreement with the respective theoretical expecta-
ions, on both the acquisition ( Supp. Fig. 5 ) and estimation side ( Figs. 6
nd 8 ). Nonetheless, in both tests, the behaviors observed in real in-vivo
ata were visibly better approximated by BigBrain-MR than by the pop-
lar Shepp-Logan phantom, which consistently tended to show less real-
stic behavior. For the dependence of the estimation performance on the
egularization term ( Figs. 5 and 7 ), this outcome can likely be related to
he intrinsic spatial properties of the two phantoms: Shepp-Logan is by
esign a piece-wise smooth object, which is exactly the type of property
hat is favored by the TV and WT-based L 1 -norm regularization terms
nder investigation; BigBrain-MR is visibly more complex, and more
kin to a real brain. Still, given that the optimal regularization weight-
ng factors found in vivo were not perfectly matched by BigBrain-MR,
14 
he latter should not be expected to allow predicting the exact optimal
alue for a given application; nonetheless, its behavior with respect to
he weighting and other parameters may likely prove extremely valuable
o guide development efforts, test hypotheses and narrow down possi-
le candidates for in-vivo testing. Beyond these advantages, BigBrain-
R also benefits from a realistic phase distribution, with both inner and

uter brain contributions (background field), and from the availability
f realistic coil sensitivity and bias field maps, which are necessary for
iverse applications. Shepp-Logan does not include such features, and
ad to “adopt ” the respective maps from BigBrain-MR for this work. Of
ote, despite focusing on 7T imaging, we do acknowledge that the voxel
izes used in Tests 2 and 3 were relatively large – this choice was neces-
ary to enable acquiring in-vivo ground-truth data (super-resolved and
ully k-space-sampled images, respectively) in manageable time. We do
ot, however, anticipate any reasons to expect different outcomes at
igher resolutions. Overall, the tests suggest that BigBrain-MR consti-
utes a valuable and valid phantom for MRI methodological develop-
ent, and a favorable choice with respect to existing phantoms such as

hepp-Logan. 
Beyond the purpose of methodological development, BigBrain-MR

ay also prove valuable as an educational aide. Different contrast mech-
nisms can be flexibly simulated based on the existing maps, as can di-
erse contributions from the equipment (e.g. RF coil) and artifacts (e.g.
otion). Moreover, being based on the BigBrain dataset, this phantom

an be combined with a wealth of existing tools already available for the
ame anatomy, such as BigBrainWarp ( Paquola et al., 2021 ), contribut-
ng to a comprehensive and growing framework to support imaging and
euroscience research and education alike. 

. Conclusion 

This work proposes a novel computational brain phantom with high-
uality realistic anatomical detail up to 100-μm resolution, named
igBrain-MR, which includes multiple MRI properties that affect im-
ge generation. The framework developed to generate this phantom was
ound effective and robust, and can be flexibly expanded in future work
epending on application needs. A series of tests indicate that BigBrain-
R can closely approximate the behavior of real in-vivo data, more re-

listically and with more extensive features than the widely-used Shepp-
ogan phantom. 
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