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Epistasis and evolutionary dependencies in human
cancers
Marco Mina1,2,3,*, Arvind Iyer1,2,3 and Giovanni Ciriello1,2,3,†

Cancer evolution is driven by the concerted action of multiple
molecular alterations, which emerge and are selected during
tumor progression. An alteration is selected when it provides an
advantage to the tumor cell. However, the advantage provided
by a specific alteration depends on the tumor lineage, cell
epigenetic state, and presence of additional alterations. In this
case, we say that an evolutionary dependency exists between
an alteration and what influences its selection. Epistatic
interactions between altered genes lead to evolutionary
dependencies (EDs), by favoring or vetoing specific
combinations of events. Large-scale cancer genomics studies
have discovered examples of such dependencies, and showed
that they influence tumor progression, disease phenotypes, and
therapeutic response. In the past decade, several algorithmic
approaches have been proposed to infer EDs from large-scale
genomics datasets. These methods adopt diverse strategies to
address common challenges and shed new light on cancer
evolutionary trajectories. Here, we review these efforts starting
from a simple conceptualization of the problem, presenting the
tackled and still unmet needs in the field, and discussing the
implications of EDs in cancer biology and precision oncology.
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Introduction
Since the 1950s, evidence indicated that cancer pro-
gresses from a single neoplastic cell through the

acquisition of advantageous modifications [1–3]. This
evidence led to the renowned model of cancer evolution
proposed by Peter C Nowell [4••], subsequently corro-
borated by experimental, technological, and computa-
tional advances [5,6]. Whereas, additional evolutionary
mechanisms such as adaptive cell plasticity and inter-
actions among tumor, immune, and stromal cell types
[7–11] coexist and cooperate in determining tumor
phenotypes, here, we will refer to the evolutionary
model first proposed by Nowell to explore how epistasis
among emerging alterations influences their selection
and evolutionary trajectories.

In accordance with Darwinian principles of species
evolution, atomic steps of this model are the emergence
and selection of molecular alterations enabling cancer cells
to acquire oncogenic phenotypes [12,13]. Here, the term
‘alteration’ indicates a broad class of genetic and epige-
netic modifications that emerge and are selected for
during tumor progression. The emergence of these al-
terations via endogenous and exogenous mutational
processes, whereas their selection is associated with their
impact on gene functions and the advantage that such
consequences confer to the cancer cell. Advantageous
alterations give rise to fitter clonal populations, ex-
panding and outcompeting existing clones (Figure 1).
Multiple iterations of alteration emergence and selection
continuously diversify the tumor-cell population and
increase its fitness (Figure 1), which can be “measured”
in terms of specific phenotypes [9••,14].

Cancer phenotypes involve the deregulation of multiple
cellular pathways, requiring multiple alterations. Indeed,
cancer is neither driven by a single alteration, nor the re-
sult of the independent action of a random assembly of
alterations. Cancer is determined by the concerted action of
specific combinations of alterations. A prototypical example is
the multistage model of colorectal cancer development
[15–17••], which is characterized by the sequential ac-
quisition of alterations activating Wnt signaling, for ex-
ample, loss-of-function mutations of APC (∼70%1) or
RNF43 (∼9%), and ERK signaling, for exampple, Kirsten
rat sarcoma viral oncogene homolog (KRAS) (∼41%) or
BRAF (∼12%) gain-of-function mutations. Intriguingly,

]]]]]]]]]]

1 Alteration frequencies are estimated based on data from the TCGA
colorectal cancer cohort [18] as reported in the cBioPortal [19]. Book-
mark Query: https://bit.ly/3xlVq6n.
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∼83% of KRAS mutations co-occur with APC mutations
(log2 odds ratio: 1.4), in contrast to only ∼39% of BRAF
mutations (log2OR: −2.5), which instead frequently co-
occur with RNF43 loss (log2OR: 4). Similarly, subsequent
alterations in colorectal cancer are not equally represented
in APC–KRAS and RNF43–BRAF tumors. Overall, re-
current combinations of alterations suggest that these al-
terations alter the cell phenotype in a nonadditive manner
through epistatic interactions.

The term epistasis has come to encompass various but
related phenomena in evolutionary studies, but at its
essence, it indicates interactions among alleles such that
the effect of mutating one allele depends on the status
of another allele [20]. Experimental studies in microbial
organisms and yeast have revealed both specific in-
stances of such genetic interactions [21–24] and global
epistatic trends [25–28], indicating, for example, a fit-
ness-saturation effect characterized by ‘diminishing-re-
turns’ epistasis. In cancer, an epistatic interaction
between two alterations exists when the effect of one
alteration is modulated by the presence or absence of the
second alteration. Here, by ‘effect’, we specifically refer
to the ability to alter cell phenotypes rather than the
function of the altered protein. An epistatic interaction
between two alterations will influence their selection
during tumor evolution [29•,30], that is, the epistatic
interaction constitutes an evolutionary dependency [31•].
Note that selection is influenced by several factors, such
as tumor lineage [32–34], the epigenetic status of the
tumor cell [35,36], and, as here discussed, preexisting
alterations. Hence, epistasis is one but not the only
source of evolutionary dependencies (EDs). Long-
itudinal sample collections provide direct evidence of

epistasis-driven EDs. However, such data are challen-
ging to obtain for human tumors. Alternatively, compu-
tational approaches have been proposed to infer EDs
from molecular profiles of large patient cohorts
(Table 1). The underlying principle is that EDs lead to
nonrandom patterns of alterations in large cancer
genome datasets, that is, specific alterations are more
(co-occurrence (CO)) or less (mutually exclusive) fre-
quently observed in the same tumor than expected by
chance. Here, we provide a framework of different types
of EDs, highlighting their impact on cancer evolution
and patterns of occurrence. Next, we explore the key
steps to infer EDs and how these are implemented by
existing approaches. We highlight unmet challenges and
strategies to validate and follow up on computational
predictions. Last, we discuss examples of EDs and their
impact on tumor phenotypes and response to therapy.

Epistatic interactions influence cancer evolution
Epistatic interactions have been observed as key de-
terminants of tumor evolutionary trajectories [37–41].
Here, we reduce epistasis among cancer alterations to
three scenarios and show how these lead to non-random
patterns of alterations across large patient cohorts.

Synergistic alterations
The sequential accumulation of genomic alterations
deregulates multiple cellular processes, adding the effect
of one to the other. When specific combinations of al-
terations have nonadditive effects, for example, the ef-
fect of two alterations is greater than the sum of the
effects of the single alterations, we refer to them as sy-
nergistic alterations (Figure 2a). Synergistic effects are at
the basis of tumor initiation and progression. Indeed,
several lines of evidence indicate that often a single al-
teration has little or no effect on cell phenotypes, unless
a second is present to remove compensatory mechan-
isms or ‘safety checks’. Prototypical examples involve
TP53, the loss of which synergizes with alterations in the
cell-cycle pathway to promote tumorigenesis [38,42,43].
From an evolutionary perspective, synergistic alterations
are likely to be part of recurrent evolutionary trajec-
tories, that is, the presence of one alteration favors the
selection of the other. As a result, in large cancer genome
datasets, synergistic alterations frequently co-occur in
individual tumors and can be inferred from significantly
co-occurring alterations [31•,44•].

Redundant alterations
Simultaneous acquisition of alterations having similar
downstream consequences is not expected to increase
tumor fitness (Figure 2b), that is, the advantage provided
by an alteration is reduced by the presence of another
one with the same functional effect. From an evolu-
tionary perspective, redundant alterations will not be

Figure 1

Current Opinion in Genetics and Development

Schematic diagram of cancer evolution through the emergence and
selection of genomic alterations. Upon transformation of a normal cell
(gray) into a cancer cell (blue), cancer cells clonally expand.
Uncontrolled proliferation leads to the emergence and selection of new
alterations over time, which alter cancer cell phenotypes (color-coded).
On the right, clonal evolutionary trajectories are represented indicating
either the alterations within each clone (colored lightning bolts, top), or
cell fitness (bottom).
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selected in the same tumor. As a result, redundant al-
terations are expected to be mutually exclusive across
large datasets. Indeed, multiple studies have shown that
mutual exclusivity (ME) is common among genomic
alterations impinging on the same pathway. Examples
include mutually exclusive alterations of the Rb
pathway, such as activation of cyclin-dependent kinases
(CDK) and inactivation of the CDK inhibitor p16 or RB1
itself [18,43]. Hence, significant mutually exclusive al-
terations could reflect alterations having similar down-
stream consequences.

Antagonistic alterations
The advantage provided by one alteration might become
a disadvantage in the presence of another alteration.
When their CO is lethal, their interaction is termed syn-
thetic lethal. Whether synthetic lethal or simply dis-
advantageous, the copresence of antagonistic alterations is
negatively selected during tumor evolution, leading, in
principle, to perfect ME (Figure 2c). A well-known ex-
ample of synthetic lethal interaction are loss-of-function
alterations of the DNA repair genes BRCA1/2 and PARP1
[46,47], which have exposed a therapeutically actionable
vulnerability. Indeed, PARP inhibitors are well-estab-
lished treatment options for cancers exhibiting alterations
in the BRCA1 or BRCA2 genes [48]. The appeal of ex-
ploiting synthetic lethal interactions for therapy has fos-
tered the search for mutually exclusive alterations, often
incorporating additional functional data to discriminate
between redundant and antagonistic interactions [49,50].
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Figure 2

Current Opinion in Genetics and Development

A model of epistasis-driven EDs in cancer. The emergence of a new
alteration (red) has different effects in tumors with different preexisting
alterations. Top: Epistatic interactions exist between synergistic (red and
yellow), redundant (red and blue), and antagonistic alterations (red and
green). Center: Synergistic alterations lead to the emergence of a fitter
clone. Redundant alterations lead to the emergence of a new clone with
no further selective advantage. Antagonistic alterations lead to the
emergence of a new clone with lower fitness, which is likely to
disappear. Bottom: In large cancer genome datasets, synergistic
alterations are frequently co-occurrent, whereas redundant and
antagonistic alterations are frequently mutually exclusive.
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Overall, alterations involved in these interactions are
expected to be found significantly co-occurring or to be
mutually exclusive across large cancer genome datasets,
providing an opportunity to search for non-random pat-
terns of occurrence to infer EDs in cancer.

Computational inference of evolutionary
dependencies
The problem of inferring EDs from large cancer genome
datasets has been tackled by several approaches. In
general, each method needs to 1) define the type of non-
random pattern to search for, 2) implement a strategy to
search for these patterns, and 3) test their significance
against an expected distribution.

Patterns of alterations
The possible types of non-random patterns increase with
the number of alterations simultaneously considered.
Approaches can be distinguished in those that only test
pairs of alterations (pairwise) and in those that test sets
of arbitrary size (geneset). Testing patterns within gen-
esets increases the detection power, especially for low-
frequency alterations. However, the number of testable
genesets increases exponentially with the number of
input alterations. As a result, approaches analyzing
genesets use special heuristics to reduce the number of
hypotheses (see next section). Concerning the type of
pattern, in the pairwise scenario, only two patterns are
possible: ME and CO. Interestingly, while several al-
gorithms have been proposed to identify ME, only few
support the analysis of CO patterns (Table 1). In the
geneset scenario, most algorithms extend the discovery
of either only ME or only CO among multiple genes.
Three approaches, CoMDP [51], BeWith [52], and SE-
LECT [31•], look for patterns comprising both ME and
CO within a geneset. CoMDP searches for modules with
within-module ME and between-module CO. BeWith
extends this idea, searching for distinct patterns within
and between modules and uses prior knowledge to
search for modules of functionally related genes. Last,
SELECT first identifies pairwise patterns (ME and CO)
and then clusters these patterns into genesets enriched
for ME and CO alterations. Interestingly, genesets
identified by these methods nicely overlap with known
biological pathways, supporting the notion that EDs are
enriched within cellular pathways.

Searching for candidate patterns to test
The search for nonrandom patterns of alterations is
challenging for genesets, where their number grows ex-
ponentially with the geneset size. Here, a distinction
exists between de novo algorithms, and those using prior
knowledge to filter the search space (Table 1). Algorithms
leveraging prior knowledge, prefilter the number of hy-
potheses to test based on external information, typically a
network of gene relationships (e.g. protein-interaction

networks or canonical pathways). For example, MEMo
[45••] and Mutex [53] search and test ME only among
highly connected genes in the network. De novo algo-
rithms adopt heuristics to select candidate geneset of
interest. Typically, a score is defined to assess the degree
of ME or CO within a geneset and optimization strategies
are used to identify modules maximizing such scores.
When searching only for either ME or CO, simple scores
combine the total number of samples exhibiting more
than one alteration in a geneset (overlap), and the total
number of samples with at least one alteration in a gen-
eset (coverage) [54,55]. Alternatively, strategies based on
information theory have been introduced in GAMToC
[56], which computes the total correlation of a geneset,
and SELECT, which computes a weighted version of
mutual information to score gene pairs. Once a score is
defined, optimization algorithms can be used to identify
the geneset that maximizes that score. These include
greedy algorithms, as in MOCA [57] or Mutex, Markov
chain Monte Carlo methods, as in Dendrix [55], CoMEt
[58], and MeSCAN [59], simulated annealing, as in
GAMToC, or integer or binary linear programming ap-
proaches, as in Multi-Dendrix [54], MDPFinder [60], and
BeWith [52]. A feature of these approaches is the ability
to detect alteration sets comprising more than 2 altera-
tions without requiring each pair within the set to exhibit
itself a significant pattern of occurrence. In contrast, SE-
LECT, DISCOVER [61], and FMSE [62] first ex-
haustively search for pairwise EDs and then identify
genesets by clustering these pairwise hits. On the one
hand, de novo approaches provide the greatest power to
discover unexpected associations, which is limited when
restricting the search within cellular pathways. On the
other hand, unfiltered searches deal with a rapidly
growing number of hypotheses, increasing the risk of
false-positive discoveries, and challenging the interpret-
ability of the results.

Determining the statistical significance of a pattern
Once a set of gene pairs or genesets has been identified,
the statistical significance of the alteration pattern must
be assessed. Most methodologies employ a frequentist
statistical framework to estimate the likelihood that a
score is observed given a null model assuming in-
dependent alterations. Null distributions can be defined
analytically, by deriving a mathematical formulation of
the distribution, or empirically, by estimating the null
distribution through data permutation (Monte Carlo
procedure). Analytical approaches need to make as-
sumptions on the family and shape of the null dis-
tribution. For example, Mutex, MOCA, and FaME [63]
are based on a Fisher’s exact test for ME. This test
makes the strong assumption that all samples have the
same probability of acquiring a given alteration. This is
however hardly true in cancer, where tumors can exhibit
dramatically different mutation rates [64•], that is, dif-
ferent probability of acquiring a new mutation. Failure
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to account for these differences will inflate pattern sig-
nificance. Strategies to account for nonuniform alteration
frequencies have been proposed by computing weighted
ME and CO tests. Examples include a recursively ap-
proximated weighted test in WeXT [65] or by estimating
the probability of a gene to be mutated in each sample in
DISCOVER. Alternatively, muex [66] and TiMEx [67]
proposed a probabilistic generative model accounting for
multiple covariates, such as tumor purity, mutation-
calling error rates, and time of alteration emergence at
observation. Here, the significance is estimated by the
likelihood ratio of the ME and independence models.
Among permutation-based strategies, WeSME and
WeSCO [68] use weighted ME and CO tests by sam-
pling mutated samples based by their alteration fre-
quency. MEMo models alterations as the adjacency
matrix of a bipartite graph, having genes and samples as
nodes, and randomizes the occurrences by randomly
sampling two edges and switching their ends. The edge-
switching technique for graph randomization [69] pre-
serves both gene and sample alteration frequencies.

The appeal of permutation procedures is that they pro-
vide simple strategies to control for multiple covariates.
For instance, tumor types and subtypes are known to be
enriched or depleted for specific alterations. When mul-
tiple tumor (sub-)types are analyzed together, ignoring
this information will invariably overestimate pattern sig-
nificance [29•]. For example, clear-cell renal carcinoma
and invasive bladder cancer are respectively enriched for
VHL and KMD6A mutations, which exhibit high lineage
specificity [70,71]. A permutation strategy ignoring tumor
types will call VHL and KMD6A mutations significantly
mutually exclusive, erroneously inferring an epistatic in-
teraction between the two alterations. To address these
issues, a blockwise permutation strategy defines sub-
matrices, or ‘blocks’, within the alteration matrix based on
a set of covariates and permutes alterations within each
block, but not between different blocks. Exploiting this
strategy, SELECT performs the edge-switching permu-
tation in a blockwise manner.

Open challenges: sample size, alteration frequency, and
molecular heterogeneity
Nonrandom patterns of alterations can emerge for several
reasons beyond epistasis-driven EDs. Although some of
these factors can be accounted for by the null model,
some remain difficult to address. Permutation strategies
preserving the total number of alterations observed in
each gene and sample might still fail to estimate the ac-
tual tumor mutation burden. Indeed, ED-inference ap-
proaches typically retain genes altered above a
predetermined frequency threshold or known cancer
drivers. The total number of mutations in these genes
might not reflect the overall tumor mutation burden in
the same dataset. In addition, mutation emergence is
driven by different mutational processes [72]. For example,

tumors exhibiting microsatellite instability harbor a higher
fraction of frameshift mutations than other tumor sub-
types [73]. ED-inference approaches typically ignore
variant classification assuming equally distributed variant
types. As a result, they might overestimate CO patterns
when enriched for specific variant types. Similarly, the
mutation rate is expected to be highly variable across the
genome, potentially making the emergence of specific
gene mutations more or less likely than others [74]. While
most approaches preserve gene-mutation frequency, im-
plicitly accounting for this variability, explicit models
might be required to better disentangle functional and
neutral mutations. Indeed, a large fraction of observed
missense mutations (i.e., amino acid substitutions) are
likely functionally neutral [74–77]. Filtering these muta-
tions inevitably reduces statistical power but it is re-
commended as neutral mutations are not under selection
and should not exhibit nonrandom patterns of occurrence
[44•]. Moreover, several oncogenes exhibit multiple
mutational hotspots [33], not necessarily affecting the
protein in the same manner [78••–80]. Different muta-
tions of the same gene might establish different EDs and,
thus, these should be separately analyzed. However, such
analyses are possible only for a few mutation hotspots
where the alteration frequency is sufficiently high to de-
tect statistically significant patterns. In the future, the
explosion of target sequencing in the clinic will fill the
data gap for these analyses, at least for genes included in
clinically adopted panels.

Result interpretation and follow-up
The interpretation and validation of computational
prediction pose the greatest challenges. Here, we pro-
pose a few strategies to validate and follow up on pre-
dicted EDs.

Distilling computational predictions with orthogonal
evidence
ED inference was facilitated by large-scale cancer
genome profiling projects, such as The Cancer Genome
Atlas (TCGA) [81]. These datasets allow the analysis of
matched genetic, epigenetic, transcriptional, and pro-
teomic profiles and, thus, assessing the impact of EDs on
tumor phenotypes. Given a predicted ED between two
alterations, samples can be stratified as those exhibiting
either only one of the two alterations, or both, or none
and the resulting groups can be compared in terms of
transcriptional, epigenetic, and clinical features. In-
formation about the functional role of the genes involved
in a specific ED can be used to test more specific hy-
potheses, for example, downstream pathway activation
inferred by transcriptional signatures or protein phos-
phorylation. These datasets represent a gold standard
not only for ED inference, but also for ED interpreta-
tion. Since epistatic interactions among altered genes are
likely to emerge within cellular pathways [31•], verifying
that EDs identified by a given tool are enriched within
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pathways provides evidence that results are driven by
epistatic interactions rather than other confounding fac-
tors. Moreover, focusing on ED sets that are enriched
within one or a few pathways could facilitate the biolo-
gical interpretation of the results, the design of follow-up
analyses, and formulation of hypotheses to experimen-
tally validate. The downside of this approach is that of
limiting the space of discovery to potentially already
well-studied targets.

An orthogonal strategy for ED validation uses data from
high-throughput perturbation screenings on cancer cell
lines [82–85••]. These experiments record the effect of
gene inhibition across hundreds of cell lines with com-
prehensively annotated genomic profiles [86]. A re-
commended resource is the cancer Dependency Map
(DepMap — https://depmap.org/portal/). As before, cell
lines can be categorized as those exhibiting either only
one or both alterations, and response to inhibition of one
of the two altered genes can be compared among these
groups. Recently, this strategy was adopted to show that,
for most ME EDs, cell lines harboring both alterations
were resistant to inhibition of one of the two altered
genes, in contrast to cell lines that were only altered in
the gene that was inhibited [44•]. These experiments
indicate that cells exhibiting two redundant alterations
compensate for the loss of one of the two altered genes
(typically an activated oncogene). Cell lines harboring
both alterations exhibited a stronger sensitivity to in-
hibition of one of the two genes than cell lines only
harboring one alteration, that is, tumors exhibited in-
creased dependence on synergistic alterations. Gene
essentiality screenings have also been used to discover
EDs potentially associated with synthetic lethal inter-
actions [86,87]. These strategies can benefit from in-
creasingly available datasets beyond gene essentiality,
such as single-drug and drug-combination screenings
[88,89] and screenings adopting patient-derived xeno-
grafts [90,91] or tumor organoids [92]. Two major lim-
iting factors should be noted: first, the sample size is
often insufficient to study many EDs, second, the tested
phenotype is limited to cell growth and viability, hence,
EDs affecting other phenotypes such as immune evasion
or cell migration cannot be tested. Increasing the
number of screened models and exploring alternative
screening modalities, for example, coculture of tumor
and immune cells, will be critical to address these
challenges.

From evolutionary dependencies to precision oncology
Distilled and possibly functionally validated EDs
could be used in follow-up analyses to study cancer
evolutionary trajectories and response to therapy.
Evolutionary trajectories reconstruct the history of a
tumor, from its early driving events to the late ap-
pearance of lesions promoting metastatic progression
or resistance to therapy [93–95]. Identifying recurrent

trajectories across patients [96••] could predict which
tumors are more likely to progress and/or respond to a
given therapy [97,98]. Such approaches could use the
notion of ED as a prior to promote trajectories com-
prising co-occurrent alterations and penalizing trajec-
tories comprising mutually exclusive alterations. In
addition, evolutionary trajectories could provide in-
sight on the temporal order and tumor clonality of
EDs. Indeed, co-occurrent alterations might not ne-
cessarily co-occur in the same cell and subclonal het-
erogeneity might confound mutual exclusivity
estimation. With growing availability of multiregion
samples and single-cell datasets, both these problems
warrant further investigations.

ED clinical implications are probably more direct in
precision oncology. With the advent of targeted se-
quencing in the clinic, therapeutic choices can be tai-
lored to the tumor mutational profile [99–101]. However,
response to targeted therapies remains highly hetero-
geneous. Response variability can in part be explained
by the presence of additional alterations, modulating or
even ablating treatment efficacy [102,103]. For example,
official treatment guidelines from the National Com-
prehensive Cancer Network (NCCN) for non-small cell
lung cancer report lack of therapeutic efficacy of epi-
dermal growth factor receptor (EGFR)-selective in-
hibitors in the presence of KRAS-activating mutations
(NCCN Guidelines Version 3.20222). Here, EDs could
represent promising hypotheses to test the association
between therapeutic response and combinations of al-
terations (rather than single alterations). In addition,
results from gene essentiality screenings could effec-
tively translate into clinical insight: synergistic altera-
tions increasing tumor dependencies could be used to
select patient cohorts more likely to respond to a specific
treatment, whereas redundant alterations could pinpoint
mechanisms of resistance to therapy. Preclinical studies
and cohorts with matching mutational and treatment
data will provide an opportunity to test these hy-
potheses.

Discussion
A systemic understanding of cancer genomic alterations
is necessary to decipher how and why specific combi-
nations of alterations are preferentially selected during
tumor evolution [104].

In lung adenocarcinoma (LUAD), frequent oncogenic
mutations target the KRAS and EGFR oncogenes in a
mutually exclusive manner [105]. Transgenic mouse
models and cancer-cell lines showed that only cells ex-
pressing one of the two oncogenes formed tumors, while
forced expression of the second was deleterious [41],

2 https://www.nccn.org/guidelines/category_1.
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driving overactivation of ERK signaling [106]. A similar
mechanism was shown for concurrent EGFR over-
expression and oncogenic BRAF mutations in mela-
noma: EGFR induction was deleterious in BRAF-mutant
tumors but became beneficial upon treatment with a
selective BRAF inhibitor, rescuing cell proliferation [40].
In colorectal cancer, KRAS and EGFR mutations were
shown to coexist in the same tumor but not in the same
cell, giving rise to separate tumor clones [107]. Inter-
estingly, the EGFR-driven clone was dominant in
treatment-naive tumors, EGFR therapeutic inhibition
led the KRAS-driven clone to take over, but this phe-
notype was reverted upon treatment withdrawal. Inter-
estingly, EGFR-driven and KRAS-driven tumors develop
following different evolutionary trajectories [108]. For
example, distinct LUAD subtypes are defined by the
copresence of KRAS and STK11 (a.k.a. LKB1) or KRAS
and TP53 mutations [39]. Concurrence of KRAS and
STK11 mutations leads to worse prognosis, reduced ex-
pression of immune markers, and lack of response to
PD-1 blockade [109••]. Frequently co-occurring muta-
tions often lead to more aggressive phenotypes when
combined. Beyond KRAS and STK11, other examples
include mutations of NPM1, DNMT3A, and FLT3 in
acute myeloid leukemia [110], and KDM6A (a.k.a. UTX)
and FGFR3 in bladder cancer [111]. Notably, CO can be
asymmetric when the advantage provided by a specific
mutation emerges only in the context of another one.
For example, CCNE1 copy-number amplifications al-
most always co-occur with TP53 mutations [31•], but not
vice versa. CCNE1 amplifications enhance CCNE1 ex-
pression, leading to RB1 inhibition and G1-to-S transi-
tion through the CCNE1–CDK2 complex. However,
overactivation of CCNE1 triggers p21 in a p53-depen-
dent manner, which limits CDK2 abundance [38,112].
Hence, p53 effectively limits the oncogenic potential of
CCNE1 and CCNE1 overactivation provides a pro-
liferative advantage only in TP53-negative tumors. A
similar asymmetric dependence was shown for SMAD4
loss, which is advantageous to pancreatic tumors har-
boring KRAS oncogenic mutations [113]. These and
many more examples have demonstrated the relevance
of studying cancer genomic alterations not as in-
dependent but as cooperating events to understand the
diversity of tumor phenotypes and therapeutic re-
sponses.

Finally, although most approaches have investigated
epistatic interactions among somatic mutations and copy
number alterations, the landscape of cancer alterations
extends well beyond these genetic lesions. EDs among
epigenetic alterations have rarely been investigated
[114]. Similarly, aberrant transcription, gene fusions,
catastrophic events (e.g. whole-genome doubling or
chromotripsis events), cell–cell interactions, inflamma-
tion states, and so on, all contribute to cancer evolu-
tionary trajectories. Future work should integrate these

multiple data types. Overall, multiple factors cooperate
to influence tumor evolution. Any effort to anticipate
and possibly steer this process ultimately needs to learn
which combinations of these factors are possible, which
are favorable, and which can be used to disrupt the
progression of the disease.
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