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Abstract 32 
 33 

The thiazide-sensitive sodium chloride cotransporter, NCC, is important for maintaining 34 

serum sodium (Na+) and, indirectly, serum potassium (K+) levels. Functional studies on NCC 35 

have used cell lines with native NCC expression, transiently transfected non-polarized cell 36 

lines or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby 37 

canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible 38 

human NCC expression to study NCC activity and membrane abundance in the same 39 

system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive 40 

and chloride dependent sodium-22 (22Na) uptake from the apical side. To minimize cost and 41 

maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells 42 

had similar thiazide-sensitive 22Na uptakes that increased following pre-incubation of cells 43 

in chloride-free solutions. NCC was detected in the plasma membrane and both membrane 44 

abundance and phosphorylation of NCC were increased by incubation in chloride-free 45 

solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K+, the levels 46 

of phosphorylated NCC increased and decreased, respectively. To demonstrate that the 47 

system allows rapid and systematic assessment of mutated NCC, three phosphorylation 48 

sites in NCC were mutated and NCC activity examined. 22Na fluxes in phosphorylation 49 

deficient mutants were reduced to baseline levels, whereas phosphorylation mimicking 50 

mutants were constitutively active – even without chloride-free stimulation. In conclusion, 51 

this system allows the activity, cellular localization, and abundance of wildtype or mutant 52 

NCC to be examined in the same polarized mammalian expression system in a rapid, easy, 53 

and low cost fashion. 54 

 55 
  56 
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Introduction 57 
 58 

The kidney plays a key role in blood pressure control by modulating the levels of NaCl 59 

reabsorption. Although the majority of NaCl reabsorption occurs in the proximal tubules, the 60 

distal convoluted tubules (DCT) play an essential role in the fine-tuning of tubular fluid NaCl 61 

concentrations. DCT NaCl transport is tightly regulated by a variety of hormones e.g. 62 

vasopressin (8, 29) and angiotensin II (35, 42), which exert the majority of their effects by 63 

modulating the function of the sodium chloride cotransporter NCC, the predominant NaCl 64 

entry pathway in this segment (reviewed in (10)). NCC is a member of the SLC12 65 

electroneutral cation-coupled chloride cotransporter family, which also includes the sodium 66 

potassium chloride cotransporters, NKCC1 and NKCC2, as well as several potassium 67 

chloride cotransporters (KCCs). Inactivating mutations of NCC lead to the autosomal 68 

recessive kidney disorder Gitelman syndrome, characterized by hypokalemia, 69 

hypomagnesemia, metabolic alkalosis, and hypocalciuria (22, 24, 27, 36). In Gordon’s 70 

syndrome (PHAII or familial hyperkalemic hypertension), increased activity of NCC is 71 

observed, resulting in hyperkalemic hypertension (15). 72 

In the last few years, a large number of studies performed using Xenopus laevis 73 

oocytes (14, 28, 34, 43) or mammalian cell lines expressing native NCC (5, 13, 19-21, 32), 74 

have advanced our understanding on how alterations in NCC localization or NCC activity 75 

interplay to determine the final rate of NaCl reabsorption (reviewed in (26)). For example, 1) 76 

the activity of NCC is regulated by posttranslational modifications such as phosphorylation, 77 

ubiquitylation, and glycosylation (11, 17); 2) NCC is functional in a highly glycosylated 78 

homodimeric form (6, 12, 17, 31); 3) phosphorylation of NCC is critical for maximal NaCl 79 

transport capacity (15) and can alter NCC membrane abundance (33); 4) phosphorylation 80 

of NCC is regulated by a variety of hormonal stimuli, which exert several of their effects via 81 
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activation of the WNK-SPAK kinase cascade (15) Despite these major advances, a limitation 82 

in the field has been the lack of a suitable system that allows a direct comparison of NCC 83 

activity and localization in a polarized mammalian cell system alongside the capacity to 84 

examine wildtype NCC or various forms of NCC carrying targeted mutations e.g. specific 85 

post-translational modification or Gitelman’s causing mutations. Therefore, the aim of this 86 

study was to develop a 22Na uptake assay for direct assessment of the function of wildtype 87 

or mutant NCC in a polarized mammalian cell line. The assays are based on Type I MDCK 88 

(Madin-Darby Canine Kidney) cells containing FRT (flippase recognition target) sites with 89 

tetracycline-inducible NCC expression (33).  We demonstrate that these cells can be rapidly 90 

modified to express various forms of NCC from a single genomic site, allowing direct 91 

comparison of the abundance, activity, and localization of wildtype and mutant NCC in a 92 

single system. 93 

 94 

  95 
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Materials and Methods 96 

Antibodies – The antibodies used in this study are rabbit polyclonal antibodies against total 97 

NCC (a kind gift from Dr. Mark Knepper, NIH, Bethesda, Maryland, USA)(18), 98 

phosphorylated NCC (pT58) (29) and FLAG-tag (F7425, Sigma).  99 

 100 

Generation of tetracycline inducible NCC expressing MDCKI cell lines - A FLAG-tag 101 

(GACTACAAGGACGATGACGATAAG; amino acids DYKDDDDK) was introduced into the 102 

NH2-terminus of a human NCC (hNCC) cDNA using standard methods. Using PCR, the 103 

FLAG-tagged hNCC sequence was subcloned into the pcDNA5/FRT/TO/TOPO vector 104 

(Invitrogen). The pcDNA5/FRT/TO/TOPO-hNCC plasmid was cotransfected with pOG44 105 

(encoding flp recombinase) into tetracycline inducible MDCK type I cells line containing a 106 

single FRT site in their genome (33) using Lipofectamine 2000 (Invitrogen). Cells with stable 107 

insertion of the hNCC into the FRT site were selected using 500 µg/ml Hygromycin B. Stable 108 

MDCKI-hNCC cell lines were maintained in DMEM High Glucose with 10% DBS, 150 µg/ml 109 

Hygromycin B, and 5 µg/ml Blasticidin HCl. Generation of the various MDCKI-rNCC cell 110 

lines have been described previously (33). 111 

 112 

Quantitative reverse transcriptase PCR (RT-qPCR) and standard RT-PCR - RNA was 113 

purified using the RiboPureTM kit (Ambion) following the manufacturer’s protocol. Potential 114 

DNA contamination was removed by incubating RNA (500ng) with DNase I Amp Grade 1 in 115 

DNase Reaction buffer (20 mM Tris-HCl, pH 8.4, 2 mM MgCl2, 50 mM KCl) (Invitrogen) for 116 

15 min at room temperature. 1.1 mM EDTA was added, and the samples were heated to 65 117 

°C for 10 min to stop the DNase reaction. cDNA was produced following the protocol from 118 

SuperScriptTM II reverse transcriptase (Invitrogen). Subsequently, 250 ng cDNA and 10 119 
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pmole gene specific primer were used for qPCR using LightCycler® 480 SYBR Green I 120 

Master (Roche). The reaction was carried out by a LightCycler® 480 (Roche) using NCC 121 

specific primers (forward: 5’TCCTCAAGCAGGAAGGTAGC3’, reverse:  122 

5’GTTCTCCAGGGCTCTTCTCG3’). Primers against 18SrRNA were used for normalization 123 

(forward: 5’GGATCCATTGGAGGGCAAGT3’, reverse: 124 

5’ACGAGCTTTTTAACTGCAGCAA3’). For standard RT-PCR, cDNA was generated in a 125 

similar manner from MDCK cells or dog kidney RNA (Zyagen) and PCR performed using 126 

HotStarTaq (Qiagen), 250 ng cDNA and 10 pmole gene specific primers and standard 127 

conditions. Primers used were: Slc12a2 (forward: 5’-GCCCTGCTGTCCCCTTAAAT, 128 

reverse: 5’-CGTGCAACTGGGAGACTCAT), Slc12a1 (forward: 5’-129 

GCTGAACATCTGGGGTGTCA-, reverse: 5’-CCTTTTGTGAAGCTTGGCCC), Slc26a4 130 

(forward: 5’-CGATCCATAGCCTCGTGCTT, reverse: 5’-CCGGTGGGTAAATCTTGCCT), 131 

Slc4a8 (forward: 5’-GACTACCGGGATGCACTCAG-, reverse: 5’-132 

ATTGGCCCACTGGACTTCTG), Scnn1a (forward: 5’-CGAAGTCCCTGTGGAGAACC, 133 

reverse: 5’-CTCCGCATTCTTGGGCAATG ), Slc9a1 (forward: 5’-134 

CGAGGACATCTGTGGCCATT, reverse: 5’-GATAACAGGCAAGTCGGCCT), Slc9a3 135 

(forward: 5’-GCGAACATCACTCAAGACGC, reverse: 5’-GATCCTGACATCTCAGCGGG), 136 

Kcnj10 (forward: 5’-CCTCTTCTCCCTCGAATCGC, reverse: 5’-137 

TGTCGACCTGGAAAGTCACG). 138 

 139 

Sample preparation and immunoblotting – Cells were washed in PBS-CM (PBS, 1 mM 140 

CaCl2, 0.1 mM MgCl2, pH 7.5), solubilized in 1x Laemmli sample buffer (62.5 mM Tris base 141 

pH 6.8, 8.7% glycerol, 2% SDS, 1% bromphenolblue, 100 mM dithiothreitol) and heated for 142 

15 min at 60 °C. SDS-PAGE was performed on 4-15% gradient polyacrylamide gels 143 
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(Criterion TGX Precast Protein Gels, BioRad) and transferred to PVDF membrane. 144 

Antibody-antigen reactions were visualized using SuperSignal West Femto 145 

chemiluminescent substrate (Thermo Scientific, Denmark). Semi-quantitative data were 146 

obtained by analysis of band densities using Image Studio Lite (Qiagen) and relative 147 

abundance ratios for each individual sample for each time point or stimulant were calculated. 148 

All reported values are means ± S.E.M. 149 

 150 

Cell surface biotinylation assay - Cells were grown in complete DMEM (DMEM High 151 

Glucose, 10% DBS) to confluency. Cells were induced with 10 µg/ml tetracycline for 16-20 152 

hours prior to biotinylation. Cells were washed twice in isotonic buffer (135 mM NaCl, 5 mM 153 

KCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, 1 mM Na2SO4, 15 mM Na+ HEPES, pH 154 

7.4) and stimulated with either low chloride buffer (67.5 mM Na+ gluconate, 2.5 mM K+ 155 

gluconate, 0.5 mM CaCl2, 0.5 mM MgCl2, 1 mM Na2HPO4, 1 mM Na2SO4, 7.5 mM Na+ 156 

HEPES, pH 7.4) or isotonic buffer and incubated for 20 min at 37 °C. Cells were washed in 157 

ice-cold PBS-CM  and incubated with mild agitation for 30 min at 4 °C in ice-cold biotinylation 158 

buffer (10 mM triethanolamine, 2 mM CaCl2, 125 mM NaCl, pH 8.9) containing a 1 mg/ml 159 

final concentration of sulfosuccinimidyl 2-(biotin-amido)-ethyl-1,3-dithiopropionate (EZ-link 160 

Sulfo-NHS-SS-biotin, Pierce). Cells were washed in ice-cold quenching buffer (PBS-CM, 50 161 

mM Tris-HCl, pH 8) followed by two washes of PBS-CM. Cells were lysed and biotinylated 162 

proteins purified using NeutrAvidin gel slurry (Pierce) as previously described (33). 163 

 164 

Immunoprecipitation (IP) - Performed as previously described (33). 165 

 166 
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Extracellular K+ manipulation - Cells were grown in complete DMEM (DMEM High Glucose, 167 

10% DBS) to confluency and induced with 10 µg/ml tetracycline for 16-20 hours prior to 168 

experiment. Cells were washed twice in Ringer solution (98.5 mM NaCl, 3 mM KCl, 2.5 mM 169 

CaCl2, 1.8 mM MgCl2, 1 mM NaH2PO4, 25 mM NaHCO3, 25 mM glucose) and incubated for 170 

15 min at 37 °C in either Ringer solution, Ringer solution containing 1mM KCl, Ringer 171 

solution containing 6mM KCl, or low chloride buffer. An equimolar adjustment of NaCl 172 

ensured that osmolality of the solutions remained constant between the different [K+] 173 

(100.5mM NaCl or 95.5 mM NaCl). Cells were solubilized in 1x Laemmli sample buffer. 174 

 175 

22Na uptake assay to measure NCC activity - Cells were grown in complete DMEM to 176 

confluency and induced for 16-20 hours with 10 µg/ml tetracycline. Subsequently, cells were 177 

washed in pre-heated (37°C) serum free DMEM medium and incubated (where indicated) 178 

for 20 min at 37°C in chloride-free buffer (130 mM Na gluconate, 2 mM K gluconate, 1 mM 179 

Ca gluconate, 1 mM Mg gluconate, 5 mM HEPES, and 5 mM Tris-HCl, pH 7.4) including 1 180 

mM Ouabain, 1 mM amiloride, 0.1 mM benzamil, and 0.1 mM bumetanide, with 0.1 mM 181 

Metolazone (where indicated). Metolazone dose response experiments were performed with 182 

concentrations ranging from 10-3 to 10-8 M. Cells were subsequently incubated in uptake 183 

buffer (140 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, and 5 mM Tris pH 7.4 184 

including inhibitors) with 1.5 µCi/ml 22NaCl for 20 min at 37°C. For the chloride dependency 185 

experiment, uptake was performed in either normal uptake buffer or a chloride free uptake 186 

buffer (140 mM Na gluconate, 2 mM K gluconate, 1 mM Ca gluconate, 1 mM Mg gluconate, 187 

5 mM HEPES, and 5 mM Tris-HCl, pH 7.4). Cells were rapidly and extensively washed in 188 

ice cold uptake buffer without radioisotope and lysed in 500 µl of PBS with 0.1% SDS. The 189 

average counts in the last wash from 3 samples was collected to determine background 190 
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activity, which was subsequently subtracted from all cell-specific radioactive measurements. 191 

All radioactivity measurements were performed in a Cobra II 5002 Auto-Gamma counter 192 

(Packard) with a counting efficiency of approximately 95%. 20 µl of each lysed sample was 193 

used to determine total protein concentration using the BCA Protein Assay Kit (Pierce).  194 

 195 

Statistical analysis - One-way analyses of variance or Tukey’s multiple comparisons tests 196 

were performed as appropriate using Graphpad Prism. Experimental numbers (n) are 197 

reported in individual figures. Values are considered statistically significant when p <0.05. 198 

 199 

  200 
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Results 201 

Generation and characterization of an MDCKI cell line with tetracycline inducible human 202 

NCC expression.  203 

A schematic overview of the procedure for generating MDCK type I stable cell lines 204 

expressing tetracycline inducible human NCC (or another gene of interest (GOI)) is shown 205 

in Fig 1A. Several cell lines were generated and characterized based on cell morphology, 206 

NCC expression levels, and NCC trafficking to the apical plasma membrane. One individual 207 

clone (termed MDCKI-hNCC) was used for the remainder of this study. Immunoprecipitation 208 

of hNCC using a FLAG-tag antibody followed by western blotting against NCC identified 209 

hNCC as a non-glycosylated band of approximately 100 kDa, a mature glycosylated 210 

smeared band ~130 kDa, and as dimeric forms above 250 kDa (Fig 1B). No hNCC was 211 

detected in similar cells in the absence of tetracycline. To assess if the expression of hNCC 212 

correlated with increased NaCl transport into MDCKI cells, 22Na uptake assays were 213 

developed. In MDCKI-hNCC cells grown on semi-permeable supports there was a 214 

significantly higher 22Na uptake following treatment with tetracycline relative to non-treated 215 

controls (Fig 1C). Following incubation of tetracycline treated MDCKI-hNCC cells with 216 

metolazone (a thiazide that inhibits NCC activity), 22Na uptake was decreased. A small 217 

decrease in 22Na uptake was also observed in non-induced MDCKI-hNCC cells with 218 

metolazone, indicating either a small leakiness in NCC expression, or the presence of a 219 

minor alternative metolazone-sensitive NaCl entry pathway in MDCKI cells. To examine the 220 

latter possibility, the expression of other Na+ transport proteins in our MDCKI-hNCC cells 221 

was examined by RT-PCR (Fig 2). The sodium potassium chloride cotransporter 1 222 

(NKCC1), the Na+-driven Cl-/HCO3- exchanger (NDCBE), the alpha-subunit of the epithelial 223 

sodium channel (ENaC) and the sodium hydrogen exchanger 1 (NHE1) were detected in 224 
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our MDCKI cells, whereas NKCC2, Pendrin and the sodium hydrogen exchanger 3 (NHE3) 225 

were absent. As NDCBE is inhibited by thiazide (23, 37), it is a good candidate for the minor 226 

alternative metolazone-sensitive NaCl entry pathway in MDCKI-hNCC cells.     227 

 228 

Comparison of MDCKI-hNCC cells grown on plastic or semi-permeable supports. 229 

Due to the high cost of growing cells in large numbers on semi-permeable supports, and the 230 

technical difficulty in handling numerous separate filters rapidly at the same time, we wanted 231 

to transfer the uptake assay to cells grown on plastic support. Visually, MDCKI-hNCC cells 232 

grown on plastic plates formed a tight confluent monolayer of hexagonal shaped cells (Fig 233 

3A). Immunoprecipitation of hNCC using a FLAG-tag antibody from cells grown on plastic 234 

support followed by western blotting identified hNCC as a non-glycosylated band of around 235 

100 kDa and a smear of approximately 130 kDa (Fig 3B), corresponding to the immature 236 

non-glycosylated and mature glycosylated monomeric form of NCC, respectively. The 237 

dimeric form of NCC was not consistently observed in MDCKI-hNCC cells grown on plastic 238 

plates. No NCC was detected in non-induced cells. As previously observed (Fig 1), 239 

tetracycline-induced MDCKI-hNCC cells grown on semi-permeable supports had a 240 

significantly higher metolazone sensitive 22Na uptake relative to non-treated controls (Fig 241 

3C). Metolazone sensitive 22Na uptake was also observed in MDCKI-hNCC cells grown on 242 

plastic. However, the magnitude of 22Na uptake in plastic grown cells relative to semi-243 

permeable supports was significantly less (Fig 3C). The reduced uptake in plastic grown 244 

cells relative to semi-permeable support grown cells corresponded with significantly less 245 

hNCC (Fig. 3D and E). As metolazone sensitive 22Na uptake could consistently be 246 

measured in MDCKI-hNCC cells grown on plastic, the remainder of studies were performed 247 

on this support.   248 
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 249 

Characterization of 22Na uptake in MDCKI-hNCC cells grown on plastic supports 250 

To further assess the characteristics of 22Na uptake in plastic grown MDCKI-hNCC cells, the 251 

effects of uptake time, metolazone dose, and chloride dependency were determined. 252 

Incubation of tetracycline-induced cells in uptake solution for various times demonstrated 253 

increased 22Na uptake as a function of time, with apparent time-linearity up to 40 min (r2 = 254 

0.95, no significant deviation from linearity) (Fig 4A). To ensure all uptakes were performed 255 

within the linear range, we continued to perform subsequent uptakes with a 20 min 256 

incubation time. Metolazone inhibition experiments allowed generation of a dose-response 257 

curve of 22Na uptake (Fig. 4B).  The calculated IC50 for metolazone was 0.43 x 10-6M, with 258 

maximal inhibition of 22Na uptake occurring between 3-10 µM. The degree of 22Na uptake in 259 

MDCKI-hNCC cells incubated in uptake medium without chloride ions (chloride-free buffer, 260 

CF) was comparable to levels after metolazone inhibition, demonstrating chloride 261 

dependency of the 22Na uptake and indicating a requirement for NCC in the transport 262 

process (Fig. 4C). 263 

 264 

Chloride-free pre-incubation of MDCKI-hNCC cells increases Na+ uptake  265 

We have previously shown that incubation of semi-permeable support grown MDCKI cells 266 

expressing rat NCC in low chloride medium increases apical plasma membrane abundance 267 

of NCC and phosphorylation of NCC at an activating site (pT58-NCC). These events are 268 

associated with decreased rates of NCC internalization (33). Similar results are observed 269 

for plastic grown MDCKI-hNCC cells, with the levels of biotinylated total NCC and pT58-270 

NCC being significantly greater following incubation in low chloride solution (Fig 5A-C). 271 

Correspondingly, 22Na uptakes were significantly higher in MDCKI-hNCC cells pre-272 
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incubated in CF medium relative to chloride-containing (CC) medium (Fig 5D), indicating 273 

that in these cells a combination of increased NCC membrane expression and NCC 274 

phosphorylation correlates with greater 22Na uptakes. 275 

 276 

Acute changes in extracellular K+ concentration modulates pT58-NCC levels in MDCKI-277 

hNCC cells.  278 

The activity of NCC can be directly modulated by extracellular [K+] (39), a process that is 279 

dependent on alterations in membrane voltage and activity of the potassium channel Kir4.1 280 

(3). To assess if similar changes in NCC were evident in our system, MDCKI-hNCC cells 281 

were incubated for 15 min in buffers with different [K+](as KCl) and pT58-NCC levels 282 

assessed by immunoblotting (Fig 6A). pT58-NCC levels were inversely correlated with the 283 

extracellular [K+] (Fig 6B). These changes occurred despite an absence of Kir4.1 in MDCKI-284 

hNCC cells (Fig 2), suggesting an alternative K+ channel is involved in the response. 285 

Furthermore, low extracellular [K+] increased pT58-NCC levels significantly more than 286 

incubation of cells in low chloride buffer, emphasizing that both Cl--dependent and -287 

independent WNK-SPAK signalling pathways are modulated by extracellular [K+] (30). 288 

 289 

Preventing phosphorylation of NCC decreases Na+ uptake, while phosphorylation-290 

mimicking mutants of NCC are constitutively active 291 

To emphasize the advantages of our MDCKI isogenic stable cell lines for characterization 292 

of various NCC mutants, we performed uptake studies in MDCKI cell lines expressing; 1) 293 

rat NCC (rNCC); 2) “phospho-deficient” NCC mutants where Thr-53, Thr-58, and Ser-71 are 294 

converted to alanine (TTS-AAA) or; 3) “phospho-mimicking” NCC mutants where Thr-53, 295 

Thr-58, and Ser-71 are converted to aspartic acid (TTS-DDD) (33). Immunoprecipitation of 296 
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rNCC using a FLAG-tag antibody followed by western blotting identified rNCC as a non-297 

glycosylated band of approximately 100 kDa, a mature glycosylated smeared band ~130 298 

kDa, and as dimeric forms above 250 kDa (Fig 7A). No NCC was detected in the absence 299 

of tetracycline. Following tetracycline induction, apical surface biotinylation followed by 300 

immunoprecipitation demonstrated similar NCC protein levels in the 3 different cell lines (Fig 301 

7B), which correlated with no significant differences in rNCC mRNA expression between the 302 

lines (Fig 7C). As observed for MDCKI-hNCC cells (Fig 5A), MDCKI-rNCC cells grown on 303 

plastic had significantly higher metolazone sensitive 22Na uptakes following pre-incubation 304 

CF relative to CC medium (Fig 7D). Under CF pre-incubation conditions, metolazone-305 

sensitive 22Na uptakes in MDCKI-rNCC TTS-AAA cells were significantly lower than in 306 

MDCKI-rNCC cell lines, and almost undetectable when chloride was present in the pre-307 

incubation medium. In contrast, 22Na uptakes in MDCKI-rNCC TTS-DDD mutants were 308 

significantly higher than MDCKI-rNCC cells and independent of the presence of chloride in 309 

the pre-incubation medium (Fig 7D). 310 

 311 

  312 
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Discussion 313 

Although some studies have utilized mammalian cell lines to assess NCC function 314 

and activity, the systems used suffer from some disadvantages (summary in Table 1); 1) 315 

some have endogenous NCC expression and are thus unsuitable for assessing the activity 316 

of various NCC mutants (13, 19-21); 2) some cell lines used are not polarized and thus 317 

regulated delivery of NCC to the cell surface may be different from native cells (32); 3) the 318 

cells express NCC transiently and therefore suffer from differences in gene copy number 319 

and mRNA expression making comparisons between mutants difficult (5, 32, 40). Therefore, 320 

the majority of functional assessments of NCC, comprising a wealth of data, arise from the 321 

use of the Xenopus laevis expression system (4, 14, 28, 34, 43). Although this system 322 

possesses some excellent features that make it a good model system (reviewed in (25)), 323 

there exist a number of disadvantages that limit its usefulness in studying NCC function. 324 

These disadvantages include the potential for temperature-sensitive processes such as 325 

protein trafficking or transporter activity to be altered in the oocyte (derived from a 326 

poikilothermic animal), the possibility that polarized trafficking of NCC and accessory 327 

proteins are different, and the concern that complex signaling cascades and signaling 328 

specificities within oocytes are different from mammalian systems e.g. contradictory role of 329 

WNK kinases for modulation of NCC (reviewed in (1, 15)). Thus, the aim of the present study 330 

was to develop a single system that allowed for direct comparison between NCC or different 331 

NCC mutants in respect to their activity or polarized trafficking events and which had intact 332 

mammalian intracellular signaling networks. 333 

 The system developed utilizes MDCKI cells, which are highly characterized for 334 

studying polarized membrane protein trafficking (9, 16, 33). The cells have a single FRT site 335 

(33) and were modified to allow tetracycline-inducible expression of NCC or NCC mutants 336 
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from a single genetic locus ((33). The advantage of this approach is that the copy number, 337 

rate/degree of transcription, and the subsequent mRNA expression of each NCC form (as 338 

long as mRNA degradation is unaltered) should be similar (see Fig 7), and differences in 339 

NCC abundance can be attributed to post-transcriptional effects. Also, these MDCKI cells 340 

possess several elements of the signaling pathways that regulate NCC, e.g. the protein 341 

kinases SPAK, OSR1, and WNK1, -3, -4 (33), making them a suitable in vitro system for 342 

assessment of NCC regulatory events. This was emphasized in the current study (Fig 6), 343 

where the levels of phosphorylated NCC following alterations in extracellular [K+] mimicked 344 

the in vivo situation (30, 39). In the MDCKI cells, as we previously observed for rat NCC 345 

(33), human NCC existed as a highly glycosylated protein with the capacity to form dimers 346 

(Fig 1). This is an important attribute of the MDCKI-hNCC cells relative to other NCC 347 

expression systems where NCC exists predominantly as a high-mannose glycoprotein (19, 348 

21, 38), as NCC is functional as a homodimer and complex glycosylation is a prerequisite 349 

for the functional expression of NCC on the apical plasma membrane (4, 6, 17).  350 

MDCKI-hNCC cells displayed robust thiazide-sensitive 22Na uptake when cultured on 351 

semi-permeable supports or plastic (Fig 3). Despite reduced NCC expression, the thiazide-352 

sensitive Na+ uptakes in MDCKI-hNCC cells cultured on plastic were routinely higher than 353 

controls.  The reasons for different NCC expression between the supports are unknown, but 354 

they may result from reduced polarization of the MDCK cells on plastic or the inability to 355 

absorb/secrete substances across the basolateral plasma membrane. Despite this, NCC 356 

was readily detected in the surface biotinylated pool of these cells (Fig 5) and uptake time 357 

frames (20 min), chloride dependency, and metolazone concentrations for maximal uptake 358 

inhibition were comparable to previous 22Na uptake studies in mammalian cell models (7, 359 

21). Combined with the easier handling, potential for higher sample numbers, and the lower 360 
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experimental costs, culturing MDCKI-hNCC cells on plastic for assessment of NCC activity 361 

was deemed to be optimal.  362 

Studies in oocytes or mammalian cells have demonstrated that NCC 363 

phosphorylation, plasma membrane abundance, and activity can be increased by 364 

intracellular chloride depletion (28, 32, 33). Here we demonstrated that, following 365 

intracellular chloride depletion, similar alterations in NCC function are detectable in MDCKI-366 

hNCC cells grown on plastic. If necessary, we are able to measure NCC activity without 367 

prior intracellular chloride depletion (Fig 5), allowing us to examine regulated NCC activity, 368 

for example due to hormones such as vasopressin or angiotensin II, without prior maximal 369 

stimulation of the regulatory SPAK/OSR1 pathway. Using such an approach allowed us to 370 

demonstrate, for the first time in mammalian cells, that by mimicking NCC phosphorylation 371 

at Thr53, Thr58, and Ser71 (rat nomenclature, MDCKI-rNCC TTS-DDD mutant cells), NCC 372 

is constitutively active, whereas eliminating phosphorylation at these sites (TTS-AAA rNCC 373 

mutants) reduced 22Na uptake to baseline values. These data further support the idea that 374 

these sites in NCC are critical for NCC function (2, 32, 41).  375 

In summary, our polarized MDCKI cell model allows rapid and direct assessment of 376 

the function of different NCC mutants. The cells can be utilized to examine the activity, 377 

localization, and abundance of different NCC mutants in the same system, and as such is 378 

highly complementary to other models currently being utilized.    379 
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Figure legends 569 

 570 

Fig 1: Characterization of an MDCKI cell line with tetracycline inducible human NCC 571 

expression. A: The host MDCKI cell line contains a single FRT site and a zeocin resistance 572 

gene integrated into its genome and expresses a tetracycline repressor (TR). Co-573 

transfection of pcDNA5/FRT/TO/TOPO-hNCC and pOG44 (encoding flp recombinase) into 574 

the host cell line triggers homologous recombination at the FRT sites, resulting in cells with 575 

a single copy of the NCC gene integrated into a specific site and displaying hygromycin 576 

resistance. NCC expression is controlled by tetracycline induction via two TR binding sites 577 

upstream of the NCC gene. Tetracycline treatment releases the 2xTR and transcription of 578 

NCC occurs. B: NCC immunoprecipitated from MDCKI-hNCC cells grown on semi-579 

permeable supports using a rabbit FLAG-tag antibody. NCC is detected as a non-580 

glycosylated band of approximately 100 kDa, a glycosylated band around 130 kDa, and a 581 

higher molecular weight protein above 250 kDa (possible glycosylated NCC dimers). C: 582 

Quantitative assessment of 22Na uptake in MDCKI-hNCC cells grown on semi-permeable 583 

supports. Cells were treated where indicated with tetracycline for 16-20 hours before uptake. 584 

Uptake was performed in uptake medium +/- metolazone as indicated. 22Na uptake was 585 

increased by tetracycline induction and inhibited by metolazone. Data are means ± S.E.M. 586 

(n=6). *Represents significant differences compared to tetracycline induced cells without 587 

metolazone inhibition. **Represents significant differences compared to non-induced cells 588 

without metolazone inhibition  589 

 590 

Fig 2: RT-PCR analysis of various other transport proteins in MDCKI-hNCC cells 591 

grown on semi-permeable supports.  592 
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 593 

Fig 3: Comparison of MDCKI-hNCC cells cultured on semi-permeable supports or 594 

plastic. A: MDCKI-hNCC cells grown on plastic form a confluent monolayer of hexagonal 595 

shaped cells. B: NCC immunoprecipitated using a rabbit FLAG-tag antibody from MDCKI-596 

hNCC cells grown on plastic. NCC is detected as a band around 100 kDa and a smear of 597 

approximately 130 kDa. C: Quantitative assessment of 22Na uptake in MDCKI-hNCC cells 598 

grown on semi-permeable supports or plastic. Cells were grown until confluency prior to 599 

treatment +/- tetracycline for 16-20 hours. Subsequently, cells were incubated in uptake 600 

medium +/- metolazone. In cells grown on either semi-permeable supports or plastic, 22Na 601 

uptake is increased following tetracycline induction. However, 22Na uptake is significantly 602 

lower in cells grown on plastic compared to semi-permeable supports. Data are means ± 603 

S.E.M. (n=6) *Represents significant differences compared to MDCKI-hNCC cells grown on 604 

filters without metolazone inhibition. **Represents significant differences compared to 605 

MDCKI-hNCC cells grown on plastic without metolazone inhibition. D: Immunoblots of NCC 606 

expression in MDCKI-hNCC cells grown on semi-permeable supports or plastic. 20S 607 

proteasome abundance is a loading control. E: Semi-quantitative assessment of NCC levels 608 

in MDCKI-hNCC cells grown on semi-permeable supports compared to plastic. NCC 609 

abundance is significantly lower in cells grown on plastic supports. Data are means ± S.E.M. 610 

(n=3) *Represents significant difference compared to cells grown on filters.  611 

 612 

Fig 4: Characterization of 22Na uptakes in MDCKI-hNCC cells grown on plastic. A: 613 

Effect of incubation time on 22Na uptake. Tetracycline induced cells were incubated in 614 

uptake medium +/- metolazone for 0 to 120 min. Data are means ± S.E.M. (n=4 per time 615 

point). There was time-linearity up to 40 min (r2 = 0.95). B: Effect of metolazone on 22Na 616 
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uptake. Uptakes were performed with the indicated metolazone concentrations and data 617 

fitted to a non-linear curve with Graphpad Prism. Data are means ± S.E.M. (n=6). The 618 

calculated IC50 of metolazone was 0.43 x 10-6 C: Chloride dependency of 22Na uptake in 619 

MDCKI-hNCC cells. Tetracycline induced cells were pre-incubated in chloride free (CF) 620 

medium, before uptakes were performed +/- chloride or metolazone as indicated. 22Na 621 

uptake in MDCKI-hNCC cells is not significantly different from baseline uptake when chloride 622 

is absent from uptake medium. Data are means ± S.E.M. (n=12) *Represents significant 623 

differences compared to chloride-containing uptake medium without metolazone. 624 

 625 

Fig 5: Lowering chloride in the pre-incubation medium increases 22Na uptake and 626 

apical membrane abundance of total NCC and pT58-NCC in MDCKI-hNCC cells. A: 627 

Immunoblots showing effects of low chloride (LC) stimulation on total NCC abundance and 628 

apical plasma membrane NCC and pT58-NCC abundance in MDCKI-hNCC cells grown on 629 

plastic. 20S proteasome abundance in total homogenates is a loading control. B: Semi-630 

quantitative assessment of biotinylated NCC levels under control or LC conditions. Plasma 631 

membrane NCC abundances significantly increase in MDCK-hNCC cells following LC pre-632 

incubation. Data are means ± S.E.M. (n=3) *Represents significant difference compared to 633 

control. C: Semi-quantitative assessment of biotinylated pT58-NCC levels following pre-634 

incubation under control or LC. Plasma membrane pT58-NCC abundances are significantly 635 

increased with LC pre-incubation. Data are means ± S.E.M. (n=3) *Represents significant 636 

difference compared to control. D: Quantitative assessment of the effect of chloride-free 637 

(CF) pre-incubation on 22Na uptake. Tetracycline induced cells were pre-incubated with CF 638 

or chloride–containing buffer for 20 min prior to incubation in uptake medium +/- metolazone. 639 

22Na uptake is significantly greater when MDCKI-hNCC cells are pre-incubated in CF buffer. 640 
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Data are means ± S.E.M. (n=12) *Represents significant differences compared to CF pre-641 

incubation without metolazone. **Represents significant differences compared to chloride-642 

containing pre-incubation without metolazone.   643 

 644 

Fig 6: Acute changes in extracellular K+ concentration modulates pT58-NCC levels in 645 

MDCKI-hNCC cells. A: Immunoblots of total NCC and pT58-NCC on total lysates from filter-646 

grown MDCKI-hNCC cells treated for 15 min in different extracellular [K+]. Low chloride 647 

buffer acts as a positive control. B: Semi-quantitative assessment of extracellular K+ 648 

manipulation. Data are means ± S.E.M. (n=9) *Represents significant difference compared 649 

to 3 mM conditions.   650 

 651 

Fig 7: Role of phosphorylation at Thr53, Thr58, and Ser71 in rNCC in MDCKI-rNCC 652 

cells. A: NCC immunoprecipitated from MDCKI-rNCC cells using a rabbit FLAG-tag 653 

antibody. NCC is detected as a non-glycosylated band of approximately 100 kDa, a 654 

glycosylated band around 130 kDa and a higher molecular weight protein above 250 kDa 655 

(possible glycosylated NCC dimers). B: Representative immunoblots of MDCKI-rNCC cells 656 

or MDCKI cells expressing phospho-deficient (TTS-AAA) or phospho-mimicking (TTS-DDD) 657 

NCC mutants. C: qRT-PCR to determine mRNA expression of NCC in MDCKI-rNCC, TTS-658 

AAA, or TTS-DDD mutant cells. NCC mRNA levels are similar in the three different cell lines. 659 

D: Metolazone-sensitive 22Na uptakes in various MDCKI-rNCC cell lines. Tetracycline 660 

induced cells were pre-incubated in chloride-free (CF) or chloride-containing (CC) medium 661 

before incubation in uptake medium +/- metolazone as indicated. Metolazone-sensitive 662 

uptake is the difference in 22Na uptake between groups treated with and without metolazone. 663 

Preventing phosphorylation of NCC at Thr53, Thr58, and Ser71 inhibits 22Na uptake, 664 



F-00088-2017-R1 

whereas mimicking phosphorylation on the same sites renders rNCC constitutively active. 665 

Data are means ± S.E.M. (n=12) *Represents significant difference compared to MDCKI-666 

rNCC wt pre-incubated in CF medium.  667 

  668 
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Table 1. Comparison of various systems for assessing NCC function 669 
 670 

 671 

System for studying NCC  Advantage Disadvantage 
 
 
 
 
 

Xenopus laevis oocyte 

Easily obtained, large and hardy.   Relatively labor intensive with 
microinjection of each oocyte 

Few endogenous channels or 
transporters, resulting in low 
background transport 

Non-native promoter and cannot 
be used to study NCC transcription 
(mRNA levels) 

Do not depend on extracellular 
resources for nutrition 

Derived from poikilothermic 
animal and temperature-sensitive 
processes may be altered compared 
to mammalian cells. 

Good technical reproducibility  Accessory proteins may be 
different from mammalian cells 

Readily express NCC RNA that is 
transcribed to large amounts of 
exogenous protein 

GPCRs and subsequent signaling 
cascades may be altered compared 
to mammalian cells 

Suitable for assessing the function 
of NCC mutants 

Polarized NCC trafficking is not 
the same as mammalian cells 

 
 
 

Transiently transfected 
cells (HEK, CHO) 

Easy to transfect in high efficiency Non-native promoter and cannot 
be used to study NCC transcription 
(mRNA levels) 

Suitable for assessing the function 
of NCC mutants 

Not polarized and thus regulated 
delivery of NCC to the cell surface 
may be different from native cells 

Several of the GPCRs, signaling 
cascades and signaling specificities 
are comparable to native DCT cells 

Suffer from differences in gene 
copy number and mRNA 
expression making comparisons 
between mutants difficult 

 
 

Endogenous NCC-
expressing cells 

Native promoter and can be used 
to study NCC transcription 
(mRNA levels) 

Unsuitable for assessing the 
function of NCC mutants 

Several GPCRs and subsequent 
signaling cascades are comparable 
to native DCT cells 

Low NCC signal to noise 

Form polarized monolayer with 
apical membrane NCC expression 

NCC exists predominantly as a 
high-mannose glycoprotein 

 
 
 
 
 
Inducible NCC expressing 

MDCKI cells (current 
study) 

Highly characterized mammalian 
cell system for studying regulated 
protein trafficking 

Non-native promoter and cannot 
be used to study NCC transcription 
(mRNA levels) 

Form polarized monolayer with 
apical membrane NCC expression 

Derived from dog, so 
commercially available reagents 
e.g. shRNA or antibodies against 
relevant NCC modulating proteins 
are difficult to obtain 

NCC is complex glycosylated and 
forms functional dimers 

 

Several GPCRs and subsequent 
signaling cascades are comparable 
to native DCT cells 

 

Suitable for assessing the function 
of NCC mutants 

 

Single copy of NCC gene in cell 
genome making comparisons 
between mutants simple difficult 
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