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Abstract 
Motivation: Due to the limited power of small-scale genome-wide association studies (GWAS), re-
searchers tend to collaborate and establish a larger consortium in order to perform large-scale 
GWAS. Genome-wide association meta-analysis (GWAMA) is a statistical tool that aims to synthe-
size results from multiple independent studies to increase the statistical power and reduce false-
positive findings of GWAS. However, it has been demonstrated that the aggregate data of individual 
studies are subject to inference attacks, hence privacy concerns arise when researchers share study 
data in GWAMA. 
Results: In this article, we propose a secure quality control (SQC) protocol, which enables checking 
the quality of data in a privacy-preserving way without revealing sensitive information to a potential 
adversary. SQC employs state-of-the-art cryptographic and statistical techniques for privacy protec-
tion. We implement the solution in a meta-analysis pipeline with real data to demonstrate the efficien-
cy and scalability on commodity machines. The distributed execution of SQC on a cluster of 128 
cores for one million genetic variants takes less than one hour, which is a modest cost considering 
the 10-month time span usually observed for the completion of the QC procedure that includes timing 
of logistics. 
Availability	 and	 Implementation:	 SQC is implemented in Java and is publicly available at 
https://github.com/acs6610987/secureqc	
Contact:	jean-pierre.hubaux@epfl.ch  
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 

1 Introduction  
Large human genomic databases enable researchers to conduct whole 

genome analysis on genomic variations and their associations with phe-
notypic traits. For instance, in a case-control GWAS scenario, research-
ers can compute !"   -statistics to reveal whether some genetic variants and 
a given disease are independent or not up to a significance level. In an-
other case, researchers might use linear regression for modeling the 
relationship between a continuous phenotypic trait (dependent variable) 
and a genetic variant (explanatory variable). Although small-scale 

GWAS can identify variants associated with diseases, these variants 
explain only a small portion of the risk variability for many diseases. 
Discovery of new significant associations requires much larger sample 
sizes. However, the privacy-sensitive nature of human genomic data 
prevents research groups from sharing genomic data of individual partic-
ipants, especially when it comes to cross-border collaboration. There-
fore, it is usually hard or even impossible to directly combine data from 
several groups to enlarge sample sizes. Nevertheless, to increase statisti-
cal power and reduce false-positive findings, researchers can use 
GWAMA for the synthesis of results from multiple independent studies, 
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thanks to the fact that GWAMA requires only aggregate statistics rather 
than individual genomic data from each study.  

Generally speaking, GWAMA can be divided into two phases: the da-
ta-quality-control phase and the meta-analysis phase. Quality control 
usually takes place before meta-analysis, in order to filter out the studies 
whose data have quality issues and thus are not appropriate for meta-
analysis. Both phases involve multiple processing steps of summary data 
from individual studies. Quality control is an important procedure for 
ensuring the quality or even the correctness of a meta-analysis. Our 
proposed system is built upon a comprehensive protocol describing the 
state-of-the-art procedure to conduct data QC for large-scale GWAMA 
(Winkler et al. 2014). This particular framework has incorporated all the 
necessary QC steps proven to be helpful in practice. In this framework, 
each study shares its own association statistics for each genetic variant, 
such as allele frequencies, !  -value and effect size estimates with stand-
ard errors, which are delivered to the analysts. The analysts will apply 
statistical techniques to detect potential errors in the aggregate data. For 
example, quality control will check whether the same allele is designated 
as the effect allele for all studies, in order to prevent that one study erro-
neously declares the other allele as the effect one. These quality issues 
could lead to unexpected or incorrect conclusions for the variant associa-
tions if the data were used blindly. We should emphasize that the quality 
control procedure is designed to detect systematic errors of a study, 
hence if such an error exists, many data points (i.e., statistics of single 
nucleotide variants (SNVs)) will deviate significantly from the expected 
ones, and thus this phenomenon can be easily observed by plotting the 
data. 

However, even aggregate statistics may contain sensitive information 
from each participant; it has been demonstrated that individual infor-
mation (e.g., cohort membership) can still be inferred from the published 
summary data (Homer et al. 2008; Jacobs et al. 2009; Sankararaman et 
al. 2009; Sankararaman et al. 2009; Visscher and Hill 2009; Lumley T 
and Rice K 2010; Wang et al. 2009; Im et al. 2012). As a matter of fact, 
the practice of publishing certain aggregate data has been discouraged 
since the revelation of the privacy breach of public summary statistics. 
For instance, the NIH removed aggregate genomic data (e.g., allele fre-
quencies and !  -values) from open-access databases, and urged the scien-
tific community to take precautions before sharing any aggregate GWAS 
data (Zerhouni and Nabel 2008). These statistical inference attacks are 
based on a similar idea: if an adversary has access to a large number of 
SNVs (both the victim’s SNVs and the aggregate results of the SNVs), it 
can gain strong enough statistical power to tell whether the victim is a 
contributor to the dataset. If a dataset contains sensitive health infor-
mation about participants such as their HIV status, such an inference is a 
serious privacy breach. 

The privacy issue of sharing plaintext aggregate statistics resides in 
that they reveal aggregate statistics for a high number of SNVs (we call 
these SNV-level statistics, formally defined in Methods), and these statis-
tics are exactly the input to a quality control procedure and a meta-
analysis model. A secure approach is needed in order to complete the 
procedure without revealing the SNV-level statistics of any single study. 
A secure protocol for the meta-analysis phase has been proposed by 
operating on encrypted study statistics such that only the result of the 
meta-analysis is revealed (Xie et al. 2014). However, as we shall see, 
quality control is a fundamentally more complicated procedure, and 
protecting this phase remains an open problem. In the proposed secure 
quality control (SQC), it guarantees that the analysts will receive nothing 
other than the final quality measurements. To the best of our knowledge, 
this is the first comprehensive solution for secure quality control for 
meta-analysis of genome-wide association studies. 

2 Methods 

2.1 SNV-level aggregate statistics in quality control 
A meta-analysis protocol usually requires the aggregate association 
statistics such as effect allele frequency (!  ), beta estimate (!  ), standard 
error (!  ) and p-value (!  ), for a predefined set of variants. We denote the 
set of SNV-level statistics for study !   as { ", $, %, & ',(}  , ! ∈ {1, 2, … , (}  , 
where !   is the number of variants. We use these four types of statistics 
for demonstrating our solution in a secure quality control pipeline, but it 
is easy to extend the solution to handle other types of statistics. We also 
use !"    to denote the sample size (number of participants) of study !  , and 
!"    is usually a public value. 

2.2 Secure multi-party computation 
A well-established cryptographic approach called secure multi-party 
computation (SMC) guarantees the following property (without loss of 
generality, we use two parties throughout the paper): 
 
(Secure two-party computation). Suppose there are two parties, Alice 
and Bob, who have their own private data !   and !  , respectively, and 
want to securely compute a function !(#, %)  . The SMC technique ena-
bles Alice and Bob to execute a protocol that outputs the result 
! = #(%, ')  , without Alice learning any other information on Bob’s 
input !  , nor Bob learning any other information on Alice’s input !  . 
 
Using this technique in the quality-control scenario, we can imagine 
splitting each statistics into two random and individually uninformative 
shares (secret shares), one stored by Alice, and one stored by Bob. The 
quality control can then define a set of functions to be securely computed 
on the two shares. The underlying statistics are not revealed as long as 
Alice and Bob do not collude, which is realistic in practice if, for exam-
ple, the two parties are chosen to be private, competitor companies (e.g., 
a Google cloud server and an Amazon cloud server). A detailed system 
setup of our solution is described later. 

2.3 Differential privacy 
Informally, differential privacy guarantees that a person’s contribution to 
a dataset does not significantly alter the output distribution of a statistical 
query on the dataset. We can achieve differential privacy by adding 
Gaussian noise with standard deviation that depends on two privacy 
parameters !   and !   (Dwork and Roth 2014), which is discussed in more 
detail in Supplemental Methods. Smaller !   and !   imply higher noise 
variance and stronger privacy. Although differential privacy reduces the 
accuracy of GWAS applications, we will justify its use in the case of 
quality control; in short, the way we apply differential privacy in quality 
control does not affect the utility of the data in the meta-analysis phase. 

2.4 Adversary model and system structure 
We adopt the standard security notion of semi-honest model for secure 
computation, which implies corrupted parties do not deviate from the 
protocol specification but might try to gather information out of the 
protocol. We assume the adversary knows the set of genomic variants 
SNVs {SNV%, SNV', … , SNV)}   shared by all studies.  The storage and 
computation are outsourced to two non-colluding, semi-honest cloud 
providers (A and B). Each cloud server could be equipped with a cluster 
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of machines to enable parallel secure computation. The system works as 
follows (Figure 1): 

Step 1. Each study splits its aggregate statistics !   (e.g., !",$   ) into two 
secret shares: ! = !# ⊕ !%    (bit-by-bit XOR operation on the whole 
value), where !"    is randomly chosen. !"    is encrypted and sent to cloud 
A, whereas !"    is encrypted and sent to cloud B. ‘[X]’ represents the 
encryption of ‘X’ in Fig. 1. Essentially, in our system, all the communi-
cation links are protected with authenticated symmetric encryption that is 
a well-established security feature in the Internet (e.g., when we use 
HTTPS instead of HTTP). The protection of !"    in cloud A and !"    in 
cloud B will be detailed in the Discussion section. 
Step 2. An analyst sends a request to cloud A for checking data quality. 
Step 3. The two clouds execute a secure two-party computation protocol 
to perform the quality control procedure on the secret shared input data 
of each study. The quality measurements are sent back to the analyst. 
Step 4. If there is no quality issue, the analyst sends another request to 
cloud A for running a meta-analysis approach, and Step 5 follows. Oth-
erwise, the analyst contacts the study whose data present quality issues, 
and the study administrator resolves these issues and goes back to Step 1. 
Step 5. The two clouds execute another different secure two-party com-
putation protocol to perform meta-analysis on the data. The result is sent 
back to the analyst. This step has been studied in previous work (Xie et 
al. 2014) and is not the focus of this work. 

2.5 Secure computation procedures 
SQC is composed of several relevant procedures, each of which has an 
added value to the protection of the data. Unless otherwise specified, all 
the following procedures are performed in secure two-party computation 
on two secret shares of the input, which corresponds to Step 3 of the 
above system workflow. 

2.5.1 Procedure 1: Variant hiding by oblivious sorting 

As discussed before, the adversary knows the list of targeted SNVs in the 
study, which is an assumption for the aforementioned inference attacks. 
On the other hand, in quality control, the ordering of SNVs does not 
matter, therefore we obliviously sort the statistics of the SNVs. In fact, 
this step hides the original ordering (e.g., based on positions on genome), 
which has already been used by previous work on meta-analysis (Singh 
et al. 2013). Procedure 1 serves as a preliminary step of SQC. We use 

bitonic sorting (Batcher 1968) to guarantee obliviousness: the algorithm 
does not reveal information about the input (Knuth 1998). 

2.5.2 Procedure 2: Adding Gaussian noise 

Releasing original statistics, especially allele frequencies, results in a 
serious privacy leakage, as we show in the Results section. In this 
framework, we achieve differential privacy through adding Gaussian 
noise. Each cloud server independently draws a random sample from the 
Gaussian distribution, computes the addition of the two samples via 
SMC, and adds the result to the statistics. We can provide a theoretical 
guarantee that the noisy result is differentially private against the two 
servers that engage in SMC and any external adversary. More details 
about motivation, related work and a formal proof can be found in Dis-
cussion and Supplemental Methods. 

Note that this procedure is executed on the fly for checking data quali-
ty without affecting the stored data, hence the original data can still be 
used at a later stage (e.g., meta-analysis) without any accuracy loss. 

2.5.3 Procedure 3: Precision truncation 

Truncating the precision of statistics serves two purposes in this frame-
work: First, apart from differential privacy, it is an alternative way to add 
noise to the data; second, it helps to reduce the number of SNVs that can 
be revealed, undermining the power of inference attacks. The second 
feature will be discussed in oblivious de-duplication. In Procedure 3, we 
use fixed-point representations (more efficient than floating-point opera-
tions), reserve a predefined precision and round the statistics to the near-
est reduced-precision representation. For a fixed-point statistics !   that 
has !  -bit width (total number of bits) and !  -bit offset (number of bits for 
the fractional part), we preserve !   bits after leading zeros. 

2.5.4 Procedure 4: Oblivious de-duplication 

After reducing precision, we might observe a high number of repetitive 
statistics. For example, if we have 1 million SNVs and preserve 10-bit 
precision (around 3 decimal digits), we could expect on average 1000 
duplicates per SNV statistics. Not only is this frequency information 
useless for analysts to construct quality-control plots, but also a potential 
privacy leakage to adversaries. In Procedure 4, we perform an oblivious 
sorting to cluster duplicated items together, preserve one of them by 
setting the others to the infinity element, and perform another round of 
oblivious sorting in order to discard the infinity elements. 

2.6 Secure quality control protocols 
Using the above procedures, we propose our methodology to run several 
quality-control protocols (Winkler et al. 2014) in a secure and privacy-
preserving way. In absence of the secure protocols described below, a 
large number of original SNV-level statistics would be revealed, making 
them vulnerable to inference attacks, hence each SQC protocol is neces-
sary to avoid leaking those (precise) SNV-level statistics. 

2.6.1 Protocol 1: Secure SE-N plot 

An analyst can plot the median standard error (SE) across all SNVs 
against the square root of the sample size (!  ) for each study, in order to 
identify analytical problems, e.g., inconsistent regression models. More 
specifically, for study !   with sample size !"    (public value), the analyst 
finds the median in the corresponding list of standard errors: 
!",$ 	, !&,$ 	, …	, !(,$    . We denote this median with !"#$%&',)   . If the study 
data have no quality issues,  !"    is proportional to the inverse of !"#$%&',)    
by a public constant !  : 

...

Aggregate data
!" = !""⨁!%"

Aggregate data
!% = !"%⨁!%%

Aggregate data
!& = !"&⨁!%&

Study 1

Study 2

Study k

Secure Two-Party 
Computation

Analyst

Cloud A

Cloud B

[Result]

[Result]

[!%%]

[!%"]
[!"%]

[!"&]

[!""]

[!%&]

[Request]

[Request]

Fig.	 1.	 System	 architecture.	 Each	 study	 splits	 its	 summary	 statistics	 into	 two	 secret	
shares	that	are	sent	to	two	non-colluding	cloud	servers	 (e.g.,	Google	and	Amazon).	At	
the	 request	 of	 an	 analyst,	 the	 two	 clouds	 perform	 secure	 two-party	 computation	 to	
verify	data	quality	or	perform	meta-analysis.	In	both	cases,	only	the	final	results,	either	
quality	measurements	or	meta-analysis	results,	are	revealed	to	the	analyst.	‘[X]’	repre-
sents	the	encryption	of	 ‘X’.	Essentially,	all	 the	communication	 links	are	protected	with	
authenticated	 symmetric	 encryption	 that	 is	 a	 well-established	 security	 feature	 in	 the	
Internet	(e.g.,	when	we	use	HTTPS	instead	of	HTTP). 
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 !" 	≈ %
&'()*+,,.  . Therefore, the study-specific data points of the SE-N plot 

should resemble a straight line. Protocol 1 applies oblivious sorting 
(Procedure 1) to each list of standard errors and chooses the correspond-
ing median afterwards. We note that there is no need to go through Pro-
cedure 3 and Procedure 4 in this protocol because the output for each 
study contains only one overall statistics (median) across all SNVs, 
unlike the following two protocols. 

2.6.2 Protocol 2: Secure EAF plot 

The EAF (effect allele frequency) protocol plots the reported EAFs from 
a study against another study, which could pinpoint issues such as a 
wrong strand, allele miscoding, etc. For example, a study might consist-
ently label the wrong allele as the effect allele, leading to wrong allele 
frequencies. If the two studies !"    and !"    have no quality issues and their 
samples come from the same ancestry, then !"	,%&    should be close to !",$%   , 
∀" ∈ {1,2, … , )}  . The two sets of allele frequencies are taken as input to 
Protocol 2, which first reduces the precision of allele frequencies (Proce-
dure 3) and then de-duplicates the pairs of EAFs (Procedure 4) from the 
two studies. 

2.6.3 Protocol 3: Secure P-Z plot 

The P-Z plot (p-value and Z-statistics) can reveal analytical problems of 
the computation of beta estimates, standard errors or !  -values. More 
specifically, for SNV$    of study !  , the !  -statistics is computed as: 
!-statistics = )*,,

-*,,   . The corresponding reported !  -value !",$    should be 
close to the !  -value associated with the above !  -statistics. In the first 
step of Protocol 3, the two servers perform a secure division protocol to 
compute the !  -statistics, which is known to be a costly operation in 
secure computation. We benchmark this step in the Results Section. The 
resultant !  -statistics are paired with the corresponding !  -values to go 
through a similar precision-reduction and de-duplicated procedure as in 
Protocol 2. 

3 Results 
We use ObliVM-GC (Liu et al. 2015a) for our backend secure two-party 
computation. This framework provides a Java library that helps pro-
grammers to build secure-computation protocols in a circuit representa-
tion. Nayak et al. wrap it into a parallel secure-computing paradigm that 
we use to scale up our solution (Nayak et al. 2015). Our experiment uses 
two sets of data: 

• Real data: GWAS data from 10 studies, each of which builds a lin-
ear regression model between human height and each of roughly 
three million SNVs (Wood et al. 2014). 

• Simulated data: Following another work (Simmons and Berger 
2015), we choose a study size (N) and a number of SNVs (n). For 
each SNV, we pick a random number in the range of 0.05 to 0.5 as 
the minor allele frequency. We then generated the genotypes of N 
individuals independently. For example, we choose N = 1000 and 
n = 3000000, which is similar to the size of our real data. 

3.1 Privacy and utility analysis 
Log likelihood ratio test. As we apply differential privacy to the allele 
frequencies that are the major vulnerability exploited by inference at-
tacks, we experimentally analyze the privacy of our solution by using the 
attack power as a metric. The log likelihood ratio test is one of the most 
powerful inference attacks for individual detection in a pool 
(Sankararaman et al. 2009). To construct the test, we assume a reference 
population with specified allele frequencies for variants, and we sample 
a pool of 1000 individuals from this reference population. The null hy-
pothesis of the test is that a tested individual is not in the pool. An LLR 
statistic for the tested individual is computed based on the genotype 
frequencies of the reference population and the pool, in order to tell 
whether the individual is included in the pool. 

Fig.	2.	Rescaled	LLR	statistics.	The	nine	experiments	are	conducted	on	simulated	datasets	after	adding	different	Gaussian	noises	by	choosing	parameters	!			and	!		.	In	each	experiment,	
for	the	case	group	(red)	and	the	test	group	(blue),	we	reveal	different	number	of	SNVs,	from	left	to	right:	1000,	5000,	10000,	50000,	100000,	500000,	1000000.	In	general,	we	observe	
that	revealing	more	SNVs	makes	it	easier	to	separate	the	two	groups	based	on	D	statistics.	Adding	Gaussian	noises	by	imposing	smaller	values	of	!			and	!			helps	to	mitigate	the	effect	of	
this	attack.	We	could	choose	these	parameters	by	basing	them	on	the	quantification	of	the	resulting	attack	powers,	which	will	be	detailed	in	Figure	3	and	Figure	4:	for	example,	releas-
ing	1000	SNPs	after	adding	the	least	amount	of	differential	privacy	(ϵ = 0.1, δ = 0.05		)	is	appropriate	because	the	attack	power	is	relatively	weak	in	this	case. 

(a) No noise

(b) ! = #. %, ' = #. #( (c) ! = #. %, ' = #. #% (d) ! = #. %, ' = #. ##( (e) ! = #. %, ' = #. ##%

(f) ! = #. #(, ' = #. #( (g) ! = #. #(, ' = #. #% (h) ! = #. #(, ' = #. ##( (i) ! = #. #(, ' = #. ##%
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Fig.	3.	Kolmogorov–Smirnov	distances	between	case	LLR	statistics	and	test	LLR	statis-
tics.	The	distances	correspond	to	the	visualized	gaps	in	Figure	2.	The	larger	the	distance	
is,	 the	 stronger	 the	attacker	power	 is,	hence	 the	 less	 the	privacy	 is.	Adding	 the	 least	
amount	 of	 differential	 privacy	 (! = 0.1, ' = 0.05		)	 in	 SQC	 can	 already	 greatly	 reduce	
the	attack	power	and	strengthen	the	privacy. 
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The larger the LLR statistic is, the higher is the probability that individu-
al !   is in the case group (i.e., lower p-value for the test). To assess the 
attack power, we construct two groups: one case group (same as the 
pool) and one test group, for nine different experiments. We then calcu-
late the LLR statistics for each individual in the two groups, rescale them 
to the range [0, 1], and analyze their distribution (Figure 2). A wider gap 
between the case distribution and the test distribution indicates a higher 
attack power. From the results, it is evident that privacy can be enhanced 
by requiring a higher level of differential privacy and releasing fewer 
SNVs.  

Note that the absolute values of the LLR statistics are invisible in Fig-
ure 2, due to the rescaling operation; in fact, for the eight experiments of 
adding noise, the LLR statistics are extremely small (hence p-values 
close to 1). This is because the effect of adding noise, even with the least 
amount of differential privacy (! = 0.1, ' = 0.05  ), dominates over the 
effect of sampling, which indicates that the tested individual is actually 
closer to the reference population than to the “noisy” pool. However, we 
can still observe the interesting relative difference between the case 
group and the test group. To quantify the attack power, we measure the 
gap between the case distribution and the test distribution of Figure 2 by 
using Kolmogorov–Smirnov distance (instead of performing a Kolmogo-

rov–Smirnov test to tell whether the two samples are drawn from the 
same distribution, we are more interested in measuring the distance 
between the two). The result is illustrated in Figure 3. A larger distance 
indicates less privacy, because it would be easier for an attacker to dif-
ferentiate the two groups. We observe that adding the least amount of 
differential privacy in SQC can already greatly reduce the attack power 
and strengthen the privacy. 

Most of the time, an attacker does not have access to genotypes of a 
large group of individuals. But assuming the attacker has the genotype of 
a victim, he must make an assessment about whether the victim is in the 
pool based on one LLR statistic. Note that using the p-value for the 
assessment is not effective in our scenario for the same reason discussed 
above. From an attacker’s point of view, Chen et al. define a classifier 
with a threshold !  : if !!"($) ≥ '  , then individual !   is classified to be in 
the case group, otherwise it is in the test group (Chen et al. 2012). To 
have a high true positive rate, we set a low !   value, e.g., at the lowest 1 
percentile of the case group (99% true positive rate). We observe the 
false positive rates in the test group for the above nine experiments (Fig-
ure 4). If the data is released without adding noise, an attacker can easily 
achieve low false positive rates (i.e., effective attack) even if only a 
small number of SNVs are released. For example, the false positive rate 
is less than 40% when only 10000 SNVs are released. Differential priva-

Fig.	4.	False	positive	rates	of	inferring	an	individual	in	the	case	group	when	setting	the	
true	positive	rate	to	be	99%.	The	nine	plots	correspond	to	the	experiments	in	Figure	2.	 

Fig.	6.	An	example	EAF	plot	and	its	noisy	plot	patterns	for	different	levels	of	differential	privacy	and	different	precisions.	(a)	The	original	plot	shows	a	study	in	which	a	fraction	of	the	
effect	alleles	was	mis-specified.	(b)	Noisy	plots	when	fixing	! = 0.1			and	changing	!			and	!		.	(c)	Noisy	plots	when	fixing	! = 0.05			and	changing	!			and	!		.	The	number	(e.g.,	“Points:	687”)	at	
the	bottom	of	each	noisy	plot	is	the	number	of	EAF	pairs	output	by	SQC,	namely,	the	number	of	points	in	the	plot.	The	number	(e.g.,	“FP:	0.973”)	on	top	of	each	noisy	plot	indicates	the	
false	positive	rate	by	applying	the	LLR	test	in	Figure	4,	when	we	pessimistically	assume	the	strongest	adversary	that	is	able	to	link	the	EAF	data	back	to	their	SNV	identifiers.	Plot	pat-
terns	are	well	preserved	when	! = 0.1		,	while	!			has	a	relatively	modest	effect	and	could	be	used	to	fine	tune	the	pattern.	At	a	low	precision	! = 5		,	the	scatter	plot	is	sparse	and	looks	
faded.	As	the	precision	becomes	higher,	the	number	of	de-duplicated	EAF	pairs	grows	exponentially,	and	the	false	positive	rate	drops	accordingly.	An	interesting	phenomenon	is	that	
when	!			 increases	 (adding	 less	noises),	points	deviate	 less	 from	their	original	positions	 (Figure	5)	and	are	more	concentrated,	hence	the	number	of	points	decreases	monotonically.	
However,	 the	false	positive	rate	 is	not	monotonically	decreasing	when	 increasing	!		,	because	fewer	points	 lead	to	higher	false	positive	rates	(Figure	4).	For	example,	at	! = 0.1			and	
! = 9		,	when	increasing	!			from	0.005			to	0.01		,	its	effect	on	the	false	positive	rate	is	weaker	than	the	effect	of	decreased	number	of	points,	hence	the	false	positive	rate	becomes	higher.	
The	SQC	framework	can	provide	a	reasonable	trade-off	by	setting	! = 0.1		,	! = 7		,	and	then	fine-tuning	!		. 

Fig.	5.	Average	distance	from	original	MAF	after	adding	different	Gaussian	noises. 
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cy adding the lowest amount of noise in our experiment (i.e., 
! = 0.1, ' = 0.05  ) can effectively thwart the attack. With stronger dif-
ferential privacy, more SNVs can be released at the same false positive 
rate for an attacker. Nevertheless, we will see that with SQC, only a 
small number of SNVs need to be released in order to achieve good 
utility, hence we can add a low level of Gaussian noise for differential 
privacy, e.g., ! = 0.1, ' = 0.05  . 

Effects of precision !  . From the above results, we observe that the 
number of SNVs used in the attack significantly influences the attack 
power. For example, when releasing one million SNVs, there is almost 
no privacy at all for all the privacy parameters in the experiments; but 
the strongest privacy parameters (! = 0.05, ' = 0.001  ) that we use 
already have a non-trivial negative impact on the utility of the data (Fig-
ure 5). Therefore, it is crucial that our SQC protocols output a relatively 
small number of SNVs after de-duplication, hence achieving a good 
trade-off between privacy and utility. This number actually depends on 
the precision !   in Procedure 3 used by Protocol 2 (analogous to Protocol 
3): The higher the precision is, the more EAF pairs the protocol outputs. 
Roughly speaking, the maximum number of de-duplicated EAF pairs for 
precision !   is 4"   . 

We evaluate the effectiveness of our approach by setting different 
combinations of parameters (!, #, $  ), and observe the patterns of EAF 
plots in Figure 6. We also calculate the false positive rates (at 0.99 true 
positive rate) of LLR test on the output EAF data by assuming, pessimis-
tically, that the adversary is able to link the EAF data back to their SNV 
identifiers and then perform LLR test. As the precision increases, the 
number of de-duplicated EAF pairs grows exponentially and thus the 
false positive rate drops accordingly, but the plot is better preserved. 
Nevertheless, we can still observe the plot pattern even at a low precision 
! = 5  , but it fades out when we further decrease the precision because 
points become sparse. By observing the distinction between Figure 6-b 
and Figure 6-c, the differential privacy parameter !   has a significant 
influence on the plot pattern, and ! = 0.1   is a reasonable choice; in 
contrast, parameter !   has a relatively modest effect on the pattern. To 
guarantee a reasonable privacy level (i.e., high false positive rate) and 
preserve useful plot patterns, it is a good choice to set ! = 0.1   and ! = 5   
or 7  , and to fine tune the result by choosing !  . 

3.2 Runtime analysis 
Single machine. Secure computation provides strong security, but this 
comes at the cost of a high computational overhead. Even with current 
techniques and implementation, the slowdown of secure computation is 
as high as thousands or even hundreds of thousands of times, compared 
with non-secure, plaintext computation (Liu et al. 2015a). The following 
results are obtained on a single machine with Intel Core i7 processor 
clocked at 3.1 GHz and 16 GB of RAM. 

Secure operation benchmark. Before executing the whole SQC pro-
tocols, we benchmark the different core computation procedures on a 
small set of 1000 SNVs. Table I shows the result of benchmarking. In 
secure computation based on garbled circuits, another measurement of 
performance is the number of AND gates generated during computation; 
this number is linearly proportional to the running time and communica-
tion cost. Oblivious sorting has a complexity of !(# log' #)   (Batcher 
1968), whereas all other procedures have a linear complexity as the 
number of SNVs increase. For example, with sequential implementation, 
we estimate it will take around 7.5 hours to accomplish oblivious sorting 
of 3 million SNV statistics of 64-bit representation. We also see that 
secure division incurs a high overhead, especially when bit length of 
numerator (denominator) increases; indeed, the complexity of a secure 

division is !(#$)   for two numbers of !   bits. In our SQC framework, 
secure division is only used for beta estimates and standard errors that 
are represented by 32-bit fix-point numbers, hence it will take 5.46 se-
conds on average to execute secure division for 1000 SNVs. This is 
roughly the same cost as oblivious sorting on 64-bit numbers, which 
takes place in Protocol 2, but less than oblivious sorting on 96-bit num-
bers, which takes places in Protocol 3. 

Table 1. Benchmark results of the computation steps 

Procedure Bits Time AND gates 
Oblivious sorting 32 3.11s 1726976 

64 5.94s 3453952 
96 8.83s 5180928 

Differential privacy 32 0.813s 192000 
64 1.472s 384000 
96 2.126s 576000 

Precision reduction 32 3.57s 2015000 
64 6.7s 4127000 
96 9.84s 6239000 

De-duplication 
(without sorting steps) 

32 0.26s 94905 
64 0.4s 190809 
96 0.57s 286713 

Secure division 32 5.46s 3230000 
64 20.09s 12606000 
96 46.19s 28126000 

The results are conditioned on 1000 SNVs. Oblivious sorting has a complexity of 
!(# log' #)  , whereas all other procedures have a linear complexity as the number 
of SNVs increase. 
 

Small-scale experiments. To show the efficiency of each protocol on 
a single machine, we perform experiments with real data on small scales, 
varying from input of 1000 SNVs to 10000 SNVs. In Figure 7-a, the 
secure P-Z protocol dominates the running time over the other two pro-
tocols, because of the secure division operations on 32-bit numbers and 
oblivious sorting on 96-bit numbers (64 bits for !  -values and 32 bits for 
!  -statistics). Nevertheless, with a sequential implementation, these se-
cure computation protocols seem impractical to run on a large-scale 
dataset that contains one million SNVs. 

Parallel SQC: Due to the heavy overhead of secure computation and 
the non-trivial complexity of running the whole SQC protocols, it would 
be impractical to deploy the solution on a single machine with a sequen-
tial implementation. Building upon the ObliVM-GC backend, Nayak et 
al. propose a parallel secure-computation framework (GraphSC) that 
parallelizes graph-based algorithms and scales well in a cluster environ-
ment. We reconstruct SQC with the primitives provided by GraphSC, 
and deploy the system on a cluster of machines. The major benefit of 
using this paradigm is that oblivious sorting, which is the dominant 
overhead, can run in parallel. For our system configuration, we test the 
protocols on a cluster of 16 nodes, each equipped with Intel Xeon CPU 
E5-2680 v3 processors clocked at 2.5 GHz. Each machine consists of 8 
cores and 32 GB of RAM. Half of the machines simulate cloud A, and 
the other half simulate cloud B. The bandwidth between machines is 1 
Gbps. 

In Figure 7-b, we show the performance of running the three SQC 
protocols on one million SNVs. In total, executing the three quality 
control tasks takes about one hour, which we deem to be an acceptable 
cost, considering the days or even months of data access-authorization 
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procedures for biomedical studies. SQC safeguards the studies and min-
imizes the privacy concerns, producing a minimal interface where re-
searchers retrieve sanitized and useful results in practical running time 
through parallel computation. 

4 Discussion 
Even though the data are not revealed as long as cloud A and cloud B do 
not collude, !"   and !"   should still be protected, considering that poten-
tial data breaches can occur on both clouds. The protection can be en-
forced on three levels, including hard disks, memory, and cache. For 
example, on the level of the hard disk, HIPAA compliant cloud services 
could be one solution that normally encrypts the storage on disk. In this 
way, even if attackers steal the data on a disk from both clouds, they are 
not able to recover the original information. On the level of memory, the 
use of trusted hardware (e.g., Intel Software Guard eXtensions (SGX)) 
(Chen et al. 2017) has become an increasingly popular and powerful 
approach in recent years. This approach encrypts the memory so that 
attackers cannot steal the information, even by compromising the 
memory. There are more sophisticated attacks that occur, however, on 
the CPU cache level (Zhang et al. 2014; Liu et al. 2015b). There are 
different countermeasures proposed to thwart these attacks, but few of 
them are effective enough to be widely deployed in practice. The afore-
mentioned cloud-protection methods are orthogonal to this work and 
could be added as components to our system. 

For the effectiveness of hiding variants, we should emphasize that it is 
difficult to argue about the privacy guarantee of Procedure 1 alone, either 
theoretically or experimentally. Indeed, if the adversary has public refer-
ence statistics, it might be able to roughly map the identities by sorting 
the public statistics and comparing them with the sorted study statistics, 
but the precision of the mapping is highly data-dependent. 

In most cases of genomic computation (e.g., GWAS, risk test), accu-
racy is of paramount importance. Therefore, many privacy-preserving 
techniques that introduce noise to data are criticized because of their 
unacceptable negative impact on computation accuracy (Erlich and Na-
rayanan 2014; Fredrikson et al. 2014), even though a lot of advances 
have been made to apply these techniques in order to enable genomic 
data sharing (Fienberg et al. 2011; Johnson and Shmatikov 2013; Yu et 
al. 2014; Tramèr et al. 2015; Simmons et al. 2016). However, quality 
control is meant to detect systematic errors of a study, hence analysts are 

concerned mainly about the global characteristics of the data, rather than 
the precise value of individual data points. For example, analysts might 
expect to see the data points cluster along the diagonal line of a pane 
rather than a horizontal line. Such a relatively loose requirement pro-
vides us room to change the data points of the results in a controllable 
manner such that the output patterns can still lead to the same conclusion 
on the data quality. 

Note that if the statistics under consideration describe pairwise SNV 
correlation (linkage disequilibrium), reducing precision might not be a 
sufficient measure to defend against some categories of attacks (Wang et 
al. 2009). Indeed, if the victim is in the case group, such pairwise statis-
tics from a few SNVs might contribute a substantial amount of infor-
mation to attackers because it is less common to find a combination of 
two alleles than to find either one of them. Although these pairwise 
correlations are not seen in our data, researchers should take more pre-
cautions about revealing such correlation statistics than statistics of inde-
pendent SNVs. 

In parallel to SQC based on secure multiparty computation and differ-
ential privacy, homomorphic encryption is also widely used for untrusted 
cloud computing. Such an encryption enables an untrusted cloud to per-
form computation on randomized ciphertext, which is projected into 
certain computation on the corresponding plaintext. This is a highly 
desirable solution for our purpose of utilizing the cloud computing power 
without revealing the sensitive plaintext data, although existing efficient 
schemes are still constrained by the limited number of possible opera-
tions (Fan and Vercauteren 2012). In the privacy-preserving genomic 
and medical studies, researchers have also proposed various systems 
based on homomorphic encryption (Wang et al. 2016; Shimizu et al. 
2016; Kim and Lauter 2015). 
 
Overall, SQC addresses the pressing issues of privacy-preserving aggre-
gate data sharing. By using a set of sanitization processes and advanced 
cryptographic tools, SQC guarantees that users of the framework have 
access to only minimal but sufficient output information that is unlikely 
to be useful for inference attacks. In particular, SQC automates the quali-
ty control phase in GWAS meta-analysis in a privacy-preserving manner. 
By projecting the quality-control protocols in a secure computation 
framework, SQC offers an effective balance between the needs of re-
searchers for GWAS meta-analysis and the needs of data owners to 
respect the genetic privacy of research participants. Moreover, running 
SQC does not incur any utility loss for subsequent meta analyses. Alt-
hough the strong security and privacy guarantees of SQC comes at the 
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Fig.	7.	Runtime	performance	of	three	SQC	protocols.	(a)	Running	time	of	three	protocols	on	small	real	datasets.	It	is	measured	on	a	single	Intel	Core	i7	processor	clocked	at	3.1	GHz	
and	16	GB	of	RAM.	We	construct	small	datasets,	varying	from	1000	SNVs	to	10000	SNVs,	from	the	real	data	that	contains	3	million	SNVs.	Secure	P-Z	plotting	takes	more	time	than	the	
other	 two	protocols	because	of	 secure	division	and	oblivious	 sorting	on	numbers	of	96	bits.	This	 sequential	 implementation,	especially	due	 to	 sequential	oblivious	 sorting,	 is	not	
efficient	enough	to	run	on	large	datasets.	(b)	Parallel	performance	on	two	private	clouds.	Each	machine	has	8	cores	clocked	at	2.5	GHz	and	32	GB	of	RAM,	and	each	cloud	has	8	ma-
chines	(64	cores	in	total).	Any	two	cores	inside	a	cloud	can	communicate	with	each	other,	whereas	a	core	of	Cloud	A	can	communicate	with	only	one	core	of	Cloud	B	in	a	channel	with	
bandwidth	of	1	Gbps,	representing	secure	two-party	computation	as	defined	in	Definition	1.	The	performance	of	the	three	SQC	protocols	is	measured	by	processing	one	million	SNVs.	
The	most	expensive	secure	P-Z	protocol	takes	less	than	one	hour. 
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cost of a high computation overhead, we demonstrate that it is practical 
to perform the task using a recently proposed parallel secure computation 
framework. Nonetheless, the computational drawback of using secure 
computation is still obvious; for example, the one-hour secure P-Z plot-
ting time on 128 cores for a single study is not attractive when there are 
many studies, e.g., more than 100. This can be ameliorated by using 
advanced secure hardware (e.g., Intel SGX) (Chen et al. 2017). It is 
imperative to continuously reevaluate the privacy and utility of aggregate 
data sharing as novel privacy-enhancing technologies are developed and 
security threats arise. Integrative solutions, such as SQC, that carefully 
consider the use and misuse of aggregate data are essential for ensuring 
its secure and privacy-conscious sharing and maximizing its utility in 
genomic research. 
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