
Discrete Applied Mathematics 355 (2024) 200–222

a

b

U

b

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Graph coloring approaches for a production planning problem
withmakespan and setup penalties in a product-wheel
context
Jocelin Cailloux a, Nicolas Zufferey a,∗, Olivier Gallay b

Geneva School of Economics and Management, GSEM - University of Geneva, Uni-Mail, 1211 Geneva 4, Switzerland
Department of Operations, Faculty of Business and Economics (HEC Lausanne), University of Lausanne, Quartier
NIL-Chamberonne, 1015 Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 15 November 2022
Received in revised form 18 April 2024
Accepted 26 April 2024
Available online xxxx

Keywords:
Combinatorial optimization
Metaheuristics
Graph coloring for production planning
Makespan and setup penalties
Traveling salesman problem
Scheduling

a b s t r a c t

In this paper, we introduce a clustering and scheduling problem on a production line
modeled as a single machine. A set of jobs (some of them being urgent) must be
partitioned into clusters, and a robust (with respect to a min–max criterion) cyclic
sequencing of the clusters must be determined (i.e., the product-wheel paradigm is
employed). Each cluster has to satisfy two constraints: the setup constraint (i.e., only
jobs with small setup times between them are allowed in the cluster) and the capacity
constraint (i.e., the setup and processing times in the cluster cannot exceed a given
shift duration). Three objective functions are minimized in a lexicographic fashion: (1)
the number of urgent clusters (i.e., containing at least one urgent job); (2) the total
number of clusters; (3) a worst-case scenario with respect to the setup among clusters.
In other words, makespan and setup penalties are considered. Graph-coloring models
and methods are designed for (1) and (2), whereas traveling-salesman approaches
are introduced for (3). The considered problem was proposed by a micro-machining
company located in Switzerland, named DIXI polytool. In order to cover their industrial
needs, the company imposed very strict computing-time limitations (a few minutes
only), and was able to provide realistic instances with different characteristics. Three
methods are compared in our experiments: an integer linear model (with CPLEX), a
constructive heuristic that represents a current-practice rule, and a metaheuristic relying
on various tabu-search procedures. Results show the efficiency (with respect to quality
and speed) of our metaheuristic, and managerial insights are provided.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we consider a partitioning and scheduling problem arising in a production planning context encountered
y the micro-machining company DIXI polytool (www.dixipolytool.ch) located in Switzerland (DIXI for short). DIXI

produces saws and drill bits, and their core business stands in the cutting of the point and the blade. The company offers
thousands of different products, and a job corresponds to a fabrication order of a single product (along with the number of
units to produce and its associated processing time). We propose to generate a partition of the jobs into clusters, which
then have to be scheduled. The first priority of DIXI is to reduce the risk of late deliveries in order to avoid shortages

∗ Corresponding author.
E-mail addresses: jocelin.cailloux@unige.ch (J. Cailloux), n.zufferey@unige.ch (N. Zufferey), olivier.gallay@unil.ch (O. Gallay).
https://doi.org/10.1016/j.dam.2024.04.015
0166-218X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2024.04.015
https://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2024.04.015&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.dixipolytool.ch
mailto:jocelin.cailloux@unige.ch
mailto:n.zufferey@unige.ch
mailto:olivier.gallay@unil.ch
https://doi.org/10.1016/j.dam.2024.04.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

j
s
t
e
o
c
g
n

(
T

p
s
l
l
t
l

p
t
c
d
d
i

p
a
i

2

a
m
a

m
s
t
b
o
o
w

s
s
o
c
j
i
a

(lost sales) at the client level. The second priority is to reduce the setup times in their plant, as they have a direct impact
on production capacity and costs. A job with a higher risk of shortage (at the client level) is called urgent and has to be
considered with special attention. The urgency of a job is determined by DIXI.

A cluster is a set of jobs that will be produced sequentially in the production line (we do not have to schedule the
obs within a cluster). Two constraints are associated with each cluster. First, in the setup constraint, only jobs with the
mallest possible setup times (5 min in this work) between them are allowed to belong to the same cluster. Second,
he capacity constraint imposes that the total work duration in a cluster (i.e., processing times + setup times) cannot
xceed a given shift duration (8 h in this work). A cluster is said to be urgent if it contains at least one urgent job. In
rder to reduce the risk of late deliveries, we first minimize the number of urgent clusters, and then the total number of
lusters (which is strongly correlated with the minimization of the overall makespan). In this regard, we will show that
enerating an optimal job partition has strong connections with the graph-coloring problem (GCP) [38]. Therefore, we
aturally consider a graph-coloring approach to model the minimization of the number of clusters.
The setup time between two clusters is estimated by DIXI as the average setup time between their jobs. In an ideal

situation and in line with the product-wheel paradigm [51], once the jobs are dispatched into clusters (i.e., when the job
partition is built), DIXI wants to repeat the production of the same sequence of clusters while maximizing the robustness
of the cluster sequence (as a cluster sequence can be perturbed, for instance, by the introduction of an unexpected cluster
containing either specific products or suddenly new urgent jobs). In this regard, it was decided to generate a job partition
that minimizes the longest Hamiltonian cycle over the clusters. This corresponds to minimizing the setup times (among
clusters) in the worst-case scenario for the production planner at DIXI. We will show that the traveling salesman problem
TSP) can model this feature of the problem [35]. Therefore, we naturally chose to evaluate a cluster sequence using a
SP approach.
The considered problem (P) has thus the originality to unify, for an industrial application, two of the most studied

roblems in the combinatorial-optimization literature, namely the GCP (for building clusters of jobs) and the TSP (for
cheduling clusters). These two problems are NP-hard [3,38], and metaheuristics are thus appropriate methods for tackling
arge-sized instances. We consider the minimization of the three following objectives, in a lexicographic order (i.e., no
ower objective can be improved if a degradation is encountered for a higher objective), which directly contributes to
he minimization of the overall makespan: (f1) the number of urgent clusters; (f2) the total number of clusters; (f3) the
ongest Hamiltonian cycle considering setup times among clusters.

The main contributions of this paper are the following. First, we propose an original partitioning and scheduling
roblem (P) applied to an industrial production planning context. This problem helps to directly reduce the shortages (at
he client level) and the setup times (at the plant level) in real industrial situations. Moreover, this partitioning problem
an be useful in any production planning problem where job scheduling cannot be accurately determined. Second, we
esign an integer linear program which captures all the features of (P). Third, GCP and TSP models and methods are
esigned and combined to generate efficient solutions. Fourth, we propose various sensitivity analyses and managerial
nsights that could help a decision maker when planning and scheduling the production of the involved plant.

The paper is organized as follows. In Section 2, we present an overview of the literature on related topics. We describe
roblem (P) in Section 3. A nonlinear program and its linearization are developed in Section 4. In Section 5 we propose GCP
nd TSP solution methods for generating efficient solutions for large instances of (P). The numerical results are discussed
n Section 6, along with managerial insights. Finally, conclusions and possible future works are given in Section 7.

. Literature review

In this section, we first position the considered problem (P) with respect to the production planning literature in
makespan minimization context, and we highlight the links between (P) and the GCP. Second, we discuss the setup
inimization feature of (P), and its analogies with the TSP. Finally, we show the relevance of lexicographic optimization
nd finding robust solutions in industry.
Minimizing the makespan is one of the most common objectives in the scheduling literature [41]. To minimize the

akespan, jobs can be clustered using the family scheduling model, which leads to reducing the setup times in the
chedule [42]. Problem (P) presents visible similarities with some batching and scheduling problems which are efficiently
ackled using various solution methods [27] (e.g., variable neighborhood search [39], simulated annealing [53], recovering
eam search [10]). For modeling a partitioning problem, graph coloring formulations are commonly used [38] and are
ften tackled efficiently with local search metaheuristics (e.g., tabu search [9,28]). Graph coloring problems have been
ften used to model scheduling problems [19,23], and tabu search was shown to be efficient in solving such problems
ithin a few minutes [47,48].
Setup is one of the most widely studied feature of lot sizing and scheduling problems [41]. (P) can be reduced to the

ingle machine scheduling problem with sequence dependent setup times [5]. This scheduling problem has already been
hown to be efficiently solved with tabu search [6], genetic algorithms [34], and ant colony optimization [36]. Because
f the employed product-wheel paradigm [11,26,51] (i.e., the same sequence of clusters must be ideally produced in a
yclic way), (P) shares similarities with the TSP [5]. Moreover, the product-wheel paradigm is commonly considered in
ob scheduling problems from different industries, such as the automotive industry [33], the chemical industry [49], and
n wafer manufacturing [52]. Such problems are efficiently tackled using various metaheuristics, such as tabu search [12],
nd evolutionary algorithms [18,29].
201

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

i
(
a
t
a
d
c
m
g
a

j
P
w
w
k

3

p

3

a
p

c
r
(
c
i

m
j
c
p
u
n
i
b
p
w
e
f

d
i
b
s
m

Industrial optimization problems have often to face different, conflicting objective functions. In this context, lex-
cographic optimization is an efficient and relevant approach. It consists in ranking the objectives once and for all
i.e., a lower-level objective function can only be improved without deteriorating a higher-level objective function). This
pproach has been employed in various fields [22], such as the automotive industry [30,46], the luxury goods industry [44],
he electricity industry [1], the electronics industry [45], and in job-shop scheduling contexts [8]. Robust solutions [4]
re also expected and favored in industry. Informally and generally speaking, a solution is robust if it is not perturbed
rastically in case of uncertain events. In this context, minimizing the worst-case scenario corresponds to the min–max
riterion, which is a common way to determine robust solutions [2]. In the TSP context, it is applied in [14] where an exact
ethod is compared with a heuristic based on the combination of various relaxations of the problem. Min–max criteria for
enerating robust solutions are also employed in manufacturing industries [15,31], where a branch-and-bound method
nd a greedy heuristic are proposed.
Therefore, from the existing literature, it appears that (P) is a unique combination of the GCP, the TSP, and the

ob scheduling problem with sequence dependent setup times. For each of these problems, Mixed-Integer Linear
rogramming (MILP) models and local search algorithms have been successfully applied. It also appears that, in contrast
ith evolutionary algorithms (that are population-based methods), tabu search is particularly efficient for such problems
hen computing time is limited to a few minutes (which is the case for DIXI). This motivates us to propose the same
ind of approaches for (P).

. Presentation of problem (P)

In this section, we first present problem (P) such that it can be captured by practitioners. Next, we give a formal
resentation of (P), along with its connections with the GCP and the TSP.

.1. Informal description of (P)

Considering a single production line, we have to perform sequentially a set of n jobs with known processing times,
nd some of them are urgent (i.e., they have the priority over the other jobs). A setup time is encountered between each
air of jobs performed consecutively. Each setup time is a multiple of 5 min belonging to the interval [5, 120] min.
A solution to the problem is a partition of the jobs into clusters (or groups), where two jobs can belong to the same

luster if the setup time between them is 5 min. The satisfaction of this setup constraint favors the overall setup-cost
eduction. Moreover, the working time (i.e., processing time plus setup time) contained in a cluster cannot exceed 8 h
this is called the capacity constraint), which corresponds to a shift duration. DIXI will then simply process the jobs
luster by cluster. A setup time is also encountered between each pair of clusters performed sequentially, and its value
s computed as the average setup time occurring between the jobs of the two involved clusters.

DIXI proposes to optimize three objectives (f1, f2, f3) in a lexicographic fashion. (f1) Distribute the urgent jobs into a
inimum number k∗ of urgent clusters (a cluster is urgent if it contains at least one urgent job). (f2) Distribute the other

obs into a minimum number k of clusters. The k∗ urgent clusters are also taken into account here (i.e., a non-urgent job
an also be integrated into an urgent cluster as long as the setup and capacity constraints are satisfied). Moreover, it is
ossible to reallocate the urgent jobs to other urgent clusters (i.e., k∗ is not increased). In other words, after planning the
rgent jobs in the previous step, we aim here at minimizing the number of additional clusters created for inserting the
on-urgent jobs into the production schedule. (f3) Reassign the jobs into the k existing clusters (without augmenting k∗)
n order to minimize the worst-case scenario for the total setup time among clusters, assuming there is also a setup time
etween the last cluster and the first cluster of the cluster sequence (this is a standard assumption in a product-wheel
roduction context, where the production of the same cluster sequence is repeated again and again). Minimizing the
orst-case scenario is useful at it allows the production planner to better face unexpected events (see below for more
xplanations). The joint consideration of these three objectives contributes to reduce the overall production time, and it
avors on-time deliveries to clients.

The following main simplifications are made with respect to the real problem faced by DIXI. First, we consider
eterministic durations (e.g., processing times, setup times). Second, sudden and unexpected demands (i.e., jobs) are
gnored. For instance, an important client might place an order on short notice, which means that the associated jobs must
e incorporated in the already planned solution. In other words, uncertainty is not taken into account. However, these
implifications do not have major impacts on the proposed methods for the studied problem (P). Indeed, the following
easures can be taken, and some compensation phenomena can also occur.

• A longer-than-expected job (or setup time) can be simply compensated by a shorter-than-expected one. Moreover,
the planned clusters are not perfectly filled with jobs and setup times (remind that a cluster corresponds to a shift
of 8 h). For each cluster, the remaining buffer time (i.e., the time interval during which no setup or job processing
operations take place) makes it possible to cope with some longer-than-expected jobs and setup times.

• The sudden and unexpected additional jobs can be scheduled either during the buffer times, or by building new
clusters that are then scheduled somewhere in the planned solution (i.e., between two already-planned but non-
already-performed clusters). In this context, a simulation–optimization algorithm could also be easily derived from
the below-proposed methods (e.g., anytime additional jobs have to be scheduled, or when the processing of some
202

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

e
i
a
1

j
T
s
M

(
a
W
j
w
a

clusters is completed, the proposed algorithms are employed again for updating the solution), relying on a rolling-
window simulation procedure. In this context the window size is typically one week, and the planning horizon one
month.

• Minimizing the largest total setup time among clusters (i.e., f3) contributes to reduce the stress of the production
planner. Indeed, the proposed algorithms provide the decision maker with the job clusters and the value of f3. But
then, s/he can determine the cluster sequence according to her/his priorities at that time (which could also include
non-modeled features). The good news is that the selected cluster sequence is likely to be better when compared
to the provided total setup time among clusters (i.e., the provided value of f3). Indeed, the decision maker is likely
to not select the worst-case scenario. This also increases her/his flexibility for incorporating new clusters into the
on-hand solution.

Although relying on more formalism, the next section also discusses other aspects that are important from a practical
standpoint.

3.2. Formal description of (P) and connections with the GCP and the TSP

Let J be the set of n jobs to be performed, and J∗ ⊂ J be the set of urgent jobs. The sets J and J∗ are given as input. For
ach job j, we know its processing time pj. For each pair (j, j′) of jobs, we know the setup time sjj′ = sj′j between them
f they are processed consecutively on the production line (which can be modeled as a single machine in this work). We
ssume that the setup times are in the range

[
smin, smax

]
(with steps of 5 min), where smin and smax are equal to 5 min and

20 min in this study, respectively.
A solution C is a partition of the jobs of J into clusters C1, C2, C3, . . . (i.e., each Ci contains a subset of jobs). Two jobs

and j′ can be in the same cluster Ci if sjj′ = smin. This constraint (called here the setup constraint) is imposed by DIXI.
he satisfaction of this constraint favors the overall setup-cost reduction, which is a crucial issue for DIXI as their hourly
etup cost (with respect to the involved workers) is significant. DIXI will then simply process the jobs cluster by cluster.
oreover, the working time (i.e., processing time plus setup time) contained in a cluster cannot exceed the shift duration

p (which is equal to 8 h in this study). Formally, for each cluster Ci,
∑

j∈Ci
pj + (|Ci| − 1)smin

≤ p (this is called here the
capacity constraint). Between each pair (Ci, Ci′) of clusters, Sii′ corresponds to the average setup time occurring between

the jobs of the two clusters. More precisely, Sii′ =

∑
j∈Ci

∑
j′∈Ci′

sjj′

|Ci|×|Ci′ |
.

Given a graph G = (V , E), with vertex set V and edge set E, the k-coloring problem consists in assigning an integer
called color) in {1, . . . , k} to every vertex such that two adjacent vertices have different colors. The GCP consists in finding
k-coloring with the smallest possible k. From the input data of problem (P), we can build a graph G = (V , E) as follows.
e associate a vertex j with each job j, a color i with each cluster Ci, and an edge

[
j, j′

]
with each pair (j, j′) of incompatible

obs. Two jobs j and j′ are incompatible if sjj′ > smin or pj + pj′ + smin > p (otherwise, they are compatible). Coloring G
ith k colors is equivalent to assigning a cluster Ci (with i ∈ {1, . . . , k}) to each job. The capacity constraint (as defined
bove) of the clusters is considered in (P) but not in the GCP.
The TSP is defined on a complete undirected graph G = (V , E), with vertex set V and edge set E. A symmetric cost

matrix M is defined on E. The TSP consists in determining a cycle of minimum length, visiting each vertex once. Such a
cycle is called a Hamiltonian cycle. With respect to problem (P), we can build a graph G = (V , E) as follows. We associate a
vertex i with each cluster Ci, and an edge

[
i, i′

]
with each pair (Ci, Ci′) of clusters. For each edge

[
i, i′

]
, its cost is defined as

Mii′ = Sii′ . Finding the smallest Hamiltonian cycle in G is equivalent to finding a cyclic sequence of clusters minimizing the
overall setup among them. (P) is however an extension of the TSP. Indeed, in (P), we have to build clusters to minimize the
longest Hamiltonian cycle. Consequently, in order to employ state-of-the-art TSP solution methods for (P), it is possible
to adapt the matrix (Sii′) of setup times by building a new matrix S ′ such that S ′

ii′ = Smax
− Sii′ , where Smax

= maxi,i′ Sii′ .
Indeed, without such an adaptation, any TSP algorithm will find the shortest (and not the longest) Hamiltonian cycle.

We define three objectives, which are optimized in a lexicographic fashion. Let k be the number of employed clusters,
and k∗

≤ k the number of clusters containing at least one urgent job. First, a clustering (i.e., a partition) of the urgent jobs is
determined such that k∗ is minimized (this is denoted as problem (P1)). Second, a clustering of all the jobs is determined
such that k is minimized without increasing k∗ (problem (P2)). Third, we modify the clustering such that the longest
Hamiltonian cycle considering setup times among clusters is minimized, without increasing k and k∗ (problem (P3)).
Other methods to handle multi-objective optimization problems exist (e.g., utility or goal programming, simultaneous or
interactive approaches) [37]. Even if no perfect approach comes out and each one has its own advantages and drawbacks,
DIXI imposed the considered lexicographic approach because their natural priorities are in this order: (1) deliver on time
to the client level (minimizing the number of urgent clusters obviously contributes to this priority); (2) use the available
production resources (i.e., workers and machines) as much as possible (minimizing the total number of clusters directly
contributes to this goal, as it favors having fully loaded clusters); (3) reduce the risk of augmenting the overall makespan
because of the setup times among clusters (minimizing the worst-case scenario for the total setup time among clusters
contributes to this objective). Moreover, the consideration of these three objectives also contributes to the minimization
of the overall makespan, which is a very important point, given the significant hourly resource cost encountered by DIXI.
Such client-first-company-second (and sometimes setup-third) way of prioritizing objectives is also encountered in other
industry-based studies [32,43,50].
203

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

t
a

P

4

c

4. Mathematical model

In this section, we provide first a nonlinear integer programming formulation for (P). Next, a procedure to linearize
he previous model is given. Three preprocessing steps and model improvements are finally proposed. Note that indexes j
nd j′ refer to jobs, whereas indexes i and i′ refer to clusters (i.e., Ci and Ci′). We define the following sets and parameters.
Sets:

• J: set of jobs
• J∗ ⊂ J: set of urgent jobs
• C: set of possible cluster indexes

arameters:

• n ∈ N: number of jobs
• c̄ ∈ N: time capacity of each cluster, in minutes (here, a shift duration of 480 min = 8 h)
• bjj′ = 1 if jobs j and j′ can be in the same cluster (i.e., they are compatible); bjj′ = 0 otherwise
• sjj′ ∈ N: setup time occurring between jobs j and j′, in minutes
• pj ∈ N: processing time of job j, in minutes
• k ∈ N: number of clusters
• smin

∈ N: minimum possible setup time between jobs
• smax

∈ N: maximum possible setup time between jobs
• q̄ ∈ N: upper bound for the number of jobs that a cluster can contain

.1. Nonlinear model

The decision variables are the following.

• Aij = 1 if job j is in cluster Ci; Aij = 0 otherwise
• Ui = 1 if cluster Ci contains at least one urgent job; Ui = 0 otherwise
• Ei = 1 if cluster Ci is not empty; Ei = 0 otherwise
• Pii′ = 1 if cluster Ci is the direct predecessor of cluster Ci′ (in the cluster sequence, i.e., in the Hamiltonian cycle);

Pii′ = 0 otherwise
• Li ∈ R: setup time occurring after cluster Ci with respect to the considered cluster sequence
• Sii′ ∈ R: setup time between clusters Ci and Ci′

• Wi ∈ N: a unique number in {1, . . . , n} assigned to each cluster Ci in order to avoid subtours
• Tii′ ∈ N: sum of the job-related setup times between jobs of cluster Ci and jobs of cluster Ci′

• Ni ∈ N: number of jobs in cluster Ci
• Dii′ ∈ N: number of possible distinct pairs of jobs between clusters Ci and Ci′

• Qii′ ∈ R: variables that help to compute the average setup time between jobs of clusters Ci and Ci′ such that Qii′ =
1

Dii′

The set of constraints can be divided into three categories. The first constraint set is associated with a GCP formulation
(for the clustering part), whereas the second constraint set is connected with a TSP formulation (for computing the value
of the clustering according to setup times). The third constraint set is used to compute the average setup time between
the jobs of two different clusters. The proposed model is an integer linear program, except for the computation of the
average setup time between two clusters.

The first two objective functions (1) and (2) correspond to minimizing the number of urgent clusters and the total
number of clusters, respectively. Objective function (3) minimizes the maximum Hamiltonian cycle length with respect
to the setup times occurring among clusters. In line with row-generation techniques [21,25], to tackle the non-linear
objective (3) with CPLEX, a series of max problems is solved iteratively. The following two steps (a) and (b) are repeated
until no feasible solution can be obtained anymore or the computation time limit is reached: (a) CPLEX is employed to
solve the on-hand max problem; (b) a constraint is added to the on-hand problem to forbid CPLEX to return again the
same solution. At the end of the process, either an optimal solution to the min–max problem is found (because no feasible
solution can be found anymore in step (a)), or a message of non-optimality is returned (because the computation time
limit is reached). Typically, at each iteration i of this process, an optimal value for the on-hand max problem is returned,
with a smaller (or equal) value than the one found at iteration (i − 1) (as the max problem tackled at iteration i is more
onstrained).

min
∑
i∈C

Ui (1)

min
∑

Ei (2)

i∈C

204

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
minmax
∑
i∈C

Li (3)

s.t.

(GCP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈C

Aij = 1 ∀j ∈ J (a)∑
j∈J

Aij(pj + smin) ≤ c̄ + smin
∀i ∈ C (b)

Ui ≥ Aij ∀i ∈ C, ∀j ∈ J∗ (c)
Ei ≥ Aij ∀i ∈ C, ∀j ∈ J (d)
Aij + Aij′ ≤ 1 + bjj′ ∀i ∈ C, ∀j, j′ ∈ [[1, n]] | j < j′ (e)

Ni =

∑
j∈J

Aij ∀i ∈ C (f)

(4)

(TSP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Li ≥ Sii′ − smax(1 − Pii′) ∀i, i′ ∈ C | i ̸= i′ (a)
Li ≤ Sii′ + smax(1 − Pii′) ∀i, i′ ∈ C | i ̸= i′ (b)∑
i∈C\{i′}

Pii′ = 1 ∀i′ ∈ C (c)

∑
i′∈C\{i}

Pii′ = 1 ∀i ∈ C (d)

Wi − Wi′ + kPii′ ≤ k − 1 ∀i, i′ ∈ C\{1} | i ̸= i′ (e)

(5)

(Setup times)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tii′ =

∑
j,j′∈[[1,n]]

j̸=j′

sjj′
(
Aij × Ai′j′

)
∀i, i′ ∈ [[1, k]] | i < i′ (a)

Sii′ = Si′ i ∀i, i′ ∈ [[1, k]] | i < i′ (b)
Dii′ = Ni × Ni′ ∀i, i′ ∈ [[1, k]] | i < i′ (c)

Qii′ =
1
Dii′

∀i, i′ ∈ [[1, k]] | i < i′ (d)

Sii′ = Tii′ × Qii′ ∀i, i′ ∈ [[1, k]] | i < i′ (e)

(6)

(Domain constraints)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aij ∈ {0, 1} ∀i ∈ C, ∀j ∈ J (a)
Ui ∈ {0, 1} ∀i ∈ C (b)
Ei ∈ {0, 1} ∀i ∈ C (c)
Pii′ ∈ {0, 1} ∀i, i′ ∈ C (d)
Li ≥ 0 ∀i ∈ C (e)
Sii′ ≥ 0 ∀i, i′ ∈ C (f)
Wi ∈ {1, . . . , n} ∀i ∈ C (g)
1 ≤ Wi ≤ k − 1 ∀i ∈ C (h)
Tii′ ∈ N ∀i, i′ ∈ C (i)
Ni ∈ N ∀i ∈ C (j)
Dii′ ∈ N ∀i, i′ ∈ C (k)
0 ≤ Qii′ ≤ 1 ∈ R ∀i, i′ ∈ C (l)

(7)

Constraints (4)(a)–(4)(f) are connected with the GCP, where constraints (4)(a) ensure that each job is assigned to exactly
one cluster. The capacity constraint of each cluster is respected thanks to constraints (4)(b). A cluster Ci is set as urgent
if it contains at least an urgent job thanks to constraints (4)(c) and is set in this case as non-empty thanks to constraints
(4)(d). Last, constraints (4)(e) make sure that two jobs can be in the same cluster only if they are compatible. Constraints
(4)(f) compute the number of jobs per cluster.

Constraints (5)(a)–(5)(e) relies on the proposed TSP formulation. Constraints (5)(a) and (5)(b) allow to linearize the
costs. It is ensured that the clusters are sequenced one after the other thanks to constraints (5)(c) and (5)(d). Constraints
(5)(e) are necessary to break the subtours.

Constraints (6)(a)–(6)(e) compute the average setup time between each pair of clusters. The sum of the setup times
occurring between the jobs of a pair of clusters is computed by constraints (6)(a), where Aij × Ai′j′ allows to compute the
pairs of jobs for which a job-related setup time occurs between a given pair of clusters (i.e., A ×A ′ ′ = 1 if jobs j and j′ are
ij i j

205

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
in clusters i and i′, respectively, and Aij × Ai′j′ = 0 otherwise). Constraints (6)(b) allow to compute only half of the setup
times by enforcing the symmetry. Constraints (6)(c) and (6)(d) compute the number of setup times among jobs between
each pair of clusters. This corresponds to the denominator written as a fraction. Finally, constraints (6)(e) compute the
average setup time between each pair of clusters.

Constraints (7)(a)–(7)(l) are domain constraints.

4.2. Linearized model

The above formulations (1)–(5)(e), (6)(b) and (7)(a)–(7)(l) remain unchanged here. The linearization of constraints
(6)(a) is determined by fixing the value of Vii′jj′ accordingly to all possible values for Aij and Ai′j′ (i.e., by setting Vii′jj′ =

Aij × Ai′j′). Based on a mechanism presented in [7], we determine linearized constraints (6)(c)–(6)(e) as follows. For each
quadratic constraint, one of the two involved variables is translated in its binary writing for linearizing the multiplication.
For each variable Qii′ , many binary variables are created as there are several possible values for Dii′ to compute the
fraction. To this end, we need the following new decision variables, where q ∈ [[1, q̄2]] corresponds to a possible value
for variable Dii′ , and g indicates the position of the bit of each binary variable employed in the binary writing of an
integer variable. For example, the binary writing in ḡ bits of a variable X ∈ N can be represented with the set of variables
Bg ∈ {0, 1} , ∀g ∈ {0, 1, . . . , ḡ}, where Bg is 2g if Bg = 1, and Bg is 0 otherwise. With such a binary representation of X ,
we can compute X =

(
20B0

)
+

(
21B1

)
+ · · · +

(
2ḡBḡ

)
. Using such a binary representation, the multiplication Z = X × Y

can be written with the sum Z =
(
20B0 × Y

)
+

(
21B1 × Y

)
+ . . .+

(
2ḡBḡ × Y

)
, where the multiplications involved in each

term of the sum can be more easily linearized as it involves binary variables. Another detailed illustration of this type of
linearization technique can be found in [20].

• Vii′jj′ = 1 if clusters Ci and Ci′ contain jobs j and j′, respectively; Vii′jj′ = 0 otherwise
• D′

ii′q = 1 if Dii′ ≤ q; D′

ii′q = 0 otherwise
• D′′

ii′q = 1 if Dii′ = q; D′′

ii′q = 0 otherwise
• BN

ig ∈ {0, 1}: binary writing for variables Ni

• BT
ii′g ∈ {0, 1}: binary writing for variables Tii′

• ZD
ii′g ∈ N: variables to linearize BN

ig × Ni′

• Z S
ii′g ∈ R: variables to linearize BT

ii′g × Qii′

(Tii′)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Vii′jj′ ≥ Aij + Ai′j′ − 1 ∀i, i′ ∈ [[1, k]] | i < i′, ∀j, j′ ∈ [[1, n]] | j ̸= j′ (a)
Vii′jj′ ≤ Aij ∀i, i′ ∈ [[1, k]] | i < i′, ∀j, j′ ∈ [[1, n]] | j ̸= j′ (b)
Vii′jj′ ≤ Ai′j′ ∀i, i′ ∈ [[1, k]] | i < i′, ∀j, j′ ∈ [[1, n]] | j ̸= j′ (c)

Tii′ =

∑
j,j′∈[[1,n]]

j̸=j′

sjj′Vii′jj′ ∀i, i′ ∈ [[1, k]] | i < i′ (d)
(8)

(Qii′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D′

ii′q ≥
1
q̄2

(Dii′ + 1 − q) ∀i, i′ ∈ [[1, k]] | i < i′, ∀q ∈ [[1, q̄2]] (a)

D′

ii′q ≤
1
q
Dii′ ∀i, i′ ∈ [[1, k]] | i < i′, ∀q ∈ [[1, q̄2]] (b)

D′′

ii′q = D′

ii′q − D′

ii′q+1 ∀i, i′ ∈ [[1, k]] | i < i′, ∀q ∈ [[1, q̄2 − 1]] (c)

D′′

ii′ q̄2
= D′

ii′ q̄2
∀i, i′ ∈ [[1, k]] | i < i′ (d)

Qii′ ≥
1
q
D′′

ii′q ∀i, i′ ∈ [[1, k]] | i < i′, ∀q ∈ [[1, q̄2]] (e)

Qii′ ≤
1
q

+

(
1 −

1
q

)
× (1 − D′′

ii′q) ∀i, i′ ∈ [[1, k]] | i < i′, ∀q ∈ [[1, q̄2]] (f)

(9)

(Dii′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni =

⌊log(q̄)⌋∑
g=0

2gBN
ig ∀i ∈ C (a)

ZD
ii′g ≤ q̄BN

ig ∀i, i′ ∈ [[1, k]] | i < i′, g ∈ [[0, ⌊log (q̄)⌋]] (b)

ZD
ii′g ≤ Ni′ ∀i, i′ ∈ [[1, k]] | i < i′, g ∈ [[0, ⌊log (q̄)⌋]] (c)

ZD
ii′g ≥ Ni′ − q̄(1 − BN

ig) ∀i, i′ ∈ [[1, k]] | i < i′, g ∈ [[0, ⌊log (q̄)⌋]] (d)

Dii′ =

⌊log(q̄)⌋∑
2gZD

ii′g ∀i, i′ ∈ [[1, k]] | i < i′ (e)

(10)
g=0

206

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
(Sii′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tii′ =

⌊log(smax)⌋∑
g=0

2gBT
ii′g ∀i, i′ ∈ C | i ̸= i′ (a)

Z S
ii′g ≤ smaxBT

ii′g ∀i, i′ ∈ C | i ̸= i′, g ∈ [[0, ⌊log (smax)⌋]] (b)

Z S
ii′g ≤ Qii′ ∀i, i′ ∈ C | i ̸= i′, g ∈ [[0, ⌊log (smax)⌋]] (c)

Z S
ii′g ≥ Qii′ − smax(1 − BT

ii′g) ∀i, i′ ∈ C | i ̸= i′, g ∈ [[0, ⌊log (smax)⌋]] (d)

Sii′ =

⌊log(smax)⌋∑
g=0

2gZ S
ii′g ∀i, i′ ∈ C | i ̸= i′ (e)

(11)

(Domain constraints)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vii′jj′ ∈ {0, 1} ∀i, i′ ∈ C, ∀j, j′ ∈ J (a)
D′

ii′q ∈ {0, 1} ∀i, i′ ∈ C, ∀q ∈ [[1, q̄2]] (b)

D′′

ii′q ∈ {0, 1} ∀i, i′ ∈ C, ∀q ∈ [[1, q̄2]] (c)

BN
ig ∈ {0, 1} ∀i ∈ C, ∀g ∈ [[1, log(smax)]] (d)

BT
ig ∈ {0, 1} ∀i ∈ C, ∀g ∈ [[1, log(smax)]] (e)

ZD
ii′g ∈ N ∀i, i′ ∈ C, ∀g ∈ [[1, log(smax)]] (f)

Z S
ii′g ∈ R ∀i, i′ ∈ C, ∀g ∈ [[1, log(smax)]] (g)

(12)

Constraints (8)(a)–(8)(d) allow to compute the setup time occurring between two clusters i and i′ using variables Vii′jj′ .
As all three variables are binary, we use constraints (8)(a) to ensure that Vii′jj′ = 1 if both Aij = 1 and Ai′j′ = 1. Otherwise
(i.e., if Aij or Ai′j′ is equal to zero) constraints (8)(b)–(8)(c) enforce Vii′jj′ = 0. Constraints (8)(d) use the variables Vii′jj′ to
compute the sum of the jobs related setup times occurring between each pair of clusters.

Constraints (9)(a)–(9)(f) allow to compute Qii′ . Constraints (9)(a)–(9)(d) store the values of Dii′ in the corresponding
binary variables D′

ii′q and D′′

ii′q. Constraints (9)(e) and (9)(f) allow the computation of 1
Dii′

.
Constraints (10)(a)–(10)(f) and (11)(a)–(11)(e) work in the same way and stand for the linearization of a multiplication.

Constraints (10)(a) and (11)(a) store the binary writing of one of the two terms of the multiplication by computing the
binary value of each bit. Constraints (10)(b)–(10)(e) and (11)(b)–(11)(e) linearize the multiplication between two variables.
To provide a more precise explanation, constraints (10)(b)–(10)(d) and (11)(b)–(11)(d) perform a computation for each
bit. This computation involves multiplying one of the members of the multiplication (which can be a real or an integer
variable) by the corresponding bit of the other member’s binary representation. To illustrate this linearization technique,
consider the multiplication Z = X×Y where X ∈ N. By the use of variables B representing the binary writing of X such that
X =

(
20B0

)
+

(
21B1

)
+ . . .+

(
2ḡBḡ

)
, we can write the computation of Z as Z =

(
20B0 × Y

)
+

(
21B1 × Y

)
+ . . .+

(
2ḡBḡ × Y

)
.

The considered constraints help with the computation of each term 2gBg ×Y by computing Bg ×Y . At the end, constraints
(10)(e) and (11)(e) calculate the final result by summing up the previously computed multiplications for all bits (where
each computed multiplication is multiplied by the corresponding value 2g of the bit).

Constraints (12)(a)–(12)(g) are domain constraints.

4.3. Preprocessing and model improvements

We propose preprocessing steps to make the previous integer linear model easier to solve. First, we find the maximum
number of jobs that are pairwise incompatible, and we assign them to different clusters. This helps to reduce the search
space as part of the solution is fixed (without loss of generality). Second, we propose to compute q̄, the largest number
of jobs that a cluster can contain. Indeed, as the number of variables D′

ii′q and constraints in (Qii′) follow a quadratic
augmentation with q̄, we want to find its smallest value. Third, we propose to compute first k∗, and then k. This allows
to find more accurate values for both k∗ and k by using a very restricted model. Also, this enables to obtain a feasible
solution to use as a starting point for the entire model when computing the min–max Hamiltonian cycle with fixed k∗

and k values.

4.3.1. Determination of the maximum number of pairwise incompatible jobs
Consider a graph G = (V , E) with vertex set V and edge set E. A vertex set V ′

⊂ V is a clique if all its vertices are
pairwise connected. A clique V ′ is maximal if there is no other clique V ′′ having a larger cardinality (i.e., more elements)
than V ′. Based on the correspondence between the GCP and (P) described in Section 3, finding a clique V ′ in G is equivalent
to finding a set of pairwise incompatible jobs J ′ ⊂ J . Thus, determining the largest set J ′ of jobs that must belong to
different clusters is equal to finding a maximal clique V ′ in G. Therefore, we can add the constraints Ajj = 1, ∀j ∈ J ′

(i.e., we put each job j in the cluster Cj) to the (GCP) model. Let X clique
j = 1 if job j is in the clique; X clique

j = 0 otherwise
(∀j ∈ J). The integer linear model for the maximal clique is presented below. As mentioned above, all the jobs of the

returned maximal clique will then be put in different clusters of the solution. In this regard, the first constraint set below

207

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

a
t

forbids two compatible jobs j and j′ that can be put in the same cluster of the solution to belong to the clique. Two jobs j
nd j′ can be put in the same cluster of the solution if bjj′ = 1 and their processing times plus their corresponding setup
ime do not exceed a shift duration of c̄ = 8 h.

(Clique)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
∑
j∈J

X clique
j

s.t.

X clique
j + X clique

j′ ≤ 1 ∀j, j′ ∈ [[1, n]] | j < j′, with bjj′ = 1 and pj + pj′ + smin
≤ c̄

X clique
j ∈ {0, 1} ∀j ∈ J

4.3.2. Computation of k∗ and k
We propose to compute separately the two first objectives (1) and (2), and to fix their values to facilitate the resolution

of the entire model. We determine first the value k∗ by considering objective (1) and constraints (4)(a)–(4)(c), (4)(e) and
(7)(a)–(7)(b). Once k∗ is computed, the constraint

∑
i∈C Ui = k∗, which we call (ck∗), is added to the set of constraints of

the (GCP) model. To determine the value of k, we consider objective (2) with constraints (4)(a)–(4)(e) and (7)(a)–(7)(c)
along with constraint (ck∗). Once k is computed, the constraint

∑
i∈C Ei = k, which we call (ck), can also be added to the

set of constraints of the (GCP) model.

4.3.3. Reduction of the number of constraints in (Qii′)
The largest number of jobs q̄ that a cluster can contain is an upper bound for the index q used in several variables

of our model. To find the smallest possible value for q̄, we solve an integer linear program which can be summarized
as the maximization of the number of jobs in the largest cluster, considering all the clustering rules of our problem. We
introduce two new types of variable: Y ∈ N, storing the largest number of jobs contained in the largest cluster, and Xi = 1
if cluster Ci is the cluster with the largest number of jobs (Xi = 0 otherwise). We maximize the number of jobs contained
in the largest cluster using the objective max Y . We consider the constraint set of the above (GCP) model to which we add
the constraints (ck∗) and (ck) defined in Section 4.3.2 (these two constraints are added in order to further constrain the
problem by fixing the two first objectives, which will help to find a more accurate value for q̄), along with the following
set of constraints:

(Largest number of jobs in cluster)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̄ = max Y
s.t.∑
i∈C

Xi = 1

Y ≥ Ni ∀i ∈ C
Y ≤ n(1 − Xi) + Ni ∀i ∈ C
Xi ∈ {0, 1} ∀i ∈ C
Y ∈ N

The first constraint ensures that only one cluster is determined as the largest cluster thanks to the variables Xi. The
two next constraints make sure that Y stores the number of jobs contained in the largest cluster (i.e. Y = maxi∈C (Ni)).
The last two constraints are domain constraints.

5. Solution methods

In this section, we propose solution methods to solve problem (P), which is made of the three subproblems (P1), (P2)
and (P3). (P1) and (P2), modeled as a GCP, are solved using an adaptation of the PartialCol algorithm [9] (see Section 5.2).
Solving (P3) (i.e., minimizing the longest Hamiltonian cycle) is made using a derivative of the TabuCol algorithm [28] (see
Section 5.3). Both PartialCol and TabuCol are state-of-the-art tabu-search algorithms for the GCP, which are considered
as efficient (with respect to solution quality) and fast (with respect to the computing time they need to find efficient
solutions) metaheuristics able to tackle large instances [38]. A constructive heuristic (denoted as DSATUR, see Section 5.1)
is employed for generating initial solutions for PartialCol. As presented in Algorithm 1, the three algorithms (namely,
DSATUR, PartialCol and TabuCol) are combined in a single method for tackling the entire problem (P). In Section 5.1,
another constructive heuristic (DSAT) is also presented for tackling (P). DSAT represents a good bound on the current-
practice rule, as it can be considered as the best possible algorithm that a decision maker would apply manually in the
involved company DIXI.

In the three-step Algorithm 1, for tackling (P1), DSATUR builds a partial solution C considering the urgent jobs only
(i.e., J∗). The number of clusters is then iteratively reduced by removing a cluster Ci∗ from C and, using PartialCol, by trying
to reinsert the jobs of C ∗ into the remaining clusters of C . The cluster C ∗ to be removed from C is selected such that the
i i

208

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

G
d

b
s
m
D
a
f

t
t
a
w

processing time of the longest job in Ci∗ is minimum (ties are broken randomly). This rule is motivated by the fact that it
is generally easier to redistribute (into the remaining clusters) many short jobs instead of a few long jobs. This iterative
process stops when a time limit T1 (parameter) is reached, and the resulting solution for (P1) is the last feasible partition
of the jobs of J∗ into k∗ clusters. For tackling (P2), DSATUR is employed for completing C (with jobs from J\J∗) such that
it becomes a partition of all the jobs (J) into k ≥ k∗ clusters. Next, without increasing k∗, we reproduce the same iterative
process: the total number k of clusters is iteratively reduced by removing a cluster Ci∗ from C (with the above rule for
selecting Ci∗) and by using PartialCol (for redistributing the removed jobs into the remaining clusters). A solution for (P2)
with k clusters overall, k∗ of which are urgent clusters, is thus found. To tackle (P3), without increasing neither k∗ nor k,
the length of the longest Hamiltonian cycle over all the clusters is minimized, by redistributing the jobs into the clusters
of C with the use of TabuCol.

Algorithm 1 Solution method for problem (P)

input: set of jobs J , set of urgent jobs J∗ ⊂ J , processing times and setup times

output: a clustering solution C (i.e., a partition of the jobs into clusters)

▷ Resolution of (P1)

Use DSATUR to build a clustering solution C = (C1, C2, . . . , Ck∗) of the urgent jobs (J∗)

While a time limit T1 (parameter) is not met, do:

Remove a cluster Ci∗ from C , and use PartialCol to try to build a solution C ′ with k∗
− 1 clusters

If C ′ is feasible, set C = C ′ and k∗
= | C ′

|

▷ Resolution of (P2)

Use DSATUR to build a clustering solution C = (C1, C2, . . . , Ck) of all the jobs (J) by completing the above solution

(C1, C2, . . . , Ck∗) made of the urgent jobs (J∗) only (with k ≥ k∗)

While a time limit T2 (parameter) is not met, do:

Remove a cluster Ci∗ from C , and use PartialCol to try to build a solution C ′ with k− 1 clusters, and not more than

k∗ urgent clusters

If C ′ is feasible, set C = C ′ and k = | C ′
|

▷ Resolution of (P3)

While a time limit T3 (parameter) is not met, do:

Use TabuCol for modifying the clustering solution C = (C1, C2, . . . , Ck) in order to reduce its associated longest

Hamiltonian cycle, without augmenting k nor k∗

5.1. Constructive heuristics: DSATUR for (P1) and DSAT for (P)

The constructive heuristic used for generating a job clustering relies on the well-known DSATUR algorithm for the
CP [13]. The saturation degree dsat(j) of a vertex j is defined as the number of different colors that are adjacent to j. The
egree deg(j) of vertex j is the number of adjacent vertices to j.
Starting from an empty solution (where no vertex has a color), DSATUR selects at each iteration the next vertex j to

e colored, and assigns to it the smallest possible color (i.e., without giving the same color to two adjacent vertices). The
elected vertex j has the largest saturation degree; if necessary, ties are broken with the largest degree (in the subgraph
ade of non-colored vertices only); and the possible remaining ties are broken randomly (which means that two runs of
SATUR may generate two different solutions). Regarding (P), DSATUR is adapted such that the smallest color (cluster)
vailable for each vertex (job) j corresponds to the first cluster Ci for which the setup and capacity constraints are satisfied
or Ci + {j}. DSATUR is used to generate initial solutions for PartialCol in Algorithm 1.

In order to benchmark the results of Algorithm 1, we propose another greedy heuristic (denoted as DSAT) that simulates
he best that a decision maker of DIXI could do. DSAT is very similar to DSATUR, but it has more priority rules for selecting
he next job j to put in the smallest possible cluster. The selected vertex (job) j has the largest processing time (which is
very important criterion in practice, as the longest jobs are the most difficult to schedule). If necessary, ties are broken
ith the largest saturation degree and next with the largest degree (in the subgraph made of non-colored vertices only).
209

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

a

s
c
(
r
r

o
∆

w
d

If necessary, before being broken randomly (which means that two runs of DSAT may generate two different solutions),
the remaining ties are broken with the smallest augmentation of the longest Hamiltonian cycle. In our work, the longest
Hamiltonian cycle of each clustering is computed using the state-of-the-art ILP (Integer-Linear-Programming) formulation
proposed in [16], with iterative subtour elimination constraints [40].

It is important to note that DSATUR and DSAT do not have the same roles and capabilities, even though they are both
ble to generate a clustering solution C = (C1, C2, . . . , Ck) of jobs in a constructive fashion, based on a set of priority

rules. The role of DSATUR is to quickly generate solutions to problems (P1) and (P2), which are then used as initial
solutions by PartialCol. The rule set employed by DSATUR aims at minimizing the number of used clusters based on
the incompatibility graph, which is important for (P1) and (P2). However, DSATUR ignores the objective function of (P3)
when building a solution. In contrast, the role of DSAT is to simulate an efficient decision maker for solving the entire
problem (P), i.e., including (P3) as well. In this regard, DSAT has two additional priority rules: one to capture what a
decision maker will do in practice (this is why the first priority rule is based on the largest processing times), and the
other to cope with the objective function of (P3) (this is why, in line with the lexicographic hierarchy of the objective
functions, the last priority rule is linked to f3). In other words, DSAT is an extension of DSATUR. Given its limited and very
specific role, no results will be presented for DSATUR.

5.2. PartialCol for solving (P1) and (P2)

In this section, we present the tabu search PartialCol for the GCP, and its adaptation to (P), where the number of colors
(clusters) is fixed to k.

Tabu search [24] starts from an initial solution, and it goes at each iteration from a current solution C to a neighbor
olution C ′. The modification applied to C leading to C ′ is called a move. The set of the neighbor solutions of C that
an be obtained with the possible moves is denoted as N(C). Once a move is performed, the reverse move is set tabu
i.e., forbidden) and cannot be applied for a certain number of iterations. At each iteration, the best non-tabu move (with
espect to an objective function f) is selected in N(C). In general, tabu search stops if a predefined computing time is
eached or if an optimal solution is found (assuming the value of an optimal solution is known).

PartialCol for the GCP [9] considers a solution C = (C1, C2, . . . , Ck;OUT), where Ci is the set of non-conflicting vertices
with color i, and OUT is the set of uncolored vertices. For the GCP, a conflict occurs if two adjacent vertices have the same
color. The solution C corresponds to a partial k-coloring. The function to minimize is f (C) =| OUT |. The algorithm stops
either if f (C) = 0 (in such a case, the process can be restarted with k − 1 colors, and so on, until no feasible k-coloring
is found) or if a computing time is reached. A move m(j,OUT , Ci) consists in moving vertex j from OUT to Ci (phase 1 of
the move), and if necessary (phase 2 of the move, called the repair phase), in putting in OUT the vertices of Ci that are
in conflict with j. The repair phase preserves the feasibility of the resulting neighbor solution (i.e., there is no conflict in
each cluster). When such a move is applied, the reverse move m(j, Ci,OUT) is set tabu and cannot be performed for a
given number of iterations.

To adapt PartialCol to solve (P1) and (P2), the following modifications are made. First, the repair phase associated
with move m(j,OUT , Ci) consists in putting in OUT all the jobs that are incompatible with j (either because of the setup
or the capacity constraints). Second, the considered objective function is

∑
j∈OUT pj, which corresponds to the remaining

workload to dispatch into the clusters. Furthermore, when considering (P2), a movem(j,OUT , Ci) is forbidden if it leads to a
solution where the number of urgent clusters is larger than k∗ (as it would correspond to a degradation of a higher-level
objective). When a move m(j,OUT , Ci) is performed, the reverse move m(j, Ci,OUT) becomes tabu for tab (parameter)
iterations. After preliminary experiments, we have decided that the duration tab is generated with a uniform distribution
in the interval [2,max(5, 1.5c)], where c is the current number of clusters. The value f (C ′) of a neighbor solution C ′ of the
current solution C can be evaluated incrementally by computing the variation ∆f (C, C ′) = f (C ′) − f (C). More precisely,
nce a move m(j,OUT , Ci) is selected (along with the set J ′ of jobs to be removed from Ci in the repair phase), we compute
f (C, C ′) =

∑
j′∈J ′ pj′ − pj. In each iteration, the best neighbor candidate solution is selected. Ties are broken randomly,

hich means that if we run PartialCol two times on the same instance, the sequence of visited solutions is likely to be
ifferent.
The pseudo-code of PartialCol is presented in Algorithm 2.

Algorithm 2 PartialCol for (P1) and (P2)

input: a partial solution C = (C1, . . . , Ck;OUT), where OUT is not empty

output: a partition of the jobs into k clusters, i.e., a clustering solution C = (C1, . . . , Ck) (or an infeasiblility message)

While OUT ̸= ∅ and the time limit T2 (parameter) is not met, do:

Perform the best non-tabu move m(j,OUT , Ci)

Update the tabu status: move m(j, Ci,OUT) is forbidden for the next tab (parameter) iterations
210

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

t

v
s
i
I
f

T
t
T
c
q
f
g

o

u

W

i

6

c
t
a
f
2
e

B
t
a
e
(
w

5.3. TabuCol for solving (P3)

In this section, we present TabuCol for the GCP and its adaptation to (P3), where the number of urgent clusters and
he total number of clusters are fixed to k∗ and k, respectively.

TabuCol is a tabu search for the GCP [28]. A k-coloring is formulated as C = (C1, C2, . . . , Ck), where Ci is the set of
ertices with color i in which conflicts are possible. A move m(j, Ci, Ci′) consists in moving a vertex j from Ci to Ci′ . When
uch a move is applied, Ci is tabu for j for tab (parameter) iterations. The function to minimize is the number of conflicts
n C , where a conflict occurs when two adjacent vertices have the same color (i.e., they belong to the same cluster Ci).
f the number of conflicts in C is zero, the process is restarted with k − 1 colors, and so on until no feasible solution is
ound.

To adapt TabuCol to solve (P3), we only consider solutions without conflicts, and the following modifications are made.
he repair phase associated with a move m(j, Ci, Ci′) consists in greedily redistributing (without creating conflicts) into
he clusters of C\Ci all the jobs of Ci′ that are incompatible with j (either because of the setup or the capacity constraint).
he objective function f (C) to minimize is the longest (with respect to the setup times among clusters) Hamiltonian cycle
overing the clusters of C . In each iteration, the first improving move is selected among a randomly generated proportion
∈ [0, 1] (parameter) of neighbor solutions. If there is no improving move, the best of these moves is performed. As

or PartialCol, ties are broken randomly. After preliminary experiments, we have decided to set q = min
(
1, 5000

100n

)
and to

enerate the tabu duration tab with a uniform distribution in interval
[
2,min

(
2, c

10

)]
(where c is the current number of

clusters).
The pseudo-code of TabuCol is presented in Algorithm 3.

Algorithm 3 TabuCol for (P3)

input: a feasible clustering solution C = (C1, . . . , Ck) including k∗ urgent clusters

utput: the best (according to the minimization of the longest Hamiltonian cycle) encountered solution including k∗

rgent clusters among k clusters

hile the time limit T3 (parameter) is not met, do:

Perform a non-tabu move m(j, Ci, Ci′) selected according to some predefined rules

Update the tabu status: moving j back to Ci is forbidden for the next tab (parameter) iterations

In order to avoid evaluating multiple times equivalent clusterings, we propose to associate an identifier with each
solution C , defined as H(C) =

∑
i∈C

(∏
j∈Ci

j +
∑

j∈Ci
j
)

|Ci|. Consequently, when we generate a neighbor solution C ′, we
first compute its identifier H(C ′). Next, we only evaluate C ′ if H(C ′) does not already belong to the dictionary of all the
previous identifiers. Otherwise, it means that the value of C ′ is already known (and there is thus no need to recompute
t).

. Experiments and managerial insights

We present the computational experiments performed on realistic instances generated together with DIXI in order to
apture the different situations they have to face in practice. First, the instances are presented in Section 6.1. Second,
he results for small (resp. large) instances are presented in Section 6.2 (resp. 6.3). Third, aggregated results, sensitivity
nalyses and managerial insights are presented in Section 6.4. The reader interested in reading the aggregated results
irst (or only) can simply skip Sections 6.2 and 6.3. The algorithms were implemented in Julia. The MILP solver is CPLEX
0.1.0.0 (with default setting) and the model was coded using Julia for Mathematical Programming [17]. Computational
xperiments were performed on an Intel Xeon Gold 6240 at 2.60 GHz with a limit of 32 GB of RAM.
In order to cover their needs, DIXI has imposed a computing-time limit of 30 min on the considered computer.

oth our Algorithm 1 and DSAT have thus such a time limit. However, in order to better assess the performance of
he proposed solution methods, we have fixed the time limit for the MILP to 2 h per objective (i.e., 2 h for (P1), (P2)
nd (P3), which results in 6 h), whereas DSAT is simply restarted for 30 min and the best solution is returned at the
nd. Regarding Algorithm 1, preliminary experiments showed that the following computing-time setting is appropriate:
T1, T2, T3) = (5, 5, 20) min. Note that, when considering (P1), PartialCol is stopped before the time limit if a solution
ith k∗

=

⌈∑
j∈J∗ pj
p̄

⌉
is found (i.e., a lower bound on k∗ is reached), where p̄ is the largest processing time of a job (with

respect to the considered instance). In such a case, the remaining computing time is added to the time limit of the next
objective. Similarly, when considering (P2), PartialCol is stopped if k reaches the lower bound

⌈∑
j∈J pj

⌉
and the remaining
p̄

211

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

t
i
m
m
o
f
o
w

6

p

s

a
t
i
c
a
l
v

6

c
i
(
f
T
n
s
t
i
b
f

computing time is added to the time limit of the next objective. The results reported for Algorithm 1 (which is referred
to as PartialCol and TabuCol in the tables) are averages over 10 runs.

In all the proposed meta/heuristics (i.e., DSATUR, DSAT, PartialCol, and TabuCol), equivalent options may be encoun-
ered in some iterations (e.g., the best neighbor solutions could have the same value). In such cases, and as indicated
n Section 5 when presenting each method, ties are broken randomly. This means that two runs of each of these
eta/heuristics may return different solutions with different values. In our experiments, the standard deviations of all the
ethods except TabuCol are systematically equal to (or very close to) zero. For this reason, only the standard deviations
f TabuCol (as well as its best results) are reported and analyzed. In summary, if we run Algorithm 1 ten times, the
ollowing behavior is likely to happen: the solution values associated with (P1) and (P2) are likely to be similar (because
f the robustness of DSATUR and PartialCol, in particular for the smaller instances), but the solutions values associated
ith (P3) are likely to be more diverse.

.1. Instance generation

The following instance set was generated based on the real data provided by DIXI. We consider the following four
arameters:

• n ∈ {15, 20, 25, 30, 50, 100, 150, 200}: the number of jobs,
• u ∈ {0.1, 0.3, 0.5}: the ratio of urgent jobs (u = 0.1 means that 10% of the jobs are urgent),
• d ∈ {0.2, 0.5, 0.8}: the density of the incompatibility graph (as defined below),
• p̄ ∈ {240, 360, 450}: the largest processing time of a job (in minutes).

The density d(G) of a graph G is defined as the average number of edges between two vertices, where an edge corre-
ponds to an incompatibility (with respect to the setup constraint). Formally, d(G) =

∑
j,j′∈J,j̸=j′ (1−bjj′)

n(n−1) . The incompatibilities

mong jobs are randomly generated such that the density d is met. As mentioned above, if two jobs j and j′ are compatible,
he setup time sjj′ = smin

= 5 min. If j and j′ are incompatible, the setup time sjj′ (in minutes) follows a uniform distribution
n the interval [15, 120] min, with steps of 5 min. Note that a setup time of 10 min is not possible because of the machine
onfigurations (i.e., we have either smin or at least 15 min between two jobs). For each job j, the processing time pj follows
uniform distribution in the interval [15, p̄] min, with steps of 5 min. Therefore, we consider 8×3×3×3 = 216 instances,
abeled from I1 to I216 in the result tables. Note for example (e.g., see Table 1) that instances I1, I2 and I3 have the same
alues for n, u and d, but different values for p̄ (which means that the jobs have different durations).

.2. Results for the small instances (n ≤ 30)

The results for instances of size n ∈ {15, 20, 25, 30} are presented in Tables 1–4, respectively. In these tables, we
ompare DSAT, ILP and PartialCol for (P1) and (P2), and DSAT, ILP and TabuCol for (P3). The left columns indicate the
nstance ID and its parameters (i.e., u, d, and p̄). For (P1) (resp. (P2)), the obtained value of k∗ (resp. k) is provided. Regarding
P3), the obtained objective values are denoted by H (which holds for ‘‘Hamiltonian’’). As results are averaged over 10 runs
or TabuCol, we also indicate the best-encountered value (denoted as H (best)) and the standard deviation (denoted as σ).
he times are indicated in seconds. To only present interesting information, we do not indicate the times in the tables for
≤ 30 for (P1) and (P2) as they are consistently near 0 s. Note that each indicated time refers to the considered instance,
ubproblem (among (P1), (P2), and (P3)), and stopping condition (as explained at the beginning of this section, there is a
ime limit for each method and subproblem). For example, considering instance I1, the time at which the optimal solution
s found is 0 s for (P1) (knowing that 7200 s were available), 0 s also for (P2), and 7196.36 s were employed to find the
est solution for (P3) (without proving optimality). Optimal values are indicated in bold characters. The average results
or n = 30 (i.e., the last line of Table 4) do not consider instance I93 for (P3) as ILP could not find a solution.

The following observations can be made.

• For (P1) and (P2), optimal values are found instantaneously by ILP and PartialCol. DSAT finds 84.6% of the optimal
values for (P1) and 36.11% for (P2).

• For (P3), the performance of ILP is the following. The percentage of instances for which ILP proves optimality quickly
decreases with the augmentation of n (i.e., 37.04% for n = 15, 22.22% for n = 20, 3.70% for n = 25, and 0% for n = 30).
Over all the small instances, ILP proves optimality for only 15.74% of the instances (17 out of 108). The time needed
for ILP to find its last solution is large and increases with the augmentation of n. On average, it is around 26 min for
n = 15 and it goes up to 64 min for n = 30. From n = 30, ILP starts not to be able to find a feasible solution for all
instances (see instance I93 in Table 4).

• For (P3), the performance of TabuCol is the following. On average, TabuCol finds results improved by 12% and 15%
compared to ILP and DSAT, respectively. TabuCol is able to find at each run all optimal solutions found by ILP, except
for instances I31 and I52 for which TabuCol reaches the optimal solution only 1 and 2 times over the 10 runs,
respectively. As presented in Table 5 (which gives aggregated results with respect to various robustness indicators),
the standard deviation σ remains low and increases slightly with the augmentation of n (see column 2 labeled as

‘‘average σ ’’). Unsurprisingly, the percentage of instances for which σ = 0 decreases quickly with the augmentation

212

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

6

t
s
a
a
t
c

Table 1
Results for the instances with n = 15.
ID u d p̄ ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

k∗ k∗ k∗ k k k H Time H H H (best) Time σ

I1

0.1

0.2

240 1 1 1 4 4 4 145.6 7196.36 114.67 87.7 87.7 0.66 0
I2 360 1 1 1 7 7 7 331 5921.73 279.58 184.05 183.78 0.28 0.46
I3 450 1 1 1 9 9 9 413.8 3385.92 296.25 248.65 240 0.05 3.83

I4

0.5

240 1 1 1 6 6 6 393.3 5870.6 342.08 280.3 280.3 0.26 0
I5 360 1 1 1 10 10 10 717.4 965.15 625 579.61 573.7 0.02 4.15
I6 450 1 1 1 10 10 10 767.5 178.6 727.5 696.3 696.3 0.03 0

I7

0.8

240 1 1 1 8 8 8 613.7 1987.99 665 613.7 613.7 0.03 0
I8 360 1 1 1 8 9 8 661.7 9.17 819.38 661.7 661.7 0.02 0
I9 450 1 1 1 8 8 8 661.2 1.45 669.58 661.2 661.2 0.02 0

I10

0.3

0.2

240 1 1 1 4 4 4 75.3 7183.02 89.37 65 65 0.05 0
I11 360 2 2 2 6 6 6 261 1643.81 152.08 140.1 140.1 0.1 0
I12 450 4 4 4 8 9 8 252.4 1558.26 336.25 177.21 176.4 0.05 2.56

I13

0.5

240 2 2 2 5 7 5 240.3 0.99 367.5 240.47 240.47 0 0
I14 360 2 2 2 9 10 9 626.8 233.02 727.5 575 575 0.03 0
I15 450 3 3 3 11 11 11 942.5 262.84 842.5 786.5 785 0.04 1.29

I16

0.8

240 3 3 3 7 8 7 484.5 1.41 593.75 484.5 484.5 0.01 0
I17 360 4 4 4 9 10 9 729.2 163.26 851.25 729.2 729.2 0.03 0
I18 450 3 3 3 10 11 10 911.3 3.91 1007.5 911.3 911.3 0 0

I19

0.5

0.2

240 2 2 2 4 5 4 89.8 403.21 123.99 89.8 89.8 0.03 0
I20 360 3 3 3 8 8 8 397.5 587.11 285.83 232 232 0.02 0
I21 450 3 4 3 8 8 8 269.5 3279.52 251.25 238 235.8 0.03 2.84

I22

0.5

240 4 4 4 5 5 5 233.5 7.98 233.83 233.5 233.5 0 0.07
I23 360 4 4 4 9 9 9 566.3 575.23 538.75 458.8 458.8 0.03 0
I24 450 5 5 5 9 10 9 622 67.36 660 533.7 533.7 0 0

I25

0.8

240 5 5 5 8 9 8 557.6 88.85 670 557.6 557.6 0.02 0
I26 360 5 5 5 9 9 9 786.2 3.95 797.5 786.2 786.2 0.02 0
I27 450 5 5 5 10 10 10 900 21.16 911.25 900 900 0.03 0

Average results 2.56 2.59 2.56 7.74 8.15 7.74 505.59 1540.81 517.75 450.08 449.36 0.07 0.56

of n (see column 3 labeled ‘‘σ = 0’’). The average standard deviation corresponds to less than 1% of the average
objective-function values (see column 4). We can also observe (see the last column) that the worst-case variations
of H remain reasonable and they do not suffer from the augmentation of n.

• DSAT is the quickest method to generate a relatively good solution, but it is less efficient than ILP and Partial-
Col/TabuCol. For (P1) (resp. (P2)), DSAT finds objective-function values that are on average 2.51% (resp. 6.36%) higher
than the ones obtained by both ILP and PartialCol. For (P3), such percentage gaps increase to 4.39% when compared
to ILP, and to 26.74% when compared to TabuCol. DSAT is not able to propose better results than PartialCol/TabuCol,
except for three instances (I50, I75 and I78) for which the DSAT solutions obtained for a previous objective are not
optimal and thus the resolution of (P2) and (P3) is less restricted.

.3. Results for the large instances (n ≥ 50)

The results for instances of size n ∈ {50, 100, 150, 200} are presented in Tables 6–9, respectively, which have globally
he same structure as the previous tables. To only present interesting information, we note however the following
traightforward format modifications: (1) the results for (P3) obtained with ILP are shown only for n = 50 (as no solution
t all has been found before the time limit for n ≥ 100); (2) for n ≥ 100, the computing times for ILP and PartialCol
re now indicated for (P1) and (P2), as they are not consistently near 0 s anymore. Two lines are proposed to present
he average results: the first one considers only the instances for which ILP found a solution, whereas the second one
onsiders all instances. It is important to remind here that ILP can have the following outputs.

• An optimal solution is found. In such a case, the objective-function value is indicated in bold character. If a time is
indicated, it corresponds to the computing time needed to find the optimal solution (without considering the time
to prove optimality).

• A non-necessarily optimal solution is found (i.e., either the solution is not optimal, or the solution is optimal but
CPLEX was not able to prove it). If a time is indicated, it refers to the computing time needed by CPLEX to find its
best solution (while considering a time limit of 7200 s per subproblem). It can thus happen that the best solution
is found very early (e.g., after 2.65 s for instance I140), and then no better solution is found (i.e., for the remaining

7197.35 s regarding instance I140).

213

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
Table 2
Results for the instances with n = 20.
ID u d p̄ ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

k∗ k∗ k∗ k k k H Time H H H (best) Time σ

I28

0.1

0.2

240 1 1 1 7 8 7 217.6 1910.76 229.86 140.47 140.47 0.7 0
I29 360 1 1 1 9 9 9 364.1 614.82 296.24 208.3 208.3 5.47 0
I30 450 1 1 1 12 12 12 545 157.85 467.5 418.8 418.8 0.06 0

I31

0.5

240 2 2 2 6 8 6 257.6 837.4 437.91 273.62 257.6 0.02 13.76
I32 360 2 2 2 9 10 9 593.8 7116.98 595.42 416.6 413.15 4.6 4.69
I33 450 2 2 2 11 11 11 819.5 3761.2 707.5 649.68 633 0.05 17.58

I34

0.8

240 2 2 2 9 10 9 632.9 29.17 780.83 632.9 632.9 0.02 0
I35 360 2 2 2 11 11 11 991.3 115.51 963.75 847.35 843.7 0.04 5.67
I36 450 2 2 2 13 14 13 1267 3331.86 1305 1192.6 1192.6 0.04 0

I37

0.3

0.2

240 3 3 3 6 7 6 194.5 5176.03 210.55 113.4 113.4 0.18 0
I38 360 4 4 4 11 11 11 562.1 5351.32 490.41 354.44 345.65 0.41 12.85
I39 450 3 3 3 9 11 9 283.3 92.44 436.11 240.7 240.7 0.02 0

I40

0.5

240 3 3 3 6 6 6 327.9 7124.77 296.41 284.73 277.47 0.04 7.66
I41 360 3 3 3 9 9 9 545.5 1487.32 468.19 411.45 411.45 0.26 0
I42 450 4 4 4 12 12 12 1018 1147.5 870 793 793 0.08 0

I43

0.8

240 5 5 5 10 12 10 795.9 39.14 1021.25 732.4 732.4 0.03 0
I44 360 4 4 4 10 10 10 749.5 2251.62 788.75 749.5 749.5 0.03 0
I45 450 5 5 5 14 14 14 1321.3 89.58 1251.25 1218.7 1218.7 0.06 0

I46

0.5

0.2

240 3 4 3 6 6 6 204.2 7169.15 165.31 142.9 142.9 0.04 0
I47 360 4 4 4 9 9 9 450.4 1250.36 360 213.06 207.2 0.24 6.82
I48 450 7 7 7 11 11 11 549.8 344.72 518.34 401.28 395 0.08 10.19

I49

0.5

240 5 6 5 6 8 6 295.1 0.9 440.28 295.1 295.1 0 0
I50 360 5 6 5 8 8 8 483.6 93.72 419.3 421.6 421.6 0.03 0
I51 450 6 6 6 11 12 11 685.8 2200.67 792.5 636.2 636.2 0.03 0

I52

0.8

240 6 6 6 10 11 10 696.2 9.97 878.75 726.72 696.2 0.02 15.98
I53 360 8 8 8 13 14 13 1127.5 529.62 1306.25 1127.5 1127.5 0 0
I54 450 8 8 8 15 15 15 1507.5 306.56 1493.75 1432.6 1432.6 0.04 0

Average results 3.74 3.85 3.74 9.74 10.33 9.74 647.66 1945.96 666.35 558.36 554.71 0.47 3.53

• No solution is found (which corresponds to empty cells in the result tables).
• It should be noted that the bounds obtained by CPLEX are not shown as they do not provide relevant insights for

the analysis (i.e., when optimal solutions are not found, the quality of the bounds is here usually very poor).

The following observations can be made.

• For (P1), ILP is not always able to prove optimality for n ≥ 150. With respect to the augmentation of u and n,
the percentage of instances solved to optimality decreases quickly (see the left part of Table 10), whereas the time
needed by ILP to find its last solution increases quickly (see the right part of Table 10).

• For (P1) again, PartialCol is able to find all the optimal solutions found by ILP. The time needed by PartialCol is
usually below 1 s (except for six instances). The results obtained by DSAT are on average 11.69% higher than the
results of ILP, whereas PartialCol averagely improves the results of ILP by 0.64% (more precisely, 0.00% for n ≤ 100,
0.31% for n = 150, and 2.25% for n = 200). We can see that the time needed by PartialCol to find its best solutions
is relatively constant with the augmentation of n.

• For (P2), the performance of ILP is the following. It is able to find 24.07% of optimal solutions (for 26 out of 108
instances). ILP finds 92.59% (25 out of 27) of optimal solutions for n = 50, and 3.70% (1 out of 27) for n = 100.
From n = 150, no more optimal solution is found by ILP and a solution is found for only 22.22% of the instances (12
out of 54). More precisely, for n = 150, ILP is able to find a solution for 29.63% (8 out of 27) of the instances (all of
them are obtained for instances with u = 0.1, which can be explained by the fact that it is easier for ILP to find a
feasible solution when the problem is less constrained). For n = 200, a solution is found for 14.81% (4 out of 27) of
the instances. The average time needed by ILP to find its last solution is 38.3 s for n = 50 and 4252.58 s for n = 100.
The average time needed for n = 150 and n = 200 is not relevant because of the low number of instances solved.

• For (P2) again, PartialCol is able to find all the optimal solutions found by ILP and finds on average its last solution
in 25.63 s (more precisely, 21.07 s for n = 50, 17.05 s for n = 100, 30.26 s for n = 150, and 31.14 s for n = 200).
On average, PartialCol improves the results of ILP by 12.99% (i.e., 0.00% for n = 50, 5.95% for n = 100, 54.77% for
n = 150, and 62.88% for n = 200), whereas the objective-function values obtained by DSAT are averagely 5.22%
higher than the ones of ILP for n ∈ {50, 100} (i.e., 9.86% for n = 50, and 0.39% for n = 100), but 52.22% lower for
n ≥ 150 (i.e., 51.56% for n = 150, and 53.55% for n = 200).
214

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

6

l
p

Table 3
Results for the instances with n = 25.
ID u d p̄ ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

k∗ k∗ k∗ k k k H Time H H H (best) Time σ

I55

0.1

0.2

240 1 1 1 9 10 9 299.4 4910.21 323.33 179.33 179.2 47.12 0.13
I56 360 2 2 2 9 9 9 313.2 1626.75 255.9 190 190 6.83 0
I57 450 1 1 1 12 12 12 603.3 4577.73 461.24 365.21 364 2.13 1.64

I58

0.5

240 2 2 2 7 8 7 354.2 6700.39 411.48 308.53 305.68 0.03 8.99
I59 360 2 2 2 10 11 10 600 424.92 656.68 473.2 473.2 1.22 0
I60 450 1 1 1 13 13 13 942.4 4093.11 930.01 701.44 695.45 0.24 12.63

I61

0.8

240 2 2 2 11 12 11 877.9 1662.06 965.84 745.72 745.72 0.07 0
I62 360 2 2 2 16 17 16 1384.9 3966.9 1510 1321.3 1321.3 0.06 0
I63 450 2 2 2 17 17 17 1624.9 2191.25 1550.42 1485.8 1485.8 0.06 0

I64

0.3

0.2

240 3 3 3 6 7 6 152.7 6951.62 160.11 93 93 33.62 0
I65 360 4 4 4 12 12 12 545.1 5659.13 447.08 368.8 368.8 0.55 0
I66 450 3 3 3 11 11 11 492.1 6743.95 451.88 281.88 263.08 27.12 8.07

I67

0.5

240 4 4 4 8 9 8 435.5 5757.36 472.51 357.17 357.17 1.86 0
I68 360 3 4 3 11 12 11 724.3 1126.84 778.54 578.23 577.85 114.55 1.21
I69 450 4 4 4 15 15 15 1272.7 4981.56 1176.66 1034.74 1033.7 0.08 1.34

I70

0.8

240 5 5 5 12 14 12 1033.8 5661.6 1262.5 894.2 894.2 0.05 0
I71 360 6 6 6 13 14 13 1127.6 53.57 1187.5 1095.83 1060.1 0.02 30.61
I72 450 5 5 5 13 14 13 1084.7 7006.79 1163.75 958.43 954.55 0.07 12.25

I73

0.5

0.2

240 3 4 3 6 7 6 178.1 104.64 219.58 128.66 128 0.13 0.57
I74 360 6 6 6 13 13 13 612.1 2759.05 572.64 467.22 463.5 0.33 4.63
I75 450 6 7 6 13 13 13 669.6 6600.8 500.42 504.3 504.3 0.16 0

I76

0.5

240 5 5 5 8 9 8 471.5 6633.18 509.72 350.15 347.7 0.26 7.75
I77 360 7 7 7 12 12 12 818.2 194.65 757.51 695.8 695.8 0.1 0
I78 450 6 7 6 16 15 16 1280 2849 1050 1183.8 1183.8 0.07 0

I79

0.8

240 7 7 7 11 12 11 856.9 7198.55 982.22 776.3 776.3 0.07 0
I80 360 8 8 8 13 14 13 1070 37.76 1250 1070 1070 0.02 0
I81 450 11 11 11 20 20 20 1951.6 1545.9 1959.16 1912.5 1912.5 0.03 0

Average results 4.11 4.26 4.11 11.74 12.3 11.74 806.54 3778.49 813.58 685.98 683.14 8.77 3.33

• For (P3), ILP is only able to find 11.11% of feasible solutions for n = 50 (3 out of 27 instances) and the average time
needed to find its last solutions is very high (6505.05 s). For n ≥ 100, ILP is not able to find any solution within the
time limit of two hours.

• For (P3) again, TabuCol finds on average its last solution in 416.58 s (i.e., 139.11 s for n = 50, 379.92 s for n = 100,
566.17 s for n = 150, and 581.13 s for n = 200). We can see that the average time needed by TabuCol increases for
the largest instances but still remains around 10 min. As ILP finds only three solutions, the performance of TabuCol is
only compared with the performance of DSAT: TabuCol averagely improves the results of DSAT by 22.60% (i.e., 23.43%
for n = 50, 18.42% for n = 100, 13.54% for n = 150, and 35.03% for n = 200). The aggregated results with respect
to various robustness indicators are given in Table 11 (which is similar in its structure to Table 5). We can observe
that the standard deviation σ is on average low even for the higher values of n (see the second column), whereas
the percentage of instances for which σ = 0 is 7.41% for n = 50 and is null for n ≥ 100 (see the third column
labeled ‘‘σ = 0’’). The value of σ corresponds on average to 1.03% of the average objective value (see the fourth
column). It seems that a peak is reached for n = 100 and that for lower values of n, solutions are somewhat easier
to find, whereas for higher values of n, the convergence to local optima is more stable. The biggest variation of σ is
relatively low and corresponds to 6.09% of the objective-function value for n = 100 (see the last column).

.4. Aggregated results, sensitivity analyses, and managerial insights

Table 12 presents the aggregated results of all the proposed methods for problems (P1), (P2), and (P3) (built from the
ast lines of Tables 1 to 9). Each line represents averaged results over 27 instances (i.e., covering different values for the
arameters u, d, and p̄) for the considered number n of jobs. The following information is displayed.

• k∗: number of clusters containing at least one urgent job, for each method related to problem (P1).
• k: total number of clusters, for each method related to problem (P2).
• Time: computing time of the corresponding algorithm (in seconds) to provide its best solution. ‘‘Time’’ is not given

for DSAT as it is consistently near zero.
• SOL: number of instances (among 27) for which ILP is able to generate a solution (to the considered problem), but

without proving its optimality.
215

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
Table 4
Results for the instances with n = 30.
ID u d p̄ ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

k∗ k∗ k∗ k k k H Time H H H (best) Time σ

I82

0.1

0.2

240 2 2 2 8 9 8 239.8 242.27 281.63 163.13 162.9 513.04 0.5
I83 360 2 2 2 12 13 12 431.1 6985.35 491.35 269.15 268.77 19.06 1.2
I84 450 3 3 3 18 18 18 836.8 4629.36 797.5 685.61 671.7 1.04 11.11

I85

0.5

240 2 2 2 9 11 9 446.1 6614.14 638.63 391.93 391.6 1.08 0.53
I86 360 2 2 2 15 16 15 1053.8 571.24 1140 1018.51 1012.35 0.03 3.25
I87 450 2 2 2 17 17 17 1299.2 6697.7 1342.5 1109.64 1097.6 0.28 8.81

I88

0.8

240 3 3 3 13 15 13 1066.6 3208.25 1310.41 991.24 987.55 0.09 7.9
I89 360 2 2 2 18 18 18 1616.3 1281.73 1580 1507.84 1506.4 0.07 2.32
I90 450 2 2 2 20 21 20 1937.1 3600.22 2071.25 1851.4 1851.4 0.15 0

I91

0.3

0.2

240 3 3 3 8 9 8 251.1 1456.33 298.35 174.4 174.4 40.01 0
I92 360 6 6 6 14 14 14 562.5 5729.73 524.31 399.72 392.97 4.05 5.63
I93 450 5 5 5 20 20 20 – – 1085.42 1007.37 1000 0.53 7.53

I94

0.5

240 4 4 4 8 9 8 428.9 6904.41 464.05 357.72 352.23 0.78 9.7
I95 360 5 5 5 12 12 12 690.6 610.33 686.17 578.33 578.3 2.45 0.06
I96 450 7 7 7 18 18 18 1339.9 6029.58 1385 1190.03 1183.7 0.62 4.55

I97

0.8

240 5 5 5 13 15 13 1078.8 5327.01 1199.58 956.72 951.8 0.13 6.35
I98 360 5 5 5 16 16 16 1319.1 986.26 1327.09 1247.9 1247.9 0.06 0
I99 450 7 7 7 23 23 23 2342.5 6170.26 2342.5 2320 2320 0.02 0

I100

0.5

0.2

240 5 6 5 9 10 9 281.8 6541.2 314.92 191.83 191.83 4.29 0
I101 360 6 6 6 12 12 12 459.3 1952.8 453.21 327.17 326.8 25.21 1.17
I102 450 9 9 9 16 16 16 815.1 4369.98 754.58 594.67 584.9 0.83 12.11

I103

0.5

240 6 7 6 9 10 9 432.2 3543.73 509.78 425.8 425.8 0.01 0
I104 360 6 7 6 12 14 12 752.5 1801.76 970.84 714.8 714.8 0.02 0
I105 450 9 10 9 18 18 18 1226.3 6094.52 1259.16 1215.1 1215.1 0.15 0

I106

0.8

240 8 8 8 13 14 13 1103.5 7200.03 1163.74 991.9 991.9 0.19 0
I107 360 10 10 10 17 18 17 1622.1 494.91 1687.09 1538.6 1538.6 0.12 0
I108 450 9 9 9 16 17 16 1418.2 370.16 1529.17 1376.63 1362.5 0.03 22.75

Average results 5 5.15 5 14.22 14.93 14.22 963.51 3823.59 1020.11 868.84 865.53 23.61 3.77

Table 5
For TabuCol on (P3), evolution of σ and other robustness indicators depending on n.
n Average σ σ = 0 Average variation of H Biggest variation of H

15 0.56 74.07% 0.20% 1.54%
20 3.53 66.67% 0.88% 5.03%
25 3.33 55.56% 0.60% 2.91%
30 3.91 37.04% 0.54% 2.71%

• OPT: number of instances (among 27) for which ILP is able to generate a solution (to the considered problem) and
to prove its optimality.

• H (which holds for ‘‘Hamiltonian’’): objective-function value for (P3).
• H (best) (for TabuCol and (P3) only): average of the best objective-function values. This can be computed as for each

instance, Algorithm 1 (and thus its TabuCol component) is run 10 times.
• σ : average standard deviation for TabuCol on (P3).

One can easily observe the good behavior of PartialCol/TabuCol with respect to the increase of the instance size n. More
precisely, in contrast with ILP and DSAT, PartialCol and TabuCol do not suffer with the increase of the number of jobs, as
such metaheuristics can still generate efficient solutions (with respect to objective-function values) quickly (with respect
to the allowed computing times). The following more detailed observations can be made regarding the performance of
each method for each problem.

• (P1) All the methods are comparable when n < 150. However, from n = 150, ILP requires much more computing
time, and it cannot always prove the optimality of the provided solutions. ILP and PartialCol slightly outperform
DSAT regarding solution quality, in particular from n = 100.

• (P2) ILP is not efficient anymore from n = 150 regarding solution quality, and from n = 100 regarding speed.
The results of DSAT are close to those of PartialCol, except for n = 200 where PartialCol is obviously much better
regarding solution quality, while still having relatively small computing times (roughly half a minute).

• (P3) For the large instances (i.e., from n = 100), ILP cannot generate any solution, except for three (out of 27)
instances with n = 50 while having huge computing times. The solutions of DSAT are clearly outperformed by those
216

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

P
p
o

i
u
o

Table 6
Results for the instances with n = 50.

ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

ID u d p̄ k∗ k∗ k∗ k Time k k H Time H H H(best) Time σ

I109

0.1

0.2

240 2 2 2 14 20.65 15 14 – – 504.45 318.39 315.27 650.25 1.87
I110 360 2 2 2 18 17.75 19 18 – – 718.47 505.34 504.7 480.24 1.35
I111 450 3 3 3 25 9.67 26 25 – – 1313.34 1055.23 1044.4 3.95 17.69

I112

0.5

240 2 3 2 13 9.97 17 13 – – 1052.02 616.55 587.05 122.67 21.81
I113 360 4 4 4 18 16.02 21 18 – – 1330.97 875.24 869.75 513.06 3.49
I114 450 3 3 3 26 19.17 27 26 – – 2060.84 1688.88 1672.4 6.79 16.07

I115

0.8

240 4 4 4 19 79.19 23 19 1536.1 6409.71 1935.97 1468.57 1439.15 0.96 31.63
I116 360 4 4 4 20 7.06 25 20 – – 2243.33 1642.81 1563.2 0.12 29.4
I117 450 4 4 4 29 7.68 30 29 – – 2925 2677.46 2671.3 3.35 6.3

I118

0.3

0.2

240 4 5 4 13 8.5 14 13 – – 468.33 290.39 286.2 539.9 2.08
I119 360 7 8 7 22 11.64 23 22 – – 980.84 781.3 781.3 1.07 0
I120 450 9 9 9 26 11.56 26 26 – – 1240.28 1027.82 998.6 14.55 16.68

I121

0.5

240 6 7 6 14 19.73 15 14 – – 818.96 638.96 635.6 592.36 2.91
I122 360 6 8 6 25 14.11 25 25 – – 1905.85 1621.98 1581.75 4.36 29.39
I123 450 7 8 7 29 15.11 29 29 – – 2434.16 2207.23 2185 3.86 19.45

I124

0.8

240 7 8 7 20 3.57 24 20 1562.3 6768.32 2047.09 1509.9 1509.9 2.68 0
I125 360 9 10 9 21 3.48 23 21 – – 1942.3 1657.54 1639.45 0.28 29.3
I126 450 10 10 10 28 3.24 30 28 – – 2912.91 2426.54 2418.3 4.31 10.68

I127

0.5

0.2

240 7 8 7 14 11.11 15 14 – – 474.52 312.84 311.13 640.54 1.2
I128 360 10 11 10 21 11.76 22 21 – – 888.68 647.06 641.3 108.75 2.56
I129 450 13 13 13 25 17.2 25 25 – – 1215.01 953.77 930.9 28.59 27.19

I130

0.5

240 7 10 7 15 646.25 18 15 – – 1076.04 755.89 754.35 3.74 1.99
I131 360 12 13 12 20 22.08 22 20 – – 1443.88 1148.87 1120.4 15.97 32.86
I132 450 13 14 13 25 23.61 26 25 – – 1973.54 1573.57 1548.2 10.25 18.57

I133

0.8

240 11 14 11 20 3.12 25 20 1537.5 6340.13 2154.16 1474.67 1452.8 2.26 20.15
I134 360 12 13 12 22 2.69 26 22 – – 2356.24 1822.9 1803.7 0.02 20.17
I135 450 15 15 15 27 18.27 28 27 – – 2532.5 2359.73 2331.5 1.14 27.26

Average results (ILP) 7.15 7.89 7.15 21.07 38.3 22.93 21.07 1545.3 6506.05 2045.74 1484.38 1467.28 1.97 17.26
Average results (all) 7.15 7.89 7.15 21.07 38.3 22.93 21.07 1545.3 6506.05 1590.73 1261.46 1244.36 139.11 14.52

Table 7
Results for the instances with n = 100.

ILP DSAT PartialCol ILP DSAT PartialCol DSAT TabuCol

ID u d p̄ k∗ Time k∗ k∗ Time k Time k k Time H H H(best) Time σ

I136

0.1

0.2

240 3 0 3 3 0.04 28 2614.73 29 28 0 1037.37 775.7 767.45 642.66 5.37
I137 360 4 0.01 4 4 0.03 40 1739.68 40 40 0.02 1860.37 1449.67 1432.3 561.61 9.81
I138 450 6 0 6 6 0 55 2326.21 55 55 0 3576.5 2979.5 2882.3 131.24 113.33

I139

0.5

240 4 0 5 4 0.06 29 6455.42 32 27 4.37 1950.44 1357.04 1346.85 667.98 6.01
I140 360 6 0 6 6 0 96 2.65 44 41 0.28 3193.34 2586.91 2536.7 445.36 22.25
I141 450 6 0 6 6 0 96 2.82 57 55 0.03 5094.58 4437.58 4395 133.44 33.31

I142

0.8

240 6 0 6 6 0.02 34 4113.06 39 33 3.69 3314.3 2469.65 2453.27 684.64 8.26
I143 360 7 0 7 7 0.06 41 4359.32 47 41 1 4269.3 3304.1 3279.5 475.93 15.43
I144 450 7 0 7 7 0 52 5975.27 54 51 0.01 5214.58 4643.55 4618 227.89 20.95

I145

0.3

0.2

240 9 0.22 11 9 0.04 29 2123.2 28 28 0 939.62 760.02 754 599.28 4.23
I146 360 13 1.35 13 13 0.06 39 2540.48 40 39 0 1794.23 1421.8 1407.7 492.39 6.89
I147 450 15 0.67 15 15 0.06 55 4424.41 56 55 0.01 3698.75 3038.4 2910.9 156.18 185.03

I148

0.5

240 9 2.72 10 9 0.06 26 7111.21 30 26 0.18 1779.66 1287.07 1276 524.27 5.81
I149 360 14 2.4 14 14 0.06 – – 46 44 0.02 3393.88 2905.98 2856.9 464.98 23.95
I150 450 20 0.85 21 20 0.06 51 4608.26 52 51 0.48 4214.86 3766.25 3704 124.11 30.24

I151

0.8

240 12 0.34 15 12 0.07 36 5106.51 40 34.9 104.18 3381.14 2645.45 2632.15 561.99 18.22
I152 360 15 1.34 17 15 0.07 46 4683.05 49 45 16.41 4549.02 3744.68 3713.65 91.19 29.71
I153 450 19 1.05 20 19 0.06 56 2255.32 57 56 0 5713.61 5401.86 5375.1 74.77 19.8

I154

0.5

0.2

240 14 14.85 16 14 0.06 27 1395.05 27 26 0.22 928.82 687.32 683.6 732.2 3.51
I155 360 16 20.55 18 16 26.31 36 5329.68 37 36.5 203.4 1625.59 1238.31 1200.3 612.83 52.48
I156 450 23 19.39 24 23 0.06 52 4573.61 52 52 0.1 2974.58 2647.04 2609.8 65.25 33.54

I157

0.5

240 15 39.71 18 15 0.08 29 6615.74 32 29 0.49 2014.4 1513.7 1501.89 586.06 7.4
I158 360 21 52.39 23 21 0.06 41 5914.37 43 39 37.99 2978.81 2389.03 2377 546.71 8.67
I159 450 24 52.17 24 24 0.06 50 7116.83 47 47 0.05 3523.19 3315.51 3278.4 70.71 30.06

I160

0.8

240 19 27.28 24 19 0.06 39 7198.19 40 33.1 83.43 3323.48 2553.61 2496.6 347.56 44.99
I161 360 25 14.38 25 25 0.06 51 7129.48 51 48 0.74 4860.43 4229.09 4178.2 134.55 31.84
I162 450 28 21.36 30 28 0.08 54 4852.52 57 54 3.37 5627.09 5118.14 5092.4 101.93 13.65

Average results (ILP) 13.33 10.11 14.37 13.33 1.02 45.69 4252.58 43.65 41.17 17.71 –
Average results (all) 13.33 10.11 14.37 13.33 1.02 45.69 4252.58 43.74 41.28 17.05 3216 2691.37 2657.78 379.92 29.06

of TabuCol from n = 15 already, and the gap grows with the increase of n. Regarding TabuCol, the standard deviation
and the computing times augment reasonably with the increase of n.

Table 13 presents the aggregated results for all the instances that can be solved by ILP. We compare DSAT, ILP, and
artialCol (for (P1) and (P2)) or TabuCol (for (P3)) according to the variation of each instance parameter (namely, u, d, and

¯). We provide the improvement gaps (in percent) brought by ILP, PartialCol and TabuCol, when compared to the average
bjective-function values of DSAT (i.e., a positive value corresponds to an improvement).
The following observations can be made according to the increase of u, which corresponds to an augmentation of the

nstance size for (P1), but to a kind of reduction of the instance size for (P2). Indeed, for example, if 10% of the jobs are
rgent (such jobs belong to (P1)), it means that 90% of them are not urgent (and such jobs belong to (P2)) and that 10%
f the jobs will already be integrated in a given partial solution before solving (P2).
217

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
Table 8
Results for the instances with n = 150.

ILP DSAT PartialCol ILP DSAT PartialCol DSAT TabuCol

ID u d p̄ k∗ Time k∗ k∗ Time k Time k k Time H H H(best) Time σ

I163

0.1

0.2

240 5 0 5 5 0.01 140 7.84 44 42 0 1721.37 1313.55 1293.9 611.17 11.5
I164 360 8 0.01 8 8 0.05 143 6.92 62 62 0.08 3056.13 2725.33 2703.27 468.48 19.23
I165 450 11 0.01 12 11 0.06 146 6.51 79 79 0.01 4660.83 4488.85 4406 446.7 36.55

I166

0.5

240 5 0.07 6 5 0.05 140 14.39 47 42 1.8 2996.47 2281.58 2254.4 687.57 11.92
I167 360 7 0.01 7 7 0.06 142 14.81 63 59 0.72 4675.25 3952.52 3915.7 694.03 19.57
I168 450 11 0.01 11 11 0 146 14.36 73 72 0.01 5622.5 5372.66 5294.6 394.43 37.46

I169

0.8

240 8 0.01 9 8 0.04 143 33.36 58 47.6 66.13 4898.06 3590.5 3528.98 666.86 48.07
I170 360 9 0.01 10 9 0 81 5267.87 73 65 25.09 6842.78 5644.78 5626.6 489.42 12.27
I171 450 10 0.01 11 10 0.06 – – 87 88 0.01 8991.66 8935.61 8893.7 560.79 22.84

I172

0.3

0.2

240 14 10.41 14 14 0.05 – – 44 43 0.92 1656.62 1370.6 1339.3 865.1 16.58
I173 360 19 21.29 20 19 0.06 – – 63 63 0.15 3044.13 2785.19 2757.6 737.24 19.52
I174 450 28 11.24 28 28 0.04 – – 74 74 0.05 4337.08 3929.25 3879.5 395.3 24.94

I175

0.5

240 12 120.35 14 12 0.06 – – 45 40.9 12.7 2797.15 2220.49 2162 608.05 21.78
I176 360 19 37.35 22 19 0.06 – – 63 61 45.56 4636.6 4144.48 4115.65 619.7 19.64
I177 450 23 35.21 24 23 0.06 – – 75 74 40.66 6207.71 5793.32 5768 574.54 19.1

I178

0.8

240 17 116.48 20 17 0.06 – – 58 49 82.01 4988.94 3778.17 3756.87 471.06 12.84
I179 360 26 16.37 27 26 0.06 – – 70 65 3.08 6481.26 5660.6 5647.2 505.3 11.7
I180 450 27 22.92 28 27 0.06 – – 80 77 0.66 7900.42 7313.81 7289.6 726.43 16.79

I181

0.5

0.2

240 19 465.07 19 19 0.05 – – 41 39.3 90.72 1494.21 1160.61 1135.97 549.8 19.79
I182 360 29 360.82 30 29 0.06 – – 61 60 1.18 3065.6 2552.32 2532.7 718.06 11.89
I183 450 40 437.78 40 40 0.06 – – 83 83 0 5456.26 5016.66 4912.1 384.27 79.32

I184

0.5

240 21 742.27 24 20 9.97 – – 45 41.1 157.92 2828.86 2237.55 2212 454.42 23.05
I185 360 31 859.12 33 30.1 61.81 – – 63 65.2 4.41 4602.02 4637.17 4212.2 412.69 279.49
I186 450 40 2970.63 40 40 0.06 – – 78 76 3.13 6639.86 6132.51 6082.6 412.31 26.69

I187

0.8

240 24 1042.21 30 23.7 1.35 – – 57 48.1 169.47 5013.98 3701.83 3674.9 682.26 46.69
I188 360 30 5472.41 36 30.2 69.31 – – 68 62 23.5 6241.75 5342.27 5074.2 659.55 154.4
I189 450 35 1238.61 39 35 0.26 – – 78 75.8 86.99 7648.42 7198.09 7107.4 490.98 50.22

Average results (ILP) 19.56 517.8 21 19.48 5.32 135.13 670.76 62.38 58.58 11.73 –
Average results (all) 19.56 517.8 21 19.48 5.32 135.13 670.76 64.15 61.26 30.26 4759.48 4195.57 4132.48 566.17 39.77

Table 9
Results for the instances with n = 200.

ILP DSAT PartialCol ILP DSAT PartialCol DSAT TabuCol

ID u d p̄ k∗ Time k∗ k∗ Time k Time k k Time H H H(best) Time σ

I190

0.1

0.2

240 6 0.09 6 6 0.05 186 17.85 63 55 0.01 3039.96 1836.05 1809.3 611.56 11.32
I191 360 10 0.2 13 10 0.06 – – 103 79 0.02 8109.42 3612.05 3552.95 852.99 30.42
I192 450 9 0.29 11 9 0.06 – – 118 94 41.92 10570.43 4969.59 4921.5 598.89 27.13

I193

0.5

240 6 0.08 7 6 0.04 186 44.67 61 52 9.87 4109.69 2867.8 2846.4 655.18 12.04
I194 360 10 0.04 11 10 0.06 190 51.83 101 74.9 12.09 9614.95 5080.58 4999.3 489.63 31.1
I195 450 14 0.2 16 14 0 194 57.76 128 100 0.19 13541.18 8127.26 8071.7 687.57 38.66

I196

0.8

240 9 0.03 11 9 0.04 – – 71 61 40.8 6049.75 4705.63 4687.22 535.27 11.62
I197 360 10 0.06 13 10 0.01 – – 107 80.8 42.64 11130.35 6987.02 6901.4 587.75 44.69
I198 450 16 0.11 16 16 0 – – 136 112 0.06 15211.62 11337.44 11311.1 566.26 21.2

I199

0.3

0.2

240 17 80.63 20 17 0.06 – – 63 58 0.15 2743.58 2009.82 1984.48 528.33 11.42
I200 360 26 135.98 35 26 0.06 – – 97 76 22.03 7194.04 3393.4 3358.6 601.25 21.69
I201 450 27 92.6 33 27 0.06 – – 124 102.1 99.17 11337.73 6079.53 6005.3 528.96 66.81

I202

0.5

240 19 328.21 22 19 0.07 – – 63 55.6 72.44 4231.57 3148.19 3096.3 644.68 36.3
I203 360 26 542.47 35 26 0.06 – – 102 80.2 75.11 9690.13 5684.99 5626.4 712.56 55.76
I204 450 28 188.12 36 28 0.06 – – 122 103 1.94 12618.48 8794.3 8717.3 492.53 38.39

I205

0.8

240 20 1136.05 27 20 0.54 – – 71 64.5 109.42 6066.79 5088.54 4692.9 623.36 204.83
I206 360 27 158.08 37 27 0.08 – – 110 87 99.6 11597.87 7804.1 7757.95 567.82 22.34
I207 450 38 308.22 44 38 0.06 – – 132 108 8.36 14655.69 10759.43 10737.7 595.05 16.83

I208

0.5

0.2

240 28 4624.11 33 28 0.06 – – 63 56 0.02 2842.4 1873.52 1854.5 562.34 11.35
I209 360 39 5501.48 54 39 0.06 – – 99 78 1.11 7403.16 3515.72 3491.9 488.85 16.82
I210 450 51 3040.16 64 51 0.06 – – 122 104 0.01 11243.78 6391.8 6356 647.52 36.98

I211

0.5

240 32 4085.59 34 28 0.07 – – 66 58 2.06 4513.4 3364.06 3343.22 413.02 14.05
I212 360 46 3526.35 54 39 0.08 – – 97 79 2.34 9051.51 5514.49 5484.5 500.29 17.36
I213 450 56 6599.12 66 54 0.06 – – 122 103 2.41 12450.86 8839.17 8783.2 583.11 48.15

I214

0.8

240 34 5814.42 38 31.8 9.57 – – 73 65.5 102.94 6231.49 5168.15 4975.13 644.48 235.08
I215 360 50 4630.98 58 42 0.27 – – 102 82.6 164.3 10312.33 7227.24 7097.8 494.31 120.92
I216 450 57 1544.43 66 53 0.06 – – 124 102 10.72 13529.58 9948.68 9919.5 476.87 18.99

Average results (ILP) 26.33 1568.08 31.85 25.33 0.43 189 43.03 88.25 70.48 5.54 –
Average results (all) 26.33 1568.08 31.85 25.33 0.43 189 43.03 97.78 80.41 34.14 8855.25 5708.46 5643.84 581.13 45.27

Table 10
For (P1), percentage of optimal solutions found by ILP and average time needed to find its last solution, depending on
u and n.

Percentage of optimal solutions Average computing time in seconds

n = 50 n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

u = 0.1 100% 100% 100% 100% 0 0.02 0.12
u = 0.3 100% 100% 77.78% 88.89% 1.22 43.51 330.04
u = 0.5 100% 100% 22.22% 22.22% 29.12 1509.88 4374.07
218

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

i
r

Table 11
For TabuCol on (P3), evolution of σ and other robustness indicators depending on n.
n Average σ σ = 0 Average variation of H Biggest variation of H

50 14.52 7.41% 1.14% 3.54%
100 29.06 0% 1.11% 6.09%
150 39.77 0% 1.00% 6.03%
200 45.27 0% 0.86% 4.55%

Table 12
Aggregated results in function of the instance size n.

Size Problem (P1) Problem (P2) Problem (P3)

n ILP DSAT PartialCol ILP DSAT PartialCol ILP DSAT TabuCol

k∗ Time SOL OPT k∗ k∗ Time k Time SOL OPT k k Time H Time SOL OPT H H H (best) Time σ

15 2.56 0 27 27 2.59 2.56 0 7.74 0 27 27 8.15 7.74 0 505.6 1541 27 10 517.8 450.1 449.4 0.07 0.56
20 3.74 0 27 27 3.85 3.74 0 9.74 0 27 27 10.33 9.74 0 647.7 1946 27 5 666.4 558.4 554.7 0.47 3.53
25 4.11 0 27 27 4.26 4.11 0 11.74 0 27 27 12.3 11.74 0 806.5 3778 27 1 813.6 686 683.1 8.77 3.33
30 5 0 27 27 5.15 5 0 14.22 0 27 27 14.93 14.22 0 963.5 3824 26 0 1020 868.8 865.5 23.61 3.77
50 7.15 0 27 27 7.89 7.15 0 21.07 38.3 27 25 22.93 21.07 0 1545 6506 3 0 1591 1261 1244 139.1 14.52
100 13.33 10.11 27 27 14.37 13.33 1.02 45.69 4253 26 1 43.74 41.28 17.05 – – 0 0 3216 2691 2658 379.9 29.06
150 19.56 517.8 27 18 21 19.48 5.32 135.1 670.8 6 0 64.15 61.26 30.26 – – 0 0 4759 4196 4132 566.2 39.77
200 26.33 1568 27 19 31.85 25.33 0.43 189 43.03 4 0 97.78 80.41 34.14 – – 0 0 8855 5708 5644 581.1 45.27

Table 13
Sensitivity analyses with respect to the instance parameters u, d and p̄.

k∗ k H

DSAT ILP PartialCol DSAT ILP PartialCol DSAT ILP TabuCol

u = 0.1 4.46 6.54% 6.54% 28.23 −54.64% 9.04% 783.17 3.87% 17.10%
u = 0.3 11.64 10.98% 10.98% 18.36 4.93% 5.25% 782.65 5.00% 16.93%
u = 0.5 18.01 10.41% 12.66% 18.59 4.28% 5.72% 795.80 4.98% 13.85%

d = 0.2 10.22 10.19% 10.19% 19.93 −29.76% 2.98% 354.62 −7.56% 26.84%
d = 0.5 11.08 10.15% 12.02% 23.75 −40.69% 9.36% 700.87 2.09% 15.77%
d = 0.8 12.81 9.98% 11.53% 22.91 −1.01% 8.68% 1255.24 9.00% 13.26%

p̄ = 240 8.79 12.01% 13.19% 17.93 −41.68% 12.04% 648.38 16.64% 25.16%
p̄ = 360 11.75 11.47% 13.32% 22.32 −20.60% 7.36% 751.14 1.46% 15.10%
p̄ = 450 13.57 7.68% 8.29% 26.49 −14.83% 3.71% 979.12 −1.76% 9.81%

• Performance of ILP. The gaps of ILP are higher with u ∈ {0.3, 0.5} than with u = 0.1. For (P1), the smaller gap of 6.54%
(when compared to 10.98% and 10.41%) can be explained by the good performance of DSAT for the involved small,
unconstrained problems. In contrast, ILP has a very low, negative gap (of more than 50%) for (P2) with u = 0.1. This
can be explained by the fact that a smaller value of u results in a larger combinatorial complexity for solving (P2),
as more non-urgent jobs have to be scheduled while satisfying the constraint of not augmenting a smaller number
of urgent clusters. Moreover, from n ≥ 150, the bad performance on (P2) with small values of u, along with the
inability to find feasible solutions for higher values of u, highlights again the limitations of ILP with respect to the
instance-size augmentation.

• Performance of PartialCol/TabuCol. First, such methods have always positive gaps (i.e., they are always able to improve
the DSAT results). Moreover, such gaps are always higher than the ILP gaps (which shows again the superiority of
such metaheuristics over ILP). For (P1) (resp. (P2)), the gaps of PartialCol augment (resp. somewhat decrease) with
the augmentation of u. In other words, PartialCol reacts better than DSAT when augmenting the instance size for (P1)
(i.e., when increasing u) and when decreasing the size of the partial solution given for (P2) (i.e., when decreasing u).
Regarding (P3), we can observe that the performance of TabuCol decreases with the augmentation of u. This might
be explained by the fact that more feasible moves can be tested by TabuCol with smaller values of u. Indeed, the
solution space is less constrained when fewer jobs are restricted to the urgent clusters only. Furthermore, it is on
average 19.75% faster to evaluate a solution with u = 0.1 than with u = 0.5 (i.e., TabuCol can explore more solutions
with smaller values of u).

The following observations can be made according to the increase of d, which corresponds to augmenting the
ncompatibility percentage among jobs, which also corresponds to augmenting the number of constraints and thus
educing the size of the solution space.

• Performance of ILP. For (P1), ILP can roughly improve the results of DSAT by 10%, independently from the variation
of d. Regarding (P2), we can again observe that ILP obtains poor results when the combinatorial complexity is larger
(i.e., with d ∈ {0.2, 0.5}). The worst results are however obtained with d = 0.5 and not with d = 0.2. This is in
line with the findings of the graph-coloring literature [38], in which the experiments have shown that among the
random graphs, the ones with a density of d = 0.5 are the hardest to color. Regarding (P3), and as expected, ILP
performs better with higher values of d. Indeed, positive gaps are obtained when d ∈ {0.5, 0.8}.
219

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
• Performance of PartialCol/TabuCol. For both (P1) and (P2), the improvements brought by PartialCol are the highest
for the hardest configuration (i.e., for d = 0.5). The lowest gap (but still positive) is obtained for d = 0.2. This can
be explained again by the fact that DSAT performs better when the problem is less constrained. Regarding (P3), a
trend similar to the one observed with u can be made: when d is lower and more feasible moves can be tested, the
improvements brought by TabuCol are higher. Also, evaluating a solution is 27.30% faster with d = 0.2 than with
d = 0.8.

The following observations can be made according to the increase of p̄, which corresponds to a reduction of the
solution-space size. Indeed, if a job j has a higher processing time pj, it can be combined with fewer jobs in the same
cluster because of the capacity constraint (i.e., we cannot exceed 8 h per cluster). In other words, the combinatorial
complexity decreases with the increase of p̄.

• Performance of ILP. For (P1) and (P3), the gap of ILP decreases with the augmentation of p̄. This shows again that DSAT
is more efficient when the combinatorial complexity is small (i.e., when the number of job combinations is smaller).
The reverse trend holds however for (P2). This might be explained by the lexicographic nature of the problem (i.e., the
better a method is for a higher-level objective, the worse it is likely to be for a lower-level, conflicting objective).

• Performance of PartialCol/TabuCol. For each objective, PartialCol/TabuCol show higher improvements when the
combinatorial complexity is larger (i.e., with smaller values of p̄). As before for (P3), more feasible solutions can
be tested with smaller values of p̄. Evaluating a solution is 77.10% faster with p̄ = 240 than with p̄ = 450.

When comparing further DSAT with PartialCol/TabuCol, it is interesting to note that, considering all the instances (and
not only the ILP-solved ones), the TabuCol positive gaps augment by roughly 7 points of percentage, on average. For
example, the gap associated with u = 0.1 (resp. 0.3 and 0.5) is 17.10% (resp. 16.93% and 13.85%) when considering the
ILP-solved instances, and it moves to 25.70% (resp. 22.63% and 21.80%) when considering all the instances. In other words,
when considering the most difficult instances, the performance gap between TabuCol and DSAT increases significantly in
favor of TabuCol. This positive trend is also observed for (P2) when comparing PartialCol and DSAT, where the PartialCol
gaps augment roughly by 3%, on average. Unsurprisingly, the PartialCol gaps do not augment when considering (P1), as
ILP finds a feasible solution for all the instances and thus the instance set does not differ.

These results lead to the following managerial insights.

• Local-search metaheuristics, such as PartialCol and TabuCol, are definitely recommended for instances with more
than 30 jobs. This is in line with the job-scheduling literature.

• If computing time is an issue (typically, if the decision maker would like a solution within a few seconds because
of an unexpected situation that has to be tackled immediately), DSAT could be employed for quickly generating
sufficiently good solutions. Indeed, for each objective, its performance is roughly 15% away from the best-proposed
metaheuristics.

• If the decision maker hesitates to determine whether a job j is urgent or not, s/he should consider j as urgent. Indeed,
more efficient solutions are obtained for problem (P1) if the percentage u of urgent jobs is larger (i.e., PartialCol
performs better for larger values of u).

• In this study, two jobs j and j′ are incompatible if the setup between them is larger than smin
= 5 min. In such a

case, vertices j and j′ are connected with an edge in the associated incompatibility graph. If the production planner
decides to increase smin from 5 to 15 min, fewer pairs of jobs will be connected in the incompatibility graph (as the
pairs of jobs for which the setup time is 5 or 15 min will not be connected). In other words, the density d of the
graph will decrease, which has a positive impact on the performance of TabuCol for (P3). The decision maker would
thus prefer setting smin

= 15 min if the number of (urgent) clusters does not increase when compared to the case
with smin

= 5 min, as the returned solutions are likely to be better regarding (P3).
• Grouping together jobs having small setup times among them might be appealing to reduce the complexity of the

problem (and the size of the incompatibility graph), as fewer jobs would have to be scheduled. For instance, one
could merge jobs j1, j2 and j3 into a single job j, which means that in practice, processing j corresponds to sequentially
processing j1, j2 and j3 (or the best permutation of these three jobs according to the overall setup time). However,
performing such a preprocessing optimization step increases the value of p̄ (i.e., the largest processing time of a job),
which is likely to decrease the potential benefits of the proposed metaheuristics.

7. Conclusion

In this paper, we have studied a complex clustering and scheduling problem proposed by DIXI polytool, a micro-
machining company based in Switzerland. Here, a cluster is an unsequenced group of jobs which must be processed
one after the other before starting to produce the jobs of another cluster. Each cluster is subject to a capacity constraint
(here, 8 h) and two incompatible jobs (with respect to setup times) cannot share the same cluster. To meet the company’s
goals, three objectives are considered in a lexicographic order. The two first objectives minimize the number of clusters
(the first objective f1 considers the subset of urgent jobs and the second objective f2 considers all the jobs), whereas the
third objective f minimizes the worst-case scenario with respect to the setup times among clusters. Two well-known
3

220

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222

t
P
o
s
o
r

p
(
o

D

A

l
w
t

R

models are used to capture the different features of the problem: the graph coloring problem and the traveling salesman
problem. We decomposed the problem into three subproblems (one per objective). The proposed metaheuristic relies on
two tabu-search algorithms, namely PartialCol (for f1 and f2) and TabuCol (for f3). Note that a quick exact method for the
traveling salesman problem is employed to compute the f3-value of a solution.

We have considered realistic instances, generated with the help of the company to capture the different real situations
hey have to face in practice. A computing-time limit of 30 min is imposed to meet the requirements of the decision maker.
artialCol and TabuCol are favorably compared to an ILP model (solved using CPLEX) for which a time limit of 2 h per
bjective is allowed, and to a constructive heuristic (DSAT) that aims to reproduce how a decision maker could efficiently
olve the problem in practice. The experiments show that our metaheuristic is efficient according to quality (i.e., value
f the obtained solutions), speed (i.e., time to generate such solutions), and robustness indicators (e.g., deviation of the
esults if various runs are performed).

A possible extension of this work could be to increase the instance size such that the evaluation of f3 cannot be
erformed with an exact method anymore. In this case, f3 would have to be evaluated with a quick and efficient
meta)heuristic. Another avenue of research could be to consider a non-deterministic version of the problem, which would
pen the door to simulation.

ata availability

Data will be made available on request.

cknowledgments

This study was funded in part by the company DIXI polytool, Switzerland (www.dixipolytool.ch). The authors would
ike to thank Marc Schuler, Simon Bournez and Benoit Van Schoors for their availability and advices. The computations
ere performed at the University of Geneva on the Baobab HPC cluster. Thanks are due to two anonymous reviewers for
heir constructive and valuable comments.

eferences

[1] J. Aghaei, N. Amjady, H.A. Shayanfar, Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and
augmented epsilon constraint method, Appl. Soft Comput. 11 (4) (2011) 3846–3858.

[2] H. Aissi, C. Bazgan, D. Vanderpooten, Min–max and min–max regret versions of combinatorial optimization problems: A survey, European J.
Oper. Res. 197 (2) (2009) 427–438.

[3] C. Archetti, L. Bertazzi, M. Grazia Speranza, Reoptimizing the traveling salesman problem, Networks 42 (3) (2003) 154–159.
[4] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton University Press, 2009.
[5] L.-P. Bigras, M. Gamache, G. Savard, The time-dependent traveling salesman problem and single machine scheduling problems with sequence

dependent setup times, Discrete Optim. 5 (4) (2008) 685–699.
[6] Ü. Bilge, F. Kıraç, M. Kurtulan, P. Pekgün, A tabu search algorithm for parallel machine total tardiness problem, Comput. Oper. Res. 31 (3)

(2004) 397–414.
[7] A. Billionnet, S. Elloumi, A. Lambert, Linear reformulations of integer quadratic programs, in: Communications in Computer and Information

Science, Springer Berlin Heidelberg, 2008, pp. 43–51.
[8] D.C. Bissoli, N. Zufferey, A.R.S. Amaral, Lexicographic optimization-based clustering search metaheuristic for the multiobjective flexible job shop

scheduling problem, Int. Trans. Oper. Res. 28 (5) (2021) 2733–2758.
[9] I. Blöchliger, N. Zufferey, A graph coloring heuristic using partial solutions and a reactive tabu scheme, Comput. Oper. Res. 35 (3) (2008)

960–975.
[10] R. Bollapragada, F. Della Croce, M. Ghirardi, Discrete-time, economic lot scheduling problem on multiple, non-identical production lines,

European J. Oper. Res. 215 (1) (2011) 89–96.
[11] H. Bouchriha, M. Ouhimmou, S. D’Amours, Lot sizing problem on a paper machine under a cyclic production approach, Int. J. Prod. Econ. 105

(2) (2007) 318–328.
[12] W. Bożejko, A. Gnatowski, J. Pempera, M. Wodecki, Parallel tabu search for the cyclic job shop scheduling problem, Comput. Ind. Eng. 113

(2017) 512–524.
[13] D. Brélaz, New methods to color the vertices of a graph, Commun. ACM 22 (4) (1979) 251–256.
[14] A. Chassein, M. Goerigk, On the recoverable robust traveling salesman problem, Optim. Lett. 10 (7) (2015) 1479–1492.
[15] R.L. Daniels, P. Kouvelis, Robust scheduling to hedge against processing time uncertainty in single-stage production, Manage. Sci. 41 (2) (1995)

363–376.
[16] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a large-scale traveling-salesman problem, J. Oper. Res. Soc. Am. 2 (4) (1954) 393–410.
[17] I. Dunning, J. Huchette, M. Lubin, JuMP: A modeling language for mathematical optimization, SIAM Rev. 59 (2) (2017) 295–320.
[18] A. Elmi, S. Topaloglu, Multi-degree cyclic flow shop robotic cell scheduling problem: Ant colony optimization, Comput. Oper. Res. 73 (2016)

67–83.
[19] L. Epstein, M.M. Halldórsson, A. Levin, H. Shachnai, Weighted sum coloring in batch scheduling of conflicting jobs, Algorithmica 55 (4) (2007)

643–665.
[20] A. Fleischhacker, A. Ninh, Y. Zhao, Positioning inventory in clinical trial supply chains, Prod. Oper. Manage. 24 (6) (2014) 991–1011.
[21] C. Fu, N. Zhu, S. Ma, R. Liu, A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing

systems, Eur. J. Oper. Res. 298 (2022) 915–938.
[22] O. Gallay, N. Zufferey, Metaheuristics for lexicographic optimization in industry, in: Proceedings of the 19th EU/ME Workshop on Metaheuristics

for Industry, 2018.
[23] K. Giaro, M. Kubale, P. Obszarski, A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability

constraints, Discrete Appl. Math. 157 (17) (2009) 3625–3630.

[24] F. Glover, M. Laguna, Tabu search, in: Handbook of Combinatorial Optimization, Springer US, 1998, pp. 2093–2229.

221

http://www.dixipolytool.ch
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb1
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb1
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb1
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb2
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb2
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb2
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb3
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb4
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb5
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb5
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb5
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb6
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb6
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb6
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb7
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb7
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb7
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb8
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb8
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb8
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb9
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb9
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb9
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb10
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb10
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb10
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb11
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb11
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb11
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb12
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb12
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb12
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb13
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb14
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb15
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb15
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb15
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb16
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb17
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb18
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb18
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb18
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb19
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb19
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb19
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb20
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb21
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb21
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb21
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb22
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb22
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb22
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb23
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb23
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb23
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb24

J. Cailloux, N. Zufferey and O. Gallay Discrete Applied Mathematics 355 (2024) 200–222
[25] M. Goerigk, J. Kurtz, M. Poss, Min-max-min robustness for combinatorial problems with discrete budgeted uncertainty, Discrete Appl. Math.
285 (2020) 707–725.

[26] A. Grigoriev, V.J. Kreuzen, T. Oosterwijk, Cyclic lot-sizing problems with sequencing costs, J. Sched. 24 (2) (2020) 123–135.
[27] S. Henn, V. Schmid, Metaheuristics for order batching and sequencing in manual order picking systems, Comput. Ind. Eng. 66 (2) (2013)

338–351.
[28] A. Hertz, D. de Werra, Using tabu search techniques for graph coloring, Computing 39 (4) (1987) 345–351.
[29] A. Jalilvand-Nejad, P. Fattahi, A mathematical model and genetic algorithm to cyclic flexible job shop scheduling problem, J. Intell. Manuf. 26

(6) (2013) 1085–1098.
[30] S. Khosravani, M. Jalali, A. Khajepour, A. Kasaiezadeh, S.-K. Chen, B. Litkouhi, Application of lexicographic optimization method to integrated

vehicle control systems, IEEE Trans. Ind. Electron. 65 (12) (2018) 9677–9686.
[31] P. Kouvelis, R.L. Daniels, G. Vairaktarakis, Robust scheduling of a two-machine flow shop with uncertain processing times, IIE Trans. 32 (5)

(2000) 421–432.
[32] H. Krim, N. Zufferey, J.-Y. Potvin, R. Benmansour, D. Duvivier, Tabu search for a parallel-machine scheduling problem with periodic maintenance,

job rejection and weighted sum of completion times, J. Sched. 25 (2022) 89–105.
[33] W. Kubiak, Solution of the Liu–Layland problem via bottleneck just-in-time sequencing, J. Sched. 8 (4) (2005) 295–302.
[34] M.E. Kurz, R.G. Askin, Scheduling flexible flow lines with sequence-dependent setup times, European J. Oper. Res. 159 (1) (2004) 66–82.
[35] G. Laporte, A concise guide to the traveling salesman problem, J. Oper. Res. Soc. 61 (1) (2010) 35–40.
[36] C.-J. Liao, H.-C. Juan, An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups, Comput. Oper. Res.

34 (7) (2007) 1899–1909.
[37] T. Loukil, J. Teghem, D. Tuyttens, Solving multiobjective production scheduling problems using metaheuristics, Eur. J. Oper. Res. 161 (2005)

42–61.
[38] E. Malaguti, P. Toth, A survey on vertex coloring problems, Int. Trans. Oper. Res. 17 (1) (2010) 1–34.
[39] B. Menéndez, M. Bustillo, E.G. Pardo, A. Duarte, General variable neighborhood search for the order batching and sequencing problem, European

J. Oper. Res. 263 (1) (2017) 82–93.
[40] U. Pferschy, R. Staněk, Generating subtour elimination constraints for the TSP from pure integer solutions, CEJOR Cent. Eur. J. Oper. Res. 25 (1)

(2016) 231–260.
[41] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems (Fifth Edition), Springer International Publishing, 2016.
[42] C.N. Potts, M.Y. Kovalyov, Scheduling with batching: A review, European J. Oper. Res. 120 (2) (2000) 228–249.
[43] J. Respen, N. Zufferey, E. Amaldi, Metaheuristics for a job scheduling problem with smoothing costs relevant for the car industry, Networks 67

(3) (2016) 246–261.
[44] J. Respen, N. Zufferey, P. Wieser, Three-level inventory deployment for a luxury watch company facing various perturbations, J. Oper. Res. Soc.

68 (10) (2017) 1195–1210.
[45] T. Sawik, A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing, European J. Oper. Res.

180 (3) (2007) 1060–1075.
[46] C. Solnon, V.D. Cung, A. Nguyen, C. Artigues, The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of

the ROADEF’2005 challenge problem, European J. Oper. Res. 191 (3) (2008) 912–927.
[47] S. Thevenin, N. Zufferey, J.-Y. Potvin, Makespan minimisation for a parallel machine scheduling problem with preemption and job incompatibility,

Int. J. Prod. Res. 55 (6) (2016) 1588–1606.
[48] S. Thevenin, N. Zufferey, J.-Y. Potvin, Graph multi-coloring for a job scheduling application, Discrete Appl. Math. 234 (2018) 218–235.
[49] N. Trautmann, C. Schwindt, A cyclic approach to large-scale short-term planning in chemical batch production, J. Sched. 12 (6) (2009) 595–606.
[50] M.-S. Vié, N. Zufferey, R. Leus, Aircraft landing planning under uncertainties, J. Sched. 25 (2022) 203–228.
[51] S. Wilson, N. Ali, Product wheels to achieve mix flexibility in process industries, J. Manuf. Technol. Manag. 25 (3) (2014) 371–392.
[52] F. Yang, N. Wu, Y. Qiao, R. Su, Polynomial approach to optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri nets,

IEEE/CAA J. Autom. Sin. 5 (1) (2018) 270–280.
[53] C. Yugma, S. Dauzère-Pérès, C. Artigues, A. Derreumaux, O. Sibille, A batching and scheduling algorithm for the diffusion area in semiconductor

manufacturing, Int. J. Prod. Res. 50 (8) (2012) 2118–2132.
222

http://refhub.elsevier.com/S0166-218X(24)00163-X/sb25
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb25
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb25
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb26
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb27
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb27
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb27
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb28
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb29
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb29
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb29
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb30
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb30
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb30
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb31
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb31
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb31
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb32
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb32
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb32
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb33
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb34
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb35
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb36
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb36
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb36
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb37
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb37
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb37
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb38
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb39
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb39
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb39
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb40
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb40
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb40
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb41
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb42
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb43
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb43
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb43
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb44
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb44
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb44
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb45
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb45
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb45
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb46
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb46
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb46
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb47
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb47
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb47
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb48
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb49
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb50
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb51
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb52
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb52
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb52
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb53
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb53
http://refhub.elsevier.com/S0166-218X(24)00163-X/sb53

	Graph coloring approaches for a production planning problem with makespan and setup penalties in a product-wheel context
	Introduction
	Literature review
	Presentation of problem (P)
	Informal description of (P)
	Formal description of (P) and connections with the GCP and the TSP

	Mathematical model
	Nonlinear model
	Linearized model
	Preprocessing and model improvements
	Determination of the maximum number of pairwise incompatible jobs
	Computation of k* and k
	Reduction of the number of constraints in (Qii')

	Solution methods
	Constructive heuristics: DSATUR for (P1) and DSAT for (P)
	PartialCol for solving (P1) and (P2)
	TabuCol for solving (P3)

	Experiments and managerial insights
	Instance generation
	Results for the small instances (n ≤30)
	Results for the large instances (n ≥50)
	Aggregated results, sensitivity analyses, and managerial insights

	Conclusion
	Data availability
	Acknowledgments
	References

