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The cellular mechanism(s) underlying autism spectrum disorders (ASDs) are not fully
understood although it has been shown that various genetic and environmental factors
contribute to their etiology. As increasing evidence indicates that astrocytes and
microglial cells play a major role in synapse maturation and function, and there is
evidence of deficits in glial cell functions in ASDs, one current hypothesis is that
glial dysfunctions directly contribute to their pathophysiology. The aim of this review
is to summarize microglia and astrocyte functions in synapse development and their
contributions to ASDs.
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INTRODUCTION

Autism spectrum disorders (ASDs) have a worldwide prevalence of about 12-15% and are
characterized by significant social, intellectual, behavioral impairment, and sometimes cognitive
deficits (Abrahams and Geschwind, 2008; Geschwind, 2009; Quaak et al., 2013). They typically
manifest early in development and are associated distinct neurodevelopmental syndromes.

The conceptualisation of autism and related disorders has undergone considerable changes
over the last ten years, which are reflected in the fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-V, www.dsm5.org). The proposed revisions of the preceding
edition (DSM IV-TR) include combining specific DSM-IV-TR diagnoses into a single broad
ASD, and identifying two domains of impairment (social communication and interactions, and
restricted repetitive behavior) rather than three (social interaction, communication, and restricted
repetitive and stereotyped patterns of behavior, interests, and activities). There are also considerable
differences in clinical presentation and disease progression as ASD patient’s present variously
severe core symptoms and variable co-morbid conditions such as epilepsy, gastrointestinal
problems, intellectual disability, anxiety, and depression (Kim and Lord, 2012). Early estimates
that the heritability of ASDs is approximately 90% (Steffenburg et al., 1989; Bailey et al., 1995),
and even recently revised estimates that it is about 45%, strongly suggest that genetic mutations
are a major cause (Hallmayer et al., 2011; Sandin et al., 2014). However, ASDs are genetically
very heterogeneous (State and Levitt, 2011) and seem to be associated with a large number of
genetic mutations, including possibly 100s of rare causal variants and common variants with small
effects (Murdoch and State, 2013). The genetic heterogeneity of ASD has made it challenging
to identify specific genes associated with the disorder, which has thus hindered efforts to dissect
disease mechanisms. Recent insights into the genetic pathways that are altered in ASDs have come
from studies of syndromic disorders with a high incidence of ASDs caused by mutations of a
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single gene, including fragile X syndrome (fragile X mental
retardation 1 protein, FMR1), Rett syndrome (methyl-
CpG-binding protein 2 protein, MECP2), tuberous sclerosis
(tuberous sclerosis 1 protein, TSC1), neurofibromatosis type
1 (neurofibromin 1 protein, NF1), and PTEN (phosphatase
and tensin homologue) macrocephaly. Recent studies also
implicate neurodevelopmental genes in ASDs through the
identification of recurrent de novo loss of function mutations in
affected individuals (Parikshak et al., 2013; Willsey et al., 2013).
Neurodevelopmental genes are indeed an important factor to
take into consideration since functional and anatomical insults
associated to defects in these genes during brain development
can trigger the appearance of ASDs in the childhood. Genome-
wide association studies have identified susceptibility genes for
ASDs such as forkhead box p2 (FOXP2) (Toma et al., 2013)
or the MAM domain containing glycosylphosphatidylinositol
anchor (MDGA) genes (Bucan et al., 2009; Pettem et al., 2013;
Perez-Garcia and O’Leary, 2016) and have provided evidence
supporting the idea that the large numbers of variants associated
with ASDs converge toward a core set of dysregulated biological
processes (Murdoch and State, 2013). The genes that have been
linked to ASDs can be grouped into three broad categories:
those involved in synapse structure and activity (Etherton
et al., 2011a,b; Peca and Feng, 2012), those involved in protein
synthesis (Kelleher and Bear, 2008), and those involved in
regulating gene expression (van Bokhoven, 2011). Many of them
encode for proteins that have a clear synaptic function, thus
making the pathological features of ASDs mainly “neurocentric”.
However, as the usefulness of parsing neuronal mechanisms
in order to investigate the etiology of ASDs has proved to
be limited, alternative biological analyses may help to reveal
previously unknown cellular and molecular mechanisms.

Extending the theory of purely genetic causes, it seems
likely that genetics alone may not account for all cases of
autism. In addition to a certain combination of autism-related
genes, exposure to a number of non-heritable environmental
factors may significantly affect susceptibility to, and the variable
expression of autism and autism-related traits (Pessah and
Lein, 2008; Rosenberg et al., 2009; Hallmayer et al., 2011;
Estes and McAllister, 2015). In addition to exposure to
chemicals or toxins, these include factors such as parental
age at the time of conception, and maternal nutrition and
infections (including autoimmune diseases) during pregnancy
and prematurity (Grabrucker, 2012). One important area of
research concerns the way in which environmental influences
interact with genetic susceptibility: for example, recent studies
have shown that glial cells in the brains of autistic subjects were
constantly activated and their inflammation response genes were
turned on (Voineagu et al., 2011; Edmonson et al., 2014; Gupta
et al., 2014). It is still not clear what role inflammation plays
in autism or whether it is beneficial or not, or what causes the
activation of glial cells, but these findings and the recent discovery
that glial cells may interact with synaptic activity by influencing
synapse formation and maturation (Clarke and Barres, 2013;
Sahlender et al., 2014; Petrelli and Bezzi, 2016), strongly suggest
that glial cells may be involved in the pathogenesis of ASDs.
Although some excellent reviews have recently discussed the

involvement of glial cells in neuropsychiatric disorders (McGann
et al., 2012; Molofsky et al., 2012; Chung et al., 2015), we will
give our perspective on the role of microglia and astrocytes in
the late step of synapse formation and maturation and in the
pathophysiology of ASDs.

ASTROCYTES AND MICROGLIA
INFLUENCE SYNAPSE FORMATION AND
FUNCTION

Over the last ten years, it has gradually emerged that glial cells (in
particular microglia and astrocytes) influence synapse formation
and function (Araque et al., 2014; Chung et al., 2015; Rossi, 2015).
Neurons and glial cells are closely associated with each other from
an early stage of development, and recent discoveries suggest
that the appropriate assembly of neural circuits requires extensive
neuron-glia signaling (Ullian et al., 2001; Christopherson et al.,
2005; Eroglu, 2009; Allen et al., 2012). In addition to carrying out
various homeostatic functions within the central nervous system
(CNS), they can also engage in bi-directional communication
with neurons by releasing neuroactive substances (Petrelli and
Bezzi, 2016). In particular, astrocytes can make contact with
multiple neurons and up to 100,000 synapses (Bushong et al.,
2002; Halassa et al., 2007), and possess many receptors (mainly
G-protein coupled receptors) and ion channels present in
neurons, thus enabling them to sense and respond to an array
of neuronal signals (Fiacco andMcCarthy, 2006). The generation
and expansion of astrocytes is largely completed before birth,
but the elaboration and maturation of their fine peri-synaptic
processes persists during the active period of synaptogenesis
(Ullian et al., 2001) in the post-natal period. This suggests
that they are in a crucial position to communicate actively
with neurons during synaptogenesis and, thus, coordinate the
development of neural circuits. The formation of synapses
(Clarke and Barres, 2013) and the modulation of synaptic activity
and plasticity by astrocytes (Araque et al., 2014) mainly take
place as a result of the secretion of neuroactive substances now
known as synaptogenic factors. Pfrieger and Barres (1997) were
the first to demonstrate the key role of astrocyte-derived soluble
molecules in synapse formation, and many subsequent studies
by the same group and others have identified the nature of these
synaptogenic factors, with the thrombospondins 1- 5, hevin, and
glypicans seeming to be crucial substances for the formation of
excitatory synapses (Ullian et al., 2001; Christopherson et al.,
2005; Kucukdereli et al., 2011; Allen et al., 2012). Overall,
these findings are seminally important as they have changed
our “neurocentric” view of the astrocytic-dependent processes
involved in the formation and maturation of functional synapses.
However, we are still only beginning to understand the role of
astrocyte-derived synaptogenic molecules in terms of cell biology,
and our knowledge of the molecular and cell mechanisms
regulating the active release of synaptogenic factors is very limited
(Petrelli and Bezzi, 2016).Many of them have only been studied in
cultured cells, and the cellular andmolecular pathways governing
their secretion are still unknown, including whether they are
calcium-dependent or not. Interestingly, astrocytes also release
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many other factors, such as substances regulatingmetabolism, the
energy supply (including cerebral blood flow) and inflammation,
and substances regulating synaptic transmission, including
neurotransmitters and neuromodulators (i.e., gliotransmitters)
(Bezzi and Volterra, 2001; Petrelli and Bezzi, 2016). The cell
mechanisms governing the release of gliotransmitters and their
effects on synaptic activities have been extensively studied, and
there is a large amount of experimental evidence indicating
that gliotransmitters play an active role in synaptic physiology
(Araque et al., 2014). For example, the tumor necrosis factor
alpha (TNFα) released by astrocytes (and possibly also by
microglial cells) is required for synaptic scaling (Stellwagen and
Malenka, 2006), and can control glutamatergic gliotransmission
under both physiological (Santello et al., 2011) and pathological
conditions (Bezzi et al., 2001; Habbas et al., 2015). A recent study
has shown that pathological concentrations of pro-inflammatory
TNFα signal through astrocytes to alter synaptic transmission
and impair cognition in a mouse model of multiple sclerosis
(Habbas et al., 2015). As inflammation of the CNS is a common
feature of nearly all neurological disorders and insults (including
ASDs), and cognitive impairments are also common to many
neuroinflammatory neurological conditions (including ASDs),
it is likely that the activation of glial cells and pathological
concentrations of cytokines (notably TNFα) can contribute to the
cognitive and behavioral impairments characterizing ASDs.

Microglial cells are resident macrophages of the brain that
form the innate defensive system (Hanisch and Kettenmann,
2007; Kettenmann, 2011) and, by acting as sentinels, can detect
the first signs of pathogenic invasion or tissue damage. After
their conversion from a resting (or surveillance) cell type to
an activated form, they remove damaged synapses and their
protective or detrimental functions have been extensively studied
in various brain pathologies (Kettenmann et al., 2013). During
the resting/surveillance phase, microglial processes constantly
extend and retract to check the local environment (Nimmerjahn
et al., 2005), which includes peri-synaptic astrocytes, pre-synaptic
boutons, and post-synaptic spines (Tremblay et al., 2010). Many
of their functions are still unclear and there has beenmuch debate
about whether they are beneficial or detrimental. Like astrocytes,
microglial cells have heterogeneous functions within the brain
(Carson et al., 2007; Bailey-Bucktrout et al., 2008; Bulloch et al.,
2008; Gowing et al., 2008), and release a wide variety of molecules
(e.g., brain-derived neurotrophic factor, BDNF) that can interact
with synapses and play important physiological roles in learning
and memory (Parkhurst et al., 2013).

In addition to affecting synaptic activity, astrocytes and
microglial cells seem to play an important role in removing
(‘pruning’) synaptic connections (Stanfield et al., 1982; Nakamura
and O’Leary, 1989), a process of structural formation and
elimination that is vital for controlling and refining the
connectivity of mature neuronal circuits (Steven et al., 2007;
Barres, 2008). For example, in the developing brain, astrocytes
can physically eliminate synapses through the multiple EGF-
like domains 10 (MEGF10) and c-mer proto-oncogene tyrosine
kinase (MERTK) phagocytic pathways (Chung et al., 2013)
and, in line with this, mice deficient in MEGF10 and MERTK
receptors fail to refine their retino-geniculate connections and

retain excess functional synapses. Interestingly, the rate of
synaptic pruning decreases with age and is regulated by synaptic
activity. Like astrocytes, microglia cells are also important in the
structural elimination of synapses in developing brain. Microglia
processes are highly motile and are well positioned to interact
with boutons and spines. However, synaptic pruning particularly
involves phagocytic microglial processes that, during the first
weeks after birth, can engulf pre- and post-synaptic elements
(Paolicelli et al., 2011; Schafer et al., 2012). This early post-natal
process depends of different molecules such as CX3C chemokine
receptor 1 (CX3CR1), also known as the fractalkine receptor
or G-protein coupled receptor 13 (GPR13), and complement
receptor 3 (CX3C) (Harrison et al., 1998; Stevens et al., 2007;
Zhan et al., 2014; Wu et al., 2015). The importance of the
CX3CR1-mediated mechanisms by means of which microglial
cells remove synapses has been confirmed by studies of CX3CR1
knockout animals, which have aberrant long-range functional
connectivity (Schafer et al., 2012) as well as a deficit in
hippocampal LTP and aberrant social behavior (Zhan et al., 2014).
Overall, these studies show that physiological interactions of
astrocytes and microglia with synapses are crucial for synapse
formation and network functioning, and point out that their loss,
deviation or functional perturbation might contribute to autism
pathogenesis and progression (Figure 1).

THE ROLE OF GLIAL CELLS IN AUTISM
SPECTRUM DISORDERS

The importance of glial cells in the pathophysiology of ASDs is
primarily supported by a recent transcriptomic analysis of autistic
brains. RNA sequencing revealed a close association between
ASDs and the genes related to glial cell activation and genes
belonging to immune and inflammatory categories (Voineagu
et al., 2011). These transcriptional results are supported by
immunohistochemistry data obtained from human post mortem
brain samples showing increased reactive gliosis and glial cell
proliferation (Purcell et al., 2001; Vargas et al., 2005; Fatemi
et al., 2008; Morgan et al., 2012; Tetreault et al., 2012; Edmonson
et al., 2014), and by a recent positron emission tomography
(PET) functional imaging study showing microglial activation
in multiple brain regions of young adults with ASDs (such in
the cerebellum, midbrain, pons, fusiform gyri, and the anterior
cingulate and orbitofrontal cortices; Suzuki et al., 2013). In line
with this, high levels of various pro-inflammatory cytokines, such
as interleukin (IL)-6, TNFα, and IL-1β have been reported in the
post-mortem brain tissues, (Watkins et al., 2001; Vargas et al.,
2005; Li et al., 2009;Wei et al., 2011) and blood of autistic subjects
(Gupta et al., 1998; Jyonouchi et al., 2001).

It is now recognized that pro-inflammatory factors play
an important role in the etiology of various neurological
and neuropsychiatric disorders, including those such as ASDs
whose pathogenetic onset occurs during early brain development
(Meyer et al., 2011; Voineagu et al., 2011; Gupta et al., 2014;
Estes and McAllister, 2015). The developing brain is highly
vulnerable to environmental insults such as those associated
with strong inflammatory reactions (Dammann and Leviton,
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FIGURE 1 | In physiological conditions and during postnatal development, neurons (gray) and glial cells (notably astrocytes –blue- and
microglia –green-) are closely associated with each other. Astrocytes and microglia release a number of neuroactive substances such as gliotransmitters
together with growth factors (such as TNFα, BDNF, glutamate, D-serine; black dots) and synaptogenic factors (such as thrombospondins 1-5, hevin, and glypicans;
red dots) that can promote the formation and maturation of synapses. Glial cells can also contribute to synapse remodeling and pruning through CX3CR1, multiple
EGF-like domains 10 (MEGF10), c-mer proto-oncogene tyrosine kinase (MERTK) phagocytic pathways. In pathological conditions (i.e., in autistic brains)
pro-inflammatory factors (including pro-inflammatory cytokines TNFα, IL-β, IL-6, IL-2, IL-10) may lead to a chronic neuroinflammation in which astrocytes and
microglia become reactive (red), release pro-inflammatory mediators (such as TNFα, glutamate and pro-inflammatory cytokines) and may exacerbate the initial
inflammatory condition. Although the specific contribution of aberrant glial cells (i.e., reactive gliosis) to the pathophysiology of autism has still to be determined,
studies on animal models support a direct association between neuroinflammation and autism, suggesting that reactive gliosis may have a crucial role in many
autism phenotypes including the structural and functional alterations of brain connectivity.

2004) and specific brain lesions (Hagberg et al., 2015). Under
normal conditions, inflammatory processes in the developing
brain are controlled by a number of homeostatic mechanisms that
limit the inflammation induced by an environmental stimulus
such as infection (Serhan and Savill, 2005). These surveillance
mechanisms are mainly controlled by microglia and astrocytes,
and are crucial in ensuring that inflammatory processes efficiently
remove invading pathogens and contribute to tissue repair.

It is therefore likely that, under inflammatory conditions,
any dysfunction in these mechanisms may lead to deleterious
chronic inflammation, and this (together with reports of
increased levels of pro-inflammatory cytokines in the post-
mortem brains of subjects with ASDs) has led to the
hypothesis that chronic neuroinflammation plays a role in
the pathogenesis of ASDs, which is supported by the fact
that chronic systemic inflammatory conditions such as those
associated with autoimmune disorders or infections (together
with acute immune activation) are often observed in the mothers
of children with ASDs (Atladottir et al., 2009; Keil et al., 2010;
Estes and McAllister, 2015). Although the specific contribution
of maternal immune dysregulation to the onset of ASDs has
yet to be determined in humans, animal models have shown
a causal link between the activation of the maternal immune
system and altered neurodevelopment. Studies of various animal
models of maternal infection during pregnancy support the
association between systemic inflammatory processes and ASDs
phenotypes (Malkova et al., 2012; Knuesel et al., 2014; Missault

et al., 2014), all of which seem to indicate that the ASD-like
behavior in the offspring may be caused by altered levels of
maternal cytokines, including TNFα, IL1β, IL-2, IL-6, and IL-
10 (Ponzio et al., 2007; Smith et al., 2007). It is important to
note that there is a specific temporal window in which cytokines
confer a risk of developing ASD (i.e., the perinatal period), which
suggests that the permeability of the developing blood brain
barrier is crucial for the onset of ASD (Meyer et al., 2011).
Pro-inflammatory cytokines in the developing brain classically
lead to neuroinflammation, a condition in which microglia and
astrocytes become reactive (gliosis), proliferate and, depending
on the entity of the gliosis, recruit peripheral leukocytes and thus
amplify the initial tissue damage (Sofroniew, 2015).

The idea that reactive gliosis may exacerbate the inflammatory
conditions caused by immune activation and contribute to the
pathogenesis of ASDs is intriguing, but it is still not clear
what the changes in glial cell activation tell us about the
molecular and cellular mechanisms underlying the disorders.
One possibility is that reactive gliosis may perturb the ability of
microglia and astrocytes to modulate the maturation, elimination
(phagocytosis), or functioning of developing synapses because
developing neural networks are highly vulnerable to insults
affecting the glial pathways governing the pruning of synapses
(Chung et al., 2015). For example, CX3CR1 knockout mice
show impaired synaptic pruning, social behavior and functional
connectivity (Zhan et al., 2014), all of which are features of ASDs.
It can therefore be expected that the inflammatory processes
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targeting the developing brain have a long-lasting impact on
brain and behavioral functions throughout life.

The use of animal models of ASDs has led to substantial
advances in our understanding of the role of glial cells, which
have been found to be abnormal in mouse models of Rett
syndrome (RTT; Maezawa et al., 2009; Yasui et al., 2013),
fragile X syndrome (Yuskaitis et al., 2010), and tuberous
sclerosis (Uhlmann et al., 2002). In particular, a study of a
mouse model of RTT, a devastating neurodevelopmental disorder
caused by loss-of-function mutations in the X-linked MECP2
encoding methyl-CpG-binding protein 2 (MeCP2) (Chahrour
and Zoghbi, 2007), has shown that MeCP2-deficient microglia
cells release an abnormally high level of glutamate, causing
excitotoxicity that may contribute to dendritic and synaptic
abnormalities (Maezawa and Jin, 2010). MECP2 is a well-
known transcription factor that is important in controlling
gene expression by interpreting and regulating epigenetic
markers (Chao and Zoghbi, 2012). MECP2 is expressed in
many tissues but, although the disease is generally attributed
to a primary neuronal dysfunction, glial MECP2 seems to
play a pathophysiological role as it has been recently shown
that MECP2-null astrocytes are unable to support the normal
dendritic ramification of wild-type neurons growing in culture
(Ballas et al., 2009), and two remarkable studies have found
that the expression of wild-type MECP2 protein in the
astrocytes or microglia of MECP2-null hosts dramatically
improves the pathology (Lioy et al., 2011; Derecki et al.,
2012).

Finally, it is interesting to note that a recent RNA-Seq
transcriptome and splicing database of glia and neurons (Cahoy
et al., 2008) indicates that many of the ASD candidate genes
are enriched in glial cells. For example, some genes, such
as Homer1 (HOMER1) (Ronesi et al., 2012), 4-aminobutyrate
aminotransferase (ABAT; Barnby et al., 2005), fatty acid binding
protein 7 (FABP7; Maekawa et al., 2010), and glutathione
S-transferase 1 (GSTM1; Ming et al., 2010), are not specific
for neurons but, instead, are highly enriched in astrocytes;
other genes are equally present in astrocytes and neurons (such
as MeCP2), and some are highly enriched in both astrocytes
and microglial cells (such as dual-specificity tyrosine-(Y)-
phosphorylation- regulated kinase 1A or DYRK1A). Mutations
in the genes encoding a number of members of the IL-1 cytokine
receptor family are also associated with ASDs, and glial cells
are the major contributors to the response of IL-1 signaling

pathways to neuroinflammation (Moynagh et al., 1993; Zhang
et al., 1996; Molina-Holgado et al., 2000). For example, recent
exome-sequencing studies of ASD patients have found a single-
nucleotide polymorphism in the gene encoding IL-1 receptor
type 2 (IL-1R2) (O’Roak et al., 2011; Sanders et al., 2012) that
is highly enriched in microglial cells (Cahoy et al., 2008), and
a rare ASD-associated mutation has been identified in the gene
encoding IL-1 receptor accessory protein –like 1 (IL-1RAPL1;
Bhat et al., 2008), which is highly enriched in astrocytes (Cahoy
et al., 2008).

FUTURE PERSPECTIVES

Until very recently, the role of glial cells in the onset of ASDs
was almost completely overlooked, and so neuropharmacological
strategies for treating the symptoms were almost exclusively
aimed at neuronal activity and synaptic transmission. However,
as accumulating evidence supports the view that astrocytes
and microglia are significantly involved in the regulation of
synapse formation, function, plasticity, and elimination, the
role of astrocyte-derived factors in regulating synapse formation
and the role of microglia in synaptic pruning during postnatal
development (a period that coincides with the onset of many
ASDs) are particularly relevant. These findings may change our
“neurocentric” view of the mechanisms involved in the onset
and progression of ASDs because that it is unlikely that research
solely concentrated on neurons will fully reveal their underlying
pathophysiological mechanisms. Recent data suggest that many
ASDs are at least partially due to disorders affecting glial
cells or neuron-glial interactions, and future pharmacological
research should consider the possibility of improving glial cell
functions.
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