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SUMMARY 

 

Context. Biological monitoring of occupational exposure is characterized by important 

variability, due to both variability in the environment and to biological differences between 

workers. A quantitative description and understanding of this variability is important for a 

dependable application of biological monitoring. The purpose of this work was to describe this 

variability, using a toxicokinetic model, for a large range of chemicals for which reference 

biological reference values exist. 

 

Methods. A toxicokinetic compartmental model describing both the parent compound and its 

metabolites was used. For each chemical, compartments were given physiological meaning. 

Models were elaborated based on physiological, physico-chemical and biochemical data when 

available, and on half-lives and central compartment concentrations when not available. Fourteen 

chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, 

ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, 

penthachlorophenol, phenol and toluene), representing 20 biological indicators. Occupational 

exposures were simulated using Monte Carlo techniques with realistic distributions of both 

individual physiological parameters and exposure conditions. Resulting biological indicator 

levels were then analyzed to identify the contribution of environmental and biological variability 

to total variability. 

 

Results and Conclusion. Comparison of predicted biological indicator levels with biological 

exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability 

associated to changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced 



by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, 

for the fourteen chemicals modeled, biological monitoring would be preferable to air monitoring. 

For short half-lives (less than 7 hours) this is very similar to the environmental variability. 

However, for longer half-lives, estimated variability decreased. 

 

Keywords: toxicokinetic compartmental model; environmental variability; total variability; 

exposure monitoring; biological monitoring of exposure. 

 

INTRODUCTION 

 

Occupational exposure assessment is an important step in managing chemical exposure in 

the workplace. Because inhalation is often the predominant route of exposure, this assessment 

very often relies on measurements of the air which workers are breathing. In many instances, 

biological monitoring of exposure is also used, and this is considered to better represent exposure 

because it takes into account such factors as the physical workload, other exposure routes, and 

differences in distribution and metabolism.(1,2) 

 

Air monitoring results have been shown to present important variability whether repeated 

measurements are taken for the same worker, the same workplace or the same industry.(3,4) This 

variability can be divided into within-worker variability (the same worker from day to day) 

and between-worker variability (differences in long term average exposure between 

workers).(5) When using biological monitoring data an additional source of variability has to be 

considered: individual variability due to physiological and biochemical differences both within 



and between workers. This aspect was recently studied by our group for a number of chemical 

agents using physiologically based toxicokinetic and compartmental toxicokinetic models.(6,7) 

 

In field situations, biological monitoring results are thus affected by both individual 

variability and environmental variability. Based on the analysis of a large database of 

occupational and environmental biological and air monitoring measurements, Lin et al .(4) 

demonstrated that biological data show less variability than air sampling results. This was 

further shown to be associated with the kinetics of the biological indicator. Similar trends 

were obtained in a previous study using simple toxicokinetic considerations.(8) These 

exploratory analyses were made in the context of retrospective exposure assessment for 

epidemiological studies. 

 

An in depth description and understanding of the simultaneous effects of the environmental 

and individual variability on the bioindicators also appears to be recommended for the practical 

application of biological monitoring techniques. The conclusion which can be drawn from the 

results obtained and the decisions as to which monitoring technique should be used in a particular 

situation are important parts of the exposure assessment process. Thus, it is important to have a 

good understanding of the associated variability for the application of biological monitoring in 

the evaluation of current occupational exposure. This was previously described for exposures at 

steady concentrations (i.e. considering only individual variability) using physiologically based 

toxicokinetic modelling (PBTK) and compartmental toxicokinetic models.(9,10) The purpose of the 

present study was to extend the application of the compartmental toxicokinetic models to 

include environmental variability in the discussion of biological monitoring variability. 

 



Using toxicokinetic tools developed previously by our group(10), the objective of this paper is to 

describe the total variability observed in biological monitoring results under field conditions as a 

function of environmental and individual variability. This approach was applied to 14 widely 

used chemical compounds and their twenty related biological indicators. 

 

METHODS 

 

Model Description 

 

A compartmental based toxicokinetic (CBTK) model developed for several chemicals in a 

previous study(10) was used to assess the effect of individual and environmental variability on 

bioindicator results. The model structure, presented in Figure 1, is a compromise between the 

detailed biological processes and the availability of data for a wide range of chemicals. This 

generic model was applied to 14 chemicals chosen from the IRSST’s guide to corresponding 

biological indicators. Specifically, the chemicals were: arsenic, cadmium, carbon monoxide, 

chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, 

methyl isobutyl ketone (MIBK), penthachlorophenol, phenol and toluene. Physiological, 

physicochemical, biochemical and kinetic data were used to simulate the behavior of each 

chemical in the human body. The values of the model parameters were modulated according to 

each compound’s basic data. 

 

The generic CBTK model is composed of two compartments: central (C) and peripheral (P) 

physiological compartments. Elimination is represented by two kinetic relationships: for 

the primary metabolite (M1) and the secondary metabolite (M2).
(10) However, the number of 



compartments used depends on the chemical, it may vary from one to four depending on the 

available data on the compound and its toxicokinetic behavior. 

 

In these models, the absorption, excretion and exchanges between compartments are 

described by flows. Uptake occurs in compartment C. The initial substance is then distributed to 

compartment P according to the blood flow (BF) rate, the estimated volume of the compartment 

(e.g. kidney or liver volume), the partition coefficients, and the compartment burden. This 

distribution also depends on the permeability of the tissue to the substance and it can therefore be 

perfusion or diffusion limited. The transfer between the compartment C and the metabolite 

compartments is described by the metabolic clearance. The flux between the compartment C 

and metabolites is calculated as a function of the organ’s blood flow, the Michaelis-Menten 

constant, and the maximum rate of metabolism. It was considered to be a first-order kinetic in the 

range of concentrations obtained during the exposures which we simulated, as they are in most 

cases low and limited in range (a factor of 10, at most). The model structure also allows the 

description of the transformation of one metabolite into another, i.e. serial metabolism. In this 

case, the kinetics of the secondary metabolite depends on the burden of primary metabolite and 

on its metabolic clearance. Finally, elimination is considered to occur through pulmonary, fecal 

and urinary excretion, as well as by metabolism. 

 

The general structure of the model was adapted for each substance selected with regards to 

the known metabolites, and the available data concerning physiological and biochemical 

mechanisms. Model mathematical equations have been presented and discussed previously(10). 

 

Model Parameters 



 

 Models were established using physiological and biochemical parameters. The specific 

structure and data used for each chemical are presented in detail in Table IV (Appendix). This 

indicates which compartments were considered and the specific parameters used for the chemical 

of interest. Generic parameters are presented in Table I: cardiac output, alveolar ventilation, body 

weight, creatinine excretion and urine output. These were taken to vary as a power function of 

body weight. Table I also displays coefficients of variation (CV) and parameter distributions for 

biological parameters considered as random variables. They were selected from a literature 

review or from data of Thomas et al.(13). These random variables were then used to calculate the 

parameters specific to each chemical as presented in Table IV (Appendix). 

 

 In some cases, parameters determining the flows had to be estimated from elimination half-

life (t½) and sometimes compartment steady-state concentrations. Depending on the chemical, 

specific parameters estimated were: tissue volume, tissue permeability, and urinary and feces 

excretion rate constants. 

 

All data used in the specific models are summarized in Table IV, together with a description 

of the compartments used. We initially searched for useful basic toxicokinetic information in 

review articles(14,15,16), and further specific information was extracted from other literature 

(see footnotes in Table IV (Appendix)). 

 

Model Evaluation 

 



 Results from the model were compared to actual concentrations measured in humans, 

notably under conditions representative of occupational exposure. No formal evaluation was 

made. Best fit was not attempted, but a reasonable correlation was looked for by visually 

comparing results with measured data at different time points. To validate the models, we 

estimated what biological concentrations would be following repeated exposure at the 

occupational exposure limit (OEL). The results obtained at specified sampling times were 

compared to corresponding biological exposure indices (BEI)(14). Although, by definition, the 

latter are not directly linked to OEL, in most cases they represent a good estimation of real life 

exposure. 

 

Monte Carlo Simulations 

 

After obtaining a valid model for an average worker, for a given chemical, the second step 

consists of simulating different scenarios (different individuals, different exposure conditions, 

etc.). The simulations modeled workers carrying out a physical activity of 50 Watts for 12 

hours per day (eight hours of work activity with exposure followed by four hours of activity 

outside work). This was followed by a rest period of 12 hours. A normal week consisted of five 

successive days of eight hours exposure followed by two unexposed days. The parameters 

dependant on physical activity (cardiac output, alveolar ventilation, organ blood flows, etc.) were 

adjusted to correspond to this daily pattern. 

 

The data set was generated by two-dimensional (2D) Monte Carlo simulations. This model 

simulated both uncertainty and variability in distribution parameters, unlike one-

dimensional Monte Carlo (1D) analysis that would model either uncertainty or variability 



in input variable.(17) The software used for programming the simulation was SAS V9.1 (SAS 

Institute Inc). The modeling equations were solved using the Euler method. Previous studies have 

presented these in detail.(10) 

 

Sample Size 

In order to optimize modeling studies, preliminary simulations were done to estimate the 

minimum number of simulated days (sample) required to represent the statistical parameters of a 

population with a given confidence interval. These preliminary simulations were run for 

chemicals on the BEI which had shown the most variability in previous studies.(6,7) The 

population was described by simulating a group of 500 similar workers subject to 100 weeks of 

exposure, with an average exposure variability (GSD of 2.0). Exposure was fixed so that 95% of 

daily exposures were below the OEL. The 50,000 observations collected (one biological sample 

taken each week, for each worker) were computed and statistically analyzed to determine the 

population variance (s²). The minimum required sample, size N (uncorrected sample size 

estimate), was calculated with a target precision level “B”(18) such that: 

 

N = 1.962*s2/B2    (1) 

 

B is expressed as half of the maximum acceptable confidence interval width. At the end-of-shift 

exposure analysis, the most variable biological indicator proved to be toluene in the blood. To 

ensure a statistically representative estimation of the “50,000” population distribution, with a 

10% precision level, the resulting sample size was 229 weeks. The number of observations was 

thus fixed at 300 weeks for all chemicals, corresponding to a total of 1,500 daily exposures 

generated randomly. 



 

Exposure Scenarios 

Three types of output parameters are required to assess the variability of bioindicators: the 

biological variability (BVB), the environmental biological variability (BVE) and the total 

variability (BVT).  

 

The BVB is defined as the variability in the bioindicators associated with variations in 

physiological parameters between workers in a constant exposure scenario. In this study, 

individual within-worker variability was considered much smaller than between-worker 

variability and for simplicity was therefore ignored (no intra-individual biological variability).(19) 

 

The BVE is defined as the variability in the biological indicators due to the variations in 

the exposure scenario for a given worker exposed to stable ambient concentrations during the 

day, but varying day to day. This was simulated by the exposure of the average worker for 300 

weeks, using two exposure patterns (GSD of 1.5 and GSD of 2.0). Thus, in this case the 

environmental variability was the only influence on biological monitoring. The GSD of 1.5 and 

GSD of 2.0 were chosen to represent typical low and average environmental variabilities.(20) 

 

The BVT is defined as the variability of the bioindicator data in a group of workers 

exposed to varying daily concentrations. This represents the combined BVB and BVE. This was 

estimated by simulating 500 biologically different workers exposed to varying airborne 

concentrations over 1,500 days. 

 



Statistical Analysis 

 

The results obtained in the different scenarios for the various biological indicators were 

statistically analyzed using SAS V9.1. The normality of the data distributions and of the 

logarithmically transformed data were verified using the Kolmogorov-Smirnov-Goodness-of-fit 

Test. The skewness and the kurtosis were estimated for each distribution. Descriptive geometric 

statistics (geometric mean, GSD and the lower and upper limits of confidence intervals) were also 

compiled for each biological indicator distribution.  

 

 To facilitate the analysis and the use of the results, the Upper Confidence Index (UCI) was 

calculated. This can be used to assess the upper confidence limit UCL95 associated with a 

biological monitoring result (RS), for each biological indicator: 

 

    UCI = 








n
iiGSD

96.1

     (2) 

UCL95 = RS  UCI       (3) 

 

where ii could represent BVE, BVB or BVT, and n is the number of measurements completed (if n 

1, RS is the geometrical mean). 

 

RESULTS AND DISCUSSION 

 

Predicting BEIs with the CBTK Model 

 



Table II shows the biological concentrations obtained for exposures at the OEL with the 

CBTK model using general data from Table I and chemical-specific information from Table IV 

(Appendix). The data shown are for sampling times and biological fluids specified for the given 

BEI. On average, the CBTK model overestimates the corresponding BEIs by 12%, with a range 

from –35 to 105%. A fair correlation was obtained between predicted results and the 

recommended BEIs, except for with methyl isobutyl ketone (MIBK). The discrepancy for MIBK 

(105% higher than the BEI) might also come from uncertainties in the BEI value itself, as 

indicated by the higher limit value (35 mmol/l) proposed in Germany.(21) A simple 

compartmental model, based on accessible physiological, physico-chemical and biochemical 

data, can thus be used to predict biological levels corresponding fairly accurately to OELs. 

Furthermore, results rest on a realistic representation of the model, thus we can be 

confident in their mean and variability results. The model requires not more than 12 

parameters which can be estimated from physiological and metabolic information. Such models 

could easily be applied to other less studied chemicals to gather information on potential 

biological levels at the OEL, and their associated variability. 

 

Biological Variability 

 

According to the Kolmogorov-Smirnov test, the majority of the distributions obtained for the 

different biological indicators in the different exposure scenarios were lognormal. After 

logarithmic transformation, distributions proved to be normal, with nearly no skewness or 

kurtosis, except for cadmium (GSD of 1.5 and GSD of 2.0) and for fluorides (GSD of 1.5). 

Indeed, these two BEIs did not fit a normal distribution after logarithmic transformation of 

data, and skewness and kurtosis were very high in some cases. It must be noted that these two 



biological indicators have very long half-lives, which could explain the non-lognormal behavior. 

In this case, biological levels likely represent more long term mean exposure than current 

exposure (or at least a mix of long term and recent exposure) and are therefore minimally 

influenced by the lognormal daily fluctuations in exposure concentration (especially in the case 

of a GSD of 1.5). 

 

 The results of the estimated variabilities are reported in Table III. They are presented in the 

form of GSDs to allow a better comparison with simulated exposure variability (GSD of 1.5 and 

GSD of 2.0). Three variabilities are presented: (1) BVB, the variability in biological results that 

would be observed in a group of different workers exposed to the same daily concentration 

(exposure GSD of 2.0, with no within-worker exposure variability); (2) BVE, the variability in 

biological results that is predicted in a group of identical workers exposed to the same long 

term exposure concentration (no between-worker exposure variability), but at exposures 

fluctuating from day-to-day; and (3) BVT, the variability in biological results that would be 

observed in a group of different workers at exposures fluctuating from day-to-day. Both 

BVE and BVT were investigated for small (GSD of 1.5) and average (GSD of 2.0) variation 

in the exposure scenarios. When comparing BVB and BVE with BVT, we can estimate the 

contribution of individual variability to the total variability observed in biological 

monitoring results. 

 

Table III also presents the results obtained in terms of UCIT, that is the factor by which the 

measurements (e.g. blood toluene) have to be multiplied to obtain their upper 95% 

statistical confidence limit. This gives an idea of the potential variability to be expected for a 

given biological indicator measurement, based on total variability.  



 

For BVE, results display that the urinary indicators with short half-lives (less than 7 hours) (e.g. 

urinary MIBK) have a variability similar, but always inferior to the variability of the 

contaminant concentrations in air. For the other biological indicators (blood or urinary parameters 

with longer half-lives) (e.g. blood/urinary colbalt), the variability observed in biological results 

is much lower than that of ambient air levels. This tendency is noticeable for GSDs of both 1.5 

and 2.0 exposure patterns. For the GSD of 2.0 exposure pattern, most biological indicators had a 

BVE much lower than 2.0. However, five urinary parameters associated with short half-lives 

(chromium, MIBK, toluene (urinary ortho-cresol), carbon monoxide and phenol) were shown to 

be close to 2.0 (although lower). This general reduction of variability compared to exposure 

variability is associated with the smoothing effect of biological processes. However, observed 

total biological variability will, in practice, be a combination of BVB and BVE, and could in some 

cases be larger than exposure variability itself. 

  

Data in Table III also suggest that there is a link between the predicted BVE and the biological 

half-lives. This is further illustrated in Figure 2, where dominant half-life is compared to BVE. 

The variability in the biological indicators due to the variations in the exposure scenario tends to 

decrease with the chemical half-life. This is in qualitative agreement with what was previously 

shown in a simple one-compartment model(8) and should be taken into account when interpreting 

biological monitoring data, and defining an action level to take decisions. These results suggest 

that using biological monitoring does not offer a significant advantage for chemicals with short 

half-life. That is particularly true for chemical with a half-life shorter than the duration of a work 

day. As a matter of fact, the exposure model used in this paper assumes stable ambient 

concentrations during the day. In real-life conditions, the ambient concentrations may vary 



greatly throughout the day and hence increase the biological variability of chemicals with short 

half-lives. For other biological indicators with half-lives of more than 24 hours (e.g. blood 

lead), there is a substantial reduction of variability, making the estimation of long term mean 

exposure statistically more efficient. 

 

CONCLUSION 

 

 Data obtained in this project allowed for the theoretical comparison between the variability 

affecting air monitoring and biological monitoring data. Two exposure patterns were selected 

and were used to evaluate the variability in bioindicators: one which corresponds to low 

variations in the ambient levels of contaminants (GSD of 1.5) and the other characterized 

by average variations (GSD of 2.0). 

 

 According to results from Table III, environmental monitoring seems to be the approach to 

favor when working environments present small fluctuations in the contaminants studied at 

ambient levels, except when they have long half-lives in blood. In that exception, the 

measurement of biological indicators could be better than environmental monitoring because of 

the smoothing effect of biological indicators with long half-lives. 

 

 Furthermore, Droz and Wu(8) drew a similar conclusion; biological monitoring is the 

best method when there are significant fluctuations in the ambient levels of exposure and 

when parameters have a half-life longer than 10 hours. Likewise, the studies by Rappaport et 

al.(22) and Symanski et al.(23) emphase that biological monitoring data, estimated on the basis of 



measurements of bioindicators with long half-lives,  appear to be less variable than air monitoring 

data, whereas the latter is the best approach to adopt for compounds with short half-lives. 

 

 Moreover, measurements of bioindicators with long half-lives may be influenced by 

individual variability. This would introduce uncertainty in exposure estimation and 

increase the total variability, whatever the kinetics of the biological indicator. Thus, the 

total variability observed, which is a combination of and the contribution of individual 

variability and the exposure estimation, should be considered in the final application of 

biological monitoring for exposure monitoring. 

 

 The decision to adopt biological monitoring should not only rest on variability associated 

with indicator measurements, but should also take into account the toxicological significance of 

the biological parameter. The utility of biological monitoring will rest on whether this variability 

reflects differences in the level of the risk incurred. In spite of the risk of great variability, other 

situations can also justify the use of alternatives to biological monitoring. 

 

 The present study did not take into consideration the simulation of intra-individual 

variability (biological changes from one day to the next). This was judged to be less important 

than inter-individual variability.(19) This issue should be considered in further work so as to 

complete  the picture on variability. 

 

The variability data obtained in the present study can be used in order to calculate the 

number of biological samples required to acquire a given degree of confidence to support 



decision-making. The information presented here should be used as a basis for the development 

of biological monitoring strategies. 
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FIGURE 1. Toxicokinetic model scheme(10)  
 

 
 
Where i represents a substance i; M1, metabolite 1 of substance i; and M2, metabolite 2. 
  



FIGURE 2. Relationship between half-life (hours) and the predicted environmental variability 
(BVE) for low (GSD of 1.5) and average (GSD of 2.0) exposures 
 

 
 
Points represent one of the 14 substances analyzed for each exposure level 
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Table I. General physiological parameters used in the simulations: Coefficient of variation and 
type of distribution 
 

Parameters Symbol At rest At 50 W Distributionb CVc (%) 

Cardiac output (l/h per kg0.7) Qc 18.0(11) 30.8(11) L(11) 30(11) 

Alveolar ventilation (l/h per kg0.7)a Valv 18.0(11) 67.6(11) - - 

Body weight (kg) BW 70 70 L(11) 13(11) 

Creatinine excretion (µmol/h per kg0.9) Kcr 12.6(12) 12.6(12) N(11) 30(11) 

Urine output (ml/h per kg0.82) kur 1.848(12) 1.848(12) L(11) 20(11) 

Permeability coefficient and affinity 
coefficient between media i and 
media j 

PP, PM, Pi:j 
d d L(11) 11(11) 

Volume of compartment i expressed 
as fraction of body weight (BW) 

 

FVi 
d d N(11) 20

(11) 

Cardiac output fractions to the 
corresponding peripheral tissues 
 

BFi 
d d N(11) 20(11) 

Metabolites fractionation F2/F1 
d d L(11) 35(11) 

Clearance and excretion constant RC, ku, kf 
d  d  L(11) 30(11) 

Michaelis Menten constant (µmol/l) KMi 
d d L(11) 20(11) 

Maximum rate (µmol/h per kg0.75) VMi 
d d L(11) 50(11) 

 

a Calculated proportionally to cardiac output individual values. 
b Distribution type: Log normal (L) or Normal (N). 
c Coefficient of variation for log normally distributed parameters is obtained from GSD 
   (CV = √e(GSD)2-1) 
d Depends on the chemical, see Table IV (in Appendix) 
 
  



Table II. Comparison between the biological exposure index (BEI®) proposed by the ACGIH 
(2009) and the predicted biomarker values corresponding to an 8 h-TWA inhalation exposure to 
the TLV®, as predicted with the toxicokinetic models 
 
 

Compound/biological 

parameter 
Sampling time 

Exposure 

level (OEL®) 

(mg/m³)(11) 

Units BEI(14,19) 
CBTK 

model 

Arsenic      

urinary inorganic arsenic End of workweek 0.01 nmol/mmol creat 52 92 

Cadmium      

urinary cadmium Discretionary 
0.01 

nmol/mmol creat 5 4.7 

blood cadmium Discretionary nmol/l 45 42 

Carbon monoxide      

carboxyhemoglobine End of shift 25 % of hemoglobin 3.5 4.7 

Chromium      

urinary chromium Increase during shift 
0.05 

nmol/mmol creat 22 20 

urinary chromium End of workweek nmol/mmol creat 55 90 

Cobalt      

urinary cobalt End of workweek 
0.02 

nmol/l 255 166 

blood cobalt End of workweek nmol/l 17 11 

Ethylbenzene      

urinary mandelic acid End of workweek 434 µmol/mmol creat 0.7 1.08 

Ethyleneglycol monomethylether 
    

urinary 2-ethoxyacetic acid End of workweek 18 µmol/mmol creat 110 74 

Fluorides      

urinary fluorides Beginning of workweek 2.5 µmol/mmol creat 18 18 

urinary fluorides End of workweek 2.5 µmol/mmol creat 60 56 

Lead      

Blood lead Discretionary 0.15b nmol/l 2.42 2.69 

Mercury      

urinary mercury Beginning of workweek 0.025 nmol/mmol creat 20 17 



blood mercury End of workweek nmol/l 75 68 

Methyl isobutyl ketone      

urinary methylethylketone end of shift 205 µmol/l 20 41 

Pentachlorophenol      

free PCP in plasma end of shift  µmol/l 19 14 

urinary total PCP beginning of shift 0.5 nmol/mmol creat 850 772 

Phenol      

urinary phenol end of shift 19 µmol/mmol creat 300  355 

Toluene      

urinary o-cresol end of shift 188 µmol/mmol creat 0.72 0.99 
 

a Excretions corrected by creatinine are calculated using a creatinine excretion of 1 g/l 
b According to the RQMT of Quebec(20) 

 



Table III. Predicted biological (BVB), environmental (BVE) and total variability (BVT) for two exposure patterns (GSD of 1.5 and GSD of 2.0) 
 
Chemical Biological indicator Half-lifec GSD of 1.5a GSD of 2.0b

   BVB  BVE BVT UCIT
d  BVE BVT UCIT

d 

Arsenic 
Inorganic arsenic and 
urinary metabolites 

5d 1.49 
 

1.16 1.53 2.3 
 

1.29 1.60 2.5 

Cadmium 
Urinary cadmium 20y 1.68  1.01 1.64 2.6  1.01 1.64 2.6 
Blood cadmium 100d 1.24  1.11 1.23 1.5  1.12 1.24 1.5 

Chromium 
Urinary chromium 
 (delta) 

7h, 15-30d, 3-5y 1.60 
 

1.46 1.81 3.2 
 

1.85 2.15 4.5 

Blood chromium (end) 7h, 15-30d, 3-5y 1.42  1.09 1.41 2.0  1.15 1.43 2.0 

Cobalt 
Urinary cobalt 30h, 10y 1.40  1.26 1.55 2.4  1.39 1.67 2.7 
Blood cobalt 29h, 52d 1.19  1.26 1.40 1.9  1.39 1.54 2.3 

Ethyleneglycol 
monomethylether 

Urinary 2-ethoxyacetic 
acid 

42h 1.46 
 

1.15 1.49 2.2 
 

1.27 1.56 2.4 

Ethylbenzene Urinary mandelic acid 3.5h 1.52  1.35 1.67 2.7  1.63 1.92 3.6 

Fluorides 
Urinary fluorides  
(beginning) 

4h, 18d, 8y 1.63 
 

1.03 1.72 2.9 
 

1.06 1.73 2.9 

Urinary fluorides (end) 4h, 18d, 8y 1.46  1.25 1.55 2.4  1.43 1.70 2.8 

Mercury 

Urinary inorganic  
mercury 

40d 1.79 
 

1.04 1.79 3.1 
 

1.07 1.80 3.2 

Blood inorganic  
mercury 

75h 1.34 
 

1.31 1.44 2.0 
 

1.49 1.59 2.5 

Methyl isobutyl 
ketone 

Urinary MIBK 7h 1.55 
 

1.41 1.75 3.0 
 

1.75 2.06 4.1 

Carbon monoxide COHb 5h 1.14  1.42 1.47 2.1  1.82 1.88 3.4 
Pentachloropheno
l 

Plasmatic PCP 30d 1.38  1.07 1.38 1.9  1.12 1.40 1.9 
Urinary PCP 40h, 4d, 72d 1.40  1.03 1.46 2.1  1.06 1.46 2.1 

Phenol Urinary Phenol 4h 1.52  1.42 1.72 2.9  1.82 2.08 4.2 

Lead 
Blood lead  
(discretionary) 

40d, 20y 1.40 
 

1.06 1.35 1.8 
 

1.09 1.36 1.8 

Toluene Urinary ortho-cresol 4h 1.63  1.42 1.82 3.2  1.81 2.16 4.4 



 Blood toluene (before) 1.11  1.42 1.42 2.0  1.81 1.79 3.1 
 

a small variations in the exposure scenario (GSD of 1.5). 
b average variations in the exposure scenario (GSD of 2.0). 
c Underlined value indicate the dominant half-life at time of sampling (d=day, h=hour, y=year) 
d Upper confidence index (95%) of each bioindicator calculated from simulated total variability in the bioindicators due to both the 
interindividual variability and exposure variability 
 

 
 


