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Abstract

This study focuses on investigating the effects of an oncogenic mutation (G12V) on

the stability and interactions within the KRAS-RGL1 protein complex. The KRAS-

RGL1 complex is of particular interest due to its relevance to KRAS-associated can-

cers and the potential for developing targeted drugs against the KRAS system. The

stability of the complex and the allosteric effects of specific residues are examined to

understand their roles as modulators of complex stability and function. Using molecu-

lar dynamics simulations, we calculate the mutual information, MI, between two

neighboring residues at the interface of the KRAS-RGL1 complex, and employ the

concept of interaction information, II, to measure the contribution of a third residue

to the interaction between interface residue pairs. Negative II indicates synergy,

where the presence of the third residue strengthens the interaction, while positive II

suggests anti-cooperativity. Our findings reveal that MI serves as a dominant factor

in determining the results, with the G12V mutation increasing the MI between inter-

face residues, indicating enhanced correlations due to the formation of a more com-

pact structure in the complex. Interestingly, although II plays a role in understanding

three-body interactions and the impact of distant residues, it is not significant enough

to outweigh the influence of MI in determining the overall stability of the complex.

Nevertheless, II may nonetheless be a relevant factor to consider in future drug

design efforts. This study provides valuable insights into the mechanisms of complex

stability and function, highlighting the significance of three-body interactions and the

impact of distant residues on the binding stability of the complex. Additionally, our

findings demonstrate that constraining the fluctuations of a third residue consistently

increases the stability of the G12V variant, making it challenging to weaken complex

formation of the mutated species through allosteric manipulation. The novel perspec-

tive offered by this approach on protein dynamics, function, and allostery has poten-

tial implications for understanding and targeting other protein complexes involved in

vital cellular processes. The results contribute to our understanding of the effects of

oncogenic mutations on protein–protein interactions and provide a foundation for
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future therapeutic interventions in the context of KRAS-associated cancers and

beyond.
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1 | INTRODUCTION

The formation of protein complexes is governed by several factors,

including their stability and the transmission of information between

residues within the complex interface. These two aspects present crit-

ical considerations, as they greatly influence the functionality and reg-

ulatory potential of the complex. In this context, the KRAS-RGL1

protein complex presents itself as a compelling subject of investiga-

tion, as it encompasses both the challenges and opportunities associ-

ated with complex formation, stability, and allosteric information

transfer. The stability of a protein complex is a crucial factor in deter-

mining its functional integrity, and when two proteins form a stable

complex, there tends to be a high mutual information (MI) between

the interface residues, which measures the correlation between their

fluctuations. The interacting surfaces often have complementary

shapes and specific amino acid residues that interact with each other

which contribute to the stability of the protein–protein complex.

However, an overly stable complex may have undesirable conse-

quences for the system. Excessive stability can hinder the dynamic

nature of the complex, impeding its ability to undergo conformational

changes essential for regulatory processes, and most importantly it

may extend its life span in an unwanted way. Conversely, insufficient

stability may result in a fragile complex prone to dissociation or mis-

folding. Achieving an optimal balance of stability is essential to main-

tain the complex's functional flexibility, allowing it to respond

efficiently to various cellular cues and environmental changes. In addi-

tion of MI, the transmission of allosteric information within a protein

complex plays a vital role in modulating its activity and regulation. In

the case of the KRAS-RGL1 complex, the transmission of allosteric

information may modulate the lifetime of the complex enabling it to

respond to cellular signals, triggering downstream signaling cascades

that regulate key cellular processes.1 Understanding the mechanisms

underlying the transmission of allosteric information is crucial for

unraveling the complex's functionality and identifying potential thera-

peutic targets.

In this study, we investigate the effects of an oncogenic mutation

on the stability and interactions within the KRAS-RGL1 complex. Our

analysis aims to identify the effect of mutation on the stability of the

complex and the allosteric effects of specific residues and their poten-

tial as modulators of complex stability and function. We specifically

investigate the interactions between two neighboring residues located

at the interface of the complex and how a third residue in KRAS

affects the allosteric synergy between them. This understanding is

crucial for developing targeted drugs against the KRAS system,

particularly in the context of KRAS-associated cancers.2,3 Based on

extensive molecular dynamics simulations, we calculate the MI of

these neighboring residues to assess the strength and dependence of

their interactions, taking into account the effects of modulating other

KRAS residues and the oncogenic mutation. By doing so, we aim to

gain insights into the underlying mechanisms of complex stability and

function and potentially identify new therapeutic targets.

Studies on finding the effect of a third residue on the interaction

between two neighboring residues is not new, having its origins in the

alanine scanning mutagenesis work of Cunningham and Wells.4 But

the first information theoretic treatment of the problem was given by

LeVine and Weinstein5 (Below, we give several references to work

that followed Reference5). Our work elaborates further in this direc-

tion. Mutual information is a measure of the amount of information

that two residues share. In the context of protein–protein interac-

tions, MI between the residues involved in the interaction6,7 can be

used to quantify the degree to which the fluctuations of one residue

are correlated with those of the other residue. In this context, MI may

be interpreted as a measure of the strength of the interaction

between the two residues. Mutual Information can provide insights

into the nature of the interaction between the interface residues,

which in turn gives information on the stability of the complex. For

example, if the MI between two interface residues is high, it suggests

that their fluctuations are highly correlated and that their interaction

is strong. This, in turn, could contribute to the thermodynamic stability

of the complex by lowering the free energy of the system upon com-

plex formation, that is, thermodynamic stability. Similarly, a strong

interaction between the two residues could contribute to the

mechanical stability of the complex by generating a network of inter-

actions that can resist external forces, that is, mechanical stability. On

the other hand, if the MI between the two residues is low, it suggests

that their fluctuations are uncorrelated and that their interaction is

weak. This could lead to a less stable complex, as the weak interaction

may not provide sufficient thermodynamic or mechanical stability.

However, it is important to note that the MI between two residues

can be influenced by the presence of a third residue, which may either

enhance or diminish the interaction. This influence can be quantified

using the concept of interaction information, II. Interaction informa-

tion is defined as the difference between the MI values in the absence

and presence of the third residue. A positive value indicates anti-

cooperativity, meaning the presence of the third residue weakens the

interaction between the residue pair. Conversely, a negative value

indicates synergy, indicating that the third residue enhances the inter-

action between the residue pair.
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The problem of allostery in protein–protein interactions is essen-

tially a three-body problem. The first paper on three-body interactions

accurately presented in information theory language is by LeVine and

Weinstein5 where they introduced the NbIT analysis for quantifying

n-body interactions. Several papers followed using the information

theory-based analysis of allosteric mechanisms in different proteins

by LeVine, Weinstein and collaborators,8–18 and by other

authors.19–28 Notably, Karami et al.,26 used an information theoretic

approach called ‘infostery’ where they derived the effects of all possi-

ble mutations on binding for the system PSD95's third PDZ domain in

complex with its ligand CRIPT. These are cases where three-body

interactions between spatially distant residues dominate, as in the

case of allostery in a complex where a third residue, far from the inter-

face affects the binding stability of the complex. A common case is

when the distant third residue undergoes a mutation and changes the

strength and stability of the interface pair. Several known examples

may be found from databases such as SKEMPI29 which reports results

of 3047 ΔΔG measurements of 2792 unique sets of mutations from

158 structures of 85 protein–protein complexes. Similarly, the ASE30

and PINT31 databases contain information on 26 and 32 systems,

respectively.

In the present paper, using the tools of information theory, we

study the allosteric interactions of one of the most widely studied

proteins, KRAS, and one its complexes. As of 2023, there are over

70 000 papers published on the topic of KRAS, covering experimental,

computational, and clinical aspects of the system.32–41 The interaction

of KRAS with other proteins and the allosteric effect of modulating

distant residues, such as by mutation or drug action, are emerging as

important areas of study in the field of KRAS research. Accordingly,

we investigate allosteric effects, specifically anti-cooperativity and

synergy, resulting from the modulation of KRAS residues on the bind-

ing characteristics of both wild-type and oncogenic KRAS-RGL1 com-

plexes.1 RGL1 is a member of the Ral GTPase family proteins which

binds to KRAS and shuttles it from the cytosol to the plasma mem-

brane. Among several oncogenic mutations of KRAS, the G12V muta-

tion, observed in non-small cell lung cancer, for example, is known to

lead to higher Ral GTPase activation compared to those with wild

type KRAS. Recently, it was shown42 that G12C mutations of KRAS

stabilizes the active conformation of KRAS, which enhances its ability

to interact with downstream effectors and promote signaling.43 In this

first of a series of papers, we use molecular dynamics and an informa-

tion theoretical approach to understand the effects of G12V mutation

on the intrinsic binding features of RGL1 on KRAS. We see that there

is a strong effect of G12V mutation on the stability of the complex,

albeit in the undesirable direction.

The approach and the strategy of the paper is as follows: In the

first part we evaluate mutual information values for the interface resi-

dues of the KRAS-RGL1 complex, for the wild type and the G12V

mutated complexes for which accurate crystal structures are recently

determined.1 In the second part, we consider the allosteric regulatory

effect of third residues on the stability of interface residue pair inter-

actions in the two complexes, WT and G12V mutated. In the third

part, we investigate the allosteric regulatory effect of third residues

whose fluctuations are perturbed. All calculations are based on

multivariate Gaussian distributions obtained from molecular dynamics

trajectories of the complex. Among thousands of known mutations of

KRAS, we focus on the G12V mutation only because the G12V muta-

tion in the KRAS gene holds significant scientific and clinical relevance

due to several compelling reasons.33 Firstly, the G12V mutation is one

of the most prevalent KRAS mutations found in various cancers,

including colorectal, lung, and pancreatic cancer, which collectively

account for a substantial proportion of cancer-related deaths world-

wide. Its prevalence underscores its clinical importance and the urgent

need to understand its molecular mechanisms. Second, G12V, charac-

terized by the substitution of glycine with valine at codon 12, results

in a unique alteration in the KRAS protein structure, which has been

associated with a distinct signaling property that drives oncogenic

processes, namely the mutation makes the complex over stable con-

trary to the general trend that allosteric mutations inhibit binding to

effectors.44 Thirdly, G12V is notorious for conferring resistance

to certain targeted therapies, posing a significant challenge in cancer

treatment. Therefore, elucidating the functional consequences and

signaling pathways associated with the G12V mutation is vital for

developing more effective treatment strategies and improving patient

outcomes. Finally, accurate crystal structures of 1.96 Å rmsd KRAS-

RGL1 complex have been published very recently which is highly sig-

nificant from a computational perspective as it provides experimental

validation for computational models, enhances structural insights, aids

in drug design for targeted therapies, and enables more precise molec-

ular dynamics simulations to understand the mutation's impact on

protein behavior and cancer development.

2 | METHODS

2.1 | Molecular dynamics simulations

The structures of wild type (WT) KRAS-RGL1 complex (PDB ID:

7SCW) and G12V mutant KRAS-RGL1 complex (PDB ID: 7SCX) were

used for the MD simulations with their bound GSP molecules. The

systems were prepared by using CHARMM-GUI.45 Each system was

solvated in a TIP3P water box46 with 15 Å of water between the pro-

tein surface and the periodic box edge. Na and Cl atoms were added

to neutralize the system with a NaCl concentration of 150 mM.

CHARMM36 force field was used in all MD simulations with a time

step of 2 fs. The simulations were performed with explicit solvent in

the NpT ensemble, with a distance cut-off of 12.0 Å applied to short-

range, non-bonded interactions. The temperature was maintained at

310 K using Langevin dynamics The pressure was maintained at 1 atm

using Nosé-Hoover Langevin piston.47 All simulations were performed

with NAMD 3.alpha13.48

For each system three replicas of simulations were run. First, each

replica was minimized for 10 000 steps and equilibrated for 125 000

steps. After the equilibrations, each replica was run for 100 ns. Frames

in each trajectory were aligned to the first frame of the simulation by

using VMD to eliminate all rotational and translational degrees of
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freedom and the analysis is done with the aligned Cartesian coordi-

nates of the Cα atoms. The trajectory was saved with a stride of

10 and the analysis is done on 5000 time points. All calculations

reported below are from trajectories obtained by combining the three

replicas. Results from individual replicas are observed to duplicate the

combined trajectories with Pearson correlation coefficient larger than

0.95 (see Figure S28).

2.2 | Extracting information from molecular
dynamics time series

The fluctuation vector for the residues of interest is defined by the

column vector ΔR

ΔRij…n tð Þ¼ col ΔRi tð ÞΔRj tð Þ:… ΔRn tð Þ� �
¼ col ΔXi tð Þ ΔYi tð Þ ΔZi tð Þ ΔXj tð Þ ΔYj tð Þ ΔZj tð Þ …½

ΔXn tð ÞΔYn tð ÞΔZn tð Þ� ð1Þ

Here, col indicates column, ΔXi (t), ΔYi (t) and ΔZi (t) denote the

Cartesian components of the fluctuation of residue i at time t. All

coordinates are obtained from the 5000 time points of the molecular

dynamics trajectory. For 1, 2, and 3 residues, for each time point, ΔR

(t) is of dimensions 3 � 1, 6 � 1 and 9 � 1, respectively. All averages

are over the 5000 time points. From here on, the time argument will

be suppressed for brevity.

2.3 | Definitions of information theoretic functions

The Shannon entropy, H for n residues is:

H ΔR1,ΔR2,…,ΔR3ð Þ¼�kB logp ΔR1,ΔR2,…,ΔR3ð Þh i ð2Þ

where p is the joint probability for the fluctuations ΔRi of n residues.

The probability of a variable X from the trajectory is defined by

recording all instantaneous values of X, forming a histogram and writ-

ing the function p (X) that represents the histogram. The angular

brackets in Equation (2) is an average over all values of the fluctua-

tions. In Shannon's notation, the log is to base 2 and the constant k is

unity. When k is the Boltzmann constant, kB, and the log is the natural

logarithm, H becomes identical with the thermodynamic entropy (see

e.g., Callen49). In the following, we will take kB=1 and the natural log-

arithm. Accurate construction of the probability function of three

arguments from molecular dynamics trajectories requires trajectories

in the order of microseconds even for a small protein. Multivariate

Gaussian approximation reduces this demand on trajectory length to

the order of 100 nanoseconds50 as we discuss in more detail below.

Mutual information is defined as:

I ΔRi ,ΔRj

� �¼H ΔRið ÞþH ΔRj

� ��H ΔRi ,ΔRj

� � ð3Þ

Given the third residue k, it is:

I ΔRi,ΔRjjΔRk

� �¼H ΔRijΔRkð ÞþH ΔRjjΔRk

� ��H ΔRi ,ΔRjjΔRk

� � ð4Þ

where I ΔRi,ΔRjjΔRk

� �
is the conditional MI, CMI.

How much MI between residues i and j will change due to the

effect of k is given by II defined as:

II ΔRi;ΔRj;ΔRk

� �¼ I ΔRi;ΔRj

� �� I ΔRi;ΔRj ΔRkj� � ð5Þ

Our calculations on the KRAS-RGL1 complex reported below

show that II is predominantly positive, that is, anti-cooperative. In

this case, II competes with MI. In terms of entropies, II reads as:

II ΔRi ,ΔRj,ΔRk

� �¼ H ΔRi,ΔRj,ΔRk

� ��H ΔRi ,ΔRj

� �
�H ΔRi,ΔRkð Þ�H ΔRj,ΔRk

� �þH ΔRið Þ
þH ΔRj

� �þH ΔRkð Þ

ð6Þ

A positive value indicates the degree of anti-cooperativity induced

by k to the interaction of i and j. Conversely, if the value is negative, it

is the synergy. The derivation of Equation (6) is given in Data S1.

2.4 | Multivariate Gaussian Approximation to
Interaction Information

The presence of H ΔRi,ΔRj,ΔRk

� �
in Equation (6) necessitates the eval-

uation of third order probabilities from a molecular dynamics tra-

jectory, which requires a large number of data points which in

turn requires simulations in the order of microseconds for accu-

rate representation. Recently, it was shown that50 multivariate

Gaussian representations to higher order probability functions

serve as a suitable approximation to functions obtained from

microsecond long trajectories. In Data S1, we elaborate on this

point and obtain the Gaussian approximation to II as:

II ΔRi,ΔRj,ΔRk

� �
¼1
2

log
det ΔRiΔRj

T� �
det ΔRjΔRj

T� �
det ΔRkΔRk

T� �
det ΔRijkΔRijk

T� �
det ΔRijΔRij

T� �
det ΔRikΔRik

T� �
det ΔRjkΔRjk

T� �
" #( )

ð7Þ

Here, det represents the determinant of its argument, where

ΔRiΔRj
T� �
, ΔRijΔRij

T� �
and ΔRijkΔRijk

T� �
are matrices of order 3, 6,

and 9, respectively. Evaluation of these averages using probability

functions requires microsecond long trajectories whereas a compara-

ble accuracy is obtained from 100ns trajectories when Gaussians are

used, notably due to the central limit theorem.

The multivariate Gaussian forms of MI and conditional MI are

I ΔRi;ΔRj

� �¼�1
2
log

det ΔRΔRT� �
det ΔRih idet ΔRj

� �
 !

ð8Þ
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I ΔRi;ΔRjjΔRk

� �¼1
2
log

det ΔRikΔRik
T� �
det ΔRjkΔRjk

T� �
det ΔRijkΔRijk

T� �
det ΔRkΔRk

T� �
" #

ð9Þ

The derivations of Equations (7–9) are given in Data S1.

2.5 | Covariance matrix based correlations and
general relations between mutual information,
dynamic coupling, dynamic flexibility, and stability

Mutual information is a useful metric for quantifying cooperativity

and stability of binding in terms of correlations between fluctuations

of residues.51 That MI is directly related to correlation of residue fluc-

tuations can be seen by expanding the determinant in Equation (8)

and expanding the logarithmic term into Taylor's series as

I ΔRi;ΔRj

� �¼�1
2
log 1� ΔRiΔRj

� �2
ΔRið Þ2

D E
ΔRj

� �2D E
0
@

1
A≈

ΔRiΔRj

� �2
ΔRið Þ2

D E
ΔRj

� �2D Eþ…

ð10Þ

This approximation enables the development of several metrics

of cooperativity based on correlations. A recently used metric in the

literature, for example, is the Dynamic Coupling Index,52,53 DCIij,

which measures the response of residue i upon perturbation of func-

tional residues in the protein. This model derives from the

Perturbation-response scanning model54 which is an application of

the more general linear response theory, LRT, which in turn is

obtained from the Onsager relation of fluctuations49

ΔRiΔRj

� �¼ kBT
∂Ri

∂Fj

� 	
ð11Þ

where kB is the Boltzmann constant, T is the absolute temperature, Ri

is the instantaneous position of residue i and Fj is the force acting on

residue j. When multiplied by force Fj and summed over j,

Equation (11) takes the familiar form:55

dRj
i ¼ kBTð Þ�1

X
j

ΔRiΔRj

� �
dFj ð12Þ

where dRj
i is the response fluctuation of residue i upon perturbation

of residue j. We have written Equation (12) in one dimension to show

the principle, extension to three dimensions as was done in Refer-

ence54 is simply a matter of straightforward approximation. Thus, dRj
i

becomes the basis of a metric that quantifies cooperativity or flexibil-

ity. Equation (12) may be normalized in order to get rid of the force,

as a result of which we obtain the Dynamic Coupling Index, DCI, of

Ozkan and collaborators41,53 as:

DCIij ¼C0 ΔRj


 



i ¼C0

X
i

ΔRiΔRj

� �
dFj



 

 ð13Þ

where, C0 is a normalization constant, and the sum is over the func-

tionally critical residues in the protein. A plausible but not the only

choice of the normalization constant may be chosen for a unit force

as ΔRið Þ2
D E

ΔRj

� �2D Eh i�0:5
which we adopted below in obtaining

Figure 2. The choice of the normalization constant will change

the amplitude of the DCI only. Ozkan et al. randomized the

force by taking an average over several randomly chosen

forces. This makes the problem consistent with the solution of

the Langevin equation where the random perturbing forces

come from white noise.56

Along similar lines, another metric, total coupling:

Cij kð Þ¼
X
m

ΔRi kð ÞΔR mð Þ
* +

ð14Þ

was used as a metric of stability of binding protein complexes.57 Here,

the fluctuations are expressed in terms of their modal compo-

nents and k and m represent the mode numbers. First dominant

collective modes are known to relate to function whereas fast

modes, which are associated with hinges by some authors, relate

to stability of binding.41,57,58 Equations (10, 12, 13, 14) are

simple power transformations of the covariance matrix. Lange

and Grussmuller59 showed that the use of covariance matrix

misses more than 50% of the correlations. In summary, all these

metrics reflect a particular aspect of the correlation matrix. Full

generality is only obtained with the use of the expression (see

Data S1)

I ΔRi;ΔRj

� �¼ log
p ΔRi,ΔRj

� �
p ΔRið Þp ΔRj

� �
 !* +

ð15Þ

where p ΔRi,ΔRj

� �
is the joint probability of the fluctuations of resi-

dues i and j. A straightforward way of determining the joint probability

is to perform molecular dynamics simulations. However, determina-

tion of p ΔRi ,ΔRj

� �
which is a six-dimensional function in Cartesian

components requires micro to millisecond trajectories depending on

the size of the system. Therefore, recourse to simplified expressions

based on the correlation matrix becomes inevitable. An alternative

method of expressing mutual information in terms of Hermite series

was proposed recently,60 which requires the evaluation of higher

moments of the covariance matrix.

In summary, covariance matrix based mutual information metrics

seem to be the most feasible common metric for all practical

purposes.

2.6 | Dynamic nature of interactions and
uncertainty

Both mutual information and interaction information are dynamic

quantities derived here from molecular dynamics simulations, which

model the movements and interactions of atoms in the protein
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complex over time. The process of molecular dynamics inherently

involves small, random fluctuations in the positions of individual

amino acid residues within the complex. These fluctuations arise due

to the constant thermal motion of atoms and introduce a certain level

of uncertainty to the problem. Mutual information measures how

these fluctuations become less uncertain when two residues interact

and influence each other's movements. On the other hand, interaction

information measures the increase in uncertainty when the

interaction between two residues is influenced by a third residue. This

dynamic aspect of interaction information is particularly relevant in

capturing the dynamic nature of allostery, where distant residues can

affect the stability and behavior of the protein complex. Throughout

the paper, we will use the term ‘increase in uncertainty’ to refer to

interaction information, and it will be understood that these measures

originate from molecular dynamics simulations that simulate the

dynamic motions of the protein complex.

2.7 | Factors affecting the change of MI in protein
complexes

Allosteric regulatory effect of third residues on the stability of interface

residue pair interactions.

We now consider specifically two neighboring interface residues

i in KRAS and j in RGL1 and consider the effect of any third residue

k in KRAS and discuss the molecular factors that increase or decrease

MI for the interaction of i and j:

1. Synergy: If the presence of k decreases the uncertainty in the

interaction of i and j, we say that the allosteric effect of k on

the interaction of i and j is synergistic. This can be explained by ref-

erence to allosteric regulation, for example, where residue k acts

as an allosteric effector, influencing the interaction between i and

j through indirect interactions with other residues in the protein.

The dynamic coupling or conformational coupling of k to the inter-

face occurs when the fluctuations of k correlate with the fluctua-

tions of residues i and/or j, typically facilitated by hydrogen bonds,

salt bridges, or other non-covalent interactions. Strongly coupled

interactions and similar timescales of fluctuations enhance the cor-

relation between k and i and/or j.

2. Anti-cooperativity: If the presence of k increases the uncertainty in

the interaction of i and j. Several sources may induce anti-

cooperativity some of which are:

i. Covalently bonded neighbor effect: Molecular dynamics

results presented below show that the uncertainty in the

interaction of i and j, (i in KRAS and j in RGL1) when the third

KRAS residue k is covalently bonded to i in KRAS increases.

Normally, when two residues are not covalently bonded, they

are free to move independently of each other. However, in

the present example, k is covalently attached to i and cannot

move far away from it. Now, imagine that the protein envi-

ronment changes and causes residue i to undergo changes in

its fluctuations. Because k is bonded to i, it will also be

affected by these changes and will move along with i.

However, in the absence of the covalent bond, k would not

necessarily be near i and could wander away by random

forces from the environment. Therefore, k's natural fluctua-

tions would not necessarily follow those of i. In fact, the fluc-

tuations of k may be such that it would try to move away

from i, in order to seek a more energetically favorable state.

This is what we mean by anti-cooperativity, where the fluctu-

ations of residue k are counterproductive to those of its

neighboring residue i, which is held in place by a covalent

bond. This can have important implications for the interaction

between i and j, leading to increase of uncertainty between

i and j given k.

ii. The presence of noise-like fluctuations of k can affect the

mutual interaction between the two dependent random vari-

ables, i and j, in several ways. First, the noise k can introduce

random fluctuations in the values of i and j, which can affect

their correlation and mutual interaction. If the noise k is corre-

lated with either i or j, it can create spurious correlations or

mask true correlations between i and j, known as confound-

ing. Moreover, residue k can affect the strength of the corre-

lation between i and j, when the noise k is relatively large

compared to the magnitude of the correlation between i and

j, it can weaken or even eliminate the correlation altogether.

This is because the noise k introduces additional randomness

that can obscure the underlying correlation between i and j. In

such cases, II will be positive.

iii. Non-noise-like fluctuations of k may mask the interaction

between i and j. Masking of the interaction between residues

i and j due to the presence of the fluctuations of residue

k means that the dynamic behavior or fluctuations of residue

k have an effect that obscures or diminishes the direct inter-

action between residues i and j. In the interface, residues

i and j interact with each other through van der Waals forces,

hydrogen bonds and salt bridges all of whose strength depend

on the fluctuations, that is, dynamic in nature. However, when

residue k undergoes fluctuations or dynamic changes, it can

introduce additional factors or perturbations that influence

the interaction between i and j. The presence of fluctuating

residue j can disrupt or modulate the interaction between

i and j by altering their spatial arrangement, altering the ener-

getics of the interaction, or introducing competing interac-

tions. As a result, the direct interaction between i and j may

become less prominent or less detectable.

3 | RESULTS

Eves et al.1 have conducted a comprehensive analysis of the structural

characteristics of the interface formed by neighboring pairs

Q25-N695, E31-N722, D33-K700, D33-K720, P34-K720, E37-R688,

E37-I699, E37-S701, D38-I699, D38-S701, S39-M698, S39-I699,

R41-N695, and R41-G696. We focus on examining the MI levels of

these pairs, and on the allosteric effects induced by third residues

in KRAS.
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3.1 | Part 1: Mutual Information

Mutual Information indicates that the G12V variant is more stable:

Figure 1 compares the MI values of the interacting interface residue

pairs for the wild type and G12V variant. In all cases MI values for the

G12V variant are larger. Thus, the mutation makes a more stable com-

plex which is known to lead to disease1 by continuous constitutive

activation of the protein, driving uncontrolled cell growth and

proliferation.61–63 According to the experimental findings of Eves

et al1 the G12V mutation stabilizes the overall structure of KRAS. This

is evident from the observation that the root mean square deviation

(RMSD) of the KRAS backbone atoms is lower in the G12V mutant

complex than in the wild-type complex. The RMSD is a measure of

the structural deviation of a protein from its reference structure. A

lower RMSD indicates a more stable structure.

Based on linear response theory arguments, we proposed that

the magnitude of correlations may be taken as an indication of stabil-

ity. Accordingly, the right hand side of Equation (10) may be used as a

simple measure of stability, which are plotted in Figure 2 Comparison

of Figures 1 and 2 shows that the points obtained by the simple

expression given by Equation (10) closely follow the pattern of the

more accurate mutual information expression.

3.2 | Part 2: Allosteric regulatory effect of third
residues on the stability of interface residue pair
interactions

In Part 1, we examined the interactions of residue pairs at the inter-

face to understand how they contribute to the stability of complex

formation. In this section, we investigate how third residues in KRAS

affect the interactions of interface residue pairs. We refer to this

effect as allosteric action. We find that third residues generally

decrease the stability of binding, but the dominant factor in the stabil-

ity of the KRAS-RGL1 complex is due to the mutual information of

the residue pairs, which we calculated in the previous section.

Here, we evaluate the changes in MI of interface residue pairs

due to the allosteric effect of a third residue of KRAS. We do this for

the wild type and the G12V variant and compare the two. Figure 3

compares the MI for Q25-N695 interface pair, represented by the

horizontal line in each panel, with the conditional mutual information,

CMI values obtained in the presence of the third residues. Third resi-

dues are indicated along the abscissa. The solid line shows the CMI

values calculated using Equation (9). The horizontal line in the left

panel indicates a small amount of MI. The CMI curve shows values

both above and below the MI line, the ones above indicating synergy

and the ones below indicating anti-cooperativity. For example, residue

21 has the highest synergetic effect on the interaction of Q25 and

N695, whereas residue 41 has the highest anti-cooperative effect on

the interface pair. The right panel for the G12V variant on the other

hand shows a large value of MI indicating stronger interaction

between Q25 and N695. The CMI curve in this panel falls below the

MI line, showing that the third residues are decreasing the interaction

between Q25 and N695, that is, allosterically anti-cooperative. MI

value for the wild type is small, 0.052, while that for the G12V is 0.94.

This shows that mutation increases the correlation between the two

interface values significantly, but allosteric effects shown by MI

conditioned on the third residues are all anti-cooperative in the G12V

variant. The lower curve on the right panel shows that strongest anti-

cooperative effects are by the two near neighbors 22 and 24 of 25 on

KRAS. The next residue with the highest anti-cooperativity is residue

40 and then residue 57.

F IGURE 1 Values of MI for interface residue pairs for wild type
KRAS (empty circles) and G12V variant (filled circles) calculated using
Equation (8). The interface residues are identified along the abscissa.

F IGURE 2 Values of Direct Coupling Index, DCI, for wild type
KRAS (empty circles) and G12V variant (filled circles) calculated using
Equation (13). The interface residues are identified along the abscissa.
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Values of MI and CMI are compared for the interface pair

E31-N722 as shown in Figure 4. It is interesting to note that for this

pair, the magnitudes of MI values for the WT and G12V variant are

comparable and the allosteric effect of third residues are all anti-

cooperative.

The anti-cooperative effect of third residues can best be

understood in terms of interaction information plots, which show

the difference between MI and CMI. A large positive value of

interaction information shows how much the third residues

weaken the interaction between the interface residue pairs.

Figure 5 displays this analysis for the interface pair Q25-N695.

The curves are obtained for multivariate Gaussian approximation

by using Equation (7). The lower black curve is for the wild type

and the upper gray curve is for the G12V variant, obtained by

using the PDB structures 7SCW and 7SCX, respectively. The

abscissa values indicate the third residue for which calculations

are conducted one by one for all residues except the interacting

pair by using Equation (7). Results for the wild type indicate posi-

tive (anti-cooperative) and negative (synergistic) effects of the

third residue, both of which are small. The gray curve for the

G12V variant, on the other hand, is all positive and exhibits large

anti-cooperativity. Thus, in this case, allosteric effect from third

residues all decrease the interaction between Q25-N695. If one

takes kB as the Boltzmann constant, the energy equivalent of

the ordinate values in Figure 4 will be in the order of about 0.5

kBT. Figure 6 is obtained similarly for the interface pair E37-Y699.

Changes in the interaction for all of the interface pairs under allo-

steric activity of third residues are superposed in Figure 7.

F IGURE 3 MI and CMI values for the interface pair Q25-N695 for the wild type (left panel) and the G12V mutant (right panel). Equations
(8 and 9) are used, respectively, for calculating the values of MI and CMI for a third residue and this is repeated for all residues of KRAS.

F IGURE 4 MI and CMI values for the interface pair E31-N722 for the wild type (left panel) and the G12V mutant (right panel). See legend to
Figure 3.
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Figures 5–7 illustrate the contrasting effects of residue k on

the activity of the wild type WT structure and the G12V variant.

Figures similar to Figures 5 and 6 for the remaining interface resi-

dues pairs are presented in Figures S14–S27 in the Data S1

where values of CMI are plotted as a function of third residues.

Across all figures, a consistent trend emerges wherein the pres-

ence of a third residue, say k, when covalently bonded to inter-

face residue i of KRAS, acts as an anti-cooperative factor in the

interaction between i and j. By examining these figures, it

becomes evident that the effect of residue k tends to disrupt the

interaction between residues i and j, resulting in reduced

cooperation between them. This anti-cooperative effect suggests

that the presence of residue k hampers the formation or stability

of the i-j interaction, influencing the allosteric communication

within the KRAS-RGL1 system. Thus, the anti-cooperative effects

of third residues weaken the stabilizing effect of MI. This weaken-

ing effect is stronger for the G12V variant but the MI effect is

even stronger in the variant, making the variant more stable than

the wild type. Covalently bonded neighbor anti-cooperative effect

is significant for all interface residue pairs. Synergy induced by

allostery on the interface residues is negligibly small. Synergy

effect in Figures 5 and 6, and in the remaining Figures S1–S13

presented in Data S1, are almost non-existent. The small extent

of synergy can be seen from Figure 6; residue 11 in G12V has a

weak synergistic effect on the E37-Y699 interface pair. Likewise,

residue 81 exhibits also a weak synergistic effect on the same

interface pair. In conclusion, we can say that in general the allo-

steric effect of third residues weaken the interaction between sur-

face residue pairs of the KRAS-RGL1 complex.

Constraining the fluctuations of third residues increases the stability

of the complex. In order to further understand the allosteric effect of

constraining fluctuations of third residues on interface residue inter-

actions, we perturbed the fluctuations of third residues and investi-

gated the effect of this perturbation on the conditional MI between

the interface residues. The perturbation is implemented in Equation (9)

where the averages that involveΔRk 's are evaluated by using

0≤ΔRk ≤0:3 and all ΔRk 's larger than 0.3 equal to zero. This corre-

sponds to conditioning the ΔRk 's which may mimic, for example, the

action of a large ligand docked to residue k, decreasing its fluctuations.

Constraining the fluctuations of the third residue stabilizes the inter-

action of the interface residues. Results of calculations are shown in

Figures 8 and 9. The black line is for no constraint on third residues,

the gray line for constrained third residues. Interestingly, Figure 8, left

panel shows that the gray line falls below the black line at several

points, indicating decrease in stability when third residues are con-

strained. However, the interaction of Q25 and N695 is weak where

the MI equates to 0.053. For the G12V variant, the MI value for the

225-N695 pair is 0.92 and the gray line on the right panel of Figure 8

is close to the corresponding MI values. Thus, constraining third resi-

dues makes CMI approach MI and consequently the II decreases and

the stability of the complex increases.

Mutation G12V leads to higher synergy for several residue pairs

of KRAS. Here, we searched for the synergetic effect of G12V

mutation on all residue pair interactions. In Figure 10 synergy

values, that is, negative values of II from Equation (7) between

three residues i, j, k for k = 12 are shown. This shows the alloste-

ric effect of residue 12 on the residue pairs in the protein. The

abscissae span the values of i and the ordinates span the values

of j. The left panel is for the wild type and the right panel for

the G12V variant. In the wild type, synergy values vary between

0 and �0.03 whereas for the G12V variant they vary between

0 and �0.09. The plots are drawn at intervals of 0.008. Although

a value of �0.09 is small, nevertheless we see a totally different

behavior in the two systems shown in Figure 10.

F IGURE 5 Interaction information values for Q25 and N695
under the allosteric effect of various residues shown along the
abscissa. Black curve for wild type, gray curve for the G12V variant.
All curves are calculated using Equation (7).

F IGURE 6 Interaction information values of E37 and Y699 under
the allosteric effect of third residues shown along the abscissa. Black
curve for wild type, gray curve for the G12V variant.
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4 | CONCLUSIONS AND DISCUSSION

Experimental and clinical evidence shows that each mutation of

RAS family proteins participates in distinct signal transduction cas-

cades and has different biological functions.64,65 For example, the

G12V mutation in HRAS, NRAS, KRAS4A, and KRAS4B proteins

results in different abilities to activate RAF1, with the G12V

mutation in KRAS showing the highest activation. Weng et al44

showed that allosteric mutations typically inhibit binding to all

tested effectors, which contradicts the experimental observation of

Voice et al.64 that G12V increases the activation of RAF1. How-

ever, other studies have shown that the G12V mutation does not

strengthen the activation of RAF in all cases66 and is hypothe-

sized to be dependent on cellular context. These and several

other observations clearly show that the mutation effects in RAS

proteins are specific to the type of mutation and may be context

dependent, and therefore each case should be studied individually.

The present computational study is based on a single KRAS-RGL1

complex in water.

We see in Figure 1 that MI between interface residues increases

upon G12V mutation. This is mainly due to the formation of a more

compact structure, that is, a jigsaw-like matching of the components

of the complex, upon the G12V mutation. We see in Table 1 that 9 of

the 14 interface pairs show a reduction in pair distance upon

F IGURE 7 Interaction information values superposed for all interface residues. The dominant effect is anti-cooperative, the peaks showing
the hotspot regions leading to large anti-cooperativities. Negative values are negligibly small indicating no synergy. Residues 1 to 169 correspond
to KRAS, while residues 170 to 255 are attributed to RGL1 (specifically, residues 683 to 768). All curves are obtained using Equation (7).

F IGURE 8 Perturbation of the interaction between Q25 and N695 when the fluctuations of residues indexed along the abscissa are
suppressed. The fluctuations are suppressed one residue at a time and the resulting CMI is plotted along the ordinate. The left panel is for the
wild type complex7SCW, the right panel for 7SCX, the G12V variant. Black and gray curves are values for unsuppressed and suppressed
fluctuations, respectively.
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mutation. The three pairs where distance increases are shown in gray

letters.

Accordingly, we conclude that a larger amount of uncer-

tainty is lost in the KRASG12V-RGL1 complex compared to the

wild type complex due to structural change, that is, change in

time averaged positions. However, the allosteric activity of a

third residue on the complex has opposing effects and increases

uncertainty in the mutated complex as may be seen from

Figures 3 and 4. Thus, while the G12V mutation increases the

stability of the complex, allosteric activity decreases it.

In conclusion, this study explored both MI and II in the context of

the KRASG12V-RGL1 complex. MI, quantifying uncertainty lost upon

the interaction of two residues, revealed that the G12V mutation

increased the MI between interface residues, indicating reduced

uncertainty and enhanced correlations due to the formation of a more

compact structure in the complex. In parallel, the investigation of II,

F IGURE 9 Perturbation of the interaction between E37 and Y699 when the fluctuations of residues indexed along the abscissa are
suppressed. See legend for Figure 8.

F IGURE 10 Synergistic interaction between all residue pairs (indexed along the abscissa and ordinate) resulting from allosteric effect of
residue 12. Only the negative values of interaction information are shown. The left panel is for the WT, right panel for G12V mutant variant. The
values are calculated by Equation (7).
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which considers the influence of a third residue on the interaction of

the two interface residues, provided valuable insights into the alloste-

ric effects within the complex. The positive values of II indicated an

anti-cooperative influence of the third residue on the interface pair,

which can lead to increased uncertainty in the interaction energy.

Interestingly, while the G12V mutation increased both MI and II, the

net effect on the stability of the complex was still an increase. This

suggests that despite the anti-cooperative influence introduced by

the third residue, the structural changes brought about by the G12V

mutation dominate, leading to a stabilizing effect on the complex.

These findings underscore the complexity of protein–protein

interactions, where multiple factors, such as direct residue interac-

tions (MI) and allosteric influences (II), collectively shape the behavior

of the complex bringing forth hidden allosteric states and that may

lead to the discovery of new mechanisms as addressed by recent

studies.67 The observed increase in stability upon the G12V mutation,

despite the anti-cooperative effects, highlights the potential of tar-

geted mutations68 in modulating protein function. Furthermore, the

study's identification of residue D57 as a key contributor to the anti-

cooperative interactions of interface residues presents an intriguing

avenue for potential therapeutic targeting. The distance between

magnesium ion of GDP and the mass center of two oxygen atoms

OD1 and OD2 of D57 produces a fluctuation range of 3.40–5.81 Å in

the WT KRAS, while this distance fluctuates from 2.22 to 3.38 Å

in the G12A and G12R KRAS mutations,69 indicating that the stability

of the magnesium ion in the G12A and G12R KRAS is higher than that

in the WT KRAS. Careful exploration of D57's dynamics and func-

tional role is warranted to determine its suitability as a therapeutic

target without compromising the overall stability of the complex.

In summary, this research not only advances our understanding of

the mutual and interaction information in protein complexes but also

provides insights into allosteric regulation and its implications for drug

design. The integrated analysis of MI and II has exposed the delicate

interplay between residue interactions and allosteric effects, offering

novel opportunities to explore and manipulate protein–protein inter-

actions for future therapeutic interventions.70,71
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