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Abstract
Objectives: To review studies on deep learning (DL) models for classification, detection, and segmentation of rib fractures in CT data, to deter-
mine their risk of bias (ROB), and to analyse the performance of acute rib fracture detection models.

Methods: Research articles written in English were retrieved from PubMed, Embase, and Web of Science in April 2023. A study was only in-
cluded if a DL model was used to classify, detect, or segment rib fractures, and only if the model was trained with CT data from humans. For
the ROB assessment, the Quality Assessment of Diagnostic Accuracy Studies tool was used. The performance of acute rib fracture detection
models was meta-analysed with forest plots.

Results: A total of 27 studies were selected. About 75% of the studies have ROB by not reporting the patient selection criteria, including con-
trol patients or using 5-mm slice thickness CT scans. The sensitivity, precision, and F1-score of the subgroup of low ROB studies were 89.60%
(95%CI, 86.31%-92.90%), 84.89% (95%CI, 81.59%-88.18%), and 86.66% (95%CI, 84.62%-88.71%), respectively. The ROB subgroup differ-
ences test for the F1-score led to a p-value below 0.1.

Conclusion: ROB in studies mostly stems from an inappropriate patient and data selection. The studies with low ROB have better F1-score in
acute rib fracture detection using DL models.

Advances in knowledge: This systematic review will be a reference to the taxonomy of the current status of rib fracture detection with DL
models, and upcoming studies will benefit from our data extraction, our ROB assessment, and our meta-analysis.
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Introduction

Rib fractures are the most common injury in blunt chest
trauma patients.1 Although a chest radiograph may suffice to
diagnose displaced fractures, a multidetector CT (MDCT, or
CT for simplicity) scan is recommended to ensure a more sen-
sitive report. However, due to the complexity of CT scans,
between 25% and 35% of non-displaced rib fractures are
missed in diagnoses.2

Deep learning (DL) models, and other artificial intelligence
models, can increase the diagnostic accuracy, reduce inter-
reader variability, and shorten reading time.3,4 DL models con-
sist of artificial neural networks with multiple layers to capture
different levels of abstraction from the data. A particular config-
uration of neural networks is a convolutional neural network,
which is powerful and efficient in computer vision thanks to the
use of small kernels of parameters to capture local features.5

DL models have been used for the analysis of medical im-
aging in three main applications: classification (eg, benign vs
malignant lesion), detection (eg, lesion localization), and seg-
mentation (eg, organ contouring).6 In particular, DL models
have been used in many studies for the detection of orthopae-
dic fractures, including rib fractures, with an accuracy close
to that of experienced radiologists.7 Similarly, DL models
have been applied to the analysis of postmortem CT (PMCT)

scans to perform tasks such as automatic segmentation of
organs, identification of mass disaster victims, or sex and age
estimation in the investigation of unknown remains.8

Despite their promising results, DL models still face several
challenges due to their strong dependence with data quantity
and quality, not to mention their low interpretability.9,10

The objective of this systematic review is to study rib frac-
ture classification, detection, and segmentation in CT data
with DL models, both in clinical and in postmortem (PM)
cases. In addition, the risk of bias (ROB) and the concerns
about applicability (CAA) of the selected studies are assessed,
and the impact of ROB on acute rib fracture detection perfor-
mance is analysed. The review will be useful as a reference
for radiologists and future research projects.

Methods

This systematic review was registered in the PROSPERO in-
ternational prospective register of systematic reviews, and it
followed the guidelines proposed by the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA)
2020 statement.11

All steps of the methods were conducted by the first au-
thor, who has one year of research experience in artificial
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intelligence for medical imaging. For the ROB and CAA as-
sessment, articles were further reviewed to balance the
answers to each signalling question.

Literature search
Articles were retrieved between the 3rd and 5th of April 2023
from PubMed, Embase, and Web of Science using the query
of keywords ((deep learning) OR (convolutional network))
AND (rib fracture).

Only the studies falling into the following criteria were in-
cluded in the systematic review: (1) written in English, (2)
published as a journal article or as a conference paper, (3)
used a DL model, (4) the DL model was used to classify, de-
tect, or segment rib fractures, (5) the DL model was trained
on data coming from CT scans, and (6) the CT scans were
taken from humans.

Studies using PMCT scans to train their models were also
considered. Moreover, studies with patients with healing and
old rib fractures were also included in the systematic review.

Data extraction
Study characteristics and model performance metrics were
extracted without using automation tools. To complete unre-
ported data, corresponding authors were contacted twice
within three weeks. All data were collected in Excel
spreadsheets.

For classification and detection models, the extracted per-
formance metrics were the sensitivity (or recall), the precision
(or positive predictive value), and the F1-score, all at lesion
level (except for two studies on rib fracture classification,
which only reported performance at scan level). For segmen-
tation models, the extracted performance metrics were the
Dice score and the intersection over union. See the
Supplementary Material for the formulae of these perfor-
mance metrics.

In studies comparing the performance of different models
on the same testing dataset, only the model with best perfor-
mance was considered.

Risk of bias assessment
The Quality Assessment of Diagnostic Accuracy Studies12

tool was used to assess the ROB and the CAA of the included
studies. The suggested list of signalling questions was modi-
fied to adapt it to the objectives of this systematic review. See
the Supplementary Material for the full list of signalling ques-
tions used in each domain.

For each study, each signalling question was answered and
classified into one of the following four categories, ordered
by level of risk: low, no information, some concerns, and
high. Then, each domain was also classified, assigning the
category with the maximum level of risk of those obtained in
the signalling questions in that domain. Finally, each study
was given an overall assessment following the
same procedure.

The results of these assessments were presented in the form
of traffic light plots (in the Supplementary Material) and
summary plots, all generated with the robvis tool.13

Meta-analysis
For rib fracture detection studies, the sensitivity, the preci-
sion, and the F1-score of their models were analysed with for-
est plots. The purpose of these forest plots was to visualize
and compare the results of the selected models and to

compute a global performance of rib fracture detection with
DL models. However, we remind the reader that each study
used a different dataset and a different DL model to achieve
the results. Therefore, we could not extract strong conclu-
sions concerning which of these algorithms was the best
suited for this task.
Only studies reporting performance metrics of acute rib

fracture detection were included in the meta-analysis. That is,
studies that trained the model with acute, healing, and old rib
fracture annotations and only reported a global performance
were excluded. In addition, only the studies providing the
95% CI of the sensitivity and the precision were selected. If
the F1-score was not reported with 95% CI, it was simulated
with the Monte Carlo method.
Heterogeneity was calculated with the I2 statistic and com-

plemented with the results obtained for the variance s2 of the
random effects (RE) model, which was chosen over the fixed-
effects model because the studies could not be considered to
be coming from the same population.14

The meta-analysis was repeated with two subgroups of
acute rib fracture detection studies: those judged as having a
low ROB and those judged as having a higher level of ROB,
namely no information, some concern, or high. The p-value
used for significance in the subgroup differences test
was 0.1.15

All plots and statistical analyses were performed with the
R (version 4.2.3) package metafor16 (version 4.0.0). Find the
data and scripts to generate the forest plots in https://github.
com/manellopez13/dl4rf_meta_analysis.

Results

Literature search
Using the search strategy stated in the methods, a total of 132
records were retrieved from the databases. From these, 68
records were not considered because they were duplicates,
and 10 were excluded because they were either not written in
English, not journal articles or conference papers, or not
available online. Afterwards, the reports of the remaining
records were assessed, which led to the following 27 exclu-
sions: 8 studies did not use DL, 10 records of studies did not
have rib fracture classification, detection, or segmentation as
their objective, and 9 studies used chest radiographs instead
of CT data to train their models.
The total number of studies included in the systematic re-

view was n¼27.17-43 The PRISMA flow diagram of Figure 1
shows the study exclusion process.

Data extraction
The included studies were published between 2020 and 2023.
The models of three studies only classify rib fractures, and
the model of one study only performed rib fracture segmenta-
tion. The remaining 23 studies trained models that detect rib
fractures. Most of the models were trained with medium to
high-resolution CT scans, with slice thickness ranging from 1
to 5mm. The ratio of female patients ranged from 30% to
40% in most of the study designs, and the average age of the
patients was in the range of 50-60 years. The rest of the study
characteristics are gathered in Table 1. For more information
on the selection criteria of the patients, refer to the
Supplementary Material.
All studies used clinical CT scans except one that used

PMCT scans.23 This study applied specific selection criteria,
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such as excluding cases of bodies in an advanced state of de-
composition or cases of bodies with severe trauma.

Tables 2-4 contain the average performance metrics
obtained by the models in terms of acute rib fracture classifi-
cation, detection, and segmentation, respectively. Some stud-
ies did not report the performance of the model on acute rib
fractures alone, but the global performance of the model on
acute, healing, and old rib fractures. These cases, which are
highlighted in the tables, were excluded from the meta-
analysis of acute rib fracture detection.

Risk of bias assessment
Figures 2 and 3 present the summary plots of the ROB and
the CAA assessments, respectively.

In the ROB assessment, the patient selection domain was
the most affected. About a fourth of the studies did not report
the inclusion and exclusion criteria used to select patients.

Some studies on rib fracture detection introduced ROB in
their reports of precision and F1-score by including control
patients in the testing dataset. Additionally, a fourth of the
studies collected the CT scans with slice thickness at 5mm.
For the domain of the index test, there was low ROB in

most of the studies, but three quarters of the studies had high
CAA, as their models were not publicly available, neither
commercially nor as open-source tools.
Concerning the reference standard domain, there was low

ROB in the majority of studies, with the exception of one
study that used annotations that were not 100% sensitive,
and one study in which labels of lesions were removed if they
were not annotated by all experts. A model trained with these
data may learn to ignore lesions, which would increase the
number of FN.
Finally, for the flow and timing domain, no ROB

was detected.

Figure 1. PRISMA flow diagram of included articles. DL: deep learning.
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The traffic light plots showing the detailed results of the
ROB and the CAA assessments can be found in the
Supplementary Material.

Meta-analysis
Only 7 studies were selected for the meta-analysis. As some
studies applied their models to more than one testing dataset,
the sensitivity meta-analysis consists of 15 points, and the
precision and the F1-score meta-analysis consists of 14
points each.

Figures 4 and 5 show the forest plots of the sensitivity and
the precision, respectively. At first glance, one can see that,
while models from the low ROB had both high sensitivity
and high precision, some studies with ROB had either sensi-
tivity or precision significantly lower than the total RE model
average. Indeed, S10 had good precision, but poor sensitivity,
and S14 had a notable sensitivity but an improvable preci-
sion. This trade-off is no longer observed in Figure 6, where
the forest plot of the F1-score studies S10 and S14 from the

rest. However, two models from the ROB group, S24-1 and
S24-3, presented high sensitivity, precision, and F1-score.
The subgroup analysis led to an averaged sensitivity of

89.60% (95%CI, 86.31%-92.90%) for studies with low
ROB and 84.00% (95%CI, 71.37%-96.63%) for studies
with ROB. The I2 statistic was higher than 95% in both sub-
groups, indicating considerable heterogeneity in both cases.
However, the low ROB subgroup was less heterogenic than
the ROB subgroup, as the variance s2 of the low ROB sub-
group was much lower than that of the ROB studies. The
subgroup differences test resulted in a p-value of 0.23, higher
than the threshold of significance 0.1, meaning that there was
no evidence that ROB had an impact on rib fracture detection
sensitivity.
Similar results were obtained for the precision analysis,

where the subgroup of low ROB studies had a precision of
84.89% (95%CI, 81.59%-88.18%), while for the ROB sub-
group it was 80.26% (95%CI, 68.21%-92.32%). Again, the
low ROB was less heterogenic than the ROB subgroup,

Table 1. Characteristics of the included studies.

Study Reference Type Year Country Centres CT scans FR (%) Age (years) DA CA

S1 Azuma M17 D 2021 Japan 1 569 30 63 (20-81) – –

S2 Castro-Zunti18 C 2021 Canada þ South Korea 1 612 35 68 (17-91) – –

S3 Edamadaka19 D 2023 United States 2 475 36 55 (21-94) – –

S4 Gao20 S 2022 China 2 600 – – – –

S5 Hongbiao21 D 2022 China 3 1623 33a 54 (46-64)a – –

S6 Hu22 C 2021 China 1 1697 – – Yes Yes
S7 Ibanez23 C 2021 Switzerland 1 195 28 56 (8-94) – Req
S8 Inoue24 D 2022 Japan 1 200 35 54 Req –

S9 Jin25 Dþ S 2020 China 1 900 36 55 (21-94) Yes Yes
S10 Kaiume26 D 2021 Japan 20 3683 28 58 (20-91) – Comb

S11 Li27 D 2023 China 7 15853 44 58 Req –

S12 Lin28 D 2023 China 1 2150 50 (18-85) – –

S13 Meng29 D 2021 China Multiple 8829 37 55 – –

S14 Niiya30 D 2022 Japan 2 1045 36 58 (21-91) Req –

S15 Su31 D 2023 China 1 30 – – – –

S16 Wang32 D 2022 China 18 13821 39 51 (18-83) – –

S17 Wang33 Dþ S 2023 China 1 500 36 55 (21-94) – –

S18 Weikert34 D 2019 Switzerland 9 11965 – 58 – Com
S19 Wu35 D 2021 China 6 2530 32 54 (19-87) – –

S20 Yang36 D 2022 China 6 9882 54 60c (24-88) – –

S21 Yao37 D 2021 China 1 1707 38 57 (23-88) Req –

S22 Zhang38 D 2020 China 11 3580 42 53 (18-81) – –

S23 Zhang39 Dþ S 2022 China 1 260 36 55 (21-94) – –

S24 Zhou40 D 2020 China 1 974 34 55c (20-97) – –

S25 Zhou41 D 2020 China 1 894 34 55 – –

S26 Zhou42 D 2021 China 3 602 42 55 – –

S27 Zhou43 D 2022 China 1 818 38 57 Req –

Abbreviations: FR ¼ female ratio, C ¼ classification, D ¼ detection, S ¼ segmentation, DA ¼ data availability, CA ¼ code availability, Req ¼ available upon
request, Com ¼ commercially available.

aFrom testing dataset.
bCurrently not available.
cMedian, not average.

Table 2. Average model performance on acute rib fracture classification.

Study Dim. Model architecture Pretrained CT scans ST (mm) N annot. Sensitivity (%) Precision (%) F1-score (%)

S2 2D InceptionV3 ImageNet 122 2 498 91 90 –

S6 2Dþ3D ResNet – 252 5 88 91a 69a 78a

S7 2D VGG – 29 1 – 93ab 89ab 91ab

Abbreviations: Dim. ¼ dimensions of the model, N annot. ¼ number of annotations of acute rib fractures.
aScan-level performance.
bIncludes old rib fractures.
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with I2 and s2 lower in the low ROB subgroup. The subgroup
differences test had a p-value of 0.35, above the
significance threshold 0.1. Therefore, no evidence was
found that ROB had an impact on rib fracture detec-
tion precision.

Finally, the F1-score analysis led to the least heterogenic
results, with estimates of 86.66% (95%CI, 84.62%-88.71%)
and 81.14% (95%CI, 72.25%-90.03%) for the low ROB
and the ROB subgroups, respectively. In this case, the sub-
group differences test yields a p-value lower than 0.1, point-
ing at the conclusion that ROB has an impact on the F1-score
of acute rib fracture detection.

Discussion and recommendations

Although the treatment of rib fractures is mostly conserva-
tive, these lesions are an indicator of associated injuries in
more than 90% of patients, and in around 10% of the cases
the associated injuries are fatal.44 The age of the patient and

the number of rib fractures increase the morbidity and mor-
tality of the injuries,45,46 but single rib fractures may also
lead to adverse outcomes in 20% of the cases.47 By reducing
the diagnosis time and achieving a higher sensitivity than
radiologists, DL models for rib fracture detection can only
improve healthcare.
The selected studies in this systematic review are heteroge-

neous, with different data and models. The inclusion criteria
for patients in each study are also varied. Thus, it is difficult
to make any recommendation among the tools presented, as
each has its own advantages in a specific application. For in-
stance, while most of the studies focus on acute rib
fracture detection, some models can distinguish among acute,
healing, and old rib fractures.18,29,32,36,38,40-42 In other stud-
ies, the models can also classify acute rib fractures into dis-
placed, non-displaced, and buckle (or incomplete) rib
fractures.17,27,29,30,32,34,36,38,42 One study analysed the per-
formance of the rib fracture detection model depending on
the number of rib fractures in the CT scan.27

Table 3. Average model performance on acute rib fracture detection.

Study Dim. Model architecture Pretrained CT scans ST (mm) N annot. Sensitivity (%) Precision (%) F1-score (%)

S1 3D Faster R-CNN – 30 3-5 90 82 – –

S3-1 2Dþ3Da Faster R-CNN ImageNet 80 1-1.25 – 95 90 92
S3-2 55 – – 97 96 97
S5 3D U-Net þ ResNet – 123 <1 708 79b 43b –

S8 2D Faster R-CNN þ
InceptionV2

COCO 19 5 87 71 60 65

S9 3D U-Net – 120 1-1.25 882 93 – –

S10 2.5D DenseNet þ SSD – 39 0.625 256 65 79 71c

S11-1 2Dþ3D CenterNet þ
ResNet-50þU-Net

– 1612 0.625-1 9874 93 – –

S11-2 2319 0.625-1 13524 91 94 92
S12 3D V-Net – 350 0.625 1037 91 90 90c

S13 3D V-Net þ VGG – 300 0.625 – 92b 95b 94b

S14 3D Faster R-CNN – 56 1-5 199 94 64 76
S15 2D CenterNet – – 5 – – 89 –

S16-1 3D U-Net – 1628 <2 1279 91b – –

S16-2 1613 <2 3340 85b – –

S17 2D U-Net – 80 1-1.25 – 82 82 82
S18 3D ResNet þ Faster

R-CNN
– 510 1.5 688 66b – –

S19-1 2Dþ3D Faster R-CNN þ
U-Net

ImageNet 362 0.625-5 1545 84b 81b –

S19-2 105 0.625-5 491 85b 82b 83b

S20-1 2Dþ3D CenterNet þ
U-Net þ LSTM

– 120 0.625-1.25 – 92b – 83b

S20-2 75 0.625-1.25 – 93b – 81b

S21 2Dþ3D U-Net þ DenseNet – 100 <2 436 91 87 89
S22 3D Foveal þ FasterR-CNN – 198 0.625 865 79b – –

S23 3D nnU-Net þ DenseNet – 60 1-1.25 435 95 – –

S24-1 2D Faster R-CNN ImageNet 98 1-5 480 90 85 88
S24-2 33 1 214 95 78 86
S24-3 65 5 266 87 92 90
S24-4 25 1 567 86 81 84
S24-5 25 2 270 83 80 82
S24-6 25 1-2 1073 80 89 84
S25-1 2Dþ3Da Faster R-CNN ImageNet 134 1-2 250 92 83 88
S25-2 62 1 131 97 80 88
S25-3 64 1 144 88 86 87
S26-1 2Dþ3Da RetinaNet – 90 1-1.25 193 91 84 87
S26-2 38 1.5 118 92 83 87
S27 3D U-Net þ attention

modules
– 164 1.25-5 – 81 – –

Abbreviations Dim. ¼ dimensions of the model, N annot. ¼ number of annotations of acute rib fractures.
aPostprocessing.
bIncludes healing and old rib fractures.
cMonte Carlo simulated.
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As a proof of quality of the DL tool, many studies have
compared the rib fracture detection performance of the
model against that of experienced radiologists. With the

assistance of a DL model, the sensitivity of radiologists
(60%-80%) can increase up to 20 percentage points while
maintaining a similar level of precision (70%-90%) and con-
siderably reducing reading time.17,18,21,24-27,29,32,35-38,40-42

The most common DL model architectures, used by
around 10 studies each, are the U-Net48 and the Faster
R-CNN.49 A good example of how rib fracture detection can
be resolved via various paths is the use of the U-Net—
although this model is designed to perform object segmenta-
tion, its results can be postprocessed to output bounding
boxes around the predicted object localizations.
There is also considerable heterogeneity concerning the

choice of input image dimensions. While the majority of stud-
ies decided to extract 3D patches from CT scans to train their
models, a number of studies applied 2D models to each indi-
vidual axial slice. Other researchers extended 2D models to
aggregate the results of groups of adjacent slices, which we
denote as 2.5D models.
No significant improvement has been found in the per-

formance of a particular choice of architecture and input
image dimensions over another. Additionally, we have not
observed any significant difference between the perfor-
mance of models pre-trained on natural image datasets,

Table 4. Average model performance on acute rib fracture segmentation.

Study Dim. Model
architecture

Pretrained CT scans ST (mm) N annot. Dice (%) IOU (%)

S4 2D U-Net – 50 <2 301 85a 80a

S9 3D U-Net – 120 1-1.25 882 72 56
S17 2D U-Net – 80 1-1.25 – 53 –

S23 3D nnU-Net
þ DenseNet

– 60 1-1.25 435 63 49

Abbreviations: Dim. ¼ dimensions of the model, N annot. ¼ number of annotations of acute rib fractures, IOU ¼ intersection over union.
aIncludes old rib fractures.

Figure 2. Summary plot of the risk of bias of the studies.

Figure 3. Summary plot of the concerns about applicability of the studies.

Figure 4. Forest plot of acute rib fracture detection sensitivity.

Abbreviations: ROB ¼ risk of bias, RE ¼ random effects.
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such as ImageNet50 and COCO,51 and the performance of
the rest of the models.

From the results of the ROB assessment, we recommend
that future researchers in this topic make sure to report the
patient selection criteria in detail. We believe that the appro-
priate cohort for a rib fracture detection model is blunt chest
trauma patients, that is, patients who are suspected of having
rib fractures. In such a cohort, there is no need for a control
group of healthy patients (which can lead to a higher number
of FP and to an underestimation of precision and F1-score). If
patients with healing and old rib fractures are included, such
lesions should be annotated accordingly, and the perfor-
mance of the model should be split into each type of fracture.
In addition, we advise not using CT data with 5mm slice
thickness for the training of the models, as such images might
blur and hide rib fracture features due to longitudinal partial
volume effects.52,53 With the CAA assessment, we remind
that the developed DL models should be shared as open-
source projects, so the results can be reproduced on differ-
ent datasets.

The focus of our meta-analysis is acute rib fracture detec-
tion, which is the main goal of a rib fracture detection DL
model in the emergency department. However, from our
point of view, such a model should also have the capacity to
distinguish acute from healing and old rib fractures.
Otherwise, the model can produce a higher number of FP on
patients who had rib fractures previously. Similarly, if the
model is trained with CT scans presenting acute, healing, and
old rib fractures but only the acute rib fractures are labelled,
the model is prone to produce more FN.
The main limitation of our meta-analysis is the reduced

number of selected studies, which is a consequence of the fact
that the majority of the studies in this systematic review did
not report the 95% CI of their results. In particular, the sub-
group of studies with ROB had only four points in each forest
plot, and in the F1-score forest plot one of the points had to
be simulated. In our opinion, performance metrics should be
written with their corresponding standard deviations or their
95% CIs.
Finally, it is of particular interest for our team to highlight

the opportunities of transfer learning between clinical and
PM cases. An advantage of PMCT scans is the absence of im-
aging artefacts due to breathing and motion of the body.
However, PM cases with a high radiological alteration index
(RA index)54 should be excluded from training datasets. This
is because a body with a high RA index presents signs of de-
composition, and its CT scan shows air bubbles in many
organs and cavities, including the bone marrow. By removing
such cases, a properly annotated PMCT dataset can be used
to train a DL model for rib fracture detection in a clinical
context, and vice versa. We remind that if the goal is to train
a DL model for rib fracture detection in patients with sus-
pected blunt chest trauma, such PMCT dataset should only
contain PM cases with rib fractures from blunt trauma.
With this systematic review, we have studied DL models

for rib fracture classification, detection, and segmentation in
CT scans. We have found that many studies do not properly
report patient inclusion criteria, and only a few models are
available commercially or as open-source tools. Moreover,
with our meta-analysis we conclude that low ROB studies
have significantly better performance in acute rib fracture de-
tection with DL models.

Supplementary material

Supplementary material is available at BJR online.
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Figure 6. Forest plot of acute rib fracture detection F1-score.

Abbreviations: ROB ¼ risk of bias, RE ¼ random effects. �Monte Carlo

simulated data.

Figure 5. Forest plot of acute rib fracture detection precision.

Abbreviations: ROB ¼ risk of bias, RE ¼ random effects.
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