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Abstract—Migration focusing analysis of diffractions is an 
increasingly important tool for estimating the large-scale 
subsurface velocity structure from surface-based common-offset 
ground-penetrating radar (GPR) reflection data. We present a 
weighting strategy whose aim is to improve the reliability of 
estimations of the root-mean-square (RMS) velocity obtained 
using a local semblance focusing measure. In this regard, we 
increase the resolution of the inferred semblance spectra through 
a weighting function that varies in accordance with the sensitivity 
of a diffraction curve to changes in velocity. The weighting 
function is derived from coherency and slope attributes of the 
diffracted wavefield components. To demonstrate the viability of 
our proposed method, we consider its application in two synthetic 
test cases and one field GPR dataset. Compared with conventional 
unweighted local semblance spectra, their weighted counterparts 
allow for a significantly increased resolution and correspondingly 
reduced picking uncertainty. 
 

Index Terms—GPR, diffraction, velocity analysis, migration, 
attribute analysis. 

I. INTRODUCTION 
STIMATING a reliable model of the velocity 
distribution in the subsurface is a critical step of the 
seismic and ground-penetrating radar (GPR) reflection 

processing and imaging workflows. Among the various 
methods available, diffraction-based velocity analysis is 
particularly useful when no offset-dependent information is 
available, as is notably the case for typical surface-based GPR 
reflection measurements acquired using a single bistatic, 
common-offset transmitter-receiver antenna configuration [1], 
[2]. 

There are generally three approaches available to infer the 
subsurface velocity structure based on diffractions, all of which 
originated in seismic data processing. The first one involves 
migration focusing analysis of diffraction events. Since a 
diffraction migrated with the correct velocity will collapse to a 
point at its apex, Harlan et al. [3] proposed to remove reflections 
from the data and to estimate the velocity structure through an 
evaluation of diffraction focusing as a function of different 
migration velocities. In this regard, Fomel et al. [4] performed 
diffraction separation using the so-called plane-wave 
destruction method and evaluated diffraction focusing based on 
velocity continuation and local kurtosis techniques. Burnett and 
Fomel [5] extended this procedure for 3D azimuthally 
anisotropic velocity analysis, whereas Decker et al. [6] further 
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decomposed the diffractions into slope components and 
estimated the velocity based on the local diffraction semblance. 
The second approach for diffraction-based velocity analysis is 
to examine diffraction events in the post-migration dip-angle 
domain. In dip-angle common image gathers, specular 
reflections appear as hyperbolic events centered at the reflector 
dip and curving upward, even when over- or under-migrated. 
Conversely, diffractions will be flat in this domain when using 
the correct migration velocity, or curve upward or downward in 
the case of over- and under-migration, respectively. Based on 
this feature, Reshef and Landa [7] performed migration velocity 
analysis in the dip-angle domain by measuring diffraction 
flatness. Klokov and Fomel [8] further proposed the use of the 
hybrid Radon transform to improve diffraction separation and 
velocity analysis in the dip-angle domain. Finally, the third 
approach for diffraction-based velocity analysis is to perform 
diffraction wavefront tomography. Based on the idea that the 
wavefront attributes together with traveltimes can be used to 
locally approximate the kinematic response of reflection points 
[9], Bauer et al. [10] performed ray-based tomographic 
inversion for zero-offset seismic data, where wavefront 
attributes were extracted directly from the diffraction section. 
Recently, Preine et al. [11] applied diffraction wavefront 
tomography to single-channel marine seismic data acquired in 
a volcanic environment. 

Arguably, migration focusing analysis is the most commonly 
used method of diffraction-based velocity analysis for 
common-offset GPR data [12]-[16]. In this regard, diffraction 
semblance has proven to be an effective focusing indicator [17]. 
Diffraction semblance can be regarded as the normalized 
squared correlation of the diffracted event with a constant [18]. 
This inherently assumes that there is no amplitude or phase 
variation along the hyperbolic trajectory. When this assumption 
is violated, for example due to the effects of attenuation or the 
presence of noise, diffraction semblance may no longer provide 
robust velocity estimates. A similar problem exists in classic 
common mid-point (CMP) velocity analysis, where semblance 
is computed along flattened reflection hyperbolae [19] and 
becomes less robust in the presence of strong variations in 
reflection amplitude. In the latter case, the problem was 
addressed by introducing semblance weighting terms [20], [21], 
which allow for an improvement in the resolution of CMP-
based velocity spectra by placing more weight on data that are 
more sensitive to changes in velocity in the semblance 

The authors are with the Institute of Earth Sciences, University of Lausanne, 
CH-1015 Lausanne, Switzerland (e-mail: yu.liu@unil.ch; james.irving@ 
unil.ch; klaus.holliger@unil.ch). 

E 



 

calculation. 
In this paper, we develop a diffraction semblance weighting 

function in order to enhance diffraction-based velocity analysis 
for common-offset GPR reflection data. Linear coherency 
analysis [22], [23] is used to estimate the local slopes and 
coherencies of the diffracted wavefield components, which in 
turn are used to derive the weights. We begin by presenting the 
methodological background of our approach. We then assess 
the viability of the proposed technique by testing it on two 
synthetic common-offset GPR data examples. Finally, the 
method is applied to a field GPR dataset from a typical surficial 
alluvial environment, where borehole logs are available to 
assess the results obtained. 

II. METHODOLOGY 
Our diffraction velocity analysis procedure begins with the 

separation of the diffracted wavefield from the common-offset 
GPR data. To this end, we employ plane-wave destruction 
(PWD) filtering [24], [25] to eliminate the specular reflections. 
This is accomplished using the programs ‘sfdip’ and ‘sfpwd’ in 
Madagascar (https://reproducibility.org/), an open-source data 
analysis package. Once the diffracted wavefield has been 
isolated, the data are ready for migration focusing analysis to 
estimate the corresponding root-mean-square (RMS) velocity 
structure. 

Migration focusing of diffractions can be measured by the 
diffraction semblance, which is defined as 

 𝑠(𝑡, 𝑥, 𝑣) =
{𝐹![𝑎(𝑡, 𝑥)]}"

𝐹![𝑎"(𝑡, 𝑥)]
, (1) 

where 𝑎(𝑡, 𝑥) is the amplitude of the diffracted wavefield with 
t and x denoting the time and space coordinates, respectively, 
and 𝐹!  the time migration operator for a constant velocity 𝑣. 
Diffraction semblance is a normalized coherency measure 
performed along a hyperbolic trajectory. More generally, we 
can consider the weighted diffraction semblance, which is 
defined as 

 𝑠#(𝑡, 𝑥, 𝑣) =
{𝐹![𝑎(𝑡, 𝑥)𝑤(𝑡, 𝑥)]}"

𝐹![𝑎"(𝑡, 𝑥)]𝐹![𝑤"(𝑡, 𝑥)]. 
(2) 

The weighted semblance can be regarded as the squared 
correlation between the diffracted wavefield and the weighting 
function 𝑤(𝑡, 𝑥). When 𝑤(𝑡, 𝑥) is equal to a constant, (2) is 
equivalent to (1). 

For CMP-type seismic velocity analysis, Luo and Hale [20] 
showed that the use of a weighted semblance function, where 
greater emphasis is placed on parts of the normal moveout 
(NMO) curve that are particularly sensitive to velocity changes, 
can significantly increase the resolution of the velocity spectra 
obtained. To improve the resolution of diffraction velocity 
analysis for common-offset GPR data, we similarly aim to 
develop a weighting function, to be used in (2), that places more 
emphasis on parts of the diffraction curve that have greater 
sensitivity to changes in the migration velocity. To this end, we 
consider a point diffractor whose apex appears on a GPR 
section at the two-way traveltime 𝜏 (Fig. 1). Assuming that the 
diffractor is embedded in a homogeneous medium having a 
value of the squared slowness of  𝛾= 1 𝑣"⁄ , the traveltime of 

the diffraction curve in terms of the zero-offset traveltime is 
approximately given by 

 𝑡 = 5𝜏" + 4𝛾𝑥$", (3) 
where 𝑥$  denotes the horizontal distance between the 
diffraction apex and the observation location at the surface. 
Taking the derivative of (3) with respect to the squared 
slowness, we arrive at 

 
𝜕𝑡
𝜕𝛾 =

2𝑥$"

5𝜏" + 4𝛾𝑥$"
=
2𝑥$"

𝑡 . (4) 

We see from (4) that the change in traveltime along the 
diffraction hyperbola that results from a change in the squared 
slowness is proportional to the horizontal distance from the 
apex squared and inversely proportional to the traveltime. The 
distance 𝑥$ can be expressed in terms of the local slope 𝑝 of the 
diffraction curve, which is equal to the derivative of (3) with 
respect to 𝑥$. Taking 𝜕𝑡/𝜕𝑥$, solving for 𝑥$, and substituting 
the result into (4) yields 

 
𝜕𝑡
𝜕𝛾 =

𝑡𝑝"

8𝛾". 
(5) 

Equation (5) suggests that our weighting function for 
diffraction semblance should vary proportionally to the product 
of the traveltime and the squared local slope of the diffracted 
wavefield. To estimate the latter, we perform so-called C2 
coherency analysis, where we seek to find the value of 𝑝 that 
maximizes a linear semblance measure over a particular time 
and trace window [23] 

 max
%

1
𝑛
∑ {∑ 𝑎[𝑡& + 𝑝(∆𝑥'), 𝑥& + ∆𝑥'](

')* }"+,

∑ ∑ 𝑎"(
')*+, [𝑡& + 𝑝(∆𝑥'), 𝑥& + ∆𝑥']

, (6) 

where 𝛿𝑡 represents the interval over which vertical summation 
is performed, 𝑛 is the number of considered neighboring traces, 
position (𝑡&, 𝑥&)  is where the slope 𝑝  is estimated, and ∆𝑥' 
denotes the horizontal distance from position (𝑡&, 𝑥&). The C2 
coherency analysis procedure based on (6) yields not only a 
slope attribute  𝑝(𝑡, 𝑥), but also a maximum-semblance-based 
coherency attribute 𝑐(𝑡, 𝑥) . For parasitic slopes related to 
random noise, this coherency value will be small because of the 
inherent lack of continuity. Conversely, for the diffracted parts 
of the wavefield, the coherency attribute will take on a high 
value, even in the case of weak amplitudes, because the 
hyperbolae can be locally approximated by continuous linear 
events. 
 

 
Fig. 1. Schematic illustration of a diffraction whose apex appears at 
two-way traveltime 𝜏 in a common-offset GPR section. 𝑥! denotes the 
horizontal distance between the considered observation point at the 
surface and the diffraction apex. 



 

 
To formulate our weighting function for diffraction 

semblance velocity analysis, which must be defined 
everywhere across the diffraction section, we first evaluate (5) 
using the local slope estimate derived from the C2 coherency 
analysis procedure described by (6). Next, to avoid the 
consideration of regions that do not correspond to coherent 
diffraction events, we set to zero all parts of the section where 
the estimated coherency value is below a chosen threshold 𝑐&, 
which is determined empirically. This masking procedure can 
be expressed mathematically as 

 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) ∙ 𝐻[𝑐(𝑡, 𝑥) − 𝑐&], (7) 
where 𝑢(𝑡, 𝑥) denotes the masked data, 𝑓(𝑡, 𝑥) the results of 
(5), and 𝐻 the Heaviside step function. Finally, we tailor our 
weight function 𝑤(𝑡, 𝑥)  such that we can easily control the 
degree of weighting of diffraction events based on (5). This is 
done by normalizing 𝑢(𝑡, 𝑥) by its maximum value 𝑢-./ and 
introducing the balance parameter 𝜆, which can take on values 
between 0 and 1 

 𝑤(𝑡, 𝑥) = 1 − 𝜆 + 𝜆 K
𝑢(𝑡, 𝑥)
𝑢-./

L. (8) 

When 𝜆 = 0 , we see that 𝑤(𝑡, 𝑥) = 1 , meaning that the 
weighted semblance in (2) is equivalent to the normal 
semblance described by (1). Conversely, when 𝜆 = 1 , the 
weighting is based entirely on the sensitivity relationship 
expressed by (5). 

To perform the diffraction semblance velocity analysis, (2) is 
evaluated over a suite of velocity values. This yields a t-x-v cube 
of weighted diffraction semblance values. Using the automatic 
picking program 'sfpick' in Madagascar [18], the maxima on 
each t-v panel are selected and a 2D RMS velocity model is 
generated. This result, if desired, can then be transformed to a 
corresponding interval velocity model using the constrained 
Dix inversion program 'sfdix' [26]. The flowchart in Fig. 2 
illustrates the essential elements of our proposed approach. 
 

 
Fig. 2. Flowchart illustrating the essential elements of the proposed 
diffraction semblance weighting strategy for estimating the subsurface 
migration velocity structure from surface-based common-offset GPR 
reflection data. 
 

III. SYNTHETIC DATA EXAMPLES 

A. Vertical gradient model 
We first show the application of our diffraction velocity 

analysis strategy to a synthetic example characterized by a 
negative velocity gradient with depth, which is commonly 
encountered in surficial environments in response to a gradual 
increase of the soil water content (Fig. 3a). Ten point-type 
diffractors are distributed randomly throughout this model, for 
which we generated synthetic common-offset GPR reflection 
data using the gprMax software [27], which solves Maxwell's 
equations using the finite-difference time-domain (FDTD) 
method. The subsurface dielectric permittivity 𝜀 is assumed to 
be frequency-independent and is obtained from the GPR 
velocity 𝑣 using the low-loss approximation 𝑣 ≈ 1 √𝜀𝜇⁄  [28]. 
The magnetic permeability 𝜇	 is assumed to be equal to its value 
in free space, and the electrical conductivity is fixed at a 
constant value of 1 mS/m. The source current is defined as 
Ricker wavelet having a dominant frequency of 200 MHz 
which, in turn, results in a propagating electromagnetic pulse 
corresponding to the first derivative. The distance between the 
transmitter and receiver antennas is set to 0.5 m and traces are 
simulated every 0.1 m along the survey profile. The fact that the 
antenna offset is not strictly zero leads to an inherent 
underestimation of the velocity that decreases with increasing 
depth. For the standard antenna offsets used in surface-based 
bistatic GPR reflection surveys, the resulting errors can be 
generally regarded as negligible from a practical point of view.  

The resulting synthetic GPR data are contaminated with 5% 
Gaussian random noise with regard to the maximum absolute 
amplitude below the direct wave, and are subjected to a 
standard signal processing sequence consisting of (i) amplitude 
scaling to compensate for energy spreading, absorption, and 
scattering using a gain function consisting of a linear and an 
exponential part; (ii) elimination of the direct air and ground 
arrivals by subtracting the average trace calculated over a time 
window from 0 to 25 ns; and (iii) 20-600 MHz bandpass 
filtering. Fig. 3b shows the raw noise-contaminated GPR data 
after amplitude scaling only. Fig. 4a then illustrates the final 
processed GPR data, which, due to the absence of reflecting 
interfaces in the underlying velocity model, only consist of 
diffractions and noise. 

We next performed C2 coherency analysis described by (6) 
on the processed GPR data, which leads to the local coherency 
and slope attribute sections shown in Figs. 4b and 4c, 
respectively. We see that the estimated coherencies are strong 
for the diffractions and rather weak and disorganized for the 
noise, which allows us to easily identify the diffractions and 
estimate their slopes. Based on this information, (5), (7) and (8) 
are used to calculate the semblance weighting function to be 
used in diffraction velocity analysis, where balance parameter 
𝜆 is set to a value of 0.5 (Fig. 4d). Through empirical testing, 
we have found that intermediate values of 𝜆 lead to the best 
results in the velocity spectra, and, for consistency, we therefore 
consider λ = 0.5 for all of the examples presented in the 
manuscript. The weights are seen to increase with distance from 
the apex of each diffraction hyperbola, as the diffraction curves 



 

have a greater sensitivity to changes in velocity in these 
locations.  

We compute both the unweighted and weighted local 
semblance based on (1) and (2) for a suite of velocity values 
ranging from 0.07 m/ns to 0.13 m/ns. The corresponding 
velocity spectra for lateral positions of 3, 9, 15, 21 and 27 m are 
shown in Fig. 5. Note that the velocity resolution for the 
weighted panels is significantly higher than that for the 
unweighted panels, thanks to a heavier emphasis in the 
semblance calculation on parts of the diffraction hyperbolae 
that are most sensitive to velocity changes. The weighted panels 
are clearly more amenable to velocity picking, particularly if 
done manually. In Fig. 6a, we show the derived 2D RMS 
velocity structure for the entire GPR section, which was 
obtained by automatically picking the maxima on the time-
velocity panels for all trace locations considering an average 
velocity at the surface of 0.12 m/ns. The impact of using 
different velocities in the immediate subsurface on automatic 
picking has been investigated by [2]. In practice, the surficial 
velocity can be rather easily and reliably estimated based on the 
linear moveout of the direct ground wave as a function of 
antenna offset. The result in Fig. 6a agrees well with the true 
RMS velocity structure of the vertical gradient model, which is 
presented in Fig. 6b. This indicates that the inherent velocity 
bias related to the non-zero antenna offset of surface-based 
bistatic GPR reflection surveys is, as mentioned above, unlikely 
to be of any practical significance. Fig. 6c shows the 
corresponding depth-converted interval velocity model, which 
was obtained via Dix inversion. We see that the derived velocity 
field is largely consistent with the underlying gradient model 
(Fig. 3a). The discrepancy in the lower part of the profile is 
related to the relative scarcity of complete diffraction 
hyperbolae in this part of the synthetic data. Finally, Fig. 6d 
shows the migrated GPR image in the depth domain, which was 
obtained by first performing Kirchhoff time migration using the 
estimated RMS velocity structure, and then converting from 
time to depth based on the corresponding interval velocities. 
We see that the diffraction hyperbolae have collapsed 
effectively into their apexes whose positions are consistent with 
those in the underlying model (Fig. 3a). 
 

 
Fig. 3. a) Velocity model characterized by a negative velocity-depth 
gradient. Ten point-type diffractors are distributed randomly 
throughout the model. b) Corresponding synthetic common-offset 
GPR reflection data with 5% Gaussian random noise added. 
 

 
Fig. 4. Diffraction semblance weight function calculation for the 
vertical gradient velocity model example presented in Fig. 3. a) 
Synthetic common-offset GPR data from Fig. 3a after processing. b) 
Corresponding coherency attribute. c) Corresponding slope attribute. 
d) Inferred weights for diffraction velocity analysis. 
 

 
Fig. 5. a) Unweighted and b) weighted diffraction semblance spectra 
inferred for the vertical gradient velocity model example at lateral 
distances of 3, 9, 15, 21, and 27 m. 
 



 

 
Fig. 6. a) Estimated and b) true RMS velocity distribution for the 
vertical gradient velocity model example (Fig. 3a). c) Estimated 
interval velocity model obtained by Dix inversion. d) Corresponding 
migrated depth image of the common-offset GPR data (Fig. 3b). 
 

B. Layered model 
Our second synthetic example, presented in Fig. 7a, is based 

upon a layered velocity model and is similar to the example 
considered by Yuan et al. [2] in a recent GPR diffraction 
velocity analysis study. The model has two major units of 
constant velocity, which are separated by a dipping interface. 
Each of the two constant velocity units contains three 
diffractors. A thin horizontal layer is also present in the lower 
part of the second unit. As before, we simulated a common-
offset GPR reflection survey, assuming low-loss conditions for 
the conversion of velocity to dielectric permittivity and using a 
constant electrical conductivity of 1 mS/m and a magnetic 
permeability equal to its value in free space. The gprMax FDTD 
software was again used to perform the GPR simulations with 
a Ricker wavelet having a dominant frequency of 200 MHz as 
the source current function, a transmitter-receiver spacing of 
0.5 m, and a lateral trace increment of 0.1 m. After 
contaminating the resulting data with 5% Gaussian random 
noise with regard to the maximum absolute amplitude below 
the direct wave, they were subjected to the same signal 
processing sequence as described previously. Fig. 7b shows the 
raw noise-contaminated GPR data after amplitude scaling only, 
where we observe that, in addition to the diffraction hyperbolae 
arising from the point-type scatterers, specular reflections 
corresponding to the layer boundaries are present. 
 

 
Fig. 7. a) Layered velocity model containing six point-type diffractors. 
b) Corresponding synthetic common-offset GPR reflection data with 
5% Gaussian random noise added. 

 

 
Fig. 8. Diffraction semblance weight function calculation for the 
layered velocity model example presented in Fig. 7. a) Synthetic 
common-offset GPR data from Fig. 7b after processing and diffraction 
separation. b) Corresponding coherency attribute. c) Corresponding 
slope attribute. d) Inferred weights for diffraction velocity analysis. 
 

 
Fig. 9. a) Unweighted and b) weighted diffraction semblance spectra 
inferred for the layered velocity model example at lateral distances of 
2, 6, 10, 14, and 18 m. 
 



 

 
Fig. 10. a) Estimated and b) true RMS velocity distribution for the 
layered velocity model example (Fig. 7a). c) Estimated interval 
velocity model obtained by Dix inversion. d) Corresponding migrated 
depth image of the common-offset GPR data (Fig. 7b). 
 

As the data in Fig. 7b contain both reflections and 
diffractions, we applied PWD filtering after processing in order 
to eliminate the specular reflections. Fig. 8a shows the result, 
where we see that the diffractions have been preserved and that 
the reflections have been largely eliminated. In Figs. 8b and 8c, 
we show the local coherency and slope attributes corresponding 
to the diffracted wavefield in Fig. 8a, respectively. In Fig. 8d, 
we show the weight function calculated from these attributes 
based on (5), (7) and (8), where balance parameter 𝜆 was again 
set to a value of 0.5. As before, we computed both the 
unweighted and weighted local semblance for a suite of velocity 
values ranging from 0.07 m/ns to 0.13 m/ns. The corresponding 
velocity spectra for lateral positions of 2, 6, 10, 14 and 18 m are 
shown in Fig. 9. Consistent with the results presented 
previously, the weighted semblance panels are seen to have a 
considerably higher resolution along the velocity axis and 
contain fewer artifacts than their unweighted counterparts. 

Using automatic velocity picking on all of the weighted 
semblance panels assuming an average velocity at the surface 
of 0.1 m/ns, the 2D RMS velocity model presented in Fig. 10a 
is generated. This result compares reasonably well with true 
RMS velocity structure of the layered model, which is 
presented in Fig. 10b. The estimated RMS velocity structure 
was then used to estimate interval velocities in the time domain 
through Dix inversion (Fig. 10c). Finally, Fig. 10d shows the 
corresponding depth image of the GPR data. From this depth 
image, we see that the position of dipping interface is imaged 
satisfactorily, that the diffracted parts of the wavefield have 
been well focused, and that the thin layer is well resolved with 
its geometric characteristics closely emulating those of the 
underlying model with the exception of a mild pull-down 
towards the right-hand side. The latter results from errors in the 
estimation of the RMS and interval velocity distributions in the 
overlying part of the model due the relative scarcity of 
diffractors. Compared to the migrated images of Yuan et al. [2], 
the positioning of the prevailing structures has been 
significantly improved. 

IV. FIELD DATA EXAMPLE 
We now consider the application of our proposed 

methodology to constant-offset GPR reflection data acquired at 
the Boise Hydrogeophysical Research Site (BHRS), which is 
located on a gravel bar adjacent to the Boise River near Boise, 
Idaho, USA (Fig. 11). The corresponding aquifer is unconfined 
and consists predominantly of late Quaternary fluvial deposits 
dominated by gravel and sand. The groundwater table is, with 
some seasonal variations, located around 2 m depth. A layer of 
red clay at approximately 18 m depth acts as an aquitard and 
forms the base of the aquifer [29]. Over the past two decades, a 
wide range of geophysical and hydrogeological studies have 
been conducted at the site [30], [31]. 

The considered GPR data are from an inline profile acquired 
in 1998 during a 3D survey at the BHRS using a PulseEkko IV 
system (Sensors & Software Inc.) with a nominal antenna 
frequency of 200 MHz. The 30-m-long survey line crosses three 
boreholes, B5, A1, and B2, where neutron-neutron porosity 
logs are available below the groundwater table, which was 
located at a depth of ~2.8 m at the time of the survey. The 
spacing between the transmitter and receiver antennas was set 
to 0.5 m and traces were acquired every 0.1 m along the profile. 
The corresponding time sampling interval was 0.8 ns, and 32 
stacks were performed at each trace location in order to improve 
the signal-to-noise ratio. 
 

 
Fig. 11. Map of the BHRS showing the location of the considered 
common-offset GPR reflection profile (blue dashed line). The profile 
is aligned with boreholes B5, A1, and B2 (yellow circles). 
 

 
Fig. 12. a) Raw and b) processed common-offset GPR reflection data 
from the BHRS. 
 



 

 
Fig. 13. Diffraction semblance weight function calculation for the 
common-offset field GPR reflection data from the BHRS. a) Diffracted 
wavefield obtained from the processed data shown in Fig. 12b. b) 
Corresponding coherency attribute. c) Corresponding slope attribute. 
d) Inferred weights for diffraction velocity analysis. 
 

Fig. 12a shows the raw BHRS GPR reflection data. These 
data were subjected to a typical signal processing flow 
consisting of time-zero correction, “de-wow” filtering, surgical 
mute of the direct air and ground arrivals, and amplitude scaling 
using a gain function consisting of a linear and an exponential 
part (Fig. 12b). Next, we applied PWD filtering to isolate the 
diffracted part of the recorded wavefield (Fig. 13a). Though not 
evident in the original data after standard processing, 
diffractions do indeed turn out to be quite abundant after 
wavefield separation. 

In Figs. 13b and 13c, we show the local coherency and slope 
attributes corresponding to the diffracted wavefield shown in 
Fig. 13a. Fig. 13d shows the weight function calculated for 
diffraction velocity analysis, where balance parameter 𝜆 was 
again set to 0.5. We computed both the unweighted and 
weighted local semblance for a suite of velocity values ranging 
from 0.07 m/ns to 0.13 m/ns. The corresponding velocity 
spectra for lateral positions of 3, 9, 15, 21 and 27 m are shown 
in Fig. 14. As for the synthetic test cases, we see that the 
velocity resolution in the weighted panels shows distinct 
improvements compared to the unweighted panels and that the 
uncertainties in velocity picking are decreased by the proposed 
approach. The corresponding estimated 2D RMS velocity 
structure is shown in Fig. 15a. Through Dix inversion and time-
to-depth conversion, we then obtained the interval velocity 
model shown in Fig. 15b. Quite interestingly, this smooth, 
large-scale, diffraction-based velocity model clearly senses the 
change in water content associated with transition from the 
vadose zone to the saturated zone at the BHRS. Fig. 15c shows 
the corresponding depth image of migrated GPR data. 
 

 
Fig. 14. a) Unweighted and b) weighted diffraction semblance spectra 
obtained from the BHRS field data at lateral distances of 3, 9, 15, 21, 
and 27 m. 
 

 
Fig. 15. a) RMS velocity structure estimated from the BHRS field data. 
b) Estimated interval velocity model obtained by Dix inversion. c) 
Corresponding migrated depth image of the BHRS field data (Fig. 
12b). 
 

To further assess these results, we compare the inferred 
interval velocity structure with the neutron-neutron porosity 
logs, which were acquired only within the water-saturated zone, 
at the borehole locations B5, A1, and B2 (Fig. 16). To this end, 
we convert the logged porosities to GPR velocity using a 



 

common petrophysical mixing model for the water-saturated 
part of subsurface [32] 

 𝑣 =
𝑐

5𝜀01(1 − 𝜙) +5𝜀0#𝜙
, (9) 

where 𝑐 = 0.3 m/ns is the speed of light in free space, 𝜙 is the 
porosity, and 𝜀01 = 4.6 and 𝜀0# = 80 are the relative dielectric 
permittivities of the dry solid matrix and water, respectively. 
Fig. 16 shows the comparison between the estimated and 
logged velocities at the three borehole locations, which is 
overall quite favorable. 
 

 
Fig. 16. Comparison of the velocity profiles estimated from GPR 
diffraction analysis (black solid lines) at the borehole locations a) B5, 
b) A1, and c) B2 (Fig. 11c) with the corresponding velocity profiles 
inferred from the neutron-neutron porosity logs acquired within the 
water-saturated zone (blue dashed lines). 
 

V. DISCUSSION AND CONCLUSIONS 
We have presented in this paper a weighting strategy to 

improve the performance of diffraction-based velocity analysis 
of surface-based common-offset GPR reflection data using 
local semblance as the focusing measure. Our weighting 
function is calculated throughout the GPR section from 
coherency and slope attributes that are derived from linear 
coherency analysis of the diffracted wavefield. Through its use, 
far-distance components of diffraction hyperbolae, whose 
positions are particularly sensitive to the prevailing RMS 
velocity, are favoured. This leads to increased focusing and 
resolution of the resulting semblance spectra, which 
correspondingly reduces the uncertainties for velocity picking. 
Tests on synthetic common-offset GPR reflection data for two 
canonical models and subsequent application to field data 
corroborate the viability of the proposed weighting method.  

Our weight function is designed in an analogous manner to 
that of Luo and Hale [20], who estimated the NMO velocity 
from CMP gathers, where far-offsets tend to be more sensitive 
to velocity changes and the offset information is available. In 
our case, however, the information about the diffractor 
positions and the associated lateral distances of the interesting 
parts of the diffraction curves is not explicitly available, and we 
use attribute analysis to retrieve it. Diffraction-based migration 
velocity analyses provide the smooth large-scale velocity 
structure of the probed subsurface region, which is needed for 

subsequent imaging and depth conversion. Liu et al. [17] 
recently illustrated how to combine this information with small-
scale velocity fluctuations inferred from the reflected part of the 
GPR wavefield in order to obtain comprehensive estimates of 
the detailed velocity distribution. The diffraction velocity 
analysis component of the latter approach is likely to benefit 
from the corresponding improvements provided by the methods 
proposed in the current study. This is expected to be particularly 
pertinent in the presence of sub-optimal signal-to-noise ratios. 

Arguably, the most important condition for a successful 
application of the proposed methodology is the presence of an 
ample amount of diffraction hyperbolae that are distributed 
reasonably evenly throughout the recorded common-offset 
GPR profile. Due to the inherent heterogeneity of the shallow 
subsurface, much of the incident GPR energy is indeed 
scattered/diffracted, rather than being reflected from specular 
interfaces [2], [14], meaning that this criterion is often satisfied. 
If such diffracted energy is missing along parts of the GPR 
profile, it was observed in our synthetic tests that the 
corresponding parts of the estimated velocity field will lose 
resolution. Another critical part of the proposed methodology is 
the effective isolation of the diffracted wavefield. In this study, 
standard PWD filtering was considered, but we expect that 
comparable results would be obtained through alternative 
approaches, such as, for example, coherent wavefield 
subtraction [22], [23]. In this regard, we have observed that 
much of the diffracted energy on a GPR section only becomes 
clearly visible after this step. 

Although our weighting strategy contributes to increase the 
resolution of velocity spectra, there are still inherent 
uncertainties in the velocity picking process. For the automatic 
picking code ‘sfpick’, for example, two key input parameters 
required are the velocity at the surface and the smoothing radii 
in the horizontal and vertical directions, all of which have an 
effect on the results obtained [2]. Further, even with an optimal 
choice of these parameters, uncertainties remain in the obtained 
RMS velocity fields due to the sparse and/or uneven 
distribution of diffractors [2]. These uncertainties are, however, 
not specific to migration focusing analysis, and similarly 
prevail in all other types of diffraction-based velocity analysis 
techniques [7], [10]. The exploration, characterization, and 
quantification of these uncertainties is an important topic for 
future research. Another focus of future research will be the 
extension of the proposed technique from 2D to 3D, which is 
conceptually straightforward, but algorithmically cumbersome. 
This, in turn, is expected to significantly enhance the 3D 
migration velocity analysis of common-offset GPR data as, due 
to the inherent heterogeneity of the shallow subsurface, the 
diffracted energy present in corresponding 2D sections is likely 
to come from out-of-plane sources. 
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