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Abstract
This article analyzes and discusses the problem of reliance on expert and machine evidence, including Artificial 
Intelligence output, from a decision-analytic point of view. Machine evidence is broadly understood here as the 
result of computational approaches, with or without a human-in-the-loop, applied to the analysis and the as
sessment of the probative value of forensic traces such as fingermarks. We treat reliance as a personal deci
sion for the factfinder; specifically, we define it as a function of the congruence between expert output in a 
given case and ground truth, combined with the decision-maker’s preferences among accurate and inaccurate 
decision outcomes. The originality of this analysis lies in its divergence from mainstream approaches that rely 
on standard, aggregate performance metrics for expert and AI systems, such as aggregate accuracy rates, as 
the defining criteria for reliance. Using fingermark analysis as an example, we show that our decision-theoretic 
criterion for the reliance on expert and machine output has a dual advantage. On the one hand, it focuses on 
what is really at stake in reliance on such output and, on the other hand, it has the ability to assist the decision- 
maker with the fundamentally personal problem of deciding to rely. In essence, our account represents a 
model- and coherence-based analysis of the practical questions and justificatory burden encountered by any
one required to deal with computational output in forensic science contexts. Our account provides a normative 
decision structure that is a reference point against which intuitive viewpoints regarding reliance can be com
pared, which complements standard and essentially data-centered assessment criteria. We argue that these 
considerations, although primarily a theoretical contribution, are fundamental to the discourses on how to use 
algorithmic output in areas such as fingerprint analysis.
Keywords: machine evidence; AI output; normative decision structures; decision theory; fingerprints. 

1. Introduction
With the increasing availability of specialized data, more and more decisions are being made 
that rely not only on direct observation but also on information provided by some intermediary. 
These intermediaries, which can be machines or humans, or systems consisting of a machine–hu
man team, take in selected measurements, process them, and provide output in the form of a rec
ommendation. The use of such information, which we collectively refer to as “expert output,” 
has affected all areas of life, including the legal process, where it has reached unprecedented 
levels of sophistication and pervasiveness.1 Forensic geneticists, for instance, use probabilistic 
genotyping systems to analyze complex DNA mixtures to help consumers of expert evidence to 
deal with questions such as whether or not a particular individual is a contributor to a recovered 

1 It manifests itself in what is called “machine evidence” (Roth 2016, 2017; Nunn 2019–2020) or, more generally, 
“AI output” (e.g. Lau and Biedermann 2020), as a special type of expert evidence.
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DNA trace (Buckleton et al. 2019; Coble and Bright 2019).2 Forensic fingerprint examiners use 
computer software to perform computations of the probative value of observed similarities and 
differences when comparing a fingermark to a reference print of a person of interest (POI) (e.g. 
Swofford et al. 2018). Similarly, facial image comparison analysts use specialized software to 
capture facial features, derive comparison scores, and assess the probative value of such scores 
(e.g. Jacquet and Champod 2020). Besides expert evidence, various stages in the legal process 
ranging from policing and sentencing to correction and parole have seen the development and 
introduction of data-driven “risk-assessment” systems to assess the probability of adverse out
comes such as recidivism (e.g. Garrett and Monahan 2019). The use of expert output is likely to 
further expand in the future. A special section on this topic in this journal, focusing on finger
prints, is therefore both timely and valuable for the discipline.

The use of humans and machines as intermediaries to generate expert output from data raises 
a number of questions and concerns (e.g. Roth 2016, 2017; Swofford and Champod 2021). The 
most prominent and lively debates concern observations of certain systems exhibiting varying 
performance characteristics, such as accuracy rates, in different demographic groups 
(Castelvecchi 2020). Such considerations underlie ongoing controversies about the suitability of 
expert systems3 for practical deployment. More broadly, the use of expert systems and their 
outputs are at the center of regulatory developments, such as the Artificial Intelligence (AI) Act 
recently approved by the European Union (EU) Council.4

Overall, discussions around AI often focus on what, in the context of this article, can be 
considered as the admissibility of AI systems in the first place. While important, resolving the 
question of admissibility still leaves us with the practical question of what an individual con
sumer of expert output ought to do with the output of a given system that has met the requisite 
legal standards to be given consideration. Upon encountering such expert output, the individual 
actor faces the question of whether or not to actually rely on that output, that is to take it 
into account.

While this question is central to the theme addressed by the papers in the special section of 
this journal, that is envisioning a future in which algorithmic approaches are a part of the prac
tice of fingerprint examination, we will argue in this article that even when thinking broadly 
about how practical proceedings in such a future might look like, we can hardly dispense with a 
formal and analytical approach if we intend future practice to involve coherent reasoning and 
decision-making. This article offers such a formal analysis of reliance on expert and AI output 
and discusses the argumentative implications of this analysis. We also anticipate that, ultimately, 
the question of reliance is fundamental in the sense that it applies to all types of expert and AI 
output, and thus there is nothing inherently special about fingerprint examination that would 
allow us to exempt it from the fundamental aspects of reliance that we analyze and discuss.

The bottom line is that, contrary to what is sometimes thought or implicitly assumed, there is 
no need to make a methodological distinction between statistical/AI models for fingerprint 
analysis on the one hand and discourses on how to use AI output in practice on the other. The 
conceptual problem of how to use AI output in practice is as amenable to and in need of formal 
analysis as the process of generating AI output itself. Therefore, these two aspects can indeed be 
logically combined.

The question of reliance on experts within the common law has been described as a problem 
of “deference,” that is “whether fact finders are to be educated by or to defer to experts” (Allen 
and Miller 1993: 1131). This suggests a categorical acceptance of expert evidence that goes be
yond the softer form of reliance that we consider here. The purpose of our article is to approach 
the notion of reliance from an alternative, more analytical perspective. Specifically, we will un
derstand reliance as the incorporation of expert output into a decision-maker’s overall knowl
edge base, not its dominance. We analyze reliance in this sense from a decision-theoretic 
perspective. By interpreting reliance as a decision, we expose and formally state the logical 

2 See, for example, the case United States v Gissantaner, No. 19-2305 (6th Cir. 2021), for an example of the intri
cate debates sparked by the introduction of results of probabilistic genotyping systems at trial.

3 Broadly speaking, AI can be seen as a more automated form of these systems.
4 Regulation of the European Parliament and of the Council laying down harmonized rules on AI and amending 

Regulations (EC) No. 300/2008, (EU) No. 167/2013, (EU) No. 168/2013, (EU) 2018/858, (EU) 2018/1139, and (EU) 
2019/2144 and Directives 2014/90/EU, (EU) 2016/797, and (EU) 2020/1828 (AI Act).
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underpinnings of reliance decisions, emphasize the inevitability of dealing with uncertainty, and 
argue for the need to introduce value judgments. In combination, these ingredients reveal the 
dimensions that standard metrics for characterizing the performance of AI systems do not ac
count for.

This article is organized as follows. Section 2 provides a general statement of the problem of 
reliance on expert output, using a generic example of information provided by a forensic finger
print examiner. In subsequent sections, we explain and delimit the scope of our analysis, define 
the decision-theoretic model, and analyze its properties. The discussion and conclusions are pre
sented in Section 3.

Methodologically, our development is based on normative decision theory (Baron 2008, 
2012). At times, we use graphical models, that is influence diagrams (Kjærulff and Madsen 
2008; Taroni et al. 2014), to illustrate the structural assumptions of our model and to keep track 
of formulaic results. The framework presented in this article uses probability as a measure of un
certainty (Lindley 1987) and loss as a measure of the undesirability of decision consequences. 
Our goal is to develop a rational decision structure that can be justified independently of how 
individuals naturally make decisions. This is in contrast to the purely observational and descrip
tive studies of decision-making that are commonly reported in the scientific literature. Although 
an important area of research, we do not consider intuitive attitudes toward formal approaches 
to reasoning and decision-making.5

2. Decision-analytic account of reliance
2.1 General statement of the problem
Consider a situation where a decision (action) needs to be taken. The decision-maker may need 
or benefit from assistance in understanding the available information. The decision-maker there
fore needs to consider whether to rely on a source that provides him or her with an output, 
denoted here as E, processing the input information into a more usable form.6 The output E can 
come from a human expert, a machine (including computers, instruments, etc.), or a combina
tion of the two, such as a machine-assisted human expert.7 In the most general sense, the output 
E takes the form of a recommendation about a hypothesis H, called a proposition here, based 
on some sort of input information or input measurement. The main example of E that we will 
use in this article is the report of a forensic fingerprint examiner or even a machine that observed 
similarities and differences between the features of a recovered fingermark of an unknown 
source and the fingerprint of a POI provide moderate (or some other degree of) support for the 
proposition that the POI, rather than an unknown person, is the source of the recov
ered fingermark.

However, E can also be any form of expert or machine output, including:

� a report by a forensic geneticist that the observed correspondence between the DNA profile 
of a recovered biological stain and that of a POI provides strong support for the proposition 
that the POI, rather than an unknown person, is the source of the recovered DNA; 

� a report by a digital forensic examiner that the digital data support the prosecution’s propo
sition that the phone of a POI was at the scene rather than the defense’s proposition that the 
phone was at the home address (propositions adapted from Tart 2020); 

� a report by an intelligence analyst according to which two (or more) traces (e.g. shoe marks, 
facial images, DNA, fibers, digital traces, bullets, etc.) seized on two (or more) distinct 
instances (or, locations) come from the same source, rather than from two (or more) differ
ent sources; 

� a report, informed by the use of a risk assessment instrument that assigns a risk score based 
on certain factors (e.g. Garrett and Monahan 2019, 2020), regarding the potential of a par
ticular individual to re-offend in the future; and 

5 See for example, Swofford and Champod (2021) for a discussion of this topic.
6 Note that E is more than just a report or summary of measurements, such as “the general pattern of the finger

mark is a whorl,” or “the knife blade is 10 cm long,” but adds in some form of processing. The selection of what meas
urements to include or even to obtain in a report or summary is a form of processing.

7 See for example, Dror and Mnookin (2010) on the notion of distributed cognition.
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� a report about a diagnostic test, asserting support for the proposition that a given individual 
has a particular physiological condition rather than the proposition that the individual does 
not have the condition of interest (e.g. Kaye 1987). 

Thus, there is nothing unique or specific to fingermark evidence that distinguishes it from 
other types of evidence in terms of how factfinders should decide to rely on the evidence. Note, 
however, that we do not focus here on what Faigman et al. (2014) called “framework evidence,” 
that is testimony limited to general statements, such as the occurrence of particular features ob
served on evidential items.

The expert output E is then used by the decision-maker, along with other information, to 
make an ultimate decision, with the decision to rely on E being made on the way to the ultimate 
decision. Crucially, the decision-maker using the output either lacks the ability or willingness to 
process the input information directly into E, even if the input information is available and pre
sented to the decision-maker. Specifically, with regard to the example of fingermark evidence, 
the decision-maker is someone who is not a fingerprint examiner. The decision-maker will, we 
may hope, carefully consider the testimony of an examiner, but will not develop the expertise 
necessary to conduct fingermark examinations themselves. Thus, the decision to rely on the out
put is made without actually replicating the work, with the expert or machine being to some ex
tent a sort of black box, even though from the expert’s point of view the process used to 
produce the output may actually be transparent.

In the context of our running example of forensic expert evidence, machine-assisted or not, in 
which a fingerprint examiner reports on the comparison of a fingermark of an unknown source 
(e.g. found on a surface of interest) with the reference print of a POI, we focus on the following 
key question: what does it mean for a recipient of expert output to rely on the expert output? 
We will argue that this question of reliance on expert output is itself a decision problem, and 
that the structural features of this decision problem can be formally stated, analyzed, and dis
cussed from a decision-theoretic perspective.

2.2 Defining the scope of analysis
When modeling inference and decision problems, it is important to be precise not only about 
what exactly we intend to model, but also about what we do not intend to model. We therefore 
emphasize that our analysis concentrates only on the decision of reliance on the expert output 
provided in the instant case. The focus is on the reliance on E, not on the ultimate decisions. 
Deciding to rely upon a particular output supporting a proposition X does not mean or suggest 
that we take that proposition X to be true, let alone that we make the ultimate decisions. For ex
ample, we may decide to take into account an expert report supporting the proposition that the 
particular defendant left a mark on a murder weapon without deciding that the defendant is the 
murderer or that the defendant should be convicted. Making decisions about ultimate proposi
tions is a separate decision problem (e.g. Kaplan 1968; Kaye 1999).

Furthermore, we do not focus on the decision to consider a particular expert output as admis
sible. In this discussion, we assume that the output is already admissible under the applicable cri
teria. Given that notions of reliability are often incorporated into definitions of admissibility, it 
may be tempting to conflate admissibility and reliance. However, the two are logically distinct. 
Just because something is reliable enough to be admitted does not mean that it is reliable enough 
to be relied upon in making the ultimate decision, which, as we will see, includes other decision 
factors. Therefore, we focus here on the decision of whether or not to take an expert output into 
account, once that information is permitted for consideration in the ultimate decision process.

With respect to the question of how decision-makers ought to use the output of an informa
tion source to revise their beliefs, we will rely on principles of standard probabilistic inference 
(see, e.g. Kaye 1987 for an overview of general principles), although we will not address the em
pirical problem of the (lack of) epistemic competence of human fact finders (e.g. Mnookin 
2008). For the sake of argument, we assume that data on the overall performance of the infor
mation source are available. However, we stress that this is not a necessary requirement. Our 
model is flexible and can accommodate modifications described in the existing literature, in 
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particular the endogenous definition of reliability for partially reliable sources of information 
when validation or accuracy studies in the traditional sense are not available or applicable (e.g. 
Bovens and Hartmann 2003; Lau and Biedermann 2020). The key point here is that these other 
modeling approaches treat reliability as a property of the information source, whereas our 
analysis deals with reliance understood as a decision of the fact finder.

Another aspect, not covered in our analysis, is the evaluation and comparison of the perfor
mance of different sources of information, as well as systems and procedures that produce par
ticular (expert) output, such as forensic value-of-evidence computations (e.g. Ramos and 
Gonzalez-Rodriguez 2013). These are valuable considerations for experts faced with the ques
tion of selecting one of the several available expert systems, or legal decision-makers who must 
decide on the admissibility of a particular proffered system output. Our analysis focuses instead 
on a more advanced stage in the ultimate decision process, that is, the question of reliance on 
particular system output that has already been deemed admissible.

2.3 Modeling the problem of reliance as a decision
The problem of reliance has two main aspects. One aspect, called inference here, is about how 
to use the expert output to inform our view of the competing propositions. Another aspect deals 
with the question of whether or not to rely on the expert output. This is a question of decision. 
The former aspect, inference, is extensively covered in existing literature and will only be 
touched on briefly here. Our focus is on the latter, the decision problem, and how inference and 
decision can be logically related within a coherent whole. Figure 1a shows the structure of the 
model described in the remainder of this article. Table 1 summarizes the node definitions. Key 
to our model is that inference and decision are related through expressions of preferences be
tween accurate and inaccurate decision outcomes (i.e. a so-called loss function). In this model, 
the notion of accuracy refers to the congruence between the expert output E and the ground 
truth H. It is possible to represent this aspect, accuracy, in terms of a separate node, as shown in  
Fig. 1b. Under certain conditions, such a model can be shown to give the same numerical results 
as the more compact model (a). However, the formulaic development of the second model, (b), 
is more burdensome. Therefore, for ease of exposition, we continue our analysis using the model 
shown in Fig. 1a, recognizing that the two possible models are representations of the same deci
sion problem at different levels of resolution.

A defining feature of our model is that expert output is available and is the starting point of 
our analysis. That is, in our analysis, we seek to assess the “goodness” of reliance decisions in 
view of what our beliefs about the propositions would be if the expert output were taken into 
account. This is in contrast to the well-known model for the “Oil Wildcatter” two-decision 
problem (e.g. Raiffa 1968; Shenoy 1992; Cowell et al. 1999; Kjærulff and Madsen 2008), which 
focuses on the decision of whether or not to seek information (i.e. conducting a seismic test) 
prior to making a principal decision (i.e. drilling for oil). See for example, Biedermann et al. 
(2020), Gittelson et al. (2013), and Taroni et al. (2014) for forensic and legal applications of the 
latter model. Note, however, that there is nothing to prevent our model from being extended to 
handle two-decision problems.

2.3.1 Inference
Our analysis begins with the problem of inference, represented by the network fragment 
H ! E. The node H has two states, representing the two propositions “The POI is the source of 
the fingermark” (H1) and “An unknown person is the source of the fingermark” (H2). The two 
propositions H1 and H2 thus capture the entirety of what can happen. The decision-maker’s 
probabilities for the propositions H1 and H2 are organized in a node probability table, associ
ated with the node H. The decision-maker’s probabilities are conditioned on the entirety of 
knowledge and information I available at the time a decision needs to be made about reliance. 
We write these probabilities, prior to considering evidence E, as PrðHjjIÞ; j¼ f1;2g, but we do 
not explicitly model the information I using a separate node. We also omit I from the notation 
for simplicity.

The node E represents the expert output, modeled as a child variable of the node H. Expert 
outputs are, generally, recommendations, but come in many forms. In forensic science, such 
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expert outputs vary widely in reporting style. Some experts make direct statements about dis
puted events, for example, that a particular fingermark came from a particular POI. Others fo
cus on reporting only the value of their observations, that is the extent to which their 
observations help to discriminate between competing claims about the source of the fingermark. 
Our analysis here is entirely general and can accommodate any type of reporting format. For the 
purpose of discussion, we consider three different conclusions: E1, the findings support H1 over 
H2; E2, the findings do not support one proposition over the other; E3, the findings support H2 

over H1.8

Associated with the node E is a table containing conditional probabilities PrðEjHÞ, with P
i PrðEijHÞ ¼ 1. For the time being, we will not go into the details of assigning probabilities, we 

simply introduce their notation, as shown in Table 2, and some general properties.9 Note that, 
in general, in order for an output Ei to have probative value with respect to the propositions 
Hf1;2g, it is required that PrðEijH1Þ 6¼ PrðEijH2Þ. In particular, the greater the difference between 
PrðEijH1Þ and PrðEijH2Þ, the greater the probative capacity of Ei as a piece of evidence with re
spect to Hf1;2g. Section 2.4.3 presents more detailed considerations.

Main
propositions

Expert
output

Reliance
decision

Loss

(a) (b)

E H

L

D E H

AL

D

Accuracy

Figure 1. (a) Influence diagram for the problem of deciding whether or not to rely on expert output. The definition 
of the nodes D, E, H, and L is given in Table 1. The bent dashed arc is an informational link that represents the 
understanding that E is known at the time a decision is made at the node D. The bent dash-dotted arc represents 
the direction of inference when reasoning about H in light of the evidence E. (b) Alternative model structure, 
including a node A to monitor the congruence between the expert output E and the ground truth H.

Table 1. Definition of the nodes used in the influence diagram shown in Fig. 1a. Nodes E and H are chance (i.e. 
probabilistic) nodes, D is a decision node, and L is a utility (loss) node.

Node Definition

D Decision regarding reliance on expert output:
D1: Rely on expert.
D2: Do not rely on expert.

E Expert output (statement or conclusion) Ei:
E1: “The findings provide support for H1 over H2.”
E2: “The findings do not support one proposition over the other.”
E3: “The findings provide support for H2 over H1.”

H Propositions Hj:
H1: e.g. The POI is the source of the fingermark.
H2: e.g. An unknown person is the source of the fingermark.

L Loss function Lð�Þ, assigning a loss value to each decision
consequence Cijk ¼ ðEi;Hj;DkÞ, for i¼ f1;2;3g and j;k¼ f1;2g.

8 An alternative, but not equivalent way, of defining E is to consider the conclusions “identification” (E1), 
“inconclusive” (E2), and “exclusion” (E3) (e.g. U.S. Department of Justice 2020). Note, however, that this is a concep
tually different and in many ways problematic reporting format, for reasons widely discussed in the literature (e.g. 
Cole and Biedermann 2020). Nevertheless—from a practical point of view—this type of conclusion continues to be 
used by many practitioners (Swofford et al. 2021), so it makes sense to mention it here.

9 In the context of medical diagnostic accuracy studies, p and 1− m − n are commonly equated with, respectively, 
the false-positive and false-negative rates, and m and 1− p− q are equated with, respectively, the true-positive and the 
true-negative rates (e.g. Shinkins et al. 2013).
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The bent dash-dotted edge, pointing from E to H, indicates the direction of reasoning. That 
is, based on learning the expert’s output E, our degrees of belief in the proposition H are revised, 
using standard methods of probabilistic reasoning. In influence diagrams, this is operated 
through Bayes’ theorem (e.g. Kjærulff and Madsen 2008), as will be discussed later in Section 
2.4.3. Note that the two-node representation H ! E is the simplest representation of an infer
ence scheme, chosen here for the sole purpose of limiting the complexity of subsequent formu
laic developments. It is possible to extend this representation by introducing additional 
intermediate considerations, as described elsewhere in the literature (see Section 2.5 for fur
ther details).

2.3.2 Accuracy
Expert output ought to be accurate. That is, the output should accord with the actual ground 
truth and thus give us factually correct guidance. In the context of medical diagnosis, if an indi
vidual truly has a particular disease, we expect the diagnostic test to be positive. Similarly, in the 
context of measuring physical quantities, accuracy refers to the distance between the true value 
and the value obtained during measurement.10 In our running example, if the POI truly is the 
source of the fingermark (H1), we would want the expert to report E1, “The findings provide 
support for H1 over H2,” because such a conclusion would be accurate. This is a deductive un
derstanding of the notion of accuracy, to be distinguished from the endogenous definition of re
liability for partially reliable sources of information modeled with a different network structure 
(e.g. Bovens and Hartmann 2003; Lau and Biedermann 2020). That is, in our model, outputs E1 

and E3 are accurate whenever H1 and H2, respectively, are true. Note, however, that the situa
tion is more subtle for the output of type E2, which does not assert support for one proposition 
over the other. This type of output, which can be seen as a neutral stance, cannot be accurate or 
inaccurate in the way that E1 and E3 can be (Koehler 2008; Biedermann and Kotsoglou 2021; 
Swofford et al. 2024).

The model shown in Fig. 1a incorporates the above understanding of accuracy, although not 
explicitly. As mentioned earlier, the model does not contain a separate node that indicates the 
probability11 of accuracy as a function of the congruence between Ei and Hj. Nevertheless, accu
racy is taken into account indirectly through the node L, which is used to express preferences be
tween the different possible decision consequences, that is accurate and inaccurate decision 
outcomes and situations where the expert output is E2. Further properties of the node L are pre
sented in Section 2.3.3.

It is important to emphasize that what is being contemplated here is not domain-wide accu
racy, or the accuracy of an expert or machine in general, a notion widely associated with aggre
gate error rate measurement. Instead, what is being considered here is the accuracy of the 
particular expert output E that has been provided for the particular ultimate decision problem 
at hand.

This is a subtle and important distinction. General measures of performance, such as those 
provided by conventional error rates, may be a relevant preliminary consideration in deciding 
whether a particular type of evidence, or a particular expert in a particular field of specializa
tion, should be admitted and heard. However, a case-specific consideration of accuracy is still 

Table 2. Probability table associated with node E in the model shown in Fig. 1a.

Proposition H

Expert output E H1 H2

E1 m p
E2 n q
E3 1 − m− n 1 − p− q

10 This is to be distinguished from precision, which refers to the spread of repeated measurements of 
some quantity.

11 Note that we are talking about the probability of accuracy here because, while Ei is known, Hj is not, thus intro
ducing uncertainty about the accuracy status of Ei.
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required when deciding whether or not to rely on the particular expert information for the situa
tion at hand. Section 2.3.3 explains how this task is handled by the model shown in Fig. 1a. In 
summary, accuracy in the aggregate case is a preliminary consideration, but not equivalent to 
the accuracy of expert output in the instant case. Our model discussed here considers only the 
latter type of accuracy.

2.3.3 Decision
The part of the model that deals with the problem of deciding reliance needs to be understood in 
the context of the four nodes E, D, H, and L, which are arranged in a converging connection 
with E, D, and H as parent variables of node L (see Fig. 1a). Central here is node D, a decision 
node, with two states, D1, relying on expert output, and D2, not relying on expert output. The 
bent dashed arc pointing from E to D is an informational link, indicating that E is known at the 
time a decision at node D is made.12 This accounts for the reality that there is nothing to decide 
about reliance as long as no expert output E is available. Note that in our model the decision is 
not whether to accept H1 or H2, as this would amount to a decision-theoretic account of hypoth
esis testing. Our analysis focuses solely on whether or not to rely on expert output regarding 
proposition H. That is, given the available information, reliance is about whether or not to ac
cept the inferential impact of the information on the relevant propositions at hand.

Generally speaking, making a decision leads to a particular consequence. A consequence is de
fined as the combination of a decision and a particular state of nature. Decision-making under 
uncertainty, as understood here, means that we do not know what the state of nature is when 
we make a decision, and therefore we do not know which decision consequence will be 
obtained. For example, when a fact finder concludes that a fingermark was left by a particular 
person, the fact finder does not actually know whether that conclusion is accurate or erroneous. 
However, the degree to which we believe one proposition to be true rather than another can be 
expressed in terms of probability and be taken into account. Note that the literature sometimes 
distinguishes between the concepts of risk and uncertainty. According to these accounts, risk 
refers to situations where the decision-maker is able to specify probabilities (or chances). In 
turn, those accounts use the notion of uncertainty for situations in which probabilities cannot be 
specified and are said to be unknown or unknowable. We do not make this distinction here be
cause probabilities are not a case of being knowable or not (de Finetti 1974; Lindley 1987). By 
definition, a probability is a measure of our (your, anybody’s) uncertainty about the truth or 
otherwise of a proposition of interest. The point is that people are more or less willing to articu
late their probabilities, and that there are situations in which the specification of probability is 
felt to be easier (e.g. the toss of a fair coin) than in others (e.g. the outcome of an election) 
(Lindley 1985). Thus, for the purposes of our analyses, decision-making is considered to be 
decision-making under uncertainty, with probabilities assumed to be ascertainable in 
principle.13

In our model, a decision about reliance is made given knowledge of the type of expert output 
Ei under consideration, together with expressions of (1) preferences among the possible conse
quences of reliance (and non-reliance) on that output and (2) uncertainty about the ground truth 
state H. In this framework, decisions thus lead to well-defined consequences. More formally, a 
decision consequence C is defined here as the combination of an expert output Ei, a ground truth 
state Hj and a decision Dk, denoted Cijk ¼ ðEi;Hj;DkÞ, for i¼ f1;2;3g and j;k¼ f1;2g. We do 
not model decision consequences explicitly here, using a separate node C.14 Instead, we model 
the decision-maker’s preferences among decision consequences directly, using a utility node L. 
For this discussion, we frame preferences between decision consequences in terms of 

12 As noted in Section 2.3, this is a major difference with respect to other models described in the literature, which 
focus on the decision whether or not to acquire (additional) information before making another decision. In our work, 
the situation is different: information is already available and the question (faced by the fact finder) is whether to rely 
on it.

13 As an aside, it should be noted that the reader is free to reject the specification of uncertainties in terms of proba
bilities. However, as we will show in later parts of this article (Section 2.4.1), such a position can severely compromise 
decision-making procedures.

14 See Biedermann et al. (2020) for an example of an explicit representation of decision consequences in terms of a 
distinct node C. It can be shown that omitting such a node C does not affect the result of the decision-theoretic compu
tations to determine optimal decisions.
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undesirability, using the concept of loss. Thus, we assign a loss Lð�Þ to each consequence 
Cijk ¼ ðEi;Hj;DkÞ. Structurally, this view is expressed by the arcs pointing from nodes E, D, and 
H to node L.

What remains to be done is to specify the loss function Lð�Þ. The specification of loss functions 
is an intricate topic. Arguments are needed to rationalize and justify particular loss functions. 
Start by considering what is called a 0− 1 non-negative loss function.15 This function assigns the 
loss value 0 to the best consequence(s), and the value 1 to the worst consequence(s). Using the 
value 0 for the most preferable consequence(s) expresses the idea that nothing is lost by obtain
ing the consequence of interest, as no better outcome could have been obtained. For our running 
example, we specify the following losses (see Table 3 for a summary):

� For findings E1 that assert support of H1 over H2: 
� LðE1;H1;D1Þ ¼ LðE1;H2;D2Þ ¼ 0: Reliance (D1) in the case of accurate output (i.e. E1 

and H1 hold), and non-reliance (D2) in the case of non-accurate output (i.e. E1 and H2 

hold), are the most desirable outcomes, and thus imply zero loss. 
� LðE1;H2;D1Þ ¼ ‘1 ¼ 1: Relying on inaccurately incriminating output represents the worst 

consequence. Therefore, we assign the loss value 1. 
� LðE1;H1;D2Þ ¼ ‘2, for 0<‘2≤1: Not relying (D2) on accurate output (i.e. E1 and H1 

hold) is suboptimal, hence requires us to assign a loss different from zero. The question is 
whether this consequence—the failure to rely on accurate output—is as undesirable as re
lying on inaccurately incriminating output, that is (E1;H2;D1). For shortness of notation, 
we will occasionally express the loss for (E1;H1;D2) as ‘2. 

� For findings E3 that assert support of H2 over H1: 
� LðE3;H2;D1Þ ¼ LðE3;H1;D2Þ ¼ 0: Analogous to the assignments above, we assign a loss 

of zero to reliance (D1) in the case of accurate output (i.e. E3 and H2 hold), and to non- 
reliance (D2) in the case of non-accurate output (i.e. E3 and H1 hold), because these are 
two desirable outcomes. 

� LðE3;H1;D1Þ ¼ ‘3, for 0<‘3≤1: Relying (D1) on inaccurately exculpatory expert output 
(i.e. E3 and H1 hold) is suboptimal, that is to some extent undesirable. The question is 
whether this is as undesirable as failing to rely on accurately exculpatory expert output, 
(E3;H2;D2), to which the loss value 1 is assigned. Again, for shortness of notation, we 
will designate the loss for (E3;H1;D1) by ‘3. 

� LðE3;H2;D2Þ ¼ ‘4 ¼ 1: Not relying (D2) on accurately exculpatory expert output (i.e. E3 

and H2 hold) is considered a highly undesirable result. This is analogous to relying on in
accurately incriminating output, defined above. A loss value of 1 is therefore assigned. 

� For findings E2 that do not assert support of one proposition over the other: Recall from 
Section 2.3.2 that output of type E2 cannot be accurate or inaccurate in the sense that E1 and 
E3 can be. Yet, the question the decision-maker needs to ask is how the two types of losses 
LðE2;Hj;D1Þ and LðE2;Hj;D2Þ, for j ¼ 1, 2, compare to one another. Recall that, ultimately, 
we do not alter our belief about H in the case of an output of type E2: if we decide D2, not to 
rely on E2, this means that we discard E2 altogether; if we decide D1, to rely on E2, we do 
not alter our beliefs either because E2 does not assert support for one proposition over the 
other.16 However, in our view, the latter course of action would represent a greater loss, be
cause we have the burden (or cost) of reliance on an item of information from which we de
rive no inferential guidance. So let LðE2;Hj;D1Þ>LðE2;Hj;D2Þ, j ¼ 1, 2. For the purpose of 
further analysis, we set LðE2;Hj;D2Þ ¼ 0 and LðE2;Hj;D1Þ ¼ γ, for 0< γ≤1 and j ¼ 1, 2. 

15 The 0 − 1 scale is often chosen because there are well-established procedures for eliciting value judgments with 
this scale (see e.g. Lindley 1985; von Winterfeldt and Edwards 1986).

16 Note that this requires us to assume, following the notation introduced in Section 2.3.1, that n ¼ q. This as
sumption may not exactly overlap with the empirical observation made in some areas of application, such as the exam
ination of striated marks on fired bullets, that so-called “inconclusive” conclusions have different rates of occurrence 
under the two possible ground truth states (e.g. Hofmann et al. 2020). It should be noted, however, that such data are, 
at best, informative but not prescriptive for probability assignment. See also Section 2.4.3 for further discussion.
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We reiterate that the loss values specified above can be broadly understood as expressions of 
regret related to the consequences of reliance decisions and the congruence between expert out
put and ground truth. We reiterate that they should not be confused with losses resulting from 
ultimate decisions, as ultimate decision-making may take into account other factors unrelated to 
belief in the facts of the situation at hand.

2.4 Analysis of model properties
The model described in Section 2.3 provides a static representation of the problem of reliance. The 
model clarifies the variables that are thought to capture the essential elements of the problem at 
hand, along with the relationships that are assumed to hold between the variables. Note that the 
presence of an arc between a pair of nodes, representing a direct influence of one variable on an
other, is as informative as the absence of an arc. For example, besides an informational link 
(Section 2.3.3), there is no straight, plain edge pointing from node E to node D. This means that 
expert output does not predicate or otherwise directly influence a decision about reliance.

However, this descriptive account does not tell us yet how to choose between the rival deci
sions D1 and D2, for any given type of expert output E. We need to look deeper into this formal 
framework to uncover its logical implications for deciding about reliance. In the next two sec
tions, we consider different decision criteria and examine their properties.

2.4.1 Deciding without probabilities?
While it is uncontroversial that we ought to rely on accurate expert output, this is usually easier 
said than done. We cannot know for sure whether expert output is accurate or not, so we cannot 
readily determine which decision, D1 or D2, will minimize actual loss. An exception, however, is 
the case of expert output E2, which affirms no support for one proposition over its alternative. 
As noted in Section 2.3.2, the notion of accuracy in the traditional sense is not applicable to 
such output. From the assigned loss function in Table 3, we can directly determine D2 as the de
cision that minimizes loss, as LðD2;E2Þ<LðD1;E2Þ, regardless of the ground truth state H. 
Thus, there is no decisional problem of reliance with output of type E2. In the remainder of this 
article, we will not consider this type of output any further.

For output of type E1 and E3, as mentioned in Section 2.3.2, accuracy depends on whether H1 

or H2 is true. Thus, by definition, in deciding whether to rely on these types of outputs, we inevi
tably need to deal with probabilities. Yet, many view probabilities with skepticism. Some might 
even claim that, in their decision-making, they dispense with probabilities altogether. This raises 
the question of whether it is reasonably possible to ignore the inevitability of probability and 
conceive of a decision criterion that does not involve probability.17 As we shall see, such a deter
ministic approach does not result in quality decision-making.

A well-known example of a probability-agnostic decision procedure is the minimax rule for 
individual decision-making. Minimax is a concept used more widely by game theorists to study 
situations where the decision-maker faces an active adversary. However, the problem of reliance 

Table 3. Loss matrix for the problem of reliance on expert output. For each combination of an expert output Ei, a 
ground truth state Hj, and a decision Dk, a loss value is assigned on a 0–1 scale.

Loss Output E

E1 E2 E3

Proposition H

H1 H2 H1 H2 H1 H2

Decision D D1 0 ‘1 ¼ 1 γ γ ‘3 0
D2 ‘2 0 0 0 0 ‘4 ¼ 1

17 See Biedermann et al. (2018) for a related discussion in the field of forensic identification.
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does not involve a game in the traditional sense of game theory. Instead, our hypothetical 
decision-maker faces possible states of nature that define the accuracy of expert output.

Applying the minimax rule to individual decision-making involves the following steps. For 
each course of action (decision), identify the worst consequence (i.e. the one with the highest 
loss). Then choose the decision that minimizes the maximum loss over the different states of na
ture. Let us see where this leads in our running example for outputs of type E1 and E3.

To begin our analysis, consider a special case of the loss function Lð�Þ, known as a symmetric 
loss function, by assigning ‘2 ¼ 1 and ‘3 ¼ 1. In words, this assignment means that, in the case 
of expert output E1, reliance D1 when H2 is true (i.e. the output is non-accurate) is taken to be 
as undesirable as non-reliance D2 when H1 is true (i.e. the output is accurate). Similarly, in the 
case of expert output E3, we assume that reliance D1 when H1 is true (i.e. the output is non- 
accurate) is as undesirable as non-reliance D2 when H2 is true (i.e. the output is accurate). See 
also Table 3 for a summary. With such a loss function, we immediately see that for each decision 
Df1;2g, and each type of expert output Ef1;3g, we have exactly one optimal outcome (with loss 
0), and one worst consequence (with loss 1). However, since the adverse consequence for both 
courses of action implies the same loss, here the maximum value 1, the minimax method does 
not help us in selecting one of the two rival decisions. In terms of the minimax criterion, the two 
rival courses of action appear equally suitable when a symmetric loss function is assumed.

Next, consider a more general and more realistic loss function with ‘2<1 and ‘3<1. Such a 
loss function is appropriate if we consider that adverse consequences of the two courses of ac
tion D1 and D2 are not equally undesirable. More specifically, for output E1, that is asserted 
support of H1 over H2, we consider that relying on inaccurate output is worse than not relying 
on accurate output: 

LðE1;H2;D1Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘1¼1

> LðE1;H1;D2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘2 <1

:

For output E3, that is asserted support for H2 over H1, we consider that not relying on accu
rate output is worse than relying on inaccurate output: 

LðE3;H2;D2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘4¼1

> LðE3;H1;D1Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘3 <1

:

With these loss assignments in mind, we can now apply the minimax procedure as follows:

� For expert output of type E1: If we decide D1, the worst that can happen is that H2 is true 
and, hence, the output is inaccurate, LðE1;H2;D1Þ ¼ 1. The worst that can happen under D2 

is not to rely on the output even though it is accurate, because H1 is true, LðE1;H1;D2Þ ¼ ‘2. 
Since ‘2<1, the minimax decision thus is D2. Stated otherwise, the loss incurred with D2, in 
the case of an adverse outcome, is smaller than the loss incurred with D1 in the case of an un
favorable outcome. 

� For expert output of type E3: If we decide D1, the worst that can happen is to rely on inaccu
rate output (i.e. H1 is true), LðE3;H1;D1Þ ¼ ‘3. If we decide D2, then the worst consequence 
is not to rely on accurate exculpatory output, LðE3;H2;D2Þ ¼ 1. Thus, for ‘3<1, the mini
max decision is to select D1, to rely on output E3. Stated otherwise, the loss incurred with 
D1, in the event of an adverse outcome, is smaller than with D2 in the event of an ad
verse outcome. 

Thus, under the chosen loss function, the minimax criterion tells us to always rely on the ex
pert output of type E3, and to never rely on the expert output of type E1. Clearly, this looks un
satisfactory and may be perceived as unbalanced because it amounts to selectively depriving 
ourselves of one type of expert output (E1), while systematically relying on another type of ex
pert output (E3). This would amount to systematically relying on information that asserts 
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support for one viewpoint (or party), and never relying on information that asserts support for 
the other. So, where lies the problem?

While the above result is due to the use of an asymmetric loss function, the problem does not 
lie in the choice of the actual numbers (assigned loss values). What is important is the ranking of 
the consequences. Specifically, for each type of expert output E1 and E3, the loss function defines 
two optimal consequences, a worst consequence and an intermediate (i.e. less than worst) 
consequence.

Rather, the problem lies in the minimax procedure, in particular the fact that it focuses solely 
on preferences among decision consequences. The driving consideration is the avoidance of 
maximum loss. By assuming that the worst will occur, the procedure advises to select the deci
sion with the smallest loss in the worst case. This is a paranoid attitude to decision-making, 
which is appropriate in cases where there is an opponent who is able to force the maximum loss 
for any decision but which may not be applicable in many of the practical situations involving 
the use of expert output.

Indeed, while avoiding excessive losses can be seen as a laudable goal, it is important to recog
nize that this goal comes at a price. The price is never to rely on a type of expert output, here E1, 
regardless of the probability of leading to an adverse outcome.18 This brings us back to the con
sideration of probability that is explicitly avoided in the minimax account. What we can see is 
that if we want to maintain the decision to rely on output E1, rather than systematically rejecting 
it in order to avoid any possibility of incurring maximum loss, we have to somehow accept the 
fact that incurring maximum loss is a possibility.19 The question, then, is how to conceive of a 
decision criterion that allows us to rationalize reliance (in case of E1), rather than non-reliance, 
despite the potential of reliance to lead to the worst consequence.20 We return to this topic in 
the next section.

2.4.2 Probabilistic decision criterion: Scoring rival decisions through expected loss
The conclusion at the end of the previous section highlights the observation that, at times, we 
make certain decisions, such as reliance, despite their potential to lead to maximum loss, pro
vided that the probability of a non-adverse outcome is (sufficiently) high. How high this proba
bility ought to be in order to warrant a particular decision thus becomes a key question. In the 
remainder of this section, we will elaborate on this point by focusing only on the expert output 
of type E1, although the logic of the analysis applies equally to the other expert outputs.21

Recall that the “problem” of deciding between reliance, D1, and non-reliance, D2, is due to 
the fact that the ground truth (variable H) is not known, and therefore the accuracy status of the 
expert output is affected by uncertainty. Indeed, if we knew whether the expert output E1 was 
accurate, we would know that decision D1 would lead to the best consequence. Conversely, if 
we knew that E1 was not accurate, we would know that D2, not to rely on the expert output, 
was the best decision. In other words, in situations of certainty about the relevant state of nature 
(variable H), we could minimize the actual loss.

However, this is not possible in cases of decision-making under uncertainty. When there is un
certainty as to whether H1 or H2 is true, and hence doubt as to the accuracy of expert output, 
the decision-maker can, at best, consider the expectation of loss, denoted EL here. More for
mally, the expected loss is the sum of the actual losses associated with a given decision (i.e. the 
decision consequences), weighted by their respective probabilities of occurrence. For example, 
to obtain the expected loss for decision D1 in the case of expert output E1, we need to (1) multi
ply the loss associated with D1 if H1 is true, LðE1;H1;D1Þ, by the probability of H1, (2) multiply 
the loss associated with D1 if H2 is true, LðE1;H2;D1Þ, by the probability of H2, and (3) add the 

18 Similarly, in the context of forensic inference of source, the minimax criterion leads to the advice to never iden
tify if the adverse outcome of identification, that is a false identification, is considered to be worse than the adverse out
come of not identifying (a person or object as the source of a given trace or mark), that is a missed identification 
(Biedermann and Vuille 2018b; Biedermann et al. 2018).

19 Note that this is common in many activities of daily life. We engage in certain activities, such as modes of travel, 
despite their potential for highly adverse consequences.

20 Similarly, in the case of expert output of type E3, we may wish not to rely on the expert output despite the poten
tial of this decision to lead to a maximum loss.

21 See Appendix 1 for comments on the expert output of type E3.
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two products resulting from steps (1) and (2). The general formula, for any decision Dk and type 
of expert output Ei is: 

ELðDkjEiÞ ¼
X

j

LðEi;Hj;DkÞ×PrðHjjEiÞ; i ¼ f1; 2; 3g; j;k ¼ f1; 2g: (1) 

Recall from the loss function defined in Table 3 that LðE1;H1;D1Þ ¼ 0 and LðE1;H2;D1Þ ¼ 1, 
hence Equation (1) for decision D1 and expert output E1 reduces to: 

ELðD1jE1Þ ¼ PrðH2jE1Þ:

Thus, the expected loss of the reliance decision D1 is equal to the probability that proposition 
H2 is true, that is the probability that expert output E1 is inaccurate. This is a fairly intuitive 
property: the expected loss of the decision to rely on expert output E1 is a function of the proba
bility that the ground truth state asserted by the expert output is true. More explicitly, the higher 
the probability of H1 given E1, the smaller the expected loss of relying on expert output E1. This 
is because PrðH2jE1Þ ¼ 1− PrðH1jE1Þ.

Proceeding analogously for the decision D2, nonreliance, Equation (1) in the case of expert 
output E1 allows us to find: 

ELðD2jE1Þ ¼ LðE1;H1;D2Þ× PrðH1jE1Þ

¼ ‘2 ×PrðH1jE1Þ:

In a sense, the expected loss ELðDkjE1Þ of a decision can be thought of as a measure of what 
to expect in terms of loss when making decision Dk, given knowledge of E1. We insist that this is 
a case-based assessment. In particular, we make no claim about the average loss of making deci
sions of type Dk in a series of unrelated cases involving distinct expert outputs of type E1.22

The question remains as to how the notion of EL can help in decision-making about reliance 
on expert output Ei. The point is that the notion of EL provides a criterion that allows us to 
compare rival decisions about reliance in order to guide decision-making about reasonable reli
ance. Being able to compare rival decisions allows us to rank them: the decision-maker can con
sider whether reliance is, so to speak, “better” than nonreliance, in terms of expected loss.23

From a decision-theoretic perspective, the criterion for making the reliance decision is based 
on the smallest expected loss. Thus, to inquire about the conditions under which decision D1, in 
the case of expert output E1, is preferable to decision D2 means to inquire about the following 
relationship between the expected loss of decisions D1 and D2: 

ELðD1jE1Þ<ELðD2jE1Þ: (2) 

To examine this expression, we start by considering—as in Section 2.4.1—a symmetric loss 
function with ‘2 ¼ 1. This particular loss assignment means that we consider the consequences 
LðE1;H2;D1Þ, reliance in the case of nonaccurate output, and LðE1;H1;D2Þ, non-reliance in the 
case of accurate output, to be equally undesirable (see also Table 3). Under this assumption, 
Expression (2) says that decision D1 has the smaller expected loss than (and is therefore prefera
ble to) decision D2 if the posterior probability of the first proposition, PrðH1jE1Þ, is greater than 

22 Claims about the performance of a decision rule over many cases are essentially unwarranted because it is not 
known what the respective proportions of ground truth are in the two relevant categories. See also Dekay (1996) for a 
general discussion of this observation in the context of standards of proof and legal verdicts.

23 This formulation bears resemblance to arguments previously formulated, such as Judge Learned Hand’s well- 
known calculus of negligence: 
23 Since there are occasions when every vessel will break from her moorings, and since, if she does, she becomes a 

menace to those about her; the owner’s duty, as in other similar situations, to provide against resulting injuries is a 
function of three variables: (1) The probability that she will break away; (2) the gravity of the resulting injury, if she 
does; (3) the burden of adequate precautions. Possibly it serves to bring this notion into relief to state it in algebraic 
terms: if the probability be called P; the injury, L; and the burden, B; liability depends upon whether B is less than L 
multiplied by P: that is whether B < PL. 

23 United States v Carroll Towing Co., 159 F.2d 169, 173 (2d Cir.1947).
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the posterior probability of the alternative proposition, PrðH2jE1Þ. However, since the variable 
H is binary, the decision criterion, Expression (2), comes down to inquiring whether the proba
bility PrðH1jE1Þ is greater than 0.5.24

The result of our analysis here makes perfect sense because if the probability that the expert 
output E1 is accurate (i.e. H1 is true) is greater than the probability that E1 is not accurate (i.e. 
H2 is true), the assumption of a symmetric loss function implies that the decision D1 offers the 
smaller probability of incurring an undesirable outcome than D2. More generally, the greater 
the probability PrðH1jE1Þ, the more advantageous it becomes to decide D1 rather than D2. 
Stated otherwise, deciding D2, not to rely on expert output, would be suboptimal as it would 
have a higher probability for an undesirable outcome, than deciding D1. Note that this is a first 
advantage over the minimax procedure described in Section 2.4.1, which cannot provide guid
ance in the case of a symmetric loss function.

Nevertheless, the result of our analysis is rather unspectacular. The above result comes down 
to the recommendation that, when faced with two courses of reliance, where the best outcomes 
are as desirable as the worst outcomes are undesirable, we should make the decision of reliance 
based on the greater (smaller) probability of obtaining a desirable (undesirable) outcome. 
Intuitively, we already use this rationale in our daily lives.25

But what if the assumption of a symmetric loss function is considered unsuitable, that is the 
adverse outcomes of D1 and D2 cannot be taken to be equally undesirable? Indeed, more realisti
cally, we might want to consider the adverse outcome of relying on expert output E1, conse
quence ðE1;H2;D1Þ, to be worse than the adverse outcome of deciding not to rely on E1, 
consequence ðE1;H1;D2Þ. Specifically, where E1 is an expert’s report on a fingermark compari
son in criminal litigation, consequence ðE1;H2;D1Þ means erroneously leaning toward associat
ing a POI with a fingermark that in fact comes from an unknown person. This outcome can 
reasonably be considered worse than consequence ðE1;H1;D2Þ, failing to rely on information 
that correctly tends to associate the POI with the fingermark. In our notation, such a preference 
structure is written as 

LðE1;H2;D1Þ>LðE1;H1;D2Þ;

and amounts to an asymmetric loss function. Given such a loss function, we can ask under what 
conditions the decision D1, to rely on E1, is preferable to the decision D2, not to rely on E1. 
That is, we want to investigate the relationship between the expected loss of decisions D1 and 
D2, respectively, as defined by Expression (2). Let us write the expressions for the EL in full de
tail, invoking Equation (1), and assigning zero loss to the desirable decision consequences 
ðE1;H1;D1Þ and ðE1;H2;D2Þ, and then rearrange the terms: 

LðE1;H2;D1Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘1

× PrðH2jE1Þ< LðE1;H1;D2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘2

× PrðH1jE1Þ

PrðH2jE1Þ=PrðH1jE1Þ<‘2=‘1

PrðH1jE1Þ=PrðH2jE1Þ>‘1=‘2 ð3Þ

Expression (3) states that in the case of expert output E1, the expected loss of decision D1, re
liance on E1, is smaller than the expected loss of decision D2, non-reliance on E1, whenever the 
odds in favor of proposition H1 over H2, given expert output E1, exceed the ratio of losses asso
ciated with adverse consequences of decisions D1 and D2, respectively.26

Expression (3) is well suited to help examine the argumentative implications of assuming 
an asymmetric loss function, ‘1 6¼ ‘2. In particular, we can now see that the more the losses ‘1 

24 Readers familiar with applications of decision theory in the law, following Kaplan (1968), will immediately rec
ognize the analogy between this result and the decision-theoretic account of the preponderance of the evidence stan
dard in civil cases. For a detailed exposition of this well-known result, see also Kaye (1999).

25 It suffices to think of examples involving matters of life and death.
26 This result is also known in the literature on probabilistic machine learning (e.g. Murphy 2012). For a discussion 

of the analogy between this result and Archimedes’ law of lever, see Biedermann et al. (2016, 2020).
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and ‘2 differ, the higher the required odds in favor of H1 over H2 in order to satisfy 
Expression (2).27 Stated otherwise, Expression (3) asks us to compare—or so-to-say “weigh”— 
relative beliefs against relative losses (of adverse decision consequences).

Let us look at some numbers to get a feel for this relationship. Let us start with a short digres
sion back to a symmetric loss function, assuming ‘1 ¼ ‘2. We can immediately see from 
Expression (3) that the required odds in favor of H1 over H2 must be greater than evens. This is 
in agreement with the result PrðH1jE1Þ>0:5 found in the above discussion of Expression (2) 
and the condition under which D1 is the optimal decision when assuming a symmetric loss func
tion. Figure 2a provides a graphical illustration of this result: the lines representing the expected 
loss of decisions D1 (solid line) and D2 (dashed line) intersect at PrðH1jE1Þ ¼ 0:5 (vertical dotted 
line).28 That is, for PrðH1jE1Þ<0:5, decision D2 has the smaller expected loss, whereas for 
PrðH1jE1Þ>0:5, decision D1 has the smaller expected loss. As an example, consider a case where 
PrðH1jE1Þ ¼ 0:4, highlighted in Fig. 2a with a vertical dotted line: here, ELðD1jE1Þ ¼ 0:6 and 
ELðD2jE1Þ ¼ 0:4, so D2 is the decision that minimizes the expected loss.

Now suppose that ‘1 is not equal to ‘2, but greater, say ten (a hundred, a thousand, etc.) times 
greater. This means that reliance on nonaccurate output is taken to be worse than nonreliance 
on accurate output. A common proxy to investigate this assumption is Blackstone’s formulation: 
“It is better that ten guilty persons escape than that one innocent suffer” (Blackstone 1769: 
352). We call this a proxy here because Blackstone’s formulation tends to refer to error rates 
across multiple cases (Dekay 1996; Kaye 1999) and also to ultimate decision-making about 
guilt, whereas our focus here is on the relative losses involved in reliance decisions and the rela
tionship of one person with a particular crime scene artifact.29

Following this line of reasoning, suppose that ‘1 is 10 times greater than ‘2, that is the loss ra
tio is ‘1=‘2 ¼ 1=0:1¼ 10. Expression (3) now states that D1 is optimal, that is has a smaller 
expected loss than decision D2, for odds PrðH1jE1Þ=PrðH2jE1Þ>10. This is equivalent to requir
ing that PrðH1jE1Þ is greater than 10=11¼ 0:91 (rounded result). Figure 2a shows this result 
graphically: the lines representing the expected loss of decisions D1 and D2 intersect at 0.91.30

The same result is shown in Fig. 2b. More generally, Fig. 2b shows the minimum probability 
PrðH1jE1Þ required for decision D1 to have the smaller expected loss than decision D2, as a func
tion of the loss ratio ‘1=‘2. As can be seen, for loss ratios of the order of one hundred and above, 
the threshold probability tends to 1 to an extent that in practice becomes increasingly difficult to 
conceptualize and articulate in entirely nonnumerical terms. This does not render this result use
less. Quite to the contrary, it retains its practical relevance. While we can easily think of loss ra
tios in terms of orders of magnitude (e.g. tens, hundreds, etc.), the guidance for practical 
thinking can be expressed in the following terms: “The larger your ratio of losses associated 
with adverse decision consequences, the more certain you should be that H1 is true rather than 
H2, given E1, for D1 to be the better decision than D2.” Furthermore, our analysis shows how 
reliance decisions can reveal the nature of the loss functions themselves. This allows decisions of 
reliance to expose the extent to which other factors may govern the ultimate decision-making as 
well as to compare reliance decisions over multiple decisions.

However, it would go beyond the scope of our analysis if we interpret our decision-theoretic 
result in a prescriptive way (Biedermann et al. 2020), not least because our development is based 
on a model that captures only some but not all dimensions of the decision problem at hand. 
Nevertheless, the aspects we do cover—such as accuracy31 and (un-)desirability of decision 

27 Again, this is not a new finding for legal scholars. See, for example, the discussion in Friedman (2018: 1590): 
“Suppose that Option One has far worse consequences if wrong than does Option Two. Then a sensible decision- 
maker will choose Option One rather than Option Two only if she has a high degree of confidence that Option One 
rather than Option Two is correct, or, put another way, only if she thinks Option One is far more probable than 
Option Two.”

28 Note that ELðD2jE1Þ ¼ PrðH1jE1Þ because ‘2 is set to 1.
29 So, to be clear, what we mean here is the idea that reliance on nonaccurate output E1 is more serious, and there

fore more undesirable than nonreliance on accurate output E1. Blackstone’s dictum is merely a device to help us think 
about and articulate orders of magnitude of relative loss in the individual case.

30 Conversely, if we consider that reliance on inaccurate output is less undesirable than nonreliance on accurate in
formation, then the lower the requirement of PrðH1jE1Þ for reliance. This includes cases where the probability 
PrðH1jE1Þ is actually smaller than the probability PrðH2jE1Þ, that is when PrðH1jE1Þ<0:5.

31 Note that, as mentioned in Section 2.3.2, we define accuracy as the congruence between the expert output and 
ground truth.
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consequences—are fundamental. Furthermore, Fig. 1a represents the relationships between the 
different variables in a way that corresponds to our understanding of the decision problem at 
hand. For example, the converging connection at node L represents our understanding that we 
are focused on the relative value of decision consequences, given an observed value for E and dif
ferent possible ground truth states H.

Our development, based on expected loss, thus provides one way of quantifying the 
“goodness” of a decision, taking into account a selected number of variables (Biedermann et al. 
2018). We recognize and accept that, beyond the limited number of aspects covered by our for
mal development, there may be yet other considerations that govern practical decision-making. 
What we emphasize here is that for decision-makers who are concerned about the losses associ
ated with uncertain decision consequences, there is a way of formally expressing relevant consid
erations in terms of “weighing” the losses associated with adverse decision consequences against 
the probability of their occurrence.

2.4.3 Probabilities for competing propositions
Our analysis so far shows that a decision to rely on expert output depends critically on our degree 
of belief in the truth state of the main proposition H. The degree of belief we have in the truth or 
otherwise of H is conditioned on the type of expert output (i.e. state of the variable E). More gen
erally, as noted in Section 2.3.1, the degree of belief that we have in the truth or falsity of H is 
based on the totality of our knowledge and information available at the time that a decision about 
reliance needs to be made. However, in our account, we have been rather agnostic about particular 
values for these probabilities. Rather, we have made general statements about the constraints on 
the orders of magnitude of beliefs compared to the relative losses of adverse outcomes, in order to 
warrant particular decisions. Below we explore some further technicalities.

Recall the graphical specification of our model (Fig. 1a). The graphical structure implies two 
aspects that are essential for the probabilities of target propositions. The first is the temporal or
dering between the node E, representing the expert output, and the decision node D. As noted in 
Section 2.3.3, this ordering reflects the understanding that some expert output E must be avail
able prior to a decision at node D.32 The second aspect concerns the relationship between the 
variables E and H, since expert output E is information that is potentially33 pertinent to the vari
able H. Thus, since a decision analysis requires some expert output E as a starting point, the 
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Figure 2. (a) Expected loss of decisions D1 (relying on expert output E1; solid line) and D2 (nonreliance; dashed line) 
as a function of PrðH1jE1Þ using a 0− 1f�g loss function with l1¼1 (loss of relying on inaccurate output E1) and 
l2 ¼ f0:1;0:25;0:5;0:75;1g (loss of nonreliance on accurate output E1). The bold line highlights the optimal decision, 
as a function of PrðH1jE1Þ, for a case in which ‘1 is twice as great as ‘2. (b) Minimum probability PrðH1jE1Þ

necessary for the expected loss of decision D1 to be smaller than the expected loss of decision D2, as a function of 
the loss ratio ‘1=‘2. The gray-shaded area shows pairs of values for the loss ratio and probability PrðH1jE1Þ for which 
D1 minimizes expected loss.

32 Thus, the question here is not whether or not to acquire evidence E. Rather, evidence E is available and the ques
tion is whether or not to rely on it.

33 Note that whether or not E is pertinent to H depends on the conditional probabilities assigned in the node table 
of E.
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model structure implies that the probability of H, which is used in the computation of expected 
loss, is conditioned on E, that is PrðHjEÞ. This amounts to a subtle point in hypothetical reason
ing: when we make a decision about whether to rely on some expert output E, we should do so 
in the light of our degree of belief in the proposition H conditioned on the expert output under 
consideration. This may seem circular, but it is needed in order to properly compute expected 
loss. After all, in order to properly score rival decisions regarding reliance, the computations of 
expected loss of these rival decisions are necessarily based on what our beliefs would be if we 
took into account the expert output at hand.

The question that remains is how to arrive at PrðHjEÞ. Conceptually, assigning a value to 
PrðHjEÞ is itself a decision, and the constraints on that decision can be stated in decision- 
theoretic terms, using notions such as scoring rules, originally developed in the context of 
evaluating and comparing the performance of forecasters (Brier 1950).34 From a Bayesian 
epistemological point of view, PrðHjEÞ is the result of probabilistic belief updating based on a 
partially reliable source of information (e.g. Bovens and Hartmann 2003). In practice, 
most, if not all, sources of information are only partially reliable to some extent. That is, the 
information—here expert output E—occurs not only when a given proposition of interest is 
true, but also when that proposition is not true. A fully reliable source of information would, 
among other characteristics, never provide output that asserts support for a proposition that is 
not true, or in other words, has a false-positive rate of zero. In practice, this is almost never the 
case. We will therefore use less hypothetical values.

Recall the notation introduced in Section 2.3.1 for PrðEijH1Þ and PrðEijH2Þ, for i¼f1, 2, 3g
(Table 2). Considering expert output E1, asserted support for H1 over H2, to be informative be
yond what is already supported by I means to assume the following: 

m> p> 0:

Thus, the value of information of E1 with respect to H1 and H2 is the likelihood ratio m/p, 
and takes values greater than 1.35 We do not consider cases where m< p, because this would 
mean to take the expert output E1, asserted support H1 over H2, as weakening our preexisting 
belief in H1. To make this clearer, this would be equivalent to a case where a weather forecast
er’s announcement of rain would make us less persuaded of rain, even when we think that it 
would rain based on what we can see from the window.

For the remainder of this section, our discussion will focus only on expert output of type E1. 
Readers interested in evaluating the expert output of type E2 will need to assign values to n and 
q. The remaining probabilities, PrðE3jH1Þ and PrðE3jH2Þ, which characterize the probative value 
of expert output of type E3, are set once we define values for m and p, and n and q, respectively 
(see also Table 2).

To arrive at PrðHjEÞ, we disentangle the probative value of E from the initial belief statement 
about H by rewriting the left-hand side of Expression (3), using E1 as a running example: 

½PrðE1jH1Þ=PrðE1jH2Þ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood ratio ðm=pÞ

× ½PrðH1Þ=PrðH2Þ�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

prior odds

: (4) 

The term on the left is the likelihood ratio of E1 with respect to H1 and H2. The term on the 
right is the (prior) odds of H1 against H2. Expression (4) says that whatever our odds on H1 ver
sus H2, learning that evidence E1 is available will multiply those odds by the factor given by the 
likelihood ratio.

It is important at this point to include some comments about the likelihood ratio m/p. The ra
tio m/p is the value that the decision-maker assigns to expert output E1, indicative of the impor
tance of E1 to the overall decision-making if E1 were to be relied upon. This ratio m/p must be 

34 See Biedermann et al. (2013, 2017) for discussions of the use of scoring rules for probability assignment in foren
sic science.

35 Note that the model considered here is flexible enough to allow a decision maker to directly adopt a reported 
likelihood ratio if the expert output E1 is provided in such a format.
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distinguished from any statement about the probability of H1 and H2, including likelihood ra
tios, reported by the expert. Recall that, following the definition given in Section 2.3.1, expert 
output E1 can refer to either a likelihood ratio with respect to H1 and H2, or a direct and cate
gorical assertion regarding the truth or falsity of H1. Conversely, the likelihoods m and p refer 
to the occurrence of a report of type E1 given H1 and H2, respectively, regardless of the actual 
strength of support asserted by E1. This means that even if an expert reports that the findings 
support H1 over H2 in terms of a likelihood ratio of, say, a million, or makes a categorical asser
tion that the POI is the source of a given fingermark, the decision about reliance requires asking 
“what is the probability that this expert would assert E1 in this particular case if Hf1;2g were 
true?”. This can barely lead to a likelihood ratio of a million or more as this would require the 
assumption that, for example, the sensitivity m is 1 and the probability of a false-positive report 
p is as small as one in a million.36 Few if any forensic disciplines or individual scientists can pro
vide empirical support for such figures.37

However, even if we had such relevant data, it would still not be sufficient to obtain values 
for m and p. The reason for this is that data from accuracy or validation studies only provide in
formation about the examiner’s diagnostic performance in the aggregate case, which should not 
be confused with, and is not informative about, the selectivity of the features actually observed 
in the case at hand. By definition, a rate, proportion, or relative frequency of cases (outcomes) of 
a certain type is not equivalent—though related—to the probability of a single event (Lindley 
2006), a distinction that is often misunderstood in the forensic science literature.38 For decisions 
of reliance in routine situations, where consequences are minor, we may equate m and p with 
relative frequencies. For more serious decisions, such as those involving forensic science, the use 
of m and p from standard validation studies is at best a crude proxy that may need to be ad
justed according to the circumstances of the particular case.

Notwithstanding these intricacies, data from accuracy or validation studies, including in par
ticular proficiency testing of examiners, provide a relevant starting point for decision-makers. 
They can use it to provide an anchor, as argued by Koehler (2008). Champod et al. (2020) pro
vide an illustrative example of how proficiency test data can be obtained at the individual exam
iner level and used to pragmatically assess the trustworthiness of a fingerprint examiner. 
However, when using data from validation studies, it is recommended to ensure that the data 
collected relate to test items and experimental conditions that reflect casework conditions, for 
example, in terms of the level of difficulty imposed by the quality of the items submitted for ex
amination (i.e. degradation, pollution, etc.). Imwinkelried has referred to this as “the general no
tion of range of validation” (Imwinkelried 2020). For a similar viewpoint in the context of 
forensic voice comparison and the results of likelihood ratio computation procedures, see also 
Morrison et al. (2021).

However, one type of data (source) alone cannot fully resolve the assessment of expert or 
method performance. There are a number of ways in which relevant information can be 
obtained. For example, in the field of proficiency testing, at least two types of tests should be dis
tinguished (Koehler 2017). One, more general, focuses on the ability of examiners to follow 
standard examination procedures. The other, more focused on operational aspects, is concerned 
with performance under varying casework conditions. Another dimension that decision-makers 
should consider is whether or not the testing was conducted in a blind manner (Mejia et al. 
2020). The purpose of blind testing is to prevent examiners from approaching proficiency testing 
in a different, potentially more cautious or prudent, manner than they would approach regular 
casework, thereby compromising the validity of the resulting data. More generally, since all 

36 See Thompson et al. (2003) for a general likelihood ratio development that includes a probability for the event 
of a falsely positive expert conclusion, applicable to the evaluation of results of comparative forensic examinations 
(e.g. comparison of DNA profiles). This development makes a logical distinction between an actual correspondence be
tween analytical features, on the one hand, and a correspondence between compared features as reported by a scientist, 
on the other. The former takes into account the rarity of the features in the relevant population, whereas the latter 
takes into account the probability of (human) error. See also Section 2.5 for further discussion and Aitken et al. (2020, 
section 6.1.8.4) for an overview of the impact of the potential for error on the value of evidence.

37 See, for example, the PCAST Report (PCAST 2016) for a review of pre-2016 studies on the performance of fin
gerprint examiners.

38 For discussions, see, for example, Taroni et al. (2016) and Biedermann and Vuille (2018a).
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currently available data are imperfect in some way, it is recommended that data be used 
with caution.

It is worth noting that our model is not prescriptive about the data to be used to inform prob
abilities, nor about the methods of assigning probabilities. Furthermore, the model is flexible in 
the sense that it allows, but does not require, for example, a reported likelihood ratio, expert 
output E1, to be equated with the decision-maker’s likelihood ratio m/p. However, this can be 
problematic, especially when the reported likelihood ratios are in the billions, trillions, and be
yond. Indeed, what many such likelihood ratios take into account is only the assessed rarity of 
occurrence of analytical traits. However, the target is not the abstract occurrence of analytical 
traits in examined items, but the real-world event of a process which has at its core an expert (or 
machine) providing particular output.39 This again emphasizes the importance of information 
about the performance of the individual examiner and/or method in case-relevant circumstances, 
as noted above.

We now return to Expression (4). Readers may find the combination of m/p with prior odds 
by multiplication, followed by a comparison with the loss ratio ‘1=‘2, defined by Expression (3), 
difficult to digest. However, it is possible to make the combination of evidential value (m/p) and 
prior beliefs, and the subsequent comparison with losses, more intuitive by using the logarithm 
(Good, 1950). We therefore rewrite Expression (3), replacing the left-hand side with Expression 
(4), to obtain: 

log 10
m
p

� �

þ log 10
PrðH1Þ

PrðH2Þ

� �

> log 10
‘1

‘2

� �

: (5) 

The log 10 transformation makes the combination of likelihood ratios and odds additive. 
Readers may notice that working with the logarithm introduces symmetry. For example, the 
odds of H1 versus H2 of 10 (to 1), that is a log 10 of 1, correspond to a segment on a number line 
between 0 and 1. Conversely, odds on H2 against H1 of 10 (to 1), that is a log 10 of –1, corre
spond to a segment on a number line of the same length, but going from –1 to 0.

The reformulated decision criterion in Expression (5) states that the decision-maker ought to 
compare the entirety of evidence available at the time a decision needs to be made—expert out
put E1 combined with any previous knowledge and data—with the magnitude of the ratio of 
losses associated with adverse decision consequences. Table 4 provides a few examples. Suppose 
the decision-maker receives expert output E1 to which he assigns a likelihood ratio of 1000, that 
is a log 10 of 3. Suppose further that the prior odds are even ð1 : 1Þ, corresponding to a log 10 of 
0. The combination of likelihood ratio and prior odds in terms of their log 10 gives 1000, that is 
a log 10 of 3. This is the limiting value that, according to Expression (5), the ratio of losses ‘1=‘2 

must not exceed for decision D1 (reliance on expert output E1) to be preferable to decision D2 

(not relying on expert output E1). For log 10 prior odds other than zero, for example, 
− 2; − 1;1;2, the limiting loss ratio changes accordingly (see Table 4).

As noted previously, we are not asking the reader to pin down specific numbers but to think 
in terms of general orders of magnitude. The broader conclusion here is that if ‘1, the loss of the 
adverse outcome of reliance, is, say, x times greater than ‘2, the loss of the adverse outcome of 
non-reliance, then coherence requires that we ought to be at least x times more certain that H1 is 
true than H2, given the entirety of available knowledge and data, including expert output E1.

To some extent, this finding runs counter to common understandings in debates about expert 
evidence. Mainstream arguments regarding reliance are often narrowly framed in terms of ag
gregate performance measures, such as rates of false positives and false negatives in suitably 
designed40 validation studies, which ought to be satisfied. However, there is no agreed, specific 
performance characteristic or threshold that must be met for a particular expert output to be 
considered reliable. This is rather unsurprising, since attempting to define a generic criterion for 
reliance on expert output would mean to dissociate expert evidence from the instant case, and 

39 As Zabell concisely noted, “the siren-like attraction of astronomically small probabilities can often blind one to 
their practical limits. In the end the value of forensic or any other type evidence is totally dependent on the reliability 
and validity of the process by which it is generated” (Zabell 2012).

40 A suitably designed study is one that reflects the conditions of the case under consideration.
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thus from considerations of the inconvenience of adverse consequences of reliance in the instant 
case. Our account avoids this impasse by embedding probative value in a coherent weighing pro
cedure along with two other essential ingredients: prior information and relative losses associ
ated with the decisions of reliance and nonreliance on expert output.

Figure 3 provides a graphical illustration. It shows plots of examples of likelihood ratio values 
m=p¼ f1;10;100;1000;10000g that indicate the prior probability PrðH1Þ that must be 
exceeded in order to result—when combined with expert output E1—in posterior odds that ex
ceed the loss ratio ‘1=‘2 and thus make decision D1 (reliance on expert output E1) preferable to 
decision D2 (not relying on E1), in the sense defined by Expression (3). For example, suppose the 
decision-maker’s loss ratio ‘1=‘2 is 104 and there is expert output E1 to which a likelihood ratio 
m/p of 103 is assigned. In such a case, decision D1, that is relying on expert output E1, is optimal 
only if the prior probability PrðH1Þ is greater than 0.91, that is the prior odds PrðH1Þ=PrðH2Þ

are greater than 10 : 1. If the decision-maker’s prior probability is lower, then decision D1 is 
preferable to D2—that is optimal in the sense of Expression (3)—only if the loss ratio is lowered 
accordingly. Conversely, if the assigned likelihood ratio m/p is 104 a prior probability greater 
than 0.5 is sufficient to ensure that D1 is the optimal decision. Figure 3 illustrates these two cases 
with the horizontal dashed lines at 0.91 and 0.5, respectively.

Note that this account does not exclude the limiting case of reliance on expert output E1 to 
which the decision-maker assigns no value, that is a likelihood ratio m/p of 1. This is expert out
put for which we take the sensitivity to be equal to the probability of a false positive. In other 
words, the decision-maker does not consider the expert output to add any value over and above 
the other evidence already considered. In such a case, the prior PrðH1Þ is unaffected by the ex
pert output and Expression (3) amounts to a direct comparison of the prior odds against the loss 
ratio ‘1=‘2. Figure 3 illustrates this for a case where the loss ratio is 10 (vertical dashed line). 
Here, prior odds greater than 10 : 1, that is PrðH1Þ>0:91, are required for decision D1 to be 
preferable to decision D2. It may seem strange that D1 can be optimal at all, even though E1 

appears to be considered uninformative.
There are two ways to rationalize this. First, it is important to remember that the comparison 

of rival decisions in terms of Expression (3) is based on a loss function for outcomes defined in 
terms of the variable H and the type of expert output E. However, the procedure is flexible re
garding the decision-maker’s assigned likelihood ratio m/p. Stated otherwise, while the question 
of whether or not to rely on a given output E1 is a function of the ground truth H, there is noth
ing in the procedure that prevents the decision-maker from considering the output to have no 
probative value. Second, and related to the previous point, the probability of H1, that is the 
proposition toward which the expert output tends, may already be sufficiently high (e.g. 
PrðH1Þ ¼ 0:91 as noted above) based on other available evidence, thus warranting decision D1 

even though the specific expert’s output is assigned no value. In such a case, reliance D1 would 
mean to acknowledge the direction of inference conveyed by the expert even though we consider 
the expert in fact adds no information to what is already known. Incidentally, this is what distin
guishes ðm=pÞ ¼ 1 assigned to the assertive expert output E1 from the expert output E2 which 
asserts no support for one proposition over the other.

Table 4. Limits that the ratio of losses ‘1=‘2 must not exceed in order for expert output E1 (i.e. asserted support for 
H1 over H2), in the form of a likelihood ratio m/n of 103, combined with exemplary prior odds (PO, for H1 over H2), to 
make decision D1 (reliance on expert output E1) preferable to decision D2 (not relying on expert output E1).

m/n; log 10ðm=nÞ PO log 10ðPOÞ Limiting value ‘1=‘2 log 10ð‘1=‘2Þ

1000; 3 1:100 –2 10 1
1:10 –1 100 2
1:1 0 1,000 3

10:1 1 10,000 4
100:1 2 100,000 5
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2.4.4 Illustration by means of an influence diagram
Consider the results presented in the previous sections in the form of an influence diagram, as 
shown in Fig. 4. This influence diagram has been created in Python using aGrUM/pyAgrum (ver
sion 0.20.2).41 The model has the structure shown in Fig. 1a, although the positions of nodes E 
and H—as automatically arranged by the program—are slightly different. The influence dia
gram here shows a situation where expert output of type E1 is available. This is conveyed by set
ting the state of node E to E1. The node H shows posterior probabilities PrðH1jE1Þ and 
PrðH2jE1Þ of 0.818 and 0.182, respectively, obtained by updating a uniform prior42 with a 

1 10 100 1000 10000

1 2

P
r(H

1)

0.00

0.20

0.40

0.50

0.60

0.80

0.91
1.00

m/p=1 m/p=10 m/p=100 m/p=1000

m/p=10000

Figure 3. Plot of curves representing examples of likelihood ratio values m/p for expert output E1, indicating the 
prior probability PrðH1Þ (y-axis) that must be exceeded in order for the posterior odds PrðH1jE1Þ=PrðH2jE1Þ to be 
greater than the loss ratio ‘1=‘2 (x-axis) according to Expression (3), making decision D1 preferable to decision D2. 
The dashed lines highlight specific cases discussed in the text.

mEL 0.082

L : 0.082

Figure 4. Illustration of the influence diagram shown in Fig. 1a, constructed in Python using aGrUM/pyAgrum 
(version 0.20.2). Node definitions are as given in Table 1, and quantitative assessments are as given in Section 
2.4.4. The diagram illustrates a case where there is an output of type E1 and the optimal decision is D2 because its 
expected loss is smaller than that of decision D1.

41 https://agrum.gitlab.io, see also Ducamp et al. (2020) for a description of this computing environment.
42 That is PrðH1Þ ¼ PrðH2Þ ¼ 0:5.
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likelihood ratio m/p of 0:9=0:2¼ 4:5. The probabilities PrðHjjEiÞ are one ingredient in the com
putation of the expected loss as defined in Equation (1). Another is the loss function. For the 
purposes of illustration, we assume ‘1 ¼ ðE1;H2;D1Þ ¼ 1 and ‘2 ¼ ðE1;H1;D2Þ ¼ 0:1, that is a 
ratio of losses from adverse outcomes of 10. The remaining (optimal) outcomes are assigned a 
loss of zero. We can now obtain the expected loss for decision D1, given E1, using Equation (1), 
which reduces to ELðD1jE1Þ ¼ ‘1×PrðH2jE1Þ. Following the assignments above, this gives 
1×0:182¼ 0:182 and is displayed next to the state D1 of node D. Similarly, we obtain the 
expected loss for decision D2, given E1, as ‘2×PrðH1jE1Þ. The result is 0:1×0:818¼ 0:0818 
and is displayed next to state D2 of node D. Thus, in our example here, 
ELðD2jE1Þ<ELðD1jE1Þ, so D2 is the better decision in terms of expected loss.

To put this result in context, consider Fig. 2b. This figure shows that for a loss ratio ‘1=‘2 of 
10, a posterior probability PrðH1jE1Þ greater than 0.91 is required for decision D1 to be the opti
mal decision. In other words, the posterior odds PrðH1jE1Þ=PrðH2jE1Þ obtained here do not 
“outweigh” the loss ratio in the sense defined by Expression (3). As another way of looking at 
this result, consider Fig. 2a. This figure shows that for a posterior probability PrðH1jE1Þ of 
0.818, the y-axis value of the EL function of D2 (dashed line) is smaller than that of D1.

2.5 Modularity and flexibility
The modeling framework invoked in this article is both modular and flexible. It is modular in 
the sense that different aspects, in particular inference and decision, are captured by different 
but related sub-models. The framework is flexible in the sense that each sub-model can be re
fined as needed. To illustrate this feature, consider again the aspect of inference. In our model,  
Fig. 1a, we have chosen a minimal representation that includes only the nodes E (for expert out
put) and H (for the main propositions of interest). Other accounts in the literature have further 
dissected this relationship. For example, when dealing with human witnesses, a cascaded chain 
of inference can be constructed, relating the variable representing a witness’s assertion about the 
occurrence of a given event to the variable representing that event through a series of intermedi
ate nodes. These intermediate nodes represent propositions such as the witness’s senses register
ing the target event and the witness actually believing that the event occurred (e.g. Taroni et al. 
2014). Similarly, in the context of forensic DNA evidence, Thompson et al. (2003) distinguish 
between an expert’s report of the occurrence of a correspondence between two compared DNA 
profiles, on the one hand, and the actual (but unobserved) event of corresponding DNA profiles, 
on the other. The latter includes considerations of the rarity of the features in the relevant popu
lation, referred to as diagnosticity (Koehler 2008), whereas the former accounts for the probabil
ity of (human) error, that is reliability (Koehler 2008). See, for example, Taroni et al. (2004) for 
a representation of this analytical view using a Bayesian network. It could be used in the models 
shown in Fig. 1 to replace the H ! E fragment, thus illustrating the notions of modularity and 
flexibility. For further accounts of cascaded inference based on human sources of information, 
see also Schum (1994) and Thompson (2016).

3. Discussion and conclusions
The special paper section in this journal asks the question of what a future with practically 
implemented statistics-driven evaluation methods for forensic results, especially in fingerprint 
examination, might look like. We argue that this future will involve, more or less explicitly, 
some form of reliance. In this article, we have chosen to examine the notion of reliance through 
the lens of formal analysis. We derive a number of insights, which we summarize below.

Overall, our decision-analytic account of reliance on the output of an information source in 
the instant case differs from mainstream accounts of general performance assessment based on 
response rates in two-category classification problems, as largely described in the AI (machine 
learning) literature (e.g. Murphy 2012; Shalev-Shwartz and Ben-David 2014; Russell and 
Norvig 2016) and similarly adopted by black box studies in forensic comparison disciplines. 
Aggregate performance metrics, such as those derived from a confusion matrix, can be useful in 
method development, evaluation, and comparison, and can inform general discourses about the 
admissibility of particular methods. However, these metrics cannot be used directly to capture 
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specific expert output in a particular case. They have also been shown not to be conducive to un
derstanding (Burnell et al. 2023). Our account clarifies why exactly aggregate performance met
rics fall short of the needs in case-specific decision-making about reliance.

First, general performance metrics derived from test cases under controlled conditions are, by 
design, entirely data-based, making them seemingly objective and human independent. 
However, this falls short of the needs of decision-making in the individual case. What we mean 
by this is that reliance decisions, by definition, imply consequences of varying degrees of (un-)de
sirability, especially adverse consequences. In our context here, adverse consequences are reli
ance on inaccurate system output and nonreliance on accurate system output. What is 
particularly intricate is that the maker of the decision of reliance is not necessarily the party who 
has to bear the consequences of the decision, a consideration that is completely absent in con
trolled studies of forensic comparison disciplines such as fingermarks. Recognizing and quanti
fying the relative undesirability of decisional outcomes thus becomes a key feature of discourses 
over case-based decisions about reliance. This highlights the need to introduce value judgments, 
but data-centric performance metrics provide no help with this. The deeper insight here is that 
what characterizes the “goodness” of a method in general cannot serve as a criterion for charac
terizing the “goodness” of individual decisions (Biedermann et al. 2018). Thus, with respect to 
the future of machine-supported forensic feature comparison practice, our analysis suggests that 
(test) data alone, while useful for some purposes, is inherently insufficient to solve the problem 
of reliance in the instant case. Instead, as discussed below, there is an inherent judgmental com
ponent that ultimately relies on human input, even if that input was somehow programmed into 
a computational procedure.

Second, in our model, the expected loss associated with the decision of reliance in the individ
ual case depends crucially on the probability of—in our context here—the accuracy of the expert 
output. It is important to note that we are talking about the accuracy of the individual output, 
not the accuracy of the method in general. Accuracy in a particular case necessarily depends on 
what evidence is available other than the expert output at hand, that is evidence that informs the 
decision-maker’s beliefs about the relevant ground truth state. While the introduction of proba
bility into decision-making procedures might be perceived as retrograde and to be avoided, we 
have shown its necessity. In particular, if we try to design a decision process based on avoiding 
excessive losses using a deterministic approach, this leads to paralysis. For example, in the case 
of system output that asserts support for a particular proposition rather than the relevant alter
native, the use of an asymmetric loss function, reflecting a reasonable attitude, leads to the rec
ommendation that one should never decide to rely on a particular type of expert output. Thus, if 
we want to allow for reliance decisions in the latter type of case, we cannot do so without 
accepting a nonzero probability of incurring the overall worst decision consequence. Our ac
count makes this understanding formally precise. Qualitatively, the decision-theoretic criterion 
we have derived states that the higher the ratio of losses associated with the two ways in which 
reliance and nonreliance can lead to adverse outcomes, the more we shall be sure that the target 
ground truth state asserted by the system output is true, rather than the relevant alternative.

Ultimately, our account is agnostic about the type of expert output. It makes no difference 
whether the information comes from a traditional human expert, a machine, or a combination of 
the two. For this reason, our account alleviates common concerns about the potential epistemolog
ical challenges raised by the use of AI output, of which forensic fingerprint expertise is just one ex
ample. In terms of the logic of reliance decisions, our account emphasizes that there are essentially 
two components that need to be coherently aggregated: an expression of uncertainty about the rel
evant conditioning ground truth states, and an expression or judgment about the value (or, unde
sirability) of decision consequences. Neither of these can reasonably be externalized because, as 
noted above, they require a personal stance on the part of the decision-maker. We argue that these 
considerations should be at the heart of current and future discourses about the use of machine- 
generated or -assisted evidence, particularly fingerprint examination. However, our analysis in this 
article shows that even the seemingly simple question of reliance on information has no easy 
answers if a rationally rigorous procedure is to be devised.

The above result also provides a perspective on the broader question of whether decision- 
making can (justifiably) be delegated to AI systems. Critical readers may argue that this is a 
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nonissue, as there are already many operating systems that are entrusted with autonomous 
decision-making, such as one-to-one comparisons in biometric verification tasks. However, 
these applications typically operate with high-quality input information and are based on deci
sion thresholds defined by performance metrics in the aggregate case, which are considered ac
ceptable by the designers of such systems and by those who implement them. This is different 
from applications that make “one-to-many” comparisons, with possibly sub-optimal input in
formation (i.e. a fingermark of poor quality), and that involve case-based value judgments and 
individualized assessments of uncertainty. In addition, the former applications (of type “one-to- 
one”) implicitly have a built-in value judgment that the errors have tolerable consequences. As 
our article helps to illustrate, value judgments in one-to-many comparisons, possibly leading to 
associations between a POI (defendant) and a crime scene fingermark, obviously reflect 
completely different stakes (Kotsoglou and Biedermann 2022). In this sense, genuine delegation 
of decision-making tasks would require either the encoding of these core features of decision- 
making in the application, or the acceptance of a procedure based on a proxy for these features.
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Appendix 1: Deciding about reliance in case of expert output of type E3

For the sake of completeness, we include a brief note on the properties of the decision criterion 
for the case of expert output E3 (asserted support for H2 over H1). First, we give the expected 
loss for each of the two decisions D1 and D2, using Equation (1). For decision D1, we obtain: 

ELðD1jE3Þ ¼ LðE3;H1;D1Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘3

×PrðH1jE3Þþ LðE3;H2;D1Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

×PrðH2jE3Þ ¼ ‘3 ×PrðH1jE3Þ

The expected loss of decision D2 is: 

ELðD2jE3Þ ¼ LðE3;H1;D2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

×PrðH1jE3Þþ LðE3;H2;D2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

‘4

×PrðH2jE3Þ ¼ ‘4 ×PrðH2jE3Þ

To investigate the conditions under which D1 is preferable to D2, we need to examine the con
ditions under which ELðD1jE3Þ<ELðD2jE3Þ. Reformulating this expression using the above 
results and a slight rearrangement of the terms leads to a result similar to Expression (3): 

PrðH1jE3Þ=PrðH2jE3Þ<‘4=‘3: ðA:1Þ

Note an important difference between this result, for output of type E3, and Expression (3) 
for the case of expert output of type E1. The result here is that for D1 to have a smaller expected 
loss than D2, the posterior odds of PrðH1jE3Þ to PrðH2jE3Þ must be smaller than the ratio of the 
losses associated with the adverse consequences of the decisions of nonreliance D2 and reliance 
D1, respectively. Figure A.1 (a) and (b) summarizes this result.

For example, suppose that ‘4, the loss of nonreliance on E3 when H2 is true (i.e. the output is 
accurate), is 10 times greater than ‘3, the loss associated with reliance on E3 when H1 is true (i.e. 
the output is not accurate): ‘4=‘3 ¼ 10. In such a situation, decision D1 is preferable to decision 
D2 in terms of expected loss only as long as the posterior odds PrðH1jE3Þ=PrðH2jE3Þ is smaller 
than 10, that is the posterior probability PrðH1jE3Þ is smaller than 0.91. This is an intricate re
sult. It says that E3 (asserted support for H2 over H1) should be relied upon even if the odds are 
in favor of H1 over H2 (i.e. the probability of E3 being inaccurate is greater than 0.5). 
Nonreliance on E3, decision D2, becomes the better decision only when the odds exceed a cer
tain level, that is “become very high” (informally speaking). This is a consequence of our prefer
ence structure (loss function): we consider it less undesirable to rely on falsely exculpatory 
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Figure A.1. (a) Expected loss of decisions D1 (reliance on expert output E3; dashed line) and D2 (not relying; solid 
line) as a function of PrðH1jE3Þ, using a 0− 1 loss function with l3 ¼ f0:1;0:5;1g (loss of reliance on E3 when H1 is 
true) and l4 ¼ 1 (loss of nonreliance E3 when H2 is true). The bold line highlights the optimal decision as a function 
of PrðH1jE3Þ for a case where ‘4 is 10 times greater than ‘3. (b) Maximum probability PrðH1jE3Þ so that decision D1 

has the smaller expected loss than decision D2, as a function of the loss ratio ‘4=‘3. The gray-shaded area shows 
pairs of values of loss ratio and probability PrðH1jE3Þ for which D1 minimizes expected loss.
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output (in the case of E3, deciding D1 when H1 is the case) than not to rely on correctly exculpa
tory output (deciding D2 when H2 is the case for output E3).

It may be tempting to conclude that the above result is banal, but this may only be because it 
corresponds well to our intuition. The less obvious point is to show, through formal analysis, 
that a particular result (or intuition) actually has defensible and logical grounds, which is the 
aim of our development here.
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