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Abstract

The research is focused on exploring critical elements of the nature of flow and transport

processes across porous geomaterials and their interactions/feedbacks with the host solid

matrix. Natural rocks form the porous medium across which flow of water (and other fluids)

and transport of chemicals dissolved therein take place across the Earth subsurface. In this

broad context, dissolution is a key process driving mineral transformations taking place in

the upper crust of the Earth. Such process contributes to drive formation of preferential

pathways across the subsurface. Carbonate rocks are of particular interest. This is due to

their abundance in the subsurface and to their high reactivity. They drive weathering of the

surface of the Earth, interact with spreading of pollutants in groundwater aquifers, and favor

carbon capture through mineralization. Key research questions tackled in this PhD disser-

tation are related to (a) enhancing our ability to directly observe precipitation/dissolution

reaction rates through original nano-/microscale imaging experiments and (b) providing

an interpretation of the observed rates through rigorous stochastic approaches capable of

quantifying uncertainty. These are tackled with a unique blend of experimental and the-

oretical/modeling advancements. As such, methods are based on fundamental theoretical

developments (with analytical and numerical approaches) and experiments. Theoretical

approaches are of a stochastic nature, given the ubiquitous uncertainty about the mech-

anisms driving the dynamics of the alteration of the surface of minerals in contact with

fluids. Original experiments are performed directly at the micro- and nanoscale to observe

through imaging fundamental physics of the interaction between fluids and mineral surface.

The dissertation is structured along the five Chapters briefly described in the following.

Chapter 1 provides an introduction to the work, including an overall description of the

hydrogeochemical settings analyzed. Chapter 2 provides an overview of the experimental

setting considered and designed during the PhD path. The experimental protocols designed

to acquire Atomic Force Microscopy (AFM) images mimicking natural settings typical of cal-

cite dissolution processes taking place in various engineering/environmental scenarios are

illustrated. A variety of experimental setups and protocols are designed to resemble condi-
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tions associated with (i) diffusion-dominated and (ii) surface-controlled reactions that are

typical of stagnant and flowing regions in porous geomaterials. Such protocols are docu-

mented to enable one to obtain experimental data that can be promptly employed for the

evaluation of space-time distributions of surface topography of the mineral in contact with

the fluid. These are in turn employed to evaluate the ensuing space-time distributions of

reaction rates. The latter are then subject to an original stochastic characterization. In this

sense, Chapter 3 includes all of the details of the theoretical stochastic framework employed

for the analysis and interpretation of the experimental evidences. The approach and ensuing

formulations embed the joint assessment of the probability distribution of a target variable

and its associated spatial increments, taken between locations separated by any given dis-

tance (or lag). The random field associated with reaction rates is interpreted through a

generally non-Gaussian bimodal mixture model. The modes of the latter correspond to

an indicator random field which is in turn related to the occurrence of different processes

within the domain of observation. The model is seen to embed within a unique theoretical

framework the main traits arising in the stochastic analysis of the system. Chapter 4

is devoted to the presentation of the detailed results of the experimental and theoretical

investigations, while conclusions and future perspectives are offered in Chapter 5.
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Sommario

Questa tesi di dottorato è incentrata sullo studio di processi reattivi che avvengono all’in-

terfaccia solido-liquido in mezzi porosi. Tra i diversi tipi di processi, particolare rilievo

assumono quelli di precipitazione/dissoluzione. Questi sono infatti alla base dei fenomeni

di erosione e alterazione chimica dei mezzi porosi naturali e determinano la formazione di

percorsi preferenziali nel sottosuolo. Nel contesto dei geomateriali naturali, le roccie carbo-

natiche sono considerate di particolare interesse, in quanto costituenti principali della crosta

superficiale terrestre. Esse sono caratterizzate da un’elevata reattività che ne favorisce l’in-

terazione con numerosi inquinanti presenti nelle falde acquifere e sono considerate uno dei

geomateriali ottimali per il sequestro di CO2.

Le domande di ricerca affrontate in questa tesi di dottorato riguardano (a) l’avanzamen-

to della capacità di osservare direttamente i tassi di reazione di precipitazione/dissoluzione

mediante esperimenti originali alla nano-/microscala e (b) lo sviluppo di rigorose formu-

lazioni matematiche finalizzate ad interpretare i tassi misurati in un contesto stocastico

in grado di quantificarne l’incertezza associata. Questi due aspetti sono affrontati combi-

nando metodi sperimentali innovativi e avanzamenti teorici/modellistici. Gli esperimenti

sono effettuati mediante Microscopia a Forza Atomica (AFM). Questa tecnologia ad eleva-

ta risoluzione consente di osservare direttamente i processi meccanicistici che governano la

cinetica di reazione. La modellazione dei risultati è basata su un approccio stocastico ispi-

rato a formulazioni tipiche dell’ambito geostatistico. La tesi è articolata in cinque capitoli

brevemente descritti nel seguito.

Il Capitolo 1 costituisce l’introduzione al lavoro di tesi. Si descrivono le condizioni

idro-geochimiche considerate e lo stato dell’arte. Il Capitolo 2 offre una panoramica dei

protocolli sperimentali sviluppati durante il percorso di dottorato. Questi ultimi consentono

di riprodurre condizioni tipiche dei processi di dissoluzione in mezzi porosi ingegnerizzati

e/o naturali. In particolare, si illustrano i principali aspetti dei setup sviluppati per simulare

condizioni tipiche di regioni (i) stagnanti e (ii) caratterizzate da velocità non trascurabili.

All’interno delle prime, i processi reattivi sono dominati dalla diffusione, delle seconde dalla
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reattività della superficie. I setup sperimentali sviluppati permettono di acquisire mappe

spaziali della topografia superficiale di un minerale sottoposto a reazione a diretto contatto

con un fluido a diversi istanti temporali. Tali dati sono a loro volta utilizzati per ottenere

campi spaziali di tassi di reazione, caratterizzati secondo un approccio stocastico. Il Ca-

pitolo 3 illustra i dettagli delle formulazioni matematiche impiegate per l’interpretazione

delle osservazioni sperimentali. L’approccio seguito considera in un’unica formulazione teo-

rica la distribuzione di probabilità di una variabile di interesse e degli incrementi spaziali ad

essa associati, valutati tra punti separati da una data distanza spaziale (o lag). Le mappe

di tassi di reazione sperimentali sono considerate come funzioni random e sono interpretate

mediante una miscela bimodale di campi non Gaussiani. Le diverse regioni spaziali che

determinano la presenza di diversi modi nella densità di probabilità campionaria sono iden-

tificate mediante una variabile indicatore random. Quest’ultima è legata all’occorrenza di

diversi processi meccanicistici all’interno della stessa finestra di osservazione. In tal senso,

i modelli matematici sviluppati incorporano in un’unica formulazione teorica la presenza

dei diversi fenomeni che contribuiscono alla reazione di dissoluzione. Nel Capitolo 4 si

discutono i risultati sperimentali e la loro interpretazione mediante un approccio stocastico.

Il Capitolo 5 presenta le principali conclusioni del lavoro di tesi e le prospettive future.
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Résumé

La recherche présentée dans cette thèse se concentre sur l’exploration de la nature des

processus de flux et de transport à travers les géomatériaux poreux et de leurs interac-

tions/rétroactions avec la matrice solide. Les roches naturelles sont le milieu poreux à tra-

vers lequel les flux d’eau (et d’autres fluides) et le transport de solutés s’effectuent à travers

le sous-sol terrestre. Dans ce contexte, la dissolution est un processus clé qui entrâıne les

transformations minérales qui ont lieu dans la croûte supérieure de la Terre. Ce processus

contribue à la formation de voies préférentielles à travers le sous-sol. Les roches carbonatées

sont d’un intérêt particulier. Cela est dû à leur abondance dans le sous-sol et à leur haute

réactivité. Elles entrâınent l’altération de la surface de la Terre, interagissent avec la propa-

gation des polluants dans les aquifères souterrains, et favorisent la capture du carbone par

processus comme la minéralisation. Les principales questions de recherche abordées dans

cette thèse de doctorat sont liées à (a) l’amélioration de notre capacité à observer direc-

tement les taux de réaction de précipitation/dissolution grâce à des nouvelles expériences

d’imagerie à l’échelle nano/micro et (b) la fourniture d’une interprétation des taux observés

grâce à des approches stochastiques rigoureuses capables de quantifier l’incertitude. Ces

questions sont abordées avec un mélange unique de théoriques/modélisation et d’expériences

de laboratoire. En tant que tel, les méthodes sont basées sur des développements théoriques

fondamentaux (avec des approches soit analytiques que numériques) et des manipula-

tions. Les approches théoriques sont de nature stochastique, étant donné l’incertitude om-

niprésente sur les mécanismes qui entrâınent la dynamique de l’altération de la surface

des minéraux en contact avec les fluides. Des expériences originales sont effectuées direc-

tement à l’échelle micro et nano pour observer par imagerie la physique fondamentale de

l’interaction entre les fluides et la surface minérale. La thèse est structurée le long des

cinq chapitres brièvement décrits dans ce qui suit. Le Chapitre 1 fournit une introduc-

tion au travail, y compris une description générale des paramètres hydro-géo-chimiques

analysés. Le Chapitre 2 donne un aperçu du cadre expérimental considéré et conçu pen-

dant le parcours de doctorat. Ils sont illustrés les protocoles expérimentaux, conçus pour
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acquérir des images de Microscopie à Force Atomique (AFM), imitant les paramètres na-

turels typiques des processus de dissolution de la calcite qui se produisant dans divers

scénarios d’ingénierie/environnementaux. Une variété de configurations et de protocoles

expérimentaux sont aussi conçus pour ressembler aux conditions associées à (i) des réactions

dominées par la diffusion et (ii) des réactions contrôlées par la surface qui sont typiques

des régions stagnantes ou d’écoulement dans les géo-matériaux poreux. Ces protocoles sont

documentés pour permettre d’obtenir des données expérimentales qui peuvent être rapide-

ment utilisées pour l’évaluation des distributions spatio-temporelles de la topographie de

surface du minéral en contact avec le fluide en mouvement. Celles-ci sont à leur tour uti-

lisées pour évaluer les distributions spatio-temporelles des taux de réaction qui s’ensuivent.

Ces derniers sont alors soumis à des caractérisations stochastiques originales. En ce sens, le

Chapitre 3 comprend tous les détails du cadre théorique stochastique utilisé pour l’analyse

et l’interprétation des manipulations expérimentales. L’approche, et les formulations qui en

dérivent, intègrent l’évaluation conjointe de la distribution de probabilité d’une variable

target et de ses incréments spatiaux associés, pris entre des emplacements séparés par une

distance (lag) donnée. Le champ aléatoire associé aux taux de réaction est interprété à

travers un modèle de mélange bimodal généralement non-Gaussien. Les modes de ce der-

nier correspondent à un champ aléatoire indicateur qui est à son tour lié à l’occurrence

de différents processus à l’intérieur du domaine d’observation. Le modèle intègre dans un

cadre théorique unique les principaux traits qui se dégagent de l’analyse stochastique du

système. Le Chapitre 4 est consacré à la présentation des résultats détaillés des investi-

gations expérimentales et théoriques, tandis que les conclusions et les perspectives futures

sont offertes dans le Chapitre 5.
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1 Introduction

This PhD dissertation is geared towards characterization and modeling of reactive phenom-

ena taking place across a porous medium. Accurate modeling of such reactive processes

is generally constrained by various sources of uncertainties. These arise from our lack of

knowledge of mechanistic components driving reaction kinetics that, in turn, induce spa-

tial (and temporal) variations of physical and/or chemical properties of the system. In

this context, dissolution and precipitation phenomena taking place at the interface between

minerals and fluids are key drivers of subsurface chemical weathering. They significantly

contribute to modifying surface roughness of rocks, thereby influencing surface reactivity

and/or leading to localized changes in flow paths (Fischer and Lüttge, 2017). These dy-

namic feedbacks contribute to shape the internal architecture of natural (and engineered)

porous materials. Thus, quantitative assessment of environmental and industrial scenarios

of pressing concern such as, e.g., long term stability of geogenic carbon sequestration (Fitts

and Peters, 2013; Noiriel and Daval, 2017; Daval, 2018) or nuclear waste disposal systems

(Arcos et al., 2008; Ewing, 2015), alteration of reservoir storage capacity (Mangane et al.,

2013; Lamy-Chappuis et al., 2014), mobilization and ensuing migration of contaminants in

aquifer systems (Dong et al., 2005; Harrison et al., 2017), geothermal energy exploitation

(Erol et al., 2019), enhanced (conventional and unconventional) management of subsurface

energy resources (Khather et al., 2020), morphology changes of fractures in deep reservoirs

(Noiriel et al., 2007) with possible consequences on the overlying geological formations, as

well as deterioration of concrete and/or marble structures (Kanellopoulou and Koutsoukos,

2003) eventually associated with cultural heritage settings, ultimately hinges on our ability

1
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to accurately assess dissolution/precipitation rates.

Bulk powder experiments are typically considered as a pillar for the estimation of dis-

solution rates (Lüttge et al., 2013a). These are inferred by monitoring changes in dissolved

solute concentrations. By relying upon this technique, significant efforts have been devoted

to evaluate reaction rates of a variety of minerals subject to diverse chemical conditions (see,

e.g., Hellmann and Tisserand, 2006, Nagy and Lasaga, 1992, White and Brantley, 2003, and

Arvidson et al., 2003). Rates estimated across such extensive experimental datasets exhibit

a wide range of values, even as they are associated with a single mineral species and exper-

iments are conducted upon relying on highly reproducible protocols (Arvidson et al., 2003;

Bollermann and Fischer, 2020). Such variability can be only partly tied to the long-standing

debate about the most appropriate type of surface measurement that should be employed

to normalize bulk rates to obtain proper units, i.e., mass per unit area per unit time (Fis-

cher et al., 2012; Arvidson et al., 2003). Drawbacks associated with this issue have been

recently circumvented through the use of advanced high-resolution imaging techniques such

as Atomic Force Microscopy (AFM), Vertical Scanning Interferometry (VSI), or Digital Holo-

graphic Microscopy (DHM). These enable one to measure directly the local growth/retreat

of the mineral surface with respect to a reference plane. The latter corresponds to a portion

of the surface where the reaction is inhibited by means of a non-reactive mask (see, e.g.,

Bouissonnié et al., 2018, Fischer and Lüttge, 2017, and Emmanuel, 2014). Deposition of

such inert layer on a mineral sample is typically performed after mechanical polishing of the

surface. This preliminary step is documented to impact dissolution rates by inducing the

formation of additional cracks and dislocations in the mineral structure (Lucca et al., 2006).

Measurements of average surface retreat with respect to the inert layer can be employed to

estimate a mean dissolution rate, ⟨R⟩ [mol ·m−2s−1], as

⟨R⟩ = 1

Vm

⟨∆h⟩
∆t

, (1.1)

where ∆h [m] is the surface retreat evaluated with respect to the reference (⟨·⟩ denoting

spatial averaging); ∆t [s] is the duration of the experiment; and Vm [m3 mol−1] is calcite

molar volume.
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However, relying on average quantities of the kind associated with Eq. 1.1 leads to a

complete loss of information about the often marked degree of heterogeneity of local surface

topography (and hence rate) values that is revealed by high-resolution imaging techniques.

The latter stems from local inhomogeneities and defects in the crystal lattice. These are

usually regarded as sources of intrinsic variability and lead to uneven distributions of surface

energy. Their impact on the dissolution process has been identified as the ultimate cause

of the wide range of average rate estimates under given experimental conditions (Lüttge

et al., 2013a).

The ensuing markedly heterogeneous distributions of rates that are then observed across

a mineral surface cast some doubts about the robustness of a conceptual picture relying

on a description of reaction kinetics based solely on average values. Since the density

and the distribution of defects in the mineral lattice display traits which are typical of

random processes, a shift of paradigm towards the reliance on a stochastic approach has been

encouraged by several authors to capture the spatial variability of dissolution rates (Fischer

et al., 2014, 2012; Lüttge et al., 2013a; Lüttge et al., 2019). Fischer et al. (2012) introduced

the concept of rate spectra, i.e., sample probability density functions (PDFs) associated with

spatially heterogeneous fields of reaction rate, R(x), as a tool to preserve the richness of

surface features contributing to the overall reactive process. In this context, Emmanuel

(2014) relies on AFM to evaluate rate spectra of a polished dolostone sample subject to

reaction at pH = 3.5 − 4.5 at temperature T = 29.5 ± 1◦C under continuous flow. All of

them exhibit similar statistical traits regardless of the pH and document long right tailing

of sample PDFs of R. Similar right-skewed behaviors of sample frequency distributions

are observed by Brand et al. (2017), who rely on DHM to measure the topography of a

polished calcite sample subject to dissolution with deionized water under continuous flow

in a flow through cell at T = 23 ± 1◦C. Additionally, multimodal traits of sample rate

spectra are documented by Fischer and Lüttge (2017) and Bibi et al. (2018), relying upon

VSI. Fischer and Lüttge (2017) induce dissolution of a polished polycrystalline calcite

marble at pH = 9.2 in a flow-through cell. Bibi et al. (2018) image a freshly cleaved calcite
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surface subject to reaction at far-from-equilibrium conditions under quasi-continuum flow at

pH = 8.82 and temperature T = 22◦C. Other typical traits observed for rate spectra include

(i) sharp peaks and heavy tails of the sample frequency distribution; (ii) a scaling tendency

of sample distributions of associated spatial increments, ∆R(s) = R(x) − R(x + s), their

shape depending on the separation distance (or lag), s, at which these are evaluated; (iii)

multimodal traits of sample PDFs of ∆R when multiple mechanistic processes contribute

to drive the reaction. Such distinctive features are not consistent with a description of the

statistical behavior of rates resting on a standard Gaussian model. Preliminary modeling

efforts aimed at capturing documented traits of sample rate spectra are grounded on a

Generalized Extreme Value (GEV) framework (Brand et al., 2017; Emmanuel, 2014). While

relying on the latter allows successfully capturing the tailing trend, it otherwise fails at

representing the typically observed multimodal behaviors.

Non-Gaussian traits of the above mentioned kinds are also documented for a wide va-

riety of other hydrogeological variables. These include, e.g., permeability (Painter, 1996;

Riva et al., 2013), porosity (Painter, 1996; Guadagnini et al., 2014, 2015), hydraulic con-

ductivity (Liu and Molz, 1997; Guadagnini et al., 2013; Meerschaert et al., 2004), electrical

resistivity (Yang et al., 2009), soil and sediment texture (Guadagnini et al., 2014), rainfall

(Kumar and Foufoula-Georgiou, 1993), and sediment transport rate (Ganti et al., 2009).

In this context, Riva et al. (2015a) and Guadagnini et al. (2018) suggest that the way the

PDF of spatial increments of a quantity of investigation scale with lag can be captured

through a Generalized sub-Gaussian (GSG) model. In contrast to other modeling frame-

works capable of reproducing the scale dependence of increments such as multifractals (e.g.,

Boffetta et al., 2008, Frisch, 2016, Lovejoy and Schertzer, 1995, and Veneziano et al., 2006),

fractional Laplace (e.g., Kozubowski et al., 2006, Kozubowski et al., 2013, and Meerschaert

et al., 2004) and sub-Gaussian (e.g., Samorodnitsky and Taqqu, 1994 and Guadagnini et al.,

2012) formulations, the GSG model enables one to represent under a unique conceptual pic-

ture the documented behavior (as described by probability distributions and/or moments)

of a random function and its increments. In this sense, joint analysis of the PDF of data and
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their increments within a unique theoretical framework that ensures consistency between

these two types of information yields improved characterization of the quantity under inves-

tigation. It is noted that the GSG framework includes the Gaussian model as a particular

case. Recent analyses by Siena et al. (2020) document the capability of the GSG model to

interpret the statistics of VSI-based measurements of calcite surface topography subject to

dissolution in close-to-equilibrium conditions. Under such chemical settings, dissolution of

calcite takes place solely by step retreat (see, e.g., Teng, 2004), i.e., the reaction is driven

by a single kinetic mechanism. Hence, a conceptual description relying upon a unimodal

distribution such as the one encompassed in the GSG formulation is fully capable to capture

the statistical traits of surface roughness induced by step retreat.

Otherwise, multimodal traits typically observed for rate spectra have been associated

with the occurrence of diverse mechanisms contributing to the retreat of the crystal surface

(Fischer et al., 2015; Fischer and Lüttge, 2017; Brand et al., 2017). In the hydrogeological

context, multimodal behaviors of variables such as, e.g., hydraulic conductivity have been

recognized to arise from a homogenization within a unique population of values that are

otherwise linked to regions characterized by differing geological attributes (Journel, 1983;

Desbarats, 1987; Rubin and Journel, 1991; Rubin, 1995). In this framework, a stochastic

approach based on a model encompassing a unique scale of heterogeneity might not be

adequate to represent such composite media within which various processes and/or geo-

materials coexist across a given spatial window of observation. A description of a spatial

random field as a statistically stationary system characterized through a multimodal model

entails considering (i) the random geometry of the various regions (or clusters) identified

across the system and (ii) the spatial distribution of the quantity of interest within each

of these regions (Winter et al., 2003). In this setting, Rubin and Journel (1991) view the

random function of interest as a sum of m = 1, ...,M Gaussian components, each weighted

by a (statistically homogeneous) random indicator function. These authors associate the

latter with the spatial distribution of the M zones/clusters across the domain. Each m− th

random field is described through its spatial structure and is typically assumed to be inde-
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pendent from the others and from the indicator function. Rubin (1995) considers a porous

system composed by M = 2 distinct modes and provides analytical formulations for the

first two statistical moments (i.e., mean and variance) and for the covariance of the vari-

able of investigation. Lu and Zhang (2002) further extend the above mentioned studies

to include in the theoretical formulation a relationship between the covariance structure of

the indicator and a characteristic length describing the spatial arrangement of the zones

associated with the various geomaterials/processes. Such a length scale is characterized

using a Markov chain model, as expressed by Carle and Fogg (1997). Recent applications of

these concepts are illustrated by, e.g., Dai et al. (2020), to assess the impact of the internal

architecture of a sedimentary porous medium on solute plume dispersion; Gournelos et al.

(2020), for the interpretation of the statistical behavior of monthly water discharge and

suspended sediment load; and Jia et al. (2022) for the simulation of synthetic long-term

time series of streamflow data.

Modeling statistical traits of the kinds mentioned above requires experimental protocols

that provide high quality and abundant data enabling an accurate assessment of extreme

values driving tailing behavior of sample rate spectra. Having at our disposal a rich dataset

is also critical when considering the process of deconvolution of the PDF for an accurate

characterization of the statistical traits of each of its components. Experimental protocols

should also be designed to replicate conditions that mimic those that are typical of rele-

vant natural scenarios. Achieving this can be exceedingly challenging due to limitations

of high-resolution imaging techniques. Atomic Force Microscopy (AFM) is characterized

by horizontal and vertical resolutions of the order of ∼ 0.1 nm and ∼ 1 nm, respectively.

It offers exceptional insights into the phenomena underlying a reaction and its dynamics.

Nevertheless, the vertical scanning range of the AFM scanner and the extent of the field of

view are generally restricted to a few microns (a typical range is, e.g., ±7µm and 100µm2

respectively, see, e.g., Eaton and West, 2010). Scanning artifacts can arise from abrupt

changes in surface properties and roughness (Marinello et al., 2010). This still constitutes

a challenge to obtaining high quality imaging of areas encompassing both inert and reac-
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tive layers. The presence of an inert mask is otherwise required to obtain absolute values

of spatial topographies of crystal surfaces and, ultimately, of local reaction rates. An ad-

ditional barrier still hampering the routine use of AFM for some environmentally relevant

scenario is that the technique is well-suited for in situ measurements in static liquid settings.

Otherwise, environmental scenarios sometimes entail reactive processes taking place at the

interface of a solid surface and a flowing fluid. When it comes to continuous flow conditions,

the quality of AFM measurements can deteriorate due to the interaction between the flow

field and the movement of the cantilever. Thus, imaging is often conducted under intermit-

tent flowing conditions by refreshing the solution in contact with the sample between each

scanning session (see, e.g., Guren et al., 2020; Renard et al., 2018, 2019). On the other

hand, VSI enables exploitation of wider fields and rougher surfaces with lower resolution

than AFM. VSI and AFM are thus generally considered to address different aspects asso-

ciated with reactive processes (Kurganskaya et al., 2012). The quantitative evaluation of

spatial distributions of dissolution rates is typically accomplished through VSI (Bibi et al.,

2018; Lüttge et al., 2019; Bouissonnié et al., 2018; Fischer and Lüttge, 2017), while AFM

observations are usually employed to assess surface morphology and monitor its changes, as

induced by variations in chemical conditions (see e.g., Ruiz-Agudo et al., 2009, Ruiz-Agudo

et al., 2011, and Dong et al., 2020). Nanoscale quantitative rate estimates are generally

limited to horizontal velocities of etch pit spreading/step retreat (see, e.g., Harstad and

Stipp, 2007, and Ruiz-Agudo and Putnis, 2012). The sole example documenting the use of

AFM to assess absolute reaction rates can be found in Emmanuel (2014).

This PhD dissertation integrates innovative experimental workflows and theoretical model-

ing developments keyed to (i) overcoming the above mentioned experimental barriers and

(ii) developing a general interpretive stochastic framework. Our experimental and mod-

eling workflows are tailored to evaluate and statistically characterize either dissolution or

precipitation rates driven by various competing and/or coexisting processes acting at the

nanoscale level upon fully embedding the possibility of recognizing such processes. As an
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illustrative example, we focus on spatial distributions of rates across the surface of a single

calcite crystal subject to dissolution. Calcite is selected as an exemplary mineral because

of its significance in environmental contexts as part of the carbon cycle (Bouissonnié et al.,

2018) and as a key potential sink for toxic compounds such as Arsenic (Renard et al., 2019),

Selenium (Heberling et al., 2014), Cadmium (Julia et al., 2023; Chada et al., 2005), Lead

(Chada et al., 2005), Antimony (Renard et al., 2018), and Chromium (Guren et al., 2020).

We induce the dissolution reaction at far-from-equilibrium conditions, i.e., the solution is

highly undersaturated with respect to calcium. Under such setting, the process is governed

by the nucleation of etch pits, which form in the presence of screw dislocations in the crystal

lattice or randomly on flat terraces (Teng, 2004). Lateral spreading of these features occurs

by radiation of steps that then travel across the surface (Lasaga and Lüttge, 2001, 2003).

Our investigations are grounded on the use of AFM. We design experimental approaches

conducive to the establishment of experimental conditions that are representative of rele-

vant environmental/engineering scenarios. These include (i) diffusion-dominated and (ii)

surface-controlled reactions that are typical of stagnant and flowing regions in porous mate-

rials, respectively. Assessment of the reliability of the designed experimental setups rests on

qualitative and quantitative analyses of an extensive collection of AFM images. We estab-

lish an experimental protocol to (i) fabricate and (ii) image through AFM mineral surfaces

that are partially covered by an inert mask. As opposed to typical procedures relying upon

deposition of an inert layer after mechanical surface polishing, the protocol developed in

this PhD thesis enables direct fabrication of the mask on pristine crystal surfaces.

We propose comprehensive stochastic modeling frameworks capable to fully capture

heterogeneous behaviors underpinning rate spectra and associated spatial increments. We

start from the well established formulation of the GSG model by Riva et al. (2015a). We

rely on the latter to characterize the statistical traits of a collection of dissolution rate fields

obtained from topographic images of a sample subject to dissolution under diffusion-limited

conditions. The GSG model fully succeeds to capture non-Gaussian heavy tailedness and

peak sharpness of sample rate spectra, together with the scaling tendency of associated
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spatial increments. In contrast, it fails to reproduce observed multimodal behaviors arising

from the homogenized description of the otherwise composite nature of dissolution rate

fields as driven by multiple kinetic processes.

With the aim of capturing multimodal traits/features, we extend the theoretical frame-

work underpinning a stochastic description of a composite random field through a station-

ary multimodal distribution. We start from the conceptualization of a bimodal Gaussian

Mixture (GMIX) proposed by Lu and Zhang (2002). We derive rigorous formulations as-

sociated with the PDF of spatial increments to embed the observed scaling tendencies of

such distributions within a unique analytical modeling approach. We then provide a gen-

eral procedure for the estimation of all parameters embedded in the GMIX model. The

GMIX model is employed to characterize the statistical behavior of rate spectra evaluated

from AFM topographies subject to dissolution under surface-controlled settings. We then go

beyond the limits imposed by relying on a Gaussian modeling framework and provide a the-

oretically sound generalization of the GMIX model to mixtures of Generalized sub-Gaussian

fields (gsg-mix). The latter modeling approach includes the GSG and the GMIX modeling

frameworks as particular cases. As such, it enables one to encapsulate non Gaussian traits

driving the level of heterogeneity of each component of the mixture (corresponding to each

process contributing to the reaction) within the homogenized description of the composite

random field.

This PhD dissertation is structured as follows. Chapter 2 provides an overview of

the designed experimental settings. Chapter 3 includes all of the details of the theoreti-

cal stochastic framework employed for the analysis and interpretation of the experimental

evidences. Chapter 4 is devoted to the presentation of the detailed results of the experi-

mental and theoretical investigations, while conclusions and future perspectives are offered

in Chapter 5.





2 Experimental methods

This chapter illustrates key elements of the experimental platforms developed in the con-

text of this PhD thesis. The design of the setups is keyed to (a) provide high quality and

abundant data and (b) mimic conditions that are representative of relevant environmen-

tal/engineering scenarios.

The former requirement is critical to obtain data that can be readily employed for eval-

uation and statistical characterization of associated reaction rate maps. Our experimental

investigation rests on AFM high resolution imaging of (non-polished) calcite samples cleaved

along the {104} cleavage plane (see Section 2.1). In collaboration with Dr. Monica Bollani1,

we design a protocol enabling direct fabrication of an inert mask on calcite surface. We

recall that this element is necessary to evaluate absolute material fluxes taking place across

the crystal surface. The reliability of point-by-point dissolution rate fields from AFM data

also depends on the alignment in the x-y plane of topographic maps acquired at subsequent

times. This could be hampered by lateral drifts of the AFM piezoelectric scanner. Even as

experimental strategies are designed to reduce the instrument drift, a residual misalignment

might affect experimental data. We rest upon an image registration procedure relying on

reference fiducial points to assess and possibly correct such image misalignment.

Fluid regulation systems are designed to reproduce (a) diffusion- and (b) surface-limited

dissolution processes that are typical of natural and/or engineered scenarios. In the former

case, imaging is performed under static conditions. In the latter case, fluid flow is regulated

1Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Laboratory for Nanostructure

Epitaxy and Spintronics on Silicon (LNESS), Via Anzani 42, 22100 Como, Italy

11
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through two different systems enabling one to subject the crystal sample to (i) intermittent

and (ii) continuous flow conditions. The reliability of the designed settings is assessed

upon analysis of an extensive collection of AFM topographic data. Quality requirements of

AFM images are evaluated on the basis of rigorous analyses of the distortions of a reference

calibration sample imaged under identical conditions.

The Chapter is structured as follows. Section 2.1 describes the main mechanisms driving

the evolution of the surface pattern of a calcite crystal subject to dissolution reaction.

Preliminary data processing and formulations leading to the evaluation of spatial maps of

dissolution rate are described in Section 2.2. Key elements of the experimental settings

and of the fluid regulation systems are illustrated in Section 2.3. The assessment of the

reliability of the latter is described in Section 2.4. Section 2.5 illustrates the inert mask

fabrication procedure. The workflow keyed to image registration in the horizontal plane of

AFM data acquired at subsequent times is described in Section 2.6.
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2.1 Calcite dissolution mechanisms

Calcite crystal surfaces may be composed of different crystallographic planes (Paquette and

Reeder, 1995). These are generally indicated through the so-called Miller indices, {hkl}

(see, e.g., De Graef and McHenry, 2012). Among calcite cleavage planes, the {104} surface

(sketched in Fig. 2.1.D) is usually considered as a reference due to its stability (Massaro

et al., 2008) and abundance in natural environments. Hence, the assessment of the overall

properties of calcite is typically grounded on studies targeting the {104} surface (Heberling

et al., 2014). The natural flatness of the {104} plane together with an optimal cleavage along

this crystallographic direction contribute to its particular suitability for AFM imaging. A

schematic depiction of calcite {104} crystal structure and of typical lattice defects is offered

in Fig. 2.1.A. On this face, stable step edges are oriented along [4̄41]+, [481̄]+, [4̄41]−, and

[481̄]− crystallographic directions. These are not orthogonal to the cleavage plane. Instead,

they are at either acute (78◦) or obtuse (102◦) angles (see Fig. 2.1.E) with it. Depending

on their orientation, these steps exhibit a distinct reactivity in terms of growth/dissolution

and incorporation of trace elements (Ruiz-Agudo et al., 2011), the highest reactivity being

typically documented for obtuse steps.

Dissolution of calcite {104} involves three main mechanisms, i.e., (i) retreat of existing

steps, (ii) defect-assisted dissolution, and (iii) spontaneous nucleation of etch pits (Teng,

2004; Ruiz-Agudo et al., 2011). The prevalence of one mechanism over the others is governed

by the distance from chemical equilibrium, which is in turn quantified through the saturation

state of the solution, Ω. The latter is defined as the ratio between the product of component

activities in solution, IAP = aCa2+ · aCO2−
3
, and at equilibrium, Ksp = aCa2+,eq · aCO2−

3 ,eq,

i.e., Ω = IAP/Ksp. By definition, Ω ∈ (0, 1) for dissolution reactions. Saturation then

approaches unity at equilibrium. The dependence of the dissolution pattern on Ω has been

extensively studied (e.g., Teng, 2004, Smith et al., 2013, and Bouissonnié et al., 2018).

Nucleation of etch pits is highly unfavored at close to equilibrium conditions (i.e., Ω > 0.8,

see Fig. 2.1.C) and step retreat is the main reaction driver. Otherwise, the formation of

etch pits is the dominant mechanism at far-from-equilibrium conditions (i.e., Ω < 0.1− 0.2,
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Figure 2.1: (A) Schematic representation of the {104} calcite rhombohedron with typical lattice

defects. Exemplary AFM (friction signal) images of the {104} surface subject to dissolution at (B)

far- and (C) close-to-equilibrium conditions, depicting mono- (mP) and multilayer (MP) etch pits

and step retreat dominated surface patterns, respectively. (E) Vertical profile taken along [481̄] and

[4̄41] directions of (stable) step edges on the {104} crystallographic plane illustrated in (D). (F)

Sketch of stepwave radiation from the center of a MP.

see Fig. 2.1.B). These surface structures are characterized by a perfectly rhombohedral

shape if Ω ∼ 0, whereas obtuse-obtuse edges become progressively round as saturation

deviates from zero (Harstad and Stipp, 2007). The formation of a multilayer etch pit

(MP) yields the removal of multiple layers of the crystal lattice, whereas the nucleation

of a monolayer etch pit (mP) only dissolves one layer. Nucleation of the former features

has been linked to screw dislocation and/or point defects in the crystal structure (e.g.,

Lüttge et al., 2019 and references therein). Defects of this kind induce a local excess of

strain energy in the mineral lattice. The latter, in turn, leads to the development of a

macroscopic feature, i.e., the MP. According to the stepwave model (Lasaga and Lüttge,

2001, 2003), the opening of an etch pit yields a local increase of the surface reactivity, as it
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leads to the formation of chains of steps or stepwaves that then travel across the surface of

the crystal. These are illustrated in Fig. 2.1.F. Recent experimental observations by Fischer

and Lüttge (2018) document that radiation of stepwaves follows a pulsating trend. This

behavior has been firstly attributed by these authors to cyclic fluctuations in saturation

levels at atomic steps. Recent investigations based on reactive transport and kinetic Monte

Carlo modeling by Schabernack and Fischer (2024) suggest that the pulsating nature of

dissolution reactions is driven by the inherent crystal reactivity at the atomistic level. If

the reaction takes place under extremely far-from-equilibrium conditions (i.e., Ω < 0.007),

spontaneous nucleation of shallow etch pits at random locations on crystal terraces is also

documented (see Fig. 2.1.B). As this mechanism is not defect-assisted, it may become

dominant on dislocation-free surfaces.

2.2 Evaluation of dissolution rates

Spatial maps of surface topography, z(x, t), acquired via AFM imaging at a given time t

can be expressed as the sum of an average value, ⟨z(t)⟩, and a local zero-mean fluctuation,

z′(x, t), i.e.,

z(x, t) = ⟨z(t)⟩+ z′(x, t). (2.1)

Hence, the spatial distribution of dissolution rates, R(x, t) [mol s−1 m−2], can be obtained

as

R(x, t) =
1

Vm

z(x, t)− z(x, t+∆t)

∆t

=
1

Vm∆t

{
[⟨z(t)⟩ − ⟨z(t+∆t)⟩] +

[
z′(x, t)− z′(x, t+∆t)

]}
= ⟨R(t)⟩+R′(x, t),

(2.2)

where Vm = 36.93 cm3 mol−1 is calcite molar volume and ∆t [s] is the time interval between

the acquisition of two topography images. The term ⟨R(t)⟩ represents an average dissolution

rate across the whole surface, whereas the fluctuation term, R′(x, t), is informative about

the spatial variability of the rates. AFM data often require a preliminary pre-processing

step to remove spurious contributions. The latter generally include (i) tilting and (ii) an
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artificial curvature of the surface (see Fig. 2.2.B). The former is ascribed to the glue layer

through which the crystal fragment is attached to the glass slide (see Section 2.3). The bow

distortion observed across the x − y plane arises from the swinging motion (schematically

illustrated in Fig. 2.2.A) of the AFM piezoelectric tube during scanning (Ricci and Braga,

2004).
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Figure 2.2: (A) Sketch of the swinging motion associated with the AFM piezoelectric tube during

scanning across the x− y plane. (B) Raw AFM data showing typical imaging artifacts, i.e., bowing

effect and tilt. (C) Exemplary raw AFM topographic data, zmeas(x, t), acquired across a 6× 6µm2

observation window. (E) Spatial map of fluctuation of topography about the mean, z′(x, t), obtained

after removal of the polynomial background (B(x) depicted in (D)) from zmeas.

The actual surface topography/elevation, z, can be derived from data, according to

z(x, t) = zmeas(x, t) − S(x, t), zmeas (Fig. 2.2.C) and S being the measured value and the

overall distortion, respectively. The overall distortion can be inferred by fitting the measured

data with a given polynomial function. If the entire surface of the sample is in contact with

the solution, the reaction takes place at all locations on the crystal. Hence, the ensuing
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trend, B(x, t) (Fig. 2.2.D), necessarily includes the average elevation, i.e., ⟨z(t)⟩. This, in

turn, implies that the detrended data, i.e.,

zmeas(x, t)−B(x, t) = zmeas(x, t)− S(x, t)− ⟨z(t)⟩, (2.3)

correspond to z′(x, t) (Fig. 2.2.E) and the information about ⟨z(t)⟩ is lost. Therefore, the

spatial map of rates obtained from the difference of the topography measurements at two

diverse observation times corresponds to the dissolution rate fluctuations, i.e.,

R′(x, t) =
1

Vm

z′(x, t)− z′(x, t+∆t)

∆t
. (2.4)

These types of information provide insights on the spatial variability of rates and are then

subject to our statistical analyses. Note that the above-mentioned preliminary image pro-

cessing is always required to quantify vertical retreats of the mineral surface.

Absolute dissolution rates, R(x, t), can then be obtained performing the above men-

tioned detrending procedure on an inert (i.e., non-reactive) region of the surface, whose

elevation serves as a reference at all times. This enables one to remove spurious contribu-

tions associated with scanning artifacts and/or vertical drifts of the piezoelectric scanner

while keeping the actual retreat. Such a region can be demarcated upon designing and

applying an inert mask. Generally, mechanical polishing of the crystal surface is required

prior to mask deposition (see, e.g., Bouissonnié et al., 2018, Fischer and Lüttge, 2017, and

Emmanuel, 2014). However, the polishing procedure may lead to the formation of cracks

at the level of the mineral lattice (see, e.g., Lucca et al., 2006). These, in turn, alter the

dynamics of the mechanisms driving the dissolution reaction described in Section 2.1, that

are otherwise naturally taking place on pristine calcite surfaces. In this context, we develop

a novel experimental workflow enabling one to fabricate a metal mask on the sample surface

without preliminary mechanical polishing (see Section 2.5).

It is further noted that resorting to a mask is not strictly required for the assessment

of quantities that are defined along the horizontal plane such as, e.g., horizontal spreading

rates of etch pits.
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2.3 Experimental setup

We design AFM scanning (Keysight 5500 apparatus) of a portion of the crystal surface,

Aobs, across a uniform horizontal grid, forming a lattice of n × n elements. Scanning is

performed either in contact-mode, similar to Renard et al. (2019), or in tapping mode. In

the former case, we employ silicon tips (Bruker, RESPA-40) and an Al-coated cantilever

characterized by an elastic constant k = 5N/m. In the latter case, we rely on stiffer silicon

tips (Al-coated; Nanosensors, PPP-NCHR, k = 42 Nm−1). Acquisition parameters (i.e.,

size of the observation window, Aobs, number of grid elements, n, and scanning frequency,

fa) are selected as a trade-off between the need for (i) high image quality and abundance of

data, i.e., high spatial resolution, and (ii) a temporal resolution, ∆T , enabling one to follow

the temporal trends of the surface features. The former requirement is critical for accurate

assessment of extreme values of sample PDFs and for characterizing the statistical behaviors

of each identified dissolution mode. The latter enables one to capture the evolution of the

surface morphology. Selected values for Aobs, n, and fa are specified in Chapter 4 for each

of the cases considered in this thesis work.

Preparation of a sample prior to starting the dissolution experiment begins by cleaving

a crystal of Iceland spar (Mexico) along the {104} plane upon pressing with a razor blade

to obtain a millimeter-size fragment with a height < 1mm. Then, the sample is either

directly used as such or subject to the mask fabrication procedure illustrated in Section 2.5,

depending on the type of analysis to which experimental data are then subject. After

preparation, the sample is placed on a glass slide and fluxed with nitrogen to remove any

residues from cleavage. A fluid cell (of volume Vcell ∼ 2 mL) open to air is mounted on the

support plate and sealed with a Viton O-ring (Fig. 2.3.A). A schematic planar and lateral

view of the cell is depicted in Fig. 2.3.B. The cell can be connected through two pipes

(Tygon tubing, OD= 1/16′′, ID= 1/50′′) to each of the three different systems depicted in

Figs. 2.3.C-E that can be employed to regulate fluid flow. All experiments are conducted

at room temperature (i.e., T = 22 ± 1 ◦C) and at atmospheric pressure. In all settings,

the dissolution process is started by injecting deionized MilliQ water (18.2 MΩ · cm) in the
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cell. Adopting Setting 1 corresponds to consider a static fluid in the cell, promoting the

formation of a diffusive boundary layer. Otherwise, Settings 2 and 3 are employed to keep

the sample at constant chemical conditions, favoring a surface-controlled reaction. This is

achieved by minimizing the contact time between the solution and the sample. The key

elements associated with each of these settings are described in the following.

D
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(C) Setting 1: static solution

Figure 2.3: Schematic view of the experimental setting. Panel (A) depicts the main components of

the AFM imaging system equipped with a fluid cell (of diameter D = 22mm and height h = 5mm),

whose planar and lateral views are depicted in (B). Panels (C), (D), and (E) illustrate key elements

of the systems employed to impose static, intermittent, and continuous flow conditions, respectively.

2.3.1 Setting 1 : static

Fig. 2.3.C depicts experimental Setting 1. Prior to the beginning of the experiment, the

sample is exposed to the solution for 1.5 h. The solution is then refreshed through a syringe
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connected to the fluid inlet pipe and resides in the cell under static conditions for a time Tc1 .

The dissolution of the mineral favors the development of a diffusive boundary layer around

the sample where fluid saturation with respect to calcium increases in time. The surface

pattern evolves in time as the main mechanism governing dissolution changes, driven by the

increase of saturation. This setting mimics natural conditions that can be found in, e.g.,

dead-end pores in porous media, where the occurrence of chemical reactions is diffusion-

dominated. Here, an appropriate modeling of reaction kinetics is critical as the dynamic

system evolution is subject to variations of concentration due to diffusion. Setting 1 is

considered here as a reference for Settings 2 and 3 to discriminate whether a given flow

rate ensures consistency of the surface pattern in time (i.e., a flow rate is large enough to

avoid development of the aforementioned diffusive boundary layer).

2.3.2 Setting 2 : intermittent flow

Experimental Setting 2 is depicted in Fig. 2.3.D. The system comprises a mechanical device

holding a pair of plastic syringes (of volume equal to 60mL) whose pistons are mechanically

coupled to withdraw and inject the same amount of solution. A given volume of fluid, Vs,

is replaced in the cell between each AFM scanning. The (intermittent) flow rate, Q2, is

evaluated as

Q2 =
Vs

Tc2

, (2.5)

where Tc2 is the residence time of the solution in the cell and coincides with the image

acquisition time, ∆T . We set Vs = 3mL ∼ 1.5 · Vcell to ensure a complete replacement

of the fluid in the cell. The fluid residence time Tc2 = n/fa is strongly linked to the AFM

acquisition parameter set, n and fa. Minimization of Tc2 can be achieved either by (i)

setting a high scanning rate, fa, or (ii) reducing the resolution, i.e., decreasing n (hence

increasing the pixel size). Note that increasing the scanning rate yields a higher drift during

AFM scanning. Otherwise, an increase in the pixel size results in loss of information due

to coarsening of the spatial resolution. Hence, values of fa and n are selected as a trade-

off between between the need to have a short contact time and to obtain high quality
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AFM images. We set the horizontal resolution to 11.7 nm and the scanning frequency to

fa = 1.41Hz. This enables us to obtain a residence time of the fluid in the cell of Tc2 = 6min.

The resulting (intermittent) flow rate is Q2 = 8.33µL s−1.

2.3.3 Setting 3 : continuous flow

Figure 2.3.E depicts the key elements of experimental Setting 3. Here, the flow is controlled

through a high precision syringe pump (CETONI, Nemesys S), equipped with two modules.

These allow for independent injection and withdrawal of the solution in/from the system.

A three way valve (CETONI, Countiflow Valve, 1/4′′-28 UNF thread) is mounted on each

module and a glass syringe (of volume equal to 1mL) is directly screwed in one port of

each valve. The other two ports are connected through flangeless fittings and ferrules

(Elveflow, Flangeless PFA Fittings and ETFE Ferrules 1/4′′-28 to 1/16′′ OD) to the cell and

to an external reservoir at atmospheric conditions, respectively. The delivering/withdrawing

(pulse free) flow rate ranges between 0.003 and 100 µL s−1. The pump operating system is

controlled through a custom code in the CETONI Elements software. We start by setting

a continuous flow in the cell, upon delivering and withdrawing the solution with the same

flow rate, Q3, until the injection syringe is empty and the aspiration syringe is full. We

then switch the valve to the external circuit, dispose the withdrawn solution and refill

the new fluid from the corresponding reservoirs. Note that this second step is completely

independent of the AFM acquisition. Therefore, this procedure can be performed at the

maximum allowed flow rate, i.e., Q = 100µL s−1. Thus, the time required to restore the

initial syringe conditions is equal to 10 s. This enables one to overcome limitations associated

with syringe volumes.

The selection of Q3 is a key element of this experimental setup, as it determines the

contact time between the fluid and the mineral sample. In this context, we acquire temporal

series of calcite topography associated with various flow rates and analyze qualitative and

quantitative aspects associated with the observed dissolution pattern. We refer to the
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dimensionless Reynolds cell number defined as

Re =
ρLV

µ
, (2.6)

where ρ [kg m−3] and µ [Pa s] are fluid density and viscosity, respectively, V [m s−1] is the

average fluid velocity evaluated on the section where the sample is located, and L [m] is the

characteristic length of the cell. We follow Schmidt and Alkire (1994) and consider L as the

hydraulic diameter of the cell, i.e., L = Dh. The latter is defined as Dh = (D ·h)/[2 ·(D+h)]

where D [mm] and h [mm] are the diameter and the height of the cell, respectively (see

Fig. 2.3.B). Our cell has D = 22mm and h = 5mm. The average velocity, V , is then

evaluated as V = Q3/(D · h). Relying upon the evaluation of the Reynolds number enables

one to replicate conditions in other experimental settings (i.e., using fluid cells associated

with different geometries). Each temporal series is associated with an observation time of the

crystal surface of 30min. As documented by the results of Setting 1 (see Section 2.3.1), such

temporal window enables us to detect possible variations in the type of mechanisms driving

the reaction. For each time series, we first analyze the qualitative features characterizing

the dissolution pattern. At all times, these must be consistent with a process of dissolution

at far-from-equilibrium conditions, i.e., traits associated with the development of a diffusive

boundary layer (Setting 1 ) should not be observed. If saturation is stable, we expect that

the reactivity of the surface remains (approximately) constant in time. This is assessed

through analysis of the step retreat velocity, ν [nm s−1]. Such quantity is defined as (Agudo

and Putnis, 2012)

ν =
∆lmean

∆t
, (2.7)

where ∆lmean = (∆lac+∆lob)/2 [nm], ∆lac and ∆lob being the separation distance between

acute (ac) or obtuse (ob) step edges at subsequent times (separated by a time step ∆t [s]),

respectively. As in Agudo and Putnis (2012), ∆li is evaluated on the basis of the etch pit

spreading rate rather than step retreat (see Fig. 2.1.F). At constant Ω, we expect slight

variations of the spreading rate measured at different times, νt, with respect to its mean

value, ν̄. Such variability is quantified through the coefficient of variation, CVν = σν/ν̄, σν
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being the standard deviation of νt. We then analyze the way ν̄ and CVν vary with the Re,

similar to Liang and Baer (1997).

The quality loss associated with the AFM signal as a result of the presence of fluid flow

is assessed upon analyzing the distortion of reference sample images obtained with the same

acquisition parameters and the same flow conditions as those associated with the analysis of

the mineral. Such a sample is a calibration Silicon chip (5×5×0.5 mm3, NanoTips, TGZ1)

characterized by a regular two-dimensional (2D) pattern given by a parallel grating with

a step height of 20 nm and period of 3µm. We quantify image distortion as the variation

in the horizontal length between two fixed points, L̂, with respect to its reference value

measured under static conditions, L̂0. We do so upon relying on the normalized root mean

square error, NRMSE =

√
(L̂− L̂0)2/L̂0.

2.4 Reliability of the designed settings

The reliability of the experimental settings introduced in Sections 2.3.1-2.3.3 is tested

through acquisition and analysis of various temporal series of AFM data. These consist

of collections of topography data acquired over a temporal observation window of 30min.

All experiments described in Sections 2.4.1-2.4.3 are performed employing unmasked freshly

cleaved calcite samples. Experimental parameters are listed in Table 2.1 and include:

• the size of the observation window, Aobs [µm2];

• the scanning frequency, fa [Hz];

• the temporal resolution, ∆T [min];

• the flow rate, Q [µL s−1];

• the Reynolds number, Re [−] (the latter is evaluated only for experiments performed

resting on Setting 3 );

• the contact time, Tc [min]. For Setting 1 and 2, the latter is defined as the time

interval in which the fluid is left as static in the cell. When considering Setting 3, it is
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defined as the time that a fluid particle takes to travel across the observation window,

i.e., Tc3 = Lobs/Q · (D ·h), where Lobs is the lateral size of the observation window, D

and h are the diameter and the height of the fluid cell, respectively;

• repetitions for each experiment, Nexp.

Aobs fa ∆T Q Re Tc Nexp
Setup

[µm2] [Hz] [min] [µL s−1] [−] [min] [−]

Setting 1 6 1.41 6 0 − 30 3

Setting 2 6 1.41 6 8.33 (*) − 6 6

6 1.41 6 5 0.37 0.132 1

6 1.41 6 8 0.59 0.083 1

6 1.41 6 9 0.66 0.073 1

6 1.41 6 10 0.74 0.066 3

6 1.41 6 11 0.81 0.060 1

6 1.41 6 12 0.89 0.055 3

Setting 3

6 1.41 6 15 1.11 0.044 2

Table 2.1: Experimental parameter (i.e., size of the observation window, Aobs, scanning frequency,

fa, temporal resolution, ∆T , flow rate, Q, Reynolds number, Re, contact time, Tc, and repetitions for

each experiment, Nexp) set to test the reliability of the designed experimental settings. The symbol

(*) indicates that the flow rate is evaluated considering intermittent refreshment of the solution (see

Section 2.4.2).

2.4.1 Setting 1

We acquire temporal series of spatial topography. These comprise a collection of 5 images

scanned along a 512×512 grid (pixel size 11.7 nm) upon setting the acquisition frequency to

fa = 1.41Hz. This result in a temporal window of observation Tc1 = 30min. Fig. 2.4.A-E

depicts the pattern observed for a dissolution experiment performed under static solution
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conditions, i.e., upon relying on Setting 1. Each image is identified through the time elapsed

from the injection of the solution. The area investigated comprises an acute step visible in

the top-left corner (that is related to a deep etch pit of size larger than the width of the ob-

servation window) and a sequence of flat terraces separated by steps. Numerous monolayer

etch pits nucleate at random locations on the terraces right after contact with deionized

water (Fig. 2.4.A). This behavior is consistent with highly undersaturated conditions. As

time elapses (Fig. 2.4.B), we observe spreading and coalescence of existing shallow etch pits

rather than nucleation of new ones. Progressive rounding of obtuse-obtuse edges is also

documented. Shallow etch pits are seen to merge with preexisting steps after t3 = 18min

(Figs. 2.4.C-D). At time t5 = 30min (Fig. 2.4.E) almost all etch pits disappear and step

retreat becomes the dominant mechanism. A similar temporal evolution of the surface pat-

tern has been observed for other series of topography imaged on different calcite samples

(see Appendix A). We also notice a temporal decrease in the reactivity of the surface. This

is quantified through Fig. 2.4.G that depicts the spreading rate of the acute step edge in

the top left corner, νac, as a function of the time elapsed from solution injection. These

results are obtained by making use of Eq. 2.7 upon considering only the separation distance

between acute steps (depicted in Fig. 2.4.F for different times), i.e. ∆lac. The dynamics of

the surface pattern are strongly related to the local saturation at the fluid/solid interface.

As such, the observed evolution of the surface is consistent with a local increase in the con-

centration of calcium within the developing boundary layer. No precipitates are observed

at the last observation time, i.e., at t5 = 30min. Hence, the local concentration of calcium

is such that supersaturation has not been attained in the boundary layer.

2.4.2 Setting 2

Fig. 2.5 depicts the temporal evolution of calcite surface imaged during experimental con-

ditions representative of Setting 2. Similar features are observed at all times. These are

consistent with the behavior expected at far-from-equilibrium conditions, i.e., nucleation,

spreading and coalescence of mono- and multilayer etch pits, together with step retreat.
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Figure 2.4: Exemplary topography of calcite surface imaged upon relying on Setting 1 at obser-

vation times (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D) t4 = 24 min, and (E)

t5 = 30 min (elapsed from first contact with the solution). Panel (G) depicts the spreading rate,

νac, associated with the acute step edges shown in (F) at various times.

Multilayer etch pits nucleate at the three preferential locations (A, B and C) depicted in

Fig. 2.5.F. From these, trains of steps form, consistent with an interpretation based on

the stepwave dissolution model (Lasaga and Lüttge, 2001, 2003). Diverse temporal evolu-

tions are observed for each of the three regions. A deep etch pit nucleates in A at time t1

(Fig. 2.5.A), whereas at locations B and C several small and shallow pits nucleate at the

flat bottom of wide multilayer pits that have formed prior to the beginning of our acqui-

sition. Horizontal spreading of the pit in A is observed at times t2 and t3 (Figs. 2.5.B-C).

Simultaneously, shallow pits in B and C are observed to spread and coalesce, together with

the formation of new small structures. The situation is reversed at time t4, i.e., two deep

etch pits nucleate at locations B and C, whereas the expansion of the pit in A leads to a
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flat bottom on which shallow pits spontaneously form. Numerous monolayer features are

observed to nucleate at random locations on the terraces (Figs. 2.5.A-E) during the dy-

namic evolution of multilayer etch pits. These are ephemeral structures that either spread

or merge with existing steps and/or other shallow pits as time progresses. These results

suggest that the temporal interval and the resolution selected for image acquisition empower

us with the ability to follow closely the evolution of the surface pattern.

Fig. 2.5.G depicts the temporal dependence of the number of shallow etch pits, npit,

observed on the surface. This quantity remains approximately constant, consistent with the

observation that chemical conditions in the cell are such that spontaneous nucleation of pits

is promoted and that the degree of undersaturation is stable in time. Note that the density

of etch pits on terraces is case specific, as it ultimately depends on the molecular structure of

the crystal in the observed region. The etch pit density, ρpit, can be readily evaluated upon

normalizing the number of pits by the area of the observed surface, i.e., ρpit = npit/Aobs

[cm−2]. On average, we obtain ρpit = 2.5·108 cm−2, consistent with literature studies (Teng,

2004; Agudo and Putnis, 2012; Ruiz-Agudo et al., 2009). In this context, a joint analysis

grounded on direct observations of the kind we provide and modeling tools such as, e.g.,

kinetic Monte Carlo simulations of dissolution reactions (see, e.g., Meakin and Rosso, 2008;

Kurganskaya and Luttge, 2016; Rohlfs et al., 2018), might provide additional insights on the

quantification of the relationship between the number of etch pit nucleating on the crystal

surface and the amount of pre-existing defects in the crystal lattice. Rounding of obtuse-

obtuse corners is also observed for multi- and monolayer etch pits. This behavior may be

ascribed to (slightly) non-zero local saturations. Similar results have been obtained for

other temporal series of topography imaged on different calcite samples (see Appendix B).

2.4.3 Setting 3

Figs. 2.6.A-D depict four exemplary topography images selected from different temporal

series associated with increasing values of Re. From a qualitative standpoint, we note

that all images evidence nucleation of mono- and multilayer etch pits. Rounding of the
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Figure 2.5: Exemplary topography of calcite surface imaged with Setting 2 at observation times

(A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from

the beginning of the experiment. Panel (F) highlights preferential nucleation regions of multilayer

etch pits. The number of monolayer etch-pits, npit, versus time is depicted in (G).

obtuse-obtuse edge is observed only for low values of the Reynolds number, i.e., Re <

0.35 (Fig. 2.6.A). Otherwise, etch pits display a perfectly rhombohedral shape for higher

Re (Figs. 2.6.B-D). As expected, a higher amount of linear errors and a higher degree of

stripe noise tend to emerge as Re increases, documenting a progressive degradation of the

quality of AFM images with increasing flow rate. Note that, from a qualitative standpoint,

measurement disturbances detected here upon increasing the flow rate are of the same kind

as those evidenced by, e.g., Schmidt and Alkire (1994).

Figs. 2.6.E-H depict the reference sample imaged considering the same values of Re

associated with calcite topographies shown above (Figs. 2.6.A-D). Following the approach

suggested by Schmidt and Alkire (1994), we consider measurements (taken along the princi-
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pal scanning direction) of horizontal distances between two points as references. We measure

the size of the two steps, LA and LB (see Fig. 2.6.E). Such lengths are evaluated as the

average among three measurements (Lj
k, j = A,B, k = 1, 2, 3) taken at different locations

and are compared against their corresponding reference counterparts associated with static

conditions, Lj
k,0. Fig. 2.6.L depicts the normalized root mean square error, NRMSE (see

Section 2.3.3), as a function of Re. It is noted that NRMSE increases with Re for both

LA and LB. Otherwise, it is also noted that the largest error at all Re is always less than

6%, documenting that AFM measurements taken along the principal scanning direction are

not significantly altered by fluid flow. However, we observe that step edges in Figs. 2.6.E-H

visually appear to be somehow distorted as Re increases. As edges are almost orthogonal

to the principal scanning direction, such a behavior is ascribed to an increase in the AFM

drift with Re. This might be attributed to the formation of local fluid re-circulation regions

between the steps whose size and/or local velocity tends to increase with Re.

Fig. 2.6.I depicts the average spreading rate associated with each topography series, ν̄,

and the ensuing coefficient of variation, CVν , as a function of Re. Otherwise, a decreasing

trend followed by an increasing pattern seem to underlie the oscillating behavior of CVν with

Re. This result is possibly a consequence of the increase in the drift of AFM images with the

flow rate. Since no qualitative nor quantitative differences are documented in the surface

pattern for Re > 0.60, whereas the amount of linear errors and the AFM drift (slightly)

increase, we conclude that operating at Re = 0.60 − 0.70 can imbue us with confidence

that dissolution occurs under stable chemical conditions while preserving good quality of

topography images, i.e., reducing AFM drift and measurement noise. We complete the anal-

ysis by considering Figs. 2.7.A-E, which depicts an exemplary temporal evolution of calcite

surface pattern imaged at Re = 0.60. Dissolution is initially (t = 6min) dominated by etch

pits (locations A-F on Fig. 2.7.A). Only spreading of etch pit C is observed at the following

observation time (t = 12min), while pits A-B and D-F merge with pre-existing steps and

disappear. Subsequently (t = 18− 30 min), the reaction is dominated by spreading of etch

pit C and by the dynamics of small and shallow pits forming on its flat bottom. Exemplary
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Figure 2.6: Exemplary topography images acquired for four different values of Reynolds number,

Re. Top panels depict AFM topography signals of calcite surface imaged for (A) Re = 0.37, (B)

Re = 0.60, (C) Re = 0.81, and (D) Re = 1.11. Panels (E-H) illustrate the topography of the

reference Si grating sample imaged under flow conditions identical to those associated with (A-D).

Images of the calcite surface and of the sample grating are acquired at times ti (with i = 1, ..., 6)

from the beginning of the experimental observation window. Average spreading rate associated with

various topography series, ν̄, and ensuing coefficient of variation, CVν , are depicted as a function of

Re in panel (I). Panel (L) shows the normalized root mean square error, NRMSE, associated with

variations in the horizontal length between two fixed points of the reference sample (with respect to

its reference value measured under static condition) versus Re.

temporal series of topographic images acquired at Re = 0.37, 0.59, 0.74, 0.81, 0.89, and 1.11

are included in Appendix C.
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Figure 2.7: Exemplary topography of calcite surface subject to continuous fluid flow with Re = 0.66

acquired through Setting 3 at observation times (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min,

(D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment.

2.5 Inert mask fabrication

After clevage, the sample is subject to a cleaning treatment in acetone and isopropanol.

Then, the metallic mask is fabricated through a combination of optical lithography and

electron beam evaporation. The geometrical pattern of the mask is depicted in Fig. 2.8.E-

F. This encompasses circles of diameter ∼ 80 − 300 µm heterogeneously distributed on

the surface. As such, this pattern enables one to investigate various regions of the crystal

surface. A schematic depiction of the fabrication workflow is offered in Figs. 2.8.A-E. The

procedure comprises a first stage where the adhesion promoter Ti Prime is spin-coated at

3000 rpm for 5 s and heated at 110◦C for 1min to evaporate the solvents. The positive resist

AZ 5214E is then spin-coated in two different steps (at 750 rpm for 5 s and at 4000 rpm for
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40 s) and finally annealed at 120◦C for 2min. These initial steps ensure that the entire

surface is uniformly covered by the primer and the positive resist (Fig. 2.8.A). The sample

is then subject to optical lithography and to a corresponding developing step in tetramethy-

lammonium hydroxide solution for 50 s. These steps of the workflow enable one to transfer

the desired geometrical pattern onto calcite surface. During the optical lithography stage, a

glass mask comprising opaque and transparent regions is interposed between the sample and

a UV light source (Fig. 2.8.B). Hence, only portions of the surface that correspond to the

transparent glass mask are exposed to UV. The latter portions are removed from the surface

by the subsequent developing phase (Fig. 2.8.C). The sample is then loaded in the electron

beam evaporation chamber for Titanium deposition (Barri et al., 2020) (Fig. 2.8.D). The

metal is uniformly deposited on the entire surface. It is finally subject to a lift-off phase in

acetone (Fig. 2.8.E). This last step removes from the surface the photoresist and Ti layer

attached to it and provides the desired geometry. Fig. 2.8.F depicts an exemplary image

taken at the optical microscope of the sample surface after mask fabrication. Natural steps

of calcite crystal are visible under the metal layer. The final Ti thickness is about 40 ± 1

nm (value also confirmed by AFM and VSI analysis, see Fig. 2.8.G).

Note that some precipitates form on calcite surface during the optical lithography phase

of the mask fabrication workflow. Hence, the sample is subject to continuous flow in MilliQ

water for a time ≥ 6 h before image acquisition. The first layers of the crystal are dissolved

during this preliminary step together with precipitates attached to the calcite surface (and

not covered by the inert layer) dissolve. Otherwise, precipitates that have been covered by

the Ti layer during the metal deposition phase are preserved from dissolution. Hence, these

points can serve as fiducial points (see Fig. 4.16) to correct any horizontal misalignment of

images acquired at subsequent times (see Section 2.6).

2.6 Alignment of topographic maps

Reliable estimates of point-by-point absolute dissolution rates can be obtained only upon

exact horizontal alignment of topographic data acquired at subsequent times. These are
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Figure 2.8: Top and profile (along cross section O −O′) sketch views of the steps included in the

inert mask fabrication worlflow. These entail (A) primer and photoresist spin-coating; (B) optical

lithography and corresponding (C) developing step; (D) Ti layer deposition; and (E) lift-off phase.

(F) Optical microscope image depicting the geometrical pattern of the Ti mask on an exemplary

calcite sample. (G) Vertical profile of a VSI-based image comprising the Ti mask and the pristine

calcite surface acquired in air prior to exposure of the sample to the solution.

often affected by lateral drift due to thermal expansions of the piezoelectric scanner (Rahe

et al., 2010, see, e.g.,). In the AFM system adopted in this PhD thesis, scanning in the x-y

directions is associated with displacement of the tip, while the sample under investigation

is fixed. This element, together with a warm-up phase of the instrument of about 1.5 h

(Marinello et al., 2010), is documented to reduce the horizontal drift. The possible residual

misalignment of topographic signals at various time can be corrected upon registering all

images with respect to fixed points. Having at our disposal a portion of the surface that is

covered by an inert layer and, in turn, does not react with the solution, has the additional

advantage to provide fixed reference points that can be used as fiducial points to correct

any misalignment in the horizontal plane. These coincide with the centroids of some pre-
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cipitates that have formed on calcite surface during sample preparation and that have been

covered by the Titanium layer during deposition (see Section 2.5). For freshly cleaved (non-

masked) samples, fiducial points are identified as small precipitates spontaneously forming

on the surface during the reaction. Note that the latter are visible only if AFM scanning is

performed in tapping mode. Otherwise, the contact between the tip and the sample surface

removes weakly attached particles forming on the surface when imaging is performed in

contact mode (Guren et al., 2020; Renard et al., 2019).



3 Modeling Frameworks

Hydrogeological properties of natural porous systems are seen to be characterized by spa-

tially heterogeneous behaviors. These hinder a description of such quantities though a

deterministic approach. Therefore, characterization of hydrogeological attributes through

geostatistical analyses has become a standard approach (Journel and Huijbregts, 1976; Ki-

tanidis, 1997). In this context, the quantity of interest, Y (x) (x denoting a spatial vector

location), can be treated as a stationary random field and is defined as

Y (x) = ⟨Y ⟩+ Y ′(x), (3.1)

where ⟨Y ⟩ is the (constant) ensemble average of Y and Y ′(x) is a zero-mean random fluc-

tuation of Y (x) about ⟨Y ⟩ and drives the heterogeneity of Y (x). In this work, we consider

different modeling concepts to interpret the spatial heterogeneity of Y (x) through charac-

terization of Y ′(x). We start from the formulation of the GSG model by Riva et al. (2015a).

Such formulation provides a joint description of the statistical behavior of Y and of it spatial

increments, ∆Y (s), and has been seen to be well-suited to capture non-Gaussian behaviors

of unimodal fields in a variety of contexts (see, e.g., Riva et al., 2015a, Guadagnini et al.,

2018, Siena et al., 2019, 2020, and Li et al., 2022). Then, we focus of the characterization

of fields exhibiting multimodal traits. We start from the formulation proposed by Lu and

Zhang (2002) upon considering bimodal Gaussian mixtures. We extend such modeling ap-

proach by deriving rigorous formulations associated with the PDF of spatial increments to

embed the observed scaling tendencies of such distributions within a unique analytical the-

oretical framework. Lastly, we generalize the formulation of the GMIX model to mixtures of

35
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Generalized sub-Gaussian fields (herafter termed GSG-MIX). The latter modeling approach

includes the GSG and the GMIX modeling frameworks as particular cases.

Chapter 3 is structured as follows. Mathematical notations and general formulations

that are common to all modeling approaches considered are introduced in Section 3.1. Sec-

tion 3.2 briefly illustrates the key analytical expressions of the GSG theoretical framework,

its complete formulation being available in Riva et al. (2015a), Siena et al. (2020), and

Neuman et al. (2024). Section 3.3 illustrates the theoretical formulation of the GMIX model

and our original developments associated with the probability distributions of incremental

values of a bimodal Gaussian random field. Section 3.4 extends the GMIX framework to

describe a bimodal mixture composed by GSG modes. Parameter estimation schemes for (i)

GSG and (ii) bimodal mixture models are respectively described in Sections 3.5 and 3.6.1-

3.6.3. The reliability of parameter estimation procedures designed for bimodal mixtures is

tested against synthetically generated data as detailed in Sections 3.6.2-3.6.4.
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3.1 General analytical formulation

We introduce the following notation to define Y ′ evaluated at two spatial locations x1 and

x2:

Y ′
1 = Y ′(x1), (3.2a)

Y ′
2 = Y ′(x2). (3.2b)

The bivariate Cumulative Distribution Function (CDF) of Y ′
1 and Y ′

2 reads

FY ′
1Y

′
2
(y′1, y

′
2) = Pr(Y ′

1 ≤ y′1, Y
′
2 ≤ y′2) =

∫ y′2

−∞

∫ y′1

−∞
fY ′

1Y
′
2
(v, w)dvdw, (3.3)

fY ′
1Y

′
2
being the joint probability density of Y ′

1 and Y ′
2 . The latter can be obtained by

differentiation of Eq. 3.3, leading to

fY ′
1Y

′
2
(y′1, y

′
2) =

∂2

∂y′1∂y
′
2

FY ′
1Y

′
2
(y′1, y

′
2). (3.4)

Following Eq. 3.4, the marginal PDF of Y ′ reads

fY ′(y′) =

∫ +∞

−∞
fY ′

1Y
′
2
(y′1, y

′
2 = y′)dy′1. (3.5)

We define spatial increments at lag s = |x1 − x2| as ∆Y (s) = Y ′
1 − Y ′

2 . The probability

distribution of ∆Y is (Riva et al., 2015a)

F∆Y (∆y) = Pr(∆Y ≤ ∆y) =

∫ +∞

−∞

∫ y′2+∆y

−∞
fY ′

1Y
′
2
(y′1, y

′
2)dy

′
1dy

′
2. (3.6)

The probability density of ∆y is obtained from Eq. 3.6 as

f∆Y (∆y) =
d

d(∆y)
F∆Y (∆y) =

∫ +∞

−∞
fY ′

1Y
′
2
(y′2 +∆y, y′2)dy

′
2. (3.7)
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3.2 Generalized sub-Gaussian model

In the following, we illustrate the key analytical expressions of the GSG theoretical frame-

work, the complete set of details about their derivation being available in Riva et al. (2015a),

Siena et al. (2020), and Neuman et al. (2024). According to the GSG formulation, the vari-

able of interest, Y ′, is expressed as

Y ′(x) = U(x)G(x). (3.8)

where G(x) and U(x) are a zero-mean (typically correlated) Gaussian random field and a

non-negative subordinator independent of G. The latter consists of statistically independent

identically distributed non-negative random variables. The Gaussian field is characterized

by a scale parameter, σG, i.e., the standard deviation of G, and a correlation function, ρG,

that typically decreases as the separation distance between two points increases. It is noted

that the GSG framework embeds the Gaussian model as a particular case when U tends to

a deterministic constant. Considering the definition of Y ′ given by Eq. 3.8, the joint PDF

of Y1 and Y2 (i.e., Eq. 3.4) is

fY ′
1 ,Y

′
2
(y′1, y

′
2) =

∫ +∞

0

∫ +∞

0
fU1(u1)fU2(u2)fG1,G2

(
y′1
u1

,
y′2
u2

)
du1
u1

du2
u2

, (3.9)

where fUi(ui) is the distributional form of the subordinator and fG1,G2 is the bivariate

Gaussian PDF, i.e.,

fG1,G2

(
y′1
u1

,
y′2
u2

)
=

1

2πσ2
G

√
1− ρ2G

e
−

y′1
2

u1
2 +

y′2
2

u2
2 −2ρG

y′1
u1

y′2
u2

2σ2
G

(1−ρ2
G

) . (3.10)

The marginal probability density function of Y ′ is obtained by replacing Eq. 3.9 into Eq. 3.5

as

fY ′(y′) =
1√
2πσG

∫ ∞

0
fU (u)e

− y′2

2σ2
G

u2
du

u
, (3.11)

Whereas odd order statistical moments of Y ′ are identically equal to zero, even order q− th

moments, ⟨Y ′q⟩, are given by

⟨Y ′q⟩ = ⟨Gq⟩⟨U q⟩ with q = 2, 4, 6..., (3.12)
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⟨Gq⟩ and ⟨U q⟩ being the q − th order moment of the underlying Gaussian field and of the

subordinator, respectively. Hence, the variance, σ2
Y , and fourth order moment, ⟨Y ′4⟩, can

be respectively obtained as

σ2
Y = ⟨Y ′2⟩ = σ2

G⟨U2⟩, (3.13)

⟨Y ′4⟩ = 3σ4
G⟨U4⟩. (3.14)

The kurtosis of Y , κY , provides a measure of the degree of sharpness of the distribution

peak and is evaluated from Eqs. 3.13 and Eq. 3.14 as

κY =
⟨Y ′4⟩
⟨Y ′2⟩2

= 3
⟨U4⟩
⟨U2⟩2

. (3.15)

Eq. 3.15 dictates that (i) κY depends only on the subordinator U (and not on G) and (ii) the

GSG PDF always displays a leptokurtic character (κY → 3 when U tends to a deterministic

constant).

The PDF of increments can be evaluated by substituting Eq. 3.9 in Eq. 3.7 as

f∆Y (∆y) =
1√
2πσG

∫ ∞

0

∫ ∞

0
fU1(u1)fU2(u2)

e
− ∆y2

2σ2
G

r2

r

du2
u2

du1
u1

, (3.16)

with r =
√

u21 + u22 − 2ρGu1u2. Whereas odd order moments of ∆Y are identically zero,

even order moments of order q are given by

⟨∆Y q⟩ =
q∑

k=0

(−1)q−k

(
q

k

)
⟨Uk⟩⟨U q−k⟩⟨G(x)kG(x+ s)q−k⟩ with q = 2, 4, 6... (3.17)

From Eq. 3.17, second and fourth order moments of the increments are respectively obtained

as

⟨∆Y 2⟩ = 2σ2
G

[
⟨U2⟩ − ⟨U⟩2ρG

]
, (3.18)

⟨∆Y 4⟩ = 6σ4
G

[
⟨U4⟩ − 4⟨U3⟩⟨U⟩ρG + ⟨U2⟩2(1 + 2ρ2G)

]
. (3.19)

Making use of Eqs. 3.18 and 3.19, the kurtosis of ∆Y reads

κ∆Y =
⟨∆Y 4⟩
⟨∆Y 2⟩2

=
3

2

⟨U4⟩ − 4⟨U3⟩⟨U⟩ρG + ⟨U2⟩2(1 + 2ρ2G)

[⟨U2⟩ − ⟨U⟩2ρG]2
. (3.20)



40 CHAPTER 3. MODELING FRAMEWORKS

As dictated by Eq. 3.20, κ∆Y only depends on U and on the correlation coefficient ρG. The

covariance of Y , CY , can be obtained from Eq. 3.18 as CY = σ2
Y − ⟨∆Y 2⟩/2. This yields

CY =


σ2
Y if s = 0,

⟨U⟩2σ2
GρG if s > 0.

(3.21)

Hence, the covariance of the GSG field Y is discontinuous at the origin, s = 0, exhibiting a

so-called nugget effect. The variogram of Y is expressed as

γY =
⟨∆Y 2⟩

2
= σ2

G

[
⟨U2⟩ − ⟨U⟩2ρG

]
= σ2

Gσ
2
U + ⟨U⟩2γG. (3.22)

Here, σ2
U is the variance of the subordinator and γG = σ2

G(1 − ρG) is the variogram of the

underlying Gaussian field. As dictated by Eq. 3.22, γY is characterized by a nugget effect,

ν = σ2
Gσ

2
U . The integral scale of Y can be obtained from Eq. 3.21 as

IY =
⟨U⟩2

σ2
U + ⟨U⟩2

IG. (3.23)

Therefore, 0 < IY < IG regardless of the type of subordinator one considers. An increase

in σ2
U results in a decrease in the integral scale of Y ′. The GSG model admits a variety

of subordinator choices. In this thesis work, we follow Siena et al. (2019), Siena et al.

(2020), Riva et al. (2015a), Guadagnini et al. (2018), and Li et al. (2022) and consider U

as lognormally distributed according to

U ∼ lnN(0, (2− α)2), (3.24)

α ∈ (0, 2) being the shape parameter of U . The set of equations obtained upon this choice

of the subordinator are included in Appendix D.

3.3 Gaussian Mixture model

We consider Y (x) to be a spatial random field exhibiting multimodal behavior across a

given domain of interest, described as (e.g., Rubin, 1995, Lu and Zhang, 2002, and Dai

et al., 2020)

Y (x) =
M∑

m=1

Im(x)Ym(x), (3.25)
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where M is the number of independent and mutually-exclusive modes (or components) of

Y (x), Ym(x) is the m − th component evaluated at (vector) location x, and Im(x) is an

indicator random field independent of Ym and defined as

Im(x) =


1 if component m occurs at x

0 otherwise.

(3.26)

Note that Im follows a Bernoulli distribution with mean pm(x) = ⟨Im(x)⟩ (which corre-

sponds to the relative proportion of Im across the domain, under ergodic conditions, ⟨·⟩

denoting ensemble expectation), and variance, ⟨(Im(x)− ⟨Im(x)⟩)2⟩ = pm(x) [1− pm(x)].

Note also that the following constraint is satisfied

M∑
m=1

Im(x) = 1, (3.27)

at any location x in the system.

Focusing on a bimodal field (i.e., M = 2), Eq. 3.25 reduces to

Y (x) = I(x)YA(x) + (1− I(x))YB(x), (3.28)

where subscripts A and B denote the two modes associated with the random field Y (x).

Setting ⟨I(x)⟩ = p, the cumulative distribution function (CDF) and the probability density

function (PDF) of Y (x) are respectively defined as

FY (y) = Pr {Y ≤ y} = pFYA
(y) + (1− p)FYB

(y), (3.29)

and

fY (y) =
∂FY (y)

∂y
= pfYA

(y) + (1− p)fYB
(y). (3.30)

Here, FYm(y) and fYm(y) (with m = A,B) are the CDF and PDF of component m of the

mixture, respectively.

If each component m of Y is characterized by a Gaussian distribution with mean µm and

variance σ2
m, i.e., Ym ∼ N(µm, σ2

m), the field Y (x) is a bimodal Gaussian mixture (GMIX),

and Eq. 3.30 reads

fY (y) =
p√
2πσA

e
− (y−µA)2

2σ2
A +

(1− p)√
2πσB

e
− (y−µB)2

2σ2
B . (3.31)
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Making use of Eq. 3.30, the raw moment of Y of order q, ⟨Y q⟩, can be computed as

⟨Y q ⟩ = p⟨Y q
A ⟩+ (1− p)⟨Y q

B ⟩. (3.32)

Therefore, the mean of Y can be derived by setting q = 1 in Eq. 3.32, as

µY = pµA + (1− p)µB, (3.33)

and central moments of order q of Y can be evaluated as

⟨Y ′q⟩ = ⟨(Y − µY )
q⟩ =

q∑
j=0

(
q

j

)
(−1)jµj

Y ⟨Y
q−j⟩. (3.34)

In particular, variance, σ2
Y , skewness, SkY , and kurtosis, κY , associated with a bimodal

GMIX field are evaluated by setting in Eq. 3.34 q = 2, 3, 4, respectively, as

σ2
Y = ⟨Y ′2 ⟩ = pσ2

A + (1− p)σ2
B + p(1− p)(µA − µB)

2, (3.35)

SkY =
⟨Y ′3⟩
σ3
Y

=
p

σ3
Y

(1− p)(µA − µB)
[
(1− 2p)(µA − µB)

2 + 3(σ2
A − σ2

B)
]
, (3.36)

κY =
⟨Y ′4⟩
σ4
Y

=
1

σ4
Y

{
3p(σ4

A − σ4
B) + 3σ4

B

+p(1− p)(µA − µB)
2
[(
1− 3p(1− p)

)
(µA − µB)

2 + 6
(
σ2
A − p(σ2

A − σ2
B)
)]}

.

(3.37)

Eqs. 3.36 and 3.37 clearly show that the PDF of a GMIX field can be (i) non-symmetric

(i.e., SkY ̸= 0) even though each component Ym of Y is symmetric and/or (ii) leptokurtic

(κY > 3, corresponding to a heavy tailed distribution) or platikurtic (κY < 3), even as

components Ym are mesokurtic (i.e., characterized by κY = 3). In the hydrogeological

context, examples of bimodal features documented for quantities of interest observed across

heterogeneous systems include porosity, conductivity, permeability, vadose zone hydraulic

properties, and electrical resistivity (e.g., Zhang et al., 2005, Zhang, 2009, Riva et al., 2013,

Guadagnini et al., 2013, Guadagnini et al., 2015, Russo, 2002, and Li et al., 2022). The

extent of these deviations from a Gaussian behavior is controlled by the difference between

the component means (i.e., µA−µB), the component variances (i.e., σ2
A and σ2

B), and p. In
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order to illustrate the main traits of the field considered, Fig. 3.1 shows the impact of p on

the PDF (and related statistical moments) of a GMIX field characterized by µA − µB = 2,

σ2
A = 0.15, and σ2

B = 0.05. The PDF of Y (see Fig. 3.1.A) exhibits two peaks and a local

minimum located within the interval y ∈ [µB, µA]. As dictated by Eq. 3.33, the mean of

Y varies linearly with p (see Fig. 3.1.B, note that µY increases with p in our example,

since µA > µB). The variance of Y exhibits a parabolic behavior with p (Fig. 3.1.C),

as prescribed by Eq. 3.35. It attains a maximum value at p = pmax = (1 + η)/2, where

η = (σ2
A − σ2

B)/(µA − µB)
2 (with η = 0.05 in our example). This also implies that σ2

Y

monotonically increases with p only when η > 1. The skewness of Y (see Eq. 3.36 and

Fig. 3.1.B) vanishes for the two trivial cases p = 0 (where Y = YB) and p = 1 (where

Y = YA) and when p = pSk=0
3 = (1 + 3η)/2. Note that the PDF of Y is right-skewed

(SkY > 0) for p ∈ (0, pSk=0
3 ) and left-skewed (SkY < 0) for p ∈ (pSk=0

3 , 1). When |η| ≥ 1/3,

then pSk=0
3 /∈ (0, 1) and the PDF is right- (for η > 1/3) or left- (for η < 1/3) skewed

regardless of the component proportions. Fig. 3.1.C also depicts the trend of the excess

kurtosis (EκY = κY − 3) versus p. It can be shown from Eq. 3.37 that, in addition to

the two trivial cases pEκ=0 = 0, 1, EκY vanishes for pEκ=0
3,4 = 1/2 + η ±

√
(1 + 6η2) /12.

Hence, the PDF is platikurtic for p ∈ (pEκ=0
3 , pEκ=0

4 ) and leptokurtic outside this range. If

|η| ≥ (3+
√
6)/3, then pEκ=0

3,4 /∈ (0, 1) and the PDF is leptokurtic regardless of the component

proportions.

3.3.1 Spatial increments of a Bimodal Gaussian Mixture

For a bimodal GMIX, the notation introduced in Eq. 3.2 yields

Y1 = Y (x1) = I(x1)YA(x1) + (1− I(x1))YB(x1), (3.38a)

Y2 = Y (x2) = I(x2)YA(x2) + (1− I(x2))YB(x2). (3.38b)
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Figure 3.1: (A) Probability density functions (PDFs), fY (y), of the GMIX model evaluated accord-

ing to Eq. 3.31 for µA = 2.5, µB = 0.5, σ2
A = 0.15, σ2

B = 0.05, and four values of p. The associated

(B) mean, µY , and skewness, SkY ; (C) variance, σ2
Y , and excess kurtosis, EκY , are also depicted

as a function of p. Empty circles in (B)-(C) correspond to statistical moments associated with the

PDFs depicted in (A).

We extend the approach illustrated by Rubin (1995) and obtain the joint PDF of Y1 and Y2

as

fY1,Y2(y1, y2) =Pr {I(x1) = 1, I(x2) = 1} fYA,1,YA,2
(y1, y2)

+Pr {I(x1) = 0, I(x2) = 0} fYB,1,YB,2
(y1, y2)

+Pr {I(x1) = 1, I(x2) = 0} fYA,1,YB,2
(y1, y2)

+Pr {I(x1) = 0, I(x2) = 1} fYB,1,YA,2
(y1, y2),

(3.39)

where

fYm,1,Ym,2(y1, y2) =
e−r

2πσ2
m

√
1− ρ2m

, (3.40)

with

r =
(y1 − µm)2 + (y2 − µm)2 − 2ρm(y1 − µm)(y2 − µm)

2σ2
m(1− ρ2m)

and m = (A,B),
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is the bivariate PDF of the Gaussian components of the mixture at the two locations. The

joint PDF introduced in Eq. 3.40 is seen to depend on the spatial correlation ρm = ρm(x1,x2)

of each mode. We recall that, as mentioned above, the two components YA and YB

are assumed to be uncorrelated. Hence, fYA,1,YB,2
= fYA

(y1)fYB
(y2) and fYB,1,YA,2

=

fYB
(y1)fYA

(y2). Therefore, Eq. 3.39 leads to

fY1,Y2(y1, y2) =⟨I(x1)I(x2)⟩fYA,1,YA,2
(y1, y2)

+⟨[1− I(x1)][1− I(x2)]⟩fYB,1,YB,2
(y1, y2)

+⟨I(x1)[1− I(x2)]⟩fYA
(y1)fYB

(y2)

+⟨[1− I(x1)]I(x2)⟩fYB
(y1)fYA

(y2).

(3.41)

Considering that

⟨I(x1)I(x2)⟩ = ⟨I(x)⟩2 + CI(x1,x2) = p2 + CI(x1,x2), (3.42)

where CI(x1,x2) is the covariance of the indicator field I(x), Eq. 3.41 can be rewritten as

fY1,Y2(y1, y2) = [p2 + CI(x1,x2)]fYA,1,YA,2
(y1, y2)

+ [(1− p)2 + CI(x1,x2)]fYB,1,YB,2
(y1, y2)

+ [p(1− p)− CI(x1,x2)] {fYA
(y1)fYB

(y2) + fYB
(y1)fYA

(y2)} .

(3.43)

In the following we derive the analytical formulation for the PDF of the omnidirectional

spatial increments ∆Y (s) = Y1 − Y2 (s =| x1 − x2 |). Second-order stationarity is assumed

for all random fields, i.e., CI(x1,x2) = CI(s) and ρm(x1,x2) = ρm(s). Replacing Eq. 3.43

in Eq. 3.4 leads to

f∆Y (∆y) =
p2 + CI(s)√
4πσ2

A (1− ρA)
e
− ∆y2

4σ2
A

(1−ρA) +
(1− p)2 + CI(s)√
4πσ2

B (1− ρB)
e
− ∆y2

4σ2
B

(1−ρB)

+
p(1− p)− CI(s)√

2π(σ2
A + σ2

B)

(
e
− (∆y−µA+µB)2

2(σ2
A

+σ2
B

) + e
− (∆y+µA−µB)2

2(σ2
A

+σ2
B

)

)
.

(3.44)

The analytical expression of f∆Y (∆y) depends on (i) variances (σ2
A and σ2

B) and cor-

relation functions (ρA and ρB) associated with each of the mixture components, (ii) the
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difference between the component means (µA−µB) and (iii) mean (p) and covariance (CI)

of the indicator field. Fig. 3.2.A shows a graphical depiction of Eq. 3.44 for various lags,

obtained upon relying on the exemplary set of parameters used for Fig. 3.1 and considering

p = 0.2. For illustration purposes, we consider an isotropic exponential model to describe

the above mentioned indicator covariance function, i.e., CI(s) = σ2
IρI(s) = σ2

Ie
−s/λI , (λI

and σ2
I = p(1− p) being the correlation length and variance of I, respectively) and for ρm,

i.e., ρm = e−s/λm(m = A,B), λm being the correlation length of component Ym. Here, for

illustration purposes, we set λA = λB = 6 and λI = 6.4. It can be noted that the PDF of ∆Y

is always (i) symmetrical with respect to zero; and (ii) characterized by a dominant central

peak (located at ∆y = 0 and controlled by the first two terms in Eq. 3.44) and two lateral

peaks (controlled by the last term in Eq. 3.44 and located at ∆y ≈ ±(µA−µB)). Fig. 3.3.A

also reveals that the relative importance of the lateral peaks increases (at the expense of

the central peak) as lag increases. This behavior is driven by CI(s) and −CI(s) that are

seen to multiply terms related to the central and lateral peaks in Eq. 3.44, respectively.

As lag increases, CI(s) decreases and the difference between the height of the central and

lateral peaks tends to be reduced. One can also see that the correlation functions ρA and

ρB appear only within the first 2 terms of Eq. 3.44. Thus, their dependence on lag can only

affect the central peak of the PDF of ∆Y .

Statistical moments of the increments can then be readily evaluated from Eq. 3.44.

Mean and all odd-order moments of ∆Y are identically zero. The second moment of ∆Y

reads

⟨∆Y 2⟩ = 2
{
p2σ2

A(1− ρA) + (1− p)2σ2
B(1− ρB)

+ p(1− p)
[
(1− ρI)(µA − µB)

2 + σ2
A(1− ρAρI) + σ2

B(1− ρBρI)
] }

.
(3.45)

Since CY = σ2
Y − γY , where γY = ⟨∆Y 2⟩/2 is the variogram of Y , Eqs. 3.35 and 3.45 allow

evaluating the covariance of Y as

CY = p2σ2
AρA + (1− p)2σ2

BρB + p(1− p)ρI
[
(µA − µB)

2 + σ2
AρA + σ2

BρB
]

(3.46)

The integral scale of Y , IY , can be computed by integrating ρY = CY /σ
2
Y . As also discussed

by Lu and Zhang (2002), IY can be larger or smaller than the integral scale of the two modes
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and of the indicator, depending on the value of p, σ2
A, σ

2
B as well as on the correlation of the

indicator field. Fig. 3.2.B depicts the variogram of Y as a function of lag for various values

of p. Each curve attains the corresponding sill, σ2
Y (dashed horizontal lines), for large lags.

Consistent with Fig. 3.1.B, σ2
Y (p = 0.6) > σ2

Y (p = 0.4) > σ2
Y (p = 0.8) > σ2

Y (p = 0.2). It

can be noted that the same ordering holds also for values attained by the variogram at any

given lag.

The fourth-order moment of ∆Y is

⟨∆Y 4⟩ = 2
{
6p2σ4

A(1− ρA)
2 + 6(1− p)2σ4

B(1− ρB)
2

+ 6p(1− p)ρI
[
σ4
A(1− ρA)

2 + σ4
B(1− ρB)

2
]

+ p(1− p)(1− ρI)
[
(µA − µB)

4 + 3(σ2
A + σ2

B)(2(µA − µB)
2 + (σ2

A + σ2
B))
] }

.

(3.47)

The analytical expression for the kurtosis, κ∆Y = ⟨∆Y 4⟩/⟨∆Y 2⟩2, associated with the

increments of a Gaussian mixture can then be derived from Eqs. 3.45 and 3.47. We recall

that this statistical moment quantifies the tailedness of the distribution and the sharpness of

its peaks. Its dependence on lag is a distinctive element of the scaling behavior exhibited by

the PDFs of increments of a GMIX field. Fig. 3.2.C depicts excess kurtosis, Eκ∆Y = κ∆Y −3,

as a function of lag for various values of p. All curves exhibit a monotonic trend. The value

of Eκ∆Y is seen to increase (indicating tails that become heavier and peaks that become

sharper) as s decreases. This pattern is starkly consistent with the behavior observed for

several Earth and environmental variables (Riva et al., 2015a and references therein). These

results clarify that the increments of a GMIX field exhibit clear non-Gaussian traits, despite

each component of the mixture being Gaussian. As noted above, they also show that the

PDFs of increments tend to change with lag due the action of the degree of spatial correlation

of the two Gaussian components of the mixture and of the indicator field. Values of EκY

are also depicted in Fig. 3.2.C (dashed horizontal lines) and are such that EκY (p = 0.2) >

EκY (p = 0.8) > EκY (p = 0.4) > EκY (p = 0.6). The same relative order is maintained also

by the values of Eκ∆Y . Note that values of Eκ∆Y are negative (i.e., indicating platikurtic

distributions of increments) at large values of s for p > 0.2.
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Figure 3.2: (A) Probability density functions (PDFs) of increments, f∆Y (∆y), evaluated according

to the GMIX model (Eq. 3.44) for µA = 2.5, µB = 0.5, σ2
A = 0.15, σ2

B = 0.05, p = 0.2, λA = λB = 6

and λI = 6.4, at four values of the dimensionless lag, s/λI . The (B) variogram, γY and (C)

excess kurtosis, Eκ∆Y , are also depicted versus s/λI for four values of p. Empty circles in (B-C)

correspond to the statistical moments associated with the PDFs depicted in (A).

3.4 Generalized sub-Gaussian Mixture model

We extend the formulation of the GMIX model by considering a bimodal mixture entailing

Generalized sub-Gaussian components (GSG-MIX). We start from Eq. 3.30 and define each

mode of the mixture, Ym(x), as

Ym(x) = µm + Y ′
m(x) (3.48)

where µm is the mean of each component of the mixture and Y ′
m(x) is the fluctuation about

µm and is distributed according to Eq. 3.8, i.e.,

Y ′
m(x) ∼ Gm(x)Um(x). (3.49)
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Here, Gm(x) is a zero-mean Gaussian field underlying each mode of the mixture (character-

ized by a scale parameter σGm and a spatial correlation ρGm); and Um(x) is a subordinator

associated with each m− th component of the mixture. Thus, Ym is distributed according

to

fYm(y) =
1√

2πσGm

∫ ∞

0
fUm(u)e

− (y−µm)2

2σ2
Gm

u2 du

u
, (3.50)

fUm(u) corresponding to the distribution of the subordinator associated with each mode of

the mixture. Replacing Eq. 3.50 into Eq. 3.30 yields

fY (y) =
p√

2πσGA

∫ ∞

0
fUA

(u)e
− (y−µA)2

2σ2
GA

u2 du

u
+

(1− p)√
2πσGB

∫ ∞

0
fUB

(u)e
− (y−µB)2

2σ2
GB

u2 du

u
(3.51)

It can be noted that the GSG-MIX model rendered by Eq. 3.51 can be considered as a

generalization of the GMIX model (Eq. 3.31) illustrated in Section 3.3, as each of its modes

corresponds to a Gaussian distribution when Um is deterministic and fUm tends to a Dirac

delta function.

Similar to the GMIX framework, raw and central moments of order q of Y can be eval-

uated by making use of Eqs. 3.32 and 3.34, respectively. Setting q = 1 in Eq. 3.34, yields

the mean of Y as defined by Eq. 3.33. Variance, σ2
Y , skewness, SkY , and kurtosis, κY , of Y

respectively read

σ2
Y = pσ2

YA
+ (1− p)σ2

YB
+ p(1− p) (µA − µB)

2 , (3.52)

SkY =
p

σ3
Y

(1− p)(µA − µB)
[
(1− 2p)(µA − µB)

2 + 3(σ2
YA

− σ2
YB

)
]
, (3.53)

κY =
1

σ4
Y

{
p
(
⟨Y ′4

A⟩ − ⟨Y ′4
B⟩
)
+ ⟨Y ′4

B⟩

+ p(1− p)(µA − µB)
2
[
(1− 3p(1− p))(µA − µB)

2

+ 6
(
σ2
YA

− p(σ2
YA

− σ2
YB

)
)]}

,

(3.54)

where σ2
Ym

and ⟨Y ′
m

4⟩ are the variance and the fourth order central moment of the m− th

mode of the mixture and are defined through Eqs. 3.13 and 3.14. Eqs. 3.53 and 3.54 indicate

that the PDF of the mixture (i) is non-symmetric (SkY ̸= 0) and (ii) can be leptikurtic

(κY > 3) or platikurtic (κY < 3), depending on model parameters, even as each GSG mode
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is symmetric (SkYm = 0) and meso- or leptokurtic (κYm ≥ 3, with κYm → 3 when Um

is a deterministic constant, see Section 3.2). The extent of the deviation of a GSG-MIX

distribution from its unimodal GSG counterpart depends on the difference between the

component means, µA − µB, and variances, σ2
YA

− σ2
YB

.

Fig. 3.3 provides an appraisal of the impact of the model parameters on the main traits

of fY (y) and on the associated statistical moments. Here, for illustration purposes, we set

µA = 2.5, µB = 0.5, σ2
GA

= 0.15, and σ2
GB

= 0.05. We consider Um(x) as lognormally

distributed, i.e., Um ∼ logN(0, (2 − αm)2), αm ∈ (0, 2) being the shape parameter of

the m − th component. A GSG-MIX formulation embedding such a distributional form

of the subordinator tends to a GMIX model if αm → 2 (m = A,B), i.e., each mode of

the mixture is described by a Gaussian distribution. Otherwise, non-Gaussian traits of

each component are heightened as αm departs from 2. The complete set of equations

obtained upon this choice of Um are reported in Appendix E. Previous applications of a

unimodal GSG model relying on a lognormal subordinator yield accurate interpretations

of the statistical behavior of environmentally relevant variables such as, e.g, porosity (Riva

et al., 2015a; Guadagnini et al., 2018), electrical resistivity (Li et al., 2022), gas permeability

(Siena et al., 2019), and mineral surface roughness (Siena et al., 2020). In the latter cases,

documented values for αm are in the range 1.3 − 1.9. Fig. 3.3.A depicts the PDF of Y

evaluated for different values of the proportion coefficient, p, upon setting αA = 1.5 and

αB = 1.7. Analytical results corresponding to the GMIX model constituted by the Gm fields

underlying the GSG-MIX model are also depicted as dashed curves. Similar to their GMIX

counterparts, the GSG-MIX PDFs exhibit two peaks (centered at µA and µB, respectively)

and a local minimum comprised therein. Figs. 3.3.B-C illustrate the dependence of odd and

even order statistical moments of Y on the proportion coefficient, respectively. The mean of

Y increases linearly with p. The variance displays a quadratic dependence on p and attains a

maximum at p = (1+β)/2, with β = (σ2
YA

−σ2
YB

)/ (µA − µB)
2. The skewness of Y vanishes

for pSk=0
1 = 0 (i.e., Y = YB), p

Sk=0
2 = 1 (i.e., Y = YA), and pSk=0

3 = (1+3β)/2. The PDF of

Y is right-skewed for p ∈ (0, pSk=0
3 ) and left-skewed for p ∈ (pSk=0

3 , 1). If |β| > 1/3 the PDF
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is right- (β > 1/3) or left-skewed (β < 1/3) independent of p. The PDF is normokurtic (i.e.,

EκY = κY − 3 = 0) for pEκY =0
1 = 0, pEκY =0

2 = 1, and pEκY =0
3,4 = 1/2 + β ±

√
(1 + 6β2)/12,

leptokurtic for p ∈ (0, pEκY =0
3 ), p ∈ (pEκY =0

4 , 1), and platikurtic for p ∈ (pEκY =0
3 , pEκY =0

4 ).

It is otherwise leptokurtic regardless of p if |β| > (3 +
√
6)/3.

Figs. 3.3.D-F illustrate how deviations of each mode from a Gaussian behavior impact

on variance, skewness, and excess of kurtosis of the mixture for fixed value of the proportion

coefficient. The entity of deviations from Gaussianity are embedded in Eqs. 3.52, 3.53 and

3.54 through the statistical moment of the subordinator, ⟨U q
m⟩ (m = A,B; q = 2, 4). For

illustration purposes, we consider a lognormal subordinator and we set p = 0.2. Following

this choice of the subordinator, if αm → 2 (i.e., Ym tends to a Gaussian), ⟨U q
m⟩ → 1.

The variance of Y attains a minimum for ⟨U2
A⟩, ⟨U2

B⟩ → 1. This is consistent with the

observation that the GSG-MIX variance is always greater than its GMIX counterpart (depicted

as a dashed black line in Fig. 3.3.C), regardless of the value of p. The skewness of the PDF of

Y is minimized if ⟨U2
A⟩ → 1 and ⟨U2

B⟩ →
[
(1− p)(µA − µB)

2 + σ2
GA

(3− p)
]
/
[
(1− p)σ2

GB

]
and maximized if ⟨U2

A⟩ →
[
p(µA − µB)

2 + σ2
GB

(2 + p)
]
/(pσ2

GA
) and ⟨U2

B⟩ → 1 (yellow and

green circles in Fig. 3.3.E). The kurtosis of Y depends on both ⟨U2
m⟩ and ⟨U4

m⟩. It attains a

minimum when at least one of the components tends to a Gaussian (i.e., ⟨U q
m⟩ → 1; yellow

circle in Fig. 3.3.F). In particular, κY is minimized along ⟨U q
h⟩ → 1 (q = 2, 4), with h = A

if p < 0.5, h = B otherwise.

3.4.1 Spatial increments of a Generalized sub-Gaussian mixture

We start from the formulation of the PDF of spatial increments obtained in Section 3.3.1

and rendered by Eq. 3.43. Here, we replace fYm1 ,Ym2
(y1, y2) with the bivariate GSG PDF

defined through Eq. 3.9. Similar to the GMIX case detailed in Section 3.3, we assume second-

order stationarity of all fields (i.e., CI(x1,x2) = CI(s); ρG(x1,x2) = ρG(s)). Under these
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Figure 3.3: (A) Probability density functions (PDFs), fY (y), of the GSG-MIX model evaluated

considering a lognormal subordinator (Eq. E.1) upon setting µA = 2.5, µB = 0.5, σ2
GA

= 0.15,

σ2
GB

= 0.05, αA = 1.5, αB = 1.7 and four values of p. Analytical expression of the GMIX PDFs

constituted by the Gm fields underlying the GSG-MIX model are also reported as dashed lines.

GSG-MIX statistical moments of (B) odd order, µY (Eq. 3.33) and SkY (Eq. E.3), and (C) even

order, σ2
Y (Eq. E.2) and EκY = κY − 3 (κY defined by Eq. E.4), are plotted versus p. Circles

depicted in (B) and (C) correspond to statistical moments of the PDFs represented in (A). Contour

plots of (D) variance, (E) skewness, and (F) excess of kurtosis as a function of αA and αB for fixed

value of the proportion coefficient, p = 0.2. Minimum and maximum values attained by σ2
Y , SkY ,

and EκY are depicted as yellow and green circles, respectively.

assumptions, Eq. 3.7 yields the PDF of ∆Y (s) as

f∆Y (∆Y ) =
p2 + CI(s)√

2πσGA

∫ +∞

0

∫ +∞

0

fUA1
(u1)fUA2

(u2)

u1u2r
e
− ∆y2

2r2σ2
GA du2du1

+
(1− p)2 + CI(s)√

2πσGB

∫ +∞

0

∫ +∞

0

fUB1
(u1)fUB2

(u2)

u1u2
e
− ∆y2

2r2σ2
GB du2du1

+
p(1− p)− CI(s)√

2π

∫ +∞

0

∫ +∞

0

fUA1
(u1)fUB2

(u2)

u1u2v
e−

(∆y−µA+µB)2

2v2 du2du1

+
p(1− p)− CI(s)√

2π

∫ +∞

0

∫ +∞

0

fUA1
(u1)fUB2

(u2)

u1u2w
e−

(∆y+µA−µB)2

2w2 du2du1

(3.55)

with r =
√
u21 + u22 − 2ρGmu1u2, v =

√
σ2
GA

u21 + σ2
GB

u22, and w =
√
σ2
GB

u21 + σ2
GA

u22.
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The statistical moments of ∆Y can be evaluated from Eq. 3.55. The second and fourth

order moment of incremental values respectively read

⟨∆Y 2⟩ = 2
{
p2σ2

GA

(
⟨U2

A⟩ − ⟨UA⟩2ρGA

)
+ (1− p)2σ2

GB

(
⟨U2

B⟩ − ⟨UB⟩2ρGB

)
+ p(1− p)

[
(1− ρI)(µA − µB)

2 + σ2
GA

(
⟨U2

A⟩ − ⟨UA⟩2ρIρGA

)
+ σ2

GB

(
⟨U2

B⟩ − ⟨UB⟩2ρIρGB

)]}
,

(3.56)

⟨∆Y 4⟩ = 6
{
p2σ4

GA

[
⟨U4

A⟩ − 4⟨UA⟩⟨U3
A⟩ρGA

+ ⟨U2
A⟩2(1 + 2ρ2GA

)
]

+ (1− p)2σ4
GB

[
⟨U4

B⟩ − 4⟨UB⟩⟨U3
B⟩ρGB

+ ⟨U2
B⟩2(1 + 2ρ2GB

)
]

+ p(1− p)ρI

[
σ4
GA

(
⟨U4

A⟩ − 4⟨UA⟩⟨U3
A⟩ρGA

+ ⟨U2
A⟩2(1 + 2ρ2GA

)
)

+ σ4
GB

(
⟨U4

B⟩ − 4⟨UB⟩⟨U3
B⟩ρGB

+ ⟨U2
B⟩2(1 + 2ρ2GB

)
)]}

+ 2
{
p(1− p)(1− ρI)

[
(µA − µB)

4 + 6(µA − µB)
2
(
σ2
GA

⟨U2
A⟩+ σ2

GB
⟨U2

B⟩
)

+ 3
(
σ4
GA

⟨U4
A⟩+ σ4

GB
⟨U4

B⟩+ 2σ2
GA

σ2
GB

⟨U2
A⟩⟨U2

B⟩
)]}

(3.57)

where ρI = CI/σ
2
I (σ2

I = p(1−p) being the variance of I) is the (spatial) correlation of I(x).

The analytical expression of the kurtosis of incremental values, κ∆Y = ⟨∆Y 4⟩/⟨∆Y 2⟩2, can

be readily obtained from Eq. 3.56 and Eq. 3.57.

Recalling that CY = σ2
Y −γY (γY = ⟨∆Y 2⟩/2 being the variogram of Y ), the covariance

of Y is obtained from Eq. 3.56 as

CY =


σ2
Y if s = 0,

p2CYA
+ (1− p)2CYB

+ CI

[
(µA − µB)

2 + CYA
+ CYB

]
if s > 0,

(3.58)

Here, CYm is the covariance of the m− th component of the mixture given by Eq. 3.21. The

covariance CY is discontinuous at the origin, i.e., it exhibits a nugget effect

ν = pσ2
GA

σ2
UA

+ (1− p)σ2
GB

σ2
UB

, (3.59)

at s = 0. Here, σ2
Um

= ⟨U2
m⟩ − ⟨Um⟩2 (m = A,B) is the variance of Um(x). Hence, the

variogram of Y , γY , can be evaluated as

γY = ν + p2⟨UA⟩2γGA
+ (1− p)2⟨UB⟩2γGB

+ (µA − µB)
2γI

+ p(1− p)
[
⟨UA⟩2(1− ρIρGA

) + ⟨UB⟩2(1− ρIρGB
)
]
,

(3.60)
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where γGm = σ2
Gm

(1− ρGm) is the variogram associated with the Gaussian field underlying

each component of the mixture; and γI = p(1 − p)(1 − ρI) is the variogram of I. The

integral scale of the mixture, IY , is evaluated upon integrating the spatial correlation of Y ,

ρY = CY /σ
2
Y . This yields

IY =
1

σ2
Y

{
p2σ2

GA
⟨UA⟩2λGA

+ (1− p)2σ2
GB

⟨UB⟩2λGB

+ p(1− p)
[
(µA − µB)

2λI + σ2
GA

⟨UA⟩2λeq
I−A + σ2

GB
⟨UB⟩2λeq

I−B

]}
.

(3.61)

Here, λGm (m = A,B) and λI are the correlation lengths of Gm and of I, respectively,

and λeq
I−m =

∫∞
0 ρIρGmds is a representative length scale. The latter can be viewed as a

measure of the way the strength of the correlation of Gm is modulated by the action of

the correlation of the random indicator field (or vice versa) in a representation of Y as a

bimodal random field.

Fig. 3.4.A illustrates the effect of model parameters on the main traits of the PDF of

incremental values and on the variogram of Y . As in Section 3.4, we assume a lognormal

distribution for the subordinator (see Appendix E) and set p = 0.2, µA = 2.5, µB = 0.5,

σ2
GA

= 0.15, and σ2
GB

= 0.05. For the purpose of our illustration, we consider an exponential

model for ρGm and ρI (i.e., ρGm = e−s/λGm and ρI = e−s/λI ). The PDFs of ∆Y are evaluated

through Eq. E.5 at various lags upon setting αA = 1.5, αB = 1.7, λGA
= 10, λGB

= 20,

and λI = 7. Corresponding GMIX PDFs (Eq. 3.44) are also depicted (dashed curves) for

completeness. Similar to the GMIX case, the GSG-MIX PDFs are (i) symmetric and (ii)

characterized by a central dominant peak (located at ∆y = 0) and two secondary peaks

at ∆y ≈ ±(µA − µB). The height of the central peak is controlled by the first two terms

in Eq. 3.55. The third and fourth term in Eq. 3.55 otherwise govern the height of the

two secondary peaks. These terms are in turn weighted on the covariance of the indicator,

CI , which drives the relative proportion between the central and the lateral peaks. As s

increases, the relative importance of the secondary peaks increases at the expenses of the

dominant peak.

Figs. 3.4.B-E document the effect of model parameters on γY and IY . Fig. 3.4.B depicts

analytical variograms evaluated through Eq. E.9 for different combinations of αA and αB



3.5. GSG PARAMETER ESTIMATION 55

(here, we consider αm = 1.0, 1.5, 1.9 with m = A,B). These values correspond to highly-,

mildly- and quasi-Gaussian modes, respectively. Consistent with Eq. 3.52 and Eq. 3.59,

variograms associated with lower values of αm attain greater sills and are characterized by

a higher nugget, ν. The latter increases linearly with p (see Fig. 3.4.C) and vanishes if

the two components are Gaussian (i.e., if ⟨U2
A⟩, ⟨U2

B⟩ → 1; yellow point in Fig. 3.4.D). The

largest value for the nugget is observed when the two components deviate the most from

the Gaussian case (green point in Fig. 3.4.D). The behavior of IY with p is depicted in

Fig. 3.4.C for fixed values of the shape parameter of the subordinator associated with each

mode. Here, we set αA = 1.5 and αB = 1.7 for illustration purposes. Analytical results

associated with the GMIX scenario are also depicted. We note that resting on an exponential

model for the correlation structures of Gm and I yields a value of λeq
I−m (Eq. 3.61) that is

proportional to the harmonic mean of λGm and λI (i.e., λeq
I−m = (λGmλI)/(λGm + λI)). On

the basis of Eq. 3.61, one can note that IY is always lower for the GSG-MIX than for the

GMIX model, regardless of the value of p. Therefore, IY is maximized if both components

tend to a Gaussian distributions (green point in Fig. 3.4.E). The value of IY is equal to λYB

and λYA
for p = 0 and p = 1, respectively, λYm being the correlation scale of each mode

(Eq. 3.23). Within the range p ∈ (0, 1), IY is either comprised between λYA
and λYB

or

is lower/greater than these. For fixed values of µm and σ2
Ym

, the correlation length of the

mixture attains a maximum (if λGA
< λI and λGB

< λI) or a minimum (if λI < λYA
and

λI < λGB
). Otherwise, if λI ≤ λGA

and λI ≥ λGB
or λI ≥ λGA

and λI ≤ λGB
, IY exhibits

maximum and minimum values at the two boundaries (i.e., for p = 0 and p = 1).

3.5 GSG parameter estimation

As the GSG model captures the behaviors of both the random function Y ′(x) and its incre-

ments ∆Y (s), it allows estimating mode parameters either from sample statistics of Y ′(x)

alone or sample statistics of both Y ′(x) and ∆Y (s) at multiple lags. In the following, we

briefly illustrate how to estimate GSG parameters on the basis of Y ′(x) (method MOM A),

or Y ′(x) and ∆Y (s) (method MOM B) relying upon the method of moments. A detailed
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Figure 3.4: (A) Probability density functions (PDFs), f∆Y (∆y), of the GSG-MIX model evaluated

considering a lognormal subordinator according to Eq. E.5 setting p = 0.2, µA = 2.5, µB = 0.5,

σ2
GA

= 0.15, σ2
GB

= 0.05, αA = 1.5, αB = 1.7, λA = 10, λB = 20, and λI = 7 for four different

lags. Analytical expression evaluated according to the GMIX model (Eq. 3.44) are also reported as

a dashed lines. (B) variogram of Y , γY , evaluated for different combinations of αA and αB . (C)

integral scale, IY (Eq. E.11), and nugget effect, ν (Eq. E.10), of the mixture against p. Contour

plots of (D) ν and (E) IY as a function of αA and αB . Minimum and maximum values attained

by ν and IY are depicted as yellow and green circles, respectively.

description of GSG parameter estimation schemes is provided in Riva et al. (2015a).

3.5.1 Parameter estimation based on Y ′ sample data (MOM A)

To estimate GSG parameters based on sample data of a random function Y ′(x), ⟨Y ′2⟩ and

⟨Y ′4⟩ are replaced by corresponding sample moments, MY ′
2 andMY ′

4 , inferred from the data.

Here, we refer to the formulation of the GSG with a lognormal subordinator, as detailed in

Appendix D. Considering a lognormal distributional form for the subordinator, MOM A

yields the following system of equation:
α̂ = 2− 1

2

√
ln

MY ′
4

3(MY ′
2 )

2 ,

σ̂2
G = MY ′

2 e
− 1

2
ln

MY ′
4

3(MY ′
2 )

2

.

(3.62)
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The estimated shape and scale parameters, α̂ and σ̂G, enable one to fully determine the

marginal PDF expression of Y ′(x) in Eq. D.2. On the other hand, Y ′(x) sample data alone

are not sufficient to estimate ρG, without which the covariance structure of Y (x) remains

undefined.

3.5.2 Parameter estimation based on Y ′ and ∆Y sample data

(MOM B)

All GSG parameters embedded in Eq. D.2 and D.6 can be estimated based on sample data

of the random function Y ′(x) and of its increments, ∆Y (s). Again, we refer here to the

lognormal subordinator case. For any given lag s, one approximates ⟨Y ′2⟩, ⟨∆Y 2⟩ and

⟨∆Y 4⟩ by their corresponding sample moments MY ′
2 , M∆Y

2 , and M∆Y
4 , derived from the

available data. Substituting these into Eqs. D.4, D.7 and D.8 yields
MY ′

2 = e2(2−α̂)2 σ̂2
G,

M∆Y
2 = 2σ̂2

Ge
(2−α̂)2

[
e(2−α̂)2 − ρ̂G

]
,

M∆Y
4 = 6σ̂4

Ge
4(2−α̂)2

[
e4(2−α̂)2 + 1− 4e4(2−α̂)2 ρ̂G + 2ρ̂2G

]
.

(3.63)

Note that values of the scale and shape parameters are expected to be (approximately)

constant with s, while the estimated Gaussian field correlation, ρ̂G, typically decreases as s

increases.

3.6 Mixture parameter estimation

Estimation of parameters associated with mixture models can be performed through soft-

or hard-clustering of data. The former approach consists in assigning each observation to a

components of the mixture with a given probability rather than to a unique mode. Other-

wise, hard clustering of the data is required to assess incremental values associated (i) with

each m − th region and (ii) with the indicator. These data are necessary to estimate the

parameters characterizing the correlation structure of Ym (m = A,B) and of I embedded

in the formulation of f∆Y (∆y). We propose two different schemes for the estimation of
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mixture parameters. We consider a standard Expectation-Maximization (EM) algorithm to

estimate parameters included in the GMIX model formulation. We then consider an esti-

mation workflow grounded on a Bayesian classification approach that is initialized starting

from our prior knowledge of the mechanisms driving the dissolution reaction. This approach

is designed to embed the estimation of GMIX and GSG-MIX model parameters. A transpar-

ent assessment of the parameter estimation strategies is then provided though application

of the designed workflows to synthetically generated GMIX and GSG-MIX fields.

3.6.1 Parameter estimation based on Expectaction Maximization

We infer the 5 parameters of Y (i.e., µA, µB, σ
2
A, σ

2
B, and p in Eq. 3.31) by relying on a

well-established Maximum Likelihood (ML) approach, implemented through an iterative EM

procedure (see, e.g., McLachlan and Krishnan, 2008; Gournelos et al., 2020). According to

the latter, each iteration consists of (i) the Expectation step (E-step), aimed at evaluating

the (posterior) probability that each observation belongs to the mixture components, on

the basis of an initial GMIX parameter set (or the parameter set obtained at the previ-

ous iteration); and (ii) the Maximization step (M-step), which uses the information from

the E-step to estimate the GMIX parameter set maximizing the likelihood function. The

algorithm stops when the increase of the likelihood function between two subsequent iter-

ations is smaller than a prescribed threshold. Note that EM suffers from the typical issues

associated with ML approaches, i.e., uniqueness, identifiability, and stability (Carrera and

Neuman, 1986). To address the issue of the sensitivity of results to parameter initialization,

application of the EM algorithm is repeated n times, each with a new set of initial parame-

ters. Estimates of model parameters are then considered to correspond to the parameter set

providing the highest likelihood among the n runs (McLachlan and Krishnan, 2008). The

number of runs, n, is case specific and must be set through a stability analysis of the algo-

rithm output. For the scenario considered in this PhD thesis, the selection of n = 40 allows

obtaining stable estimates of µm, σ2
m, and p. Note that this procedure can be employed to

obtain a fuzzy (or soft) clustering of the data: each observation is assigned to each mixture
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component with a given probability rather than to a unique component, as it would result

from a hard-clustering approach. Hence, we refer here to a hard clustering approach by

assigning each observation to the mixture component with which the largest posterior PDF

is associated. Then, we compute spatial increments ∆Ym (m = A,B) within the regions as-

sociated with each Gaussian component and the corresponding sample correlation function

ρ̂m(s). An estimate of λm can obtained by fitting ρ̂m(s) with a suitable theoretical model.

An estimate of λI can be obtained according to the following two approaches:

• method 1 - evaluate spatial increments associated with the indicator random field, I;

fit ρ̂I(s) with a suitable theoretical model (e.g., an exponential model or other);

• method 2 - evaluate the mean length of the indicator field, lA, and estimate λI as

λ̂I = (1− p)lA (Lu and Zhang, 2002).

3.6.2 Reliability of the EM algorithm

Multiple realizations of synthetic GMIX fields are generated to provide a transparent as-

sessment of the reliability of the parameter estimation strategy described in Section 3.6.1.

Details about the generation procedure are offered in Appendix F. Our analysis relies upon

N = 100 synthetic fields. Each realization is treated as a dataset to which the parameter

estimation procedures can be applied. An exemplary realization of the GMIX is depicted in

Fig. 3.5.A. Comparison between estimated and input model parameters enables us to assess

the reliability of the proposed inference methodology. Fig. 3.5.B depicts the binary cate-

gorical (i.e., indicator) field that is inferred from the EM and clustering procedure applied

to the synthetic dataset in Fig. 3.5.A. Given the indicator field and the ensuing sample

correlation function ρ̂I(s), an estimate of λI can then be obtained according to method 1

and/or 2 introduced in Section 3.6.1. Note that one of the categories needs to be charac-

terized in terms of its mean length, lm, when considering method 2. The white portion of

the domain (category B) in Fig. 3.5.B corresponds to the so-called background category. In

a categorical random field, this term is commonly adopted to identify the category that fills

in the space within which other categories are distributed. As an example, in geostatistical
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applications associated with hydrogeological scenarios, categories are represented by the

various lithofacies of a depositional environment and the background geomaterial is typi-

cally associated with the category characterized by the lowest deposition energy (Carle and

Fogg, 1997). In our datasets, we evaluate the mean length lA of the category that is not

in the background (black regions in Fig. 3.5.B, associated with category A) by averaging

over all of the connected sets of A (i) the length of the sides of the bounding box (see green

lines in Fig. 3.5.B) and (ii) the diameter of the inscribed maximal balls (yellow circle in

Fig. 3.5.B).
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Figure 3.5: (A) Synthetic realization of a GMIX field with the set of parameters used in Fig. 3.1;

(B) Indicator field associated with the GMIX realization depicted in (A). Green lines and red circles

represent the sides of the bounding box and the inscribed maximal balls for a connected cluster,

respectively.

Fig. 3.6 collects values of GMIX parameters estimated for all the N = 100 synthetic

realizations. The average of the estimates is always satisfactorily close to the corresponding

input value. The mean squared relative deviation (MSRD) between input and estimated

parameter values is evaluated over the whole collection of realizations. On the basis of

this metric one can note that estimates are overall more accurate for (i) the parameters

of the Gaussian distribution associated with category B (except for the mean value), that

occupies a larger portion of the domain as compared to category A and (ii) the correlation

scale λ̂I obtained via method 2 as compared against its counterpart based on method 1. In
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light of these results, method 2 is considered for the estimation of λI in the context of the

experimental datasets analyzed in Section 4.2.
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Figure 3.6: Results of the GMIX parameter estimation approach applied on the collection of syn-

thetic datasets generated with the set of parameters used in Fig. 3.2. Mean of the estimates (dashed

lines), input values used in the generation (solid lines) and mean squared relative deviation (MSRD)

between input and estimated parameter values are also reported.

3.6.3 Parameter estimation based on Bayesian Classification

We design a custom algorithm grounded on a Bayesian classification approach to estimate

parameters embedded in the GMIX and GSG-MIX modeling frameworks. As the GMIX is a

specific case of the more general GSG-MIX model, the estimation procedure is here reported

in details considering the latter. Prior to application to real data, the performance of the
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designed computational scheme is assessed on synthetic datasets. These are generated to re-

semble typical geometries observed for experimental dissolution rate data (see Appendix F).

A schematic representation of the application of the parameter estimation workflow to a

synthetic GSG-MIX field is offered in Figs. 3.8. We start by setting a random path visit-

ing all k = 1, ..., Nc cells, Nc being the total number of data (Fig. 3.8.B). At each k step,

the algorithm assigns a given observation y = Y (xk) to the category ωm (m = A,B) for

which a discriminant function, gm(y), is maximized. Relying on a Bayesian classifier with

minimum-error-rate, the latter is considered as proportional to the posterior probability

P (ωm|y) (Duda et al., 2000; James et al., 2013), i.e.,

gm(y) ∝ p(y|ωm)P (ωm). (3.64)

Here, p(y|ωm) is the likelihood of class ωm given y and P (ωm) is the prior probability of

ωm. Considering each mode as distributed according to a GSG and making use of Eq. 3.50,

Eq. 3.64 yields

gm(y) ∝ P (ωm)√
2πσGm

∫ ∞

0
fUm(u)e

− (y−µm)2

2σ2
Gm

u2 du

u
, (3.65)

where P (ωA) = p and P (ωB) = 1 − p (see Fig. 3.8.C). If the subordinator associated with

each region tends to a deterministic constant (i.e., the GSG-MIX tends to a GMIX), Eq. 3.65

can be simplified to

gm(r) = −1

2
(r − µm)2σ−2

m − 1

2
lnσ2

m + logP (ωm). (3.66)

The parameter set is then updated for the (k+1)− th step. For the general GSG-MIX case,

the parameter estimation scheme depends on the choice of the distributional form of the

subordinator. In the following, we describe the estimation procedure considering the set of

GSG-MIX equations derived in Appendix E and corresponding to a lognormal subordinator

Um. At each k step, we rely upon method MOM A (see Section 3.5.1) to estimate parameters

associated with each m− th component of the mixture, Ym, and embedded in Eq. E.1 (i.e.,

p, µm, σGm , αm with m = A,B). Setting the analytical first order raw moments of (i) I and

of (ii) Ym, and the (iii) second and (iv) fourth order central moments of Ym equal to their
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sample counterparts yields the system of equations

p̂(k,n) = ⟨I(k,n)⟩,

µ̂
(k,n)
m = ⟨Y (k,n)

m ⟩,

α̂
(k,n)
m = 2− 1

2

√
ln

M
(k,n)
m,4

3
(
M

(k,n)
m,2

)2 ,

σ̂
(k,n),2
Gm

= M
(k,n)
m,2 e

− 1
2
ln

M
(k,n)
m,4

3

(
M

(k,n)
m,2

)2

,

(3.67)

where n = 1, ..., Nr is the number of iteration of the algorithm. For the GMIX case, the

system of equations 3.67 simplifies to
p̂(k,n) = ⟨I(k,n)⟩,

µ̂
(k,n)
m = ⟨Y (k,n)

m ⟩,

σ̂
(k,n),2
m = M

(k,n)
m,2 .

(3.68)

At each repetition, we start from the parameter set associated with the n − 1 replica.

We stop the iterations when convergence of the proportion coefficient, p, is attained (see

Fig. 3.8.E). This choice for the exit flag of the algorithm is grounded on the results of the

application of the scheme to synthetic cases, as detailed in Section 3.6.4. The Bayesian

classifier also provides as output the posterior probability that y belongs to class ωm. This

is defined as

P (ωm|y) = p(y|ωm)P (ωm)

p(y)
, (3.69)

where p(y) is evaluated via Eqs. E.1 and 3.31 for the GSG-MIX and GMIX case, respectively

(Fig. 3.8.E). After the last repetition, we evaluate spatial increments associated with each

of the two regions, i.e., Y
(Nr)
A (x) = I(Nr)(x) · Y (x) and Y

(Nr)
B (x) =

(
1− I(Nr)(x)

)
· Y (x).

We then estimate the correlation of the underlying Gaussian field of each mode, ρ̂Gm (m =

A,B), by setting M∆Y
(Nr)
m

2 = ⟨∆Y
(Nr),2
m ⟩. This yields

ρ̂Gm =
1

⟨Um⟩2

⟨U2
m⟩ − M∆Y

(Nr)
m

2

2σ2
Gm

, (3.70)
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where M∆Y
(Nr)
m

2 is the sample second order moment of incremental values of the m − th

component of the mixture. Note that Eq. 3.70 simplifies to ρ̂m = 1−M∆Y
(Nr)
m

2 /2σ2
m for the

GMIX particular case. Finally, we evaluate the increments of the indicator field associated

with the last repetition, I(Nr), and estimate its correlation as ρ̂I = 1−∆M I(Nr)

2 / [2p̂(1− p̂)]

(Fig. 3.8.F).

First guess values of the model parameter set are required to initialize the algorithm.

These are obtained upon relying on a preliminary classification of the field. The more

accurate the latter, the fewer the number of repetitions required to achieve convergence

of the algorithm output. We perform the preliminary classification starting from our prior

knowledge on the physical mechanisms driving the dissolution reaction. We associate regions

characterized by high rates with spreading of younger dissolution stepwaves across the

crystal surface. Otherwise, areas characterized by low rates correspond to spatial locations

where the reaction is governed by the propagation and/or merging of older dissolution

stepwaves. Identification of pit boundaries and/or steps in topography images z(x, t) and

z(x, t+∆t) is therefore instrumental to perform a preliminary classification of R. Detecting

such features relying on phase contrast images, ϕ(x, t), is generally more straightforward

than employing the ensuing topography maps. This is related to the nature of phase contrast

signals, which represent the shift in the oscillation phase between the excitation force and

the cantilever response during scanning in tapping mode. This effect is enhanced where

the crystal surface experiences abrupt changes in the topographic profile (see, e.g., Garcıa

and Perez, 2002 and references therein), i.e., where a younger dissolution pulse occurs.

Otherwise, if imaging relies upon contact AFM, one could consider deflection or friction

signals to perform such preliminary classification. Therefore, we extract profiles of steps

associated with MP spreading at different times from phase signals and consider the area

between these as the first estimate of class ωA (high rates; see Fig. 3.7.A-B). Otherwise, we

isolate portions of the surface where dissolution is controlled by low-rate mechanisms (i.e.,

merging of older stepwaves, shallow etch pits dynamics or vertical retreat) and identify (as

first guess) ωB as the area within which the dissolution pattern does not change between
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two consecutive observation times (see Fig. 3.7.A-B). This procedure enables one to obtain

an initial indicator field (Fig. 3.7.C) and, in turn, initial regions A and B (Fig. 3.7.D).

RA,0(x,ti)

RB,0(x,ti)

I0(x,ti)φ(x,ti)

φ(x,ti+1)

MP spreading
step merging

(A)

(B)

(C)

(D)

Figure 3.7: (A-B) Identification of pit margins and terraces/step merging regions in AFM phase

shift signals, ϕ(x, t), acquired at subsequent times by relying upon AFM tapping mode. Associated

initial (C) indicator field, I0, and (D) rates of region m, Rm,0 (m = A,B).

3.6.4 Reliability of the Bayesian classification algorithm

The methodology for parameter estimation is tested on synthetic fields generated on a

450 × 450 grid. Such a grid size is selected to be similar to the one of experimental data.

The mixture is obtained by generating (i) two spatial random fields distributed according to

a unimodal GSG and (ii) an indicator field resembling geometries that are typically observed

for experimental dissolution rate fields. The latter is constructed to resemble the typical

rhombohedral shape of stepwaves emanated from an etch pit (Fischer and Lüttge, 2018).

Additional information on the generation scheme are offered in Appendix F. A schematic

representation of the synthetic field obtained is depicted in Fig. 3.8.A. The fields used for the

algorithm initialization are shown in Fig. 3.8.B. We mimic a classification error that could

be performed when dealing with laboratory data. For region A, we artificially introduce

a slight misclassification by selecting (i) a region having a lateral extent corresponding to
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∼ 60% (black area in Fig. 3.8.A) of the real one (orange pattern in Fig. 3.8.A) and (ii) a

small portion (∼ 1%) of region B (blue pattern in Fig. 3.8.A) located next to the edges of

the actual region A. On the other hand, region B is initialized by selecting a random region

with an areal extent of ∼ 7% of the real region B. Such a choice is grounded on our ability to

preliminary identify mechanistic processes contributing to high and low rates. Identification

of region B is generally straightforward because regions that are only experiencing normal

surface retreat, i.e., terrace regions, are associated with the lowest dissolution rate (see,

e.g. Brand et al., 2017, Bibi et al., 2018, and Bollermann and Fischer, 2020) and are

therefore always attributed to the lowest-mean component of the mixture. On the other

hand, even as younger dissolution stepwaves could be reasonably associated with high rates,

it is also possible that etch pits characterized by a depth comprising only a few layers

and/or older dissolution stepwaves are characterized by a high material flux. Therefore,

we introduce the above-mentioned misclassification to resemble this additional difficulty

in the preliminary assessment of region A. The results of the algorithm are compared

with generation parameters in Fig. 3.8.D. Here, we plot the trend of p̂, µ̂m, α̂m, and σ̂Gm

versus the number of repetitions, n, and represent the reference generation parameters as a

dashed line. Errors between estimated and real values are evaluated considering the results

obtained at the last repetition of the algorithm and are also included in Fig. 3.8.D. We

notice that parameters associated with the highest error are µB, σGA
, and αA. The error

associated with µB is related to the distance between the components means, (µA−µB). If

this distance is relevant, assigning to region B some cells that actually belong to region A

induces an increases of µ̂B, even as the error associated with the estimation of p is low (e.g.,

errp = 0.53% in this case). Otherwise, the estimation error related to these two parameters

can be attributed to the a low sample size of region A. Estimation of αA and σGA
relies on

higher order statistical moments of region A, i.e., MA,2 and MA,4 in Eq. 3.67. Due to the

small lateral extent of region A, even a small error in p̂ results in including outliers in region

A. This, in turns, reduces the reliability of (sample) higher order moments associated with

region A and results in higher error in parameter estimation. Still, the overall estimation
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error of these parameters remains below 10%.

Analysis of the dependence of the results on the number of repetitions of the algorithm

documents that the parameter set characterizing each component Ym does not change any-

more after convergence of p̂ (Fig. 3.8.D). Therefore, we stop replicating the algorithm upon

reaching variations of p̂ that are smaller than 2%. The performance of the algorithm is

also tested on synthetic fields generated starting from the same Ym distributions and differ-

ent geometrical arrangements of the indicator (not shown). These resemble other surface

pattern evolution types, such as the nucleation of multiple smaller etch pits. The results

obtained are of similar quality as those shown here.
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Figure 3.8: Schematic representation of the parameter estimation algorithm resting upon a

Bayesian Classification approach. The estimation workflow includes (A) a preliminary classification

of the field for algorithm initialization; (B) setting a random path visiting all N cells; (C) assigning

each cell to a region and update of model parameters for the next step; (D) replication of the classi-

fication algorithm until parameter stability with the number of repetition, n; (E) evaluation of the

posterior probability field associated with the last repetition, NR; and (F) evaluation of correlation

parameters of each m− th region, ρ̂Gm
, and of the indicator, ρ̂I .



4 Results

This Chapter illustrates the main experimental and modeling results of this PhD disser-

tation. The Chapter is structured as follows. Section 4.1 describes the application of the

GSG modeling framework introduced in Section 3.2 to characterize the spatial heterogene-

ity of rate fields obtained from a calcite sample subject to dissolution under diffusion-

controlled conditions (i.e., Setting 1, see Section 2.3.1). Section 4.2 illustrates the inter-

pretation through the GMIX model of a collection of rate fields obtained from AFM images

acquired through Setting 2 (see Section 2.3.2), i.e., under intermittent flowing conditions.

Section 4.3 includes the analysis of absolute rates evaluated from measurements of a calcite

sample whose surface is partially covered by an inert layer and acquired under continuous

flowing conditions (Setting 3, see Section 2.3.3). The heterogeneous behavior of associated

dissolution rate fields is interpreted upon relying on the GMIX model. A GSG-MIX based in-

terpretation of rate spectra associated with topographies of a freshly cleaved calcite sample

acquired under continuous flowing conditions is illustrated in Section 4.4.

69
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4.1 Results of experimental Setting 1

In the following, we discuss results obtained upon relying on experimental Setting 1 intro-

duced in Section 2.3.1. A freshly cleaved (non-masked) calcite sample is subject to dissolu-

tion under static conditions leading to the development of a diffusive boundary layer in the

close proximity of the sample surface. Imaging is performed in contact mode over a scanning

window of 6× 6 µm2 (comprising an area of 512× 512 pixels; pixel size dl = 11.7 nm). The

acquisition frequency is here set to fa = 1.7Hz, yielding a time interval ∆t = 5min between

subsequent frames. The contact time between the fluid and the sample is Tc1 = 30min, sim-

ilar to the dataset illustrated in Section 2.4.1 and Appendix A. Analysis of the spatial het-

erogeneity of associated dissolution rate fields is grounded on the Generalized sub-Gaussian

(GSG) modeling framework. The results reported in the following are illustrated in Siena

et al. (2021).

4.1.1 Evolution of calcite dissolution patterns

Fig. 4.1 depicts the AFM (friction) image acquired after a preliminary exposure of the calcite

surface to MilliQ water for 1 hour and 30 minutes. The observation time associated with

Fig. 4.1 is hereafter denoted as t = t0 and corresponds to the time immediately before the

renewal of the solution in contact with the mineral surface. The most evident feature is

the presence of precipitates superimposed to the crystallographic steps that can be seen

in the background. The formation of precipitates is compatible with the development of

a supersaturated zone within a boundary layer at the solid/fluid interface (Renard et al.,

2019). Fig. 4.2 collects the images acquired at a uniform time step (∆t = 5 min). Each plot

is associated with the time ti (i = 1, ..., 6) elapsed between the fluid replacement operation

and the end of the acquisition of the i− th image. The key features associated with these

results are illustrated in the following.

• At time t1 = 5 min (Fig. 4.2.A), the precipitates observed at time t0 have been dis-

solved and the underlying steps of the crystal become clearly visible. Several rhombic



4.1. RESULTS OF EXPERIMENTAL SETTING 1 71

1 µm

Figure 4.1: In situ AFM friction image acquired on a 6×6µm2 portion of the calcite sample surface

at t = t0, after 1 hour and 30 minutes of contact with stagnant MilliQ water.

monolayer pits (mP), whose appearance is typically associated with high undersatura-

tion, begin to develop (with particular reference to the wider terraces). The edges of

a large multilayer pit (hereafter denoted as MP1) are visible on the lower-right corner

of the image.

• Time t2 = 10 min (Fig. 4.2.B) is characterized by an increased density of mPs that have

also widened with respect to t1, new mPs nucleating at seemingly random locations

and in the center of the existing ones. A new multilayer pit (denoted as MP2) starts

to develop at the top left corner. Terrace steps on the surface appear to be stable.

• No newly formed mPs are detectable at time t3 = 15 min (Fig. 4.2.C). The existing

ones widen and coalesce, their shape mutating from rhombic to triangular. The acute

step of MP1 is expanding slowly, whereas MP2 has spread considerably along the

obtuse step direction and the margin of a third multilayer pit (MP3) is seen to invade

the domain of investigation right below MP2. The step profiles close to these two pits

begin to evolve.

• Most of the mPs are no longer visible at time t4 = 20 min (Fig. 4.2.D), as they are

essentially merged with other pits or with the edges of retreating steps. Compared

to the previous image, the shape of the step profiles has changed significantly and in

an irregular fashion, due to the progressive inclusion of mPs of differing sizes. The
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margin of a high step (visible along the top of the investigated region) seems to prevent

further spreading of the obtuse step [481̄]+ of MP2. The expansion of the [481̄]+ edge

of MP3 results in the merging of this MP with MP2.

• No isolated mPs can be seen at time t5 = 25 min (Fig. 4.2.E). The spreading of MPs

slows down considerably. Dissolution is basically occurring solely by step retreat.

• At time t6 = 30 min (Fig. 4.2.F) no relevant differences with respect to the pattern

observed at t5 can be seen, with the only exception of the evolution of the steps, the

distance between neighboring ones being generally reduced.

The dissolution pattern on the crystal surface is strongly related to the driving dis-

solution mechanisms detailed in Section 2.1, these being in turn affected by the calcite

concentration at the fluid/solid interface. The evolution described above is consistent with

the expected temporal increase of concentration within the boundary layer. As opposed

to what can be observed at t = t0 (Fig. 4.1), no precipitates are detected at t = t6. This

could suggest that local supersaturation of the boundary layer has not been attained yet.

Otherwise, this could also be ascribed to the effect of the scanning probe on the investigated

area, as the AFM tip may displace precipitates that are weakly connected to the surface (see

also Guren et al., 2020 and Renard et al., 2019). Spreading of MP1 takes place only along

the acute step and is characterized by a lower extent than what can be noted for MP2 and

MP3. Based on the behavior observed for MP2 at t3 and t4, we can assume that its growth

is limited by the presence of larger steps or pits, even as the overall width of our observation

window does not enable us to completely verify this hypothesis.

4.1.2 Evaluation of etch pit spreading rate

A measure of surface reactivity is given by the spreading rate (ν [nm s−1]) of the etch pits.

The latter can be estimated through Eq. 2.7 by considering the variation of the separation

distance between opposite sides of the pit within a given time interval. We rely on pairs of

consecutive images and consider all isolated (i.e., not aggregated) monolayer pits to obtain
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(A) t1 = 5 min (B) (C)
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1 µm

t2 = 10 min t3 = 15 min

t4 = 20 min t5 = 25 min t6 = 30 min

Figure 4.2: In situ AFM friction images acquired on a 6 × 6µm2 portion of the calcite sample

surface at regular time intervals of 5 min after t = t0. The edges of the multilayer etch pits (MP1,

MP2, and MP3) are highlighted, green and yellow lines representing the obtuse and acute steps

respectively.

an average value, ν̄, and the associated standard deviation, σν . Table 4.1 lists the results of

the evaluation of the spreading rate. As highlighted by Fig. 4.2, most of the mPs are short-

lived. As such, the number of elements upon which ν can be evaluated decreases sharply

over time, none of these structures being detected for t∗3 > 20min (with t∗j = ti + ∆t,

i = j = 1, ..., 5). The results listed in Table 4.1 show that ν̄ and σν monotonically decrease

in time, the observed values being consistent with those documented in previous experiments

concerning calcite {104} dissolution in MilliQ water (Guren et al., 2020; Harstad and Stipp,

2007). The rate of expansion of multilayer pits can be used as an additional element

according to which one can estimate the spreading rate on the investigated surface. Even as
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Time t∗1 t∗2 t∗3

Number of mPs 17 15 4

ν̄ [nm/s] 0.44 0.41 0.27

σν [nm/s] 0.11 0.08 0.05

Table 4.1: Mean, ν̄, and standard deviation, σν , of the spreading rate evaluated through Eq. 2.7 over

all isolated monolayer pits (mPs) at various times. No isolated mPs can be found in our experiments

for t4 > 20min.

they do not fall entirely within our observation domain (Fig. 4.2), these structures are more

persistent than their monolayer counterparts, thus enabling one to obtain at least a rough

estimate of step retreat velocity throughout the whole temporal window of the experiments.

The retreat velocity evaluated by considering the spreading rates of acute and obtuse edges

(denoted with yellow and green lines in Fig. 4.2, respectively) and then averaging these

over the three MPs, is depicted as a function of time in Fig. 4.3.A. Fig. 4.3.B illustrates

the location of the MP margins at various observation times. As opposed to what observed

for the shallow pits, the trend observed for these rates is not monotonically decreasing. It

increases sharply between t∗2 and t∗3, while decreasing abruptly for longer times. Consistent

with the findings of Harstad and Stipp (2007), MP spreading rates are considerably larger

than those listed in Table 4.1 for mP spreading rates.

4.1.3 Analysis and statistical modeling of dissolution rates

Fig. 4.4 depicts spatial maps of rates, R′(x, t∗), evaluated through Eq. 2.4 considering

consecutive pairs of topography images. Analysis of these results clearly highlights that (i)

values of R′ associated with MP spreading are much larger than their counterparts related

to mPs expansion and step retreat across the (overall) flat terrace in between the MPs (see

in particular Fig. 4.4.C); and (ii) the largest support spanned by sample PDFs of rates is

observed at an intermediate time, i.e., for R′(t∗4). Sample probability densities of R′ for each

of the sub-plots of Fig. 4.4 are depicted in Fig. 4.5. These PDFs exhibit common features,



4.1. RESULTS OF EXPERIMENTAL SETTING 1 75

3025201510
0

0.5

1

1.5

2

2.5 t1 = 5 min 

t2 = 10 min 

t3 = 15 min 

t4 = 20 min 

t5 = 25 min 

t6 = 30 min 

t* [ min ]

M
P 

sp
re

ad
in

g 
ra

te
 [ 

nm
 s-1

 ]
(A) (B)

Figure 4.3: (A) Spreading rate evaluated on the basis of the displacements (inferred from the

locations of multilayer etch pit (MP) margins at acquisition times ti with i = 1, ..., 6 in (B)) of acute

and obtuse steps of multilayer pits (MPs) versus time, t∗.

which have been detected also in previous studies (Bibi et al., 2018; Trindade Pedrosa

et al., 2019). These include (i) the presence of a dominant peak, eventually accompanied

by multiple local peaks; and (ii) a positive skewness. Consistent with our discussion about

Fig. 4.4, values of standard deviation tend to increase from t∗1 to t∗3 and then decrease

for longer times. We consider the statistical characterization of the spatial increments,

∆R, evaluated at various separation distances between pairs of locations. We consider

omnidirectional increments, i.e., we set s = |s|, deferring the analysis of possible anisotropic

behaviors to future studies. Fig. 4.7 depicts sample PDFs of incremental data for three

selected lags (s = 1, 10, and 100 dl). These distributions are generally more symmetric

than their counterparts associated with R′ (Fig. 4.5). It is clear that the shape of these

PDFs varies with separation distance, their peak becoming sharper with decreasing lag, a

feature which is common to corresponding results associated with a variety of other Earth

science variables (see, e.g., Guadagnini et al., 2018, Siena et al., 2020 and references therein).

All distributions are persistently leptokurtic, with κR′ ≫ 3 even at large lags (s = 100 dl).

We estimate GSG model parameters relying upon method MOM B detailed in Section 3.5.2.

Fig. 4.6 depicts estimated shape, α̂, and scale, σ̂G, parameters versus lag, s. As expected,

these parameters do not change significantly with s. We consider average values of α̂ and
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Figure 4.4: Spatial fields of dissolution rates, R′(x, t∗), evaluated for each consecutive pair of

topography images (taken at uniform temporal intervals ∆t = 5 min).

σ̂G (dashed lines in Fig. 4.6) to evaluate analytical GSG expressions.

The results related to the theoretical formulations of the GSG PDFs of R′ and ∆R with

parameters estimated through the method of moments show a remarkable agreement with

their sample counterparts (see Figs. 4.5 and 4.7, respectively). As an additional element to

support the analysis, we note that, while the method of moments is simple and straightfor-

ward in its application, parameter estimates obtained through ML applied on R′ and ∆R

data provide results of similar quality (not shown). Results obtained upon relying on a GEV

model, i.e.,

fGEV
R′ (r) =

1

σ

[
1 + k

(
r − µ

σ

)]−1− 1
k

e−[1+k( r−µ
σ )]

− 1
k

(4.1)

that has been adopted in previous works for the interpretation of rate spectra (Brand et al.,

2017; Emmanuel, 2014) are also depicted in Fig. 4.5 as a further term of comparison. Here,
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Figure 4.5: Sample probability densities (PDFs) (symbols) associated with the five reaction rate

datasets depicted in Fig. 4.4. Interpretive models based on GSG (Eq. D.2) and GEV (Eq. 4.1)

distributions are also depicted.

k, σ, and µ correspond to the shape, scale, and location parameter, respectively, and are

estimated through a classical ML procedure. Visual inspection of Fig. 4.5 suggests that

relying on a GEV model can provide results of similar quality to those that can be obtained

through the GSG model with reference to sample PDFs of R′. Otherwise, we note that

the GEV model does not include information about the statistical behavior of incremental

values, a feature which is naturally embedded in the GSG framework. The Kullback-Leibler

Divergence (Kullback and Leibler, 1951), DKL, is then employed to compare quantitatively

the performance of the two interpretive models. This metric provides a measure of the

amount of information lost by representing the empirical distribution associated with the

available data with a given theoretical model. Hence, low values of DKL correspond to
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Figure 4.6: GSG shape, α̂, and scale, σ̂G, parameters estimated by relying upon method MOM B

at (A) t∗1 = 10min, (B) t∗2 = 15min, (C) t∗3 = 20min, (D) t∗4 = 25min, and (E) t∗5 = 30min versus

lag. Average values are depicted as dashed lines.

high degrees of similarity between sample and modeled distributions. Table 4.2 lists the

results of this analysis, suggesting that the GSG model outperforms the GEV model for all

observation times, with the exception of t∗3 = 20min, where one can see that both analytical

models provide a good representation of the upper tail while the GEV captures the peak of

the sample PDF more closely that its GSG-based counterpart.

Fig. 4.8 depicts the temporal behavior of estimated shape (Fig. 4.8.A) and scale (Fig. 4.8.B)

parameters obtained for the GSG and GEV models. Shape parameters, α̂ and k̂, linked to

the tailedness of the distributions, respectively display a minimum and a maximum for

t∗ ≈ 15− 20 min. This pattern is consistent (for k̂) with the one exhibited by the spreading

rate of the MPs (Fig. 4.3.A), the corresponding results documented for α̂ being characterized

by a trough, reflecting symmetrically the temporal behavior of k̂. Therefore, these results

suggest that the time evolution of these structures has a major effect on the statistical
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Time t∗1 t∗2 t∗3 t∗4 t∗5

DKL sample PDF and GSG 0.048 0.049 0.331 0.033 0.051

DKL sample PDF and GEV 0.373 0.145 0.133 0.173 0.070

Table 4.2: Kullback-Leibler divergence (DKL) evaluated from the comparison of sample PDFs of

R′ and GSG (Eq.D.2) or GEV (Eq. 4.1) analytical models.
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Figure 4.7: Sample probability densities (PDFs) of rate increments, ∆R(t∗j ) (j = 2, ..., 6), evaluated

at three selected lags, s. Interpretive models based on GSG distributions for incremental data

(Eq. D.6) are also depicted.

distribution of R′. The temporal trend exhibited by σ̂G indicates an increased spreading of

the distribution of rates at t∗3, whereas the peak of the GEV scale parameter, σ̂, is attained

at a later time (i.e., t∗4). The evolution of the spatial correlation of rates can be inferred

from the analysis of the estimated ρ̂G versus lag at various observation times (Fig. 4.9).
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Figure 4.8: (A) Shape and (B) scale parameters embedded in GSG and GEV models versus time.

The skill of a single-parameter exponential model, i.e.,

ρG(s) = e−s/a (4.2)

to represent the observed correlation is compared against the results obtained through two

selected formulations of nested structures, whose components are associated with standard

stationary variograms. We consider two nested structures entailing (i) a spherical and a

Gaussian model (Eq. 4.3) and a spherical and a hole-effect model (Eq. 4.4), i.e.,

ρG(s) =


1−

{
c
σ2
G

[
3
2

s
a1

− 1
2

(
s
a1

)3]
+

σ2
G−c

σ2
G

[
1− e

−
(

s
a2

)2]}
for s < a1

1− c
σ2
G
− σ2

G−c

σ2
G

[
1− e

−
(

s
a2

)2]
for s ≥ a1.

(4.3)

ρG(s) =


1−

{
c
σ2
G

[
3
2

s
a1

− 1
2

(
s
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σ2
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[
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]}
for s < a1

1− c
σ2
G
− σ2

G−c

σ2
G

[
1− cos πs

a2

]
for s ≥ a1.

(4.4)

Each of these models is defined in terms of three parameters: (i) the range of each com-

ponent, a1 and a2, and (ii) the coefficient c, which determines the relative contribution

(or weight) of each component. We note that these formulations appear to be more com-

plex than the exponential model (Eq. 4.2). Nevertheless, we prefer to consider also these

formulations due to the usefulness of nested variogram structures to interpret spatially

heterogeneous settings where multiple processes, each characterized by their own degree
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of spatial persistence, can jointly contribute to the resulting heterogeneous pattern of the

overall system.
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Figure 4.9: Estimated values of the correlation of G, ρ̂G, versus lag obtained from MOM B at all

observation times. Results from calibration of exponential (Eq. 4.2) and nested (Eqs. 4.3 and 4.4)

analytical models are also depicted.

The effectiveness of the models corresponding to Eqs. 4.2, 4.3, and 4.4 is evaluated within

a ML framework. While estimates of model parameters are obtained through minimization

of the Negative Log-Likelihood (NLL) (see e.g., Carrera and Neuman, 1986) criterion, the

performance of a given model is ranked according to the well-established Kashyap Informa-

tion Criteria (KIC) for model discrimination (Kashyap, 1982):

KIC = NLL−NP ln 2π − ln |Q|. (4.5)

Here, NP is the number of parameters associated with a given model and |Q| is the de-

terminant of the covariance matrix of the ML parameter estimation errors. Relying on KIC

enables one to consider the quality of model fit to observations (via NLL) while jointly pe-
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nalizing models with large NP and fully considering the quality of parameter estimates.

The latter aspect is embedded in |Q|, which acts as a term penalizing models with small

variance (i.e., large expected information content per observation) of parameter estimates

(Ye et al., 2008). In this context, model ranking is performed according to increasing values

of KIC, lower values of the latter corresponding to more skillful models. Figs. 4.9.A-E depict

the values of ρ̂G estimated at various times along the experiment together with the results

obtained through the calibrated theoretical models. A qualitative inspection of these plots

suggests that the nested formulations outperform the simple exponential model. This is

quantitatively supported by the ML results collected in Table 4.3, where one can note that a

nested structure composed by a spherical and a hole effect model (Eq. 4.4) is always ranked

as best among the three models assessed. This result imbues us with confidence about the

possibility to include in our interpretive model the richness of mechanisms underlying the

system evolution through the superimposition of diverse correlation structures. We note

that the contribution of a given component of a nested structure to acting processes can be

assessed in simple large scale sedimentary settings, where these can be related to temporal

sequences of depositional processes (e.g., Salamon et al., 2007 and references therein). As

this is the first time, to the best of our knowledge, that these types of analyses are performed

for scenarios of the kind we focus upon, disentangling the way components of nested struc-

tures can be associated with the action of kinetic mechanisms described in Section 4.1.1

poses significant challenges. We present preliminary interpretations in the following, noting

that future works will be keyed to further support these results with additional data. Fol-

lowing the results illustrated above, we focus on the parameters of the most highly ranked

model (Eq. 4.4) and analyze their evolution in time. Figs. 4.10.A-B depict the behavior of(
c1 =

c
a1
, a1

)
and

(
c2 = 1− c

σG
, a2

)
, i.e., relative contribution and range of component 1

and 2 in Eq. 4.4, respectively. It can be noted that a2 ≫ a1 at all times, components 1 and

2 being respectively related to short- and long-range correlation. These results show that

a1 tends to increase with time, ranging from 60 to 160 dl, indicating that short-range corre-

lations increase as the dissolution pattern on the terraces evolves from being monolayer-pit
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t∗1 t∗2 t∗3 t∗4 t∗5
Time

NLL KIC NLL KIC NLL KIC NLL KIC NLL KIC

Eq. 4.2 -333.8 -337.8 -298.6 .303.6 -311.3 -316.6 -377.0 -381.3 -408.6 -411.9

Eq. 4.3 -613.2 -612.1 -613.2 -613.8 -429.3 -434.5 -507.3 -506.4 -615.3 -618.7

Eq. 4.4 -756.2 -753.1 -646.6 -646.5 -515.0 -518.8 -672.0 -672.3 -619.4 -623.8

Table 4.3: Values for negative Log-Likelihood (NLL) and Kashyap (KIC) model identification criteria

obtained from Maximum Likelihood parameter estimation for the selected analytical models of ρ̂G.

to step-retreat dominated. Otherwise, the long-range correlation parameter, a2, displays

an oscillatory behavior within the range 640 − 800 dl, showing a steep increase only at

t∗5. Length scales in this range are comparable with the distance between the multi-layer

pits developing on the opposite corners of the observation window. Additional evidence

about a possible relationship between the dynamics of multilayer pits and the long-range

component of ρ̂G can be inferred from the analysis of parameters c1 and c2. Our results

document that (i) both components have similar weight (c1 ≈ c2 ≈ 0.5) at t∗1; and (ii) the

long-range component becomes dominant at t∗3 = 20 min, its relevance decreasing for t > t∗3

(attaining the value c2 = 0.22 at t∗5 = 30min). Comparison of these results with those

depicted in Fig. 4.3.A evidences that the relative importance of the long-range component

mirrors the trend displayed by the MPs spreading rate. Fig. 4.10 provides a clear indi-

cation supporting a conceptual picture according to which the dynamics of multilayer pits

markedly and quantifiably affect the frequency distribution as well as the spatial correlation

of rates. Our findings further support the benefit of relying on a modeling framework capa-

ble of jointly embedding the statistical behavior of rates and of the associated increments.

The importance of characterizing the spatial correlation of key variables driving mineral

dissolution processes was highlighted by Pollet-Villard et al. (2016). These authors develop

a numerical model to describe dissolution and ground model calibration on the comparison

between sample variograms evaluated on experimental data of surface topography and its

numerically based counterpart. Our results reveal the impact that the diverse dissolution

patterns can have on the correlation structure of reaction rates. This information can po-
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tentially lead to the development of future flexible numerical models, which can have the

capability of taking into account multiple length scales resulting from the occurrence of

diverse reaction mechanisms.
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Figure 4.10: Time evolution of the parameters of the most highly ranked model interpreting ρG

(Table 4.3): relative contribution and range of (A) component 1 and (B) component 2 of the nested

structure (Eq. 4.4).
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4.2 Results of experimental Setting 2

We discuss the application of the Gaussian Mixture (GMIX) model to interpret the sta-

tistical behavior of spatially heterogeneous fields of dissolution rate. These are obtained

from topographic measurement of a (non-masked) sample acquired under intermittent flow

conditions, i.e., relying upon experimental Setting 2 (see Section 2.3.2). Imaging is per-

formed in contact mode over a scanning window of 6 × 6 µm2 across a 512 × 512 pixels

(pixel size dl = 11.7 nm). The acquisition frequency is here set to fa = 1.41Hz. This set

of acquisition parameters yields a scanning time (coinciding with the fluid residence time

in the cell) Tc2 = 6min, similar to the datasets discussed in Section 2.4.2 and Appendix B.

Refreshing of the fluid in contact with the sample surface is performed between each scan-

ning for a time ≈ 30 s. Hence, the time interval between subsequent frames is ∆t ≈ 6.5min.

Dissolution rate fields are evaluated through Eq. 2.4 from topographic maps taken at two

times separated by a temporal interval equal to 2∆t = 13min. The results reported in the

following are included in Siena et al. (2023).

4.2.1 Evolution of calcite dissolution patterns

Fig. 4.11 collects maps of z′(x, t) acquired during the dissolution experiment. These pro-

vide a qualitative appraisal of the temporal evolution of the crystal surface during the

reaction. We observe two main topography patterns. These are respectively related to (i)

the spreading of a multilayer (deep) etch-pit in the bottom left corner; and (ii) the nucle-

ation, spreading and coalescence of several monolayer (shallow) etch-pits taking place on the

terrace. As a consequence, topography maps can be subdivided into two regions, hereafter

termed Multilayer Region and Terrace Region, respectively. These patterns are consistent

with published literature studies regarding dissolution in far-from-equilibrium conditions

described in Section 2.1 (e.g., Teng, 2004 and Bouissonnié et al., 2018).
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Figure 4.11: Images of fluctuation of calcite topography about its mean, z′(x, ti), acquired via

AFM at (A) t3 = 26min, (B) t5 = 39min, (C) t7 = 52min and (D) t9 = 65min from the beginning

of the experiment. Scanning directions are depicted in (E).

4.2.2 Analysis and statistical modeling of dissolution rates

Figs. 4.12.A-D depict spatial distributions of R′(x, t∗j ), with t∗j = ti + 2∆t (j = i = 1, ..., 8).

The corresponding sample PDFs of R′ are depicted in Figs. 4.12.E-H. All PDFs exhibit a

prominent peak at R′ ≈ 0 and a secondary peak for R′ > 0. From a qualitative standpoint,

these results suggest that all points that belong to the same topography region (either

Terrace or Multilayer) at times ti and ti + 2∆t contribute to the highest peak. Otherwise,

the secondary peak is driven by values of rate that are associated with locations that

transition from one topography region to the other during the time interval 2∆t, following

the spreading of the multilayer etch pit. The observed bimodal trait of the sample PDFs of

R′ is consistent with an interpretation based on the GMIX stochastic framework introduced

in Section 3.3. We denote hereafter as components A and B those associated with the peak

at R′ > 0 and at R′ ≈ 0, respectively.

We compute spatial increments of dissolution rate, ∆R, at various separation distances.

Sample statistics are evaluated considering omnidirectional increments, with the only ex-

ception of the direction parallel to the AFM acquisition (denoted as x in Fig. 4.11.E), to

avoid spurious correlation originated from measurement artifacts. This is consistent with

the study of Marinello et al. (2010) who show that AFM measurements are often affected by
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Figure 4.12: Dataset and statistical results associated with observed dissolution rate maps, R′.

Spatial maps of R′(x, t∗j ) evaluated with Eq. 2.4 from AFM topography measurements depicted in

Fig. 4.11 are shown for the considered times (A-D). Sample PDFs of (E-H) R′ and (I-L) ∆R are

also depicted. Analytical results for the PDFs of reaction rate (Eq. 3.31) and its spatial increments

(Eq. 3.44) are juxtaposed to the experimental data.

stripe noise, i.e., a distortion of the signal occurring along the principal scanning direction.

Figs. 4.12.I-L depict sample PDFs of increments ∆R for lags s = 16, 32, 64 dl, encompass-

ing short and large distances relative to the size of the domain. All of these PDFs share

some common features with their counterparts described in Section 3.3 in the context of

the GMIX framework, i.e., they display (i) an overall symmetric behavior, (ii) the presence
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of a dominant peak coupled with lateral peaks, and (iii) a tendency to change their main

traits with lag, denoting a scaling behavior.

The GMIX parameters as well as those associated with the distribution of f∆R are as-

sessed according to the procedure detailed in Section 3.6.1, λI being estimated via method 2.

The analytical formulations of fR′ and f∆R (Eqs. 3.31 and 3.44) obtained upon considering

the GMIX parameters estimated at each time are juxtaposed to their sample counterparts

in Figs. 4.12.E-H and 4.12.I-L, revealing a remarkably satisfactory agreement. The analysis

of the GMIX parameters at different times provides insights on the temporal evolution of

the mechanisms driving the dissolution reaction. Temporal variations of parameter val-

ues are mainly linked to component A of the mixture. This is related to the observation

that the area associated with category A is subject to higher relative variations than the

corresponding one related to category B, with an average variation of ∼ 36% and ∼ 4%,

respectively, across the total temporal window analyzed. The overall temporal increase of

p̂ and λ̂I (Fig. 4.13.A and Fig. 4.13.B) reflects a progressive growth of the area associated

with category A. Such increasing trend is consistent with the (approximately) constant hor-

izontal spreading rate, ν, of the MP (see Fig. 4.13.C) evaluated through Eq. 2.7. Here, we

can only evaluate the spreading rate of MP acute steps νac because no obtuse step fall inside

the observation window. Hence, νac is estimated from the separation distance between etch

pit edges at subsequent times (reported in Fig. 4.13.D). It can be noted that the order of

magnitude of the results depicted in Fig. 4.13.C is consistent with existing results recently

documented in the literature (e.g., Guren et al., 2020; Dong et al., 2020). The mean of

both components A and B remains almost constant with time (Fig. 4.13.E). Otherwise, a

decreasing temporal trend is observed for the variance of component A, whereas σ̂2
B remains

almost constant (Fig. 4.13.F). The documented pattern suggests that values of the second

moment associated with component A progressively becomes more similar to its counterpart

related to component B. This is also consistent with the observed temporal dampening of

the multimodal behavior displayed by the PDF of R′. This trend is also revealed by an

observed temporal decrease for SkR and EκR (not shown).
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Figure 4.13: Temporal trend of parameters of the GMIX model. The evolution of estimated

parameters associated with the indicator random field (p̂ and λ̂I) is depicted in (A) and (B),

respectively. The behavior of mean, µ̂m (E), variance, σ̂2
m (F), and correlation length, λ̂m (G) for

component m = (A,B) is illustrated. Panel (C) depicts the horizontal spreading rate of acute steps,

νac, associated with the etch-pit edges shown in (D) at various times.

The temporal evolution of the spatial correlation structure of each component of the

mixture is inferred from the analysis of ρ̂m (m = A,B). Fig. 4.14 depicts the sample spatial

correlation associated with regions A and B. The following common traits can be noted

at all times: (i) an oscillating behavior at large separation distances for ρ̂A and (ii) the
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presence of a nugget effect for both ρ̂A and ρ̂B. We relate the oscillations in ρ̂A to the small

number of points separated by large lags for region A. Otherwise, the second trait could

be attributed to the persisting stripe noise, which might especially influence short lags. We

consider the exponential with nugget as interpretive model for ρ̂m. Fig. 4.14 juxtaposes the-

oretical ρm values and their experimentally-based counterparts. The analytical formulation

enables one to grasp the main features associated with the experimental setting. Fig. 4.13.G

depicts λ̂A and λ̂B versus time. An oscillatory behavior can be noticed, in particular for

component B. We relate this trend to the dynamics of the monolayer etch-pits nucleating

and spreading on the crystal terrace. Fig. 4.15 juxtaposes the analytical curves associated

ρm
ˆ

ρm
ˆ

ρm
ˆ

ρm
ˆ

s / dl

s / dl

s / dl

s / dl

analytical
region B
region A

(A) t2 = 26 min (B) t4 = 39 min

(C) t6 = 52 min (D) t8 = 65 min

* *

**

Figure 4.14: Spatial correlation of components A and B associated with the rate maps depicted

in Fig. 4.12.A-D as a function of separation distance, s. The analytical interpretive model, i.e.,

exponential model with nugget, is also depicted.

with the GMIX correlation function (i.e., ρR = 1 − ⟨∆R2⟩/2σ2
R, ⟨∆R2⟩ being evaluated

through Eq. 3.45) and excess kurtosis, Eκ∆R (evaluated making use of Eqs. 3.45 and 3.47),

of ∆R to their experimental sample counterparts. Theoretical spatial correlation structures

shown in Figs. 4.15.A-D exhibit a satisfactory agreement with their sample counterparts,
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discrepancies being mainly visible at time t∗6 = 52 min, for intermediate lags. Here, we no-

tice that sample PDFs of ∆R evaluated for component A appear to deviate, albeit slightly,

from a Gaussian behavior (not shown). Such a deviation from Gaussianity could also be

at the core of the imperfect agreement observed between sample and theoretical values of

Eκ∆R.

The results obtained here through the GMIX modeling framework are remarkably promis-

ing for the interpretation of high resolution geochemical data at the microscale. They show

that model parameters are strictly linked to the temporal evolution of the surface features

driving the dissolution reaction.

ρR
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s / dl

s / dl
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s / dl
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Figure 4.15: Statistical moments associated with the spatial increments of R′. Analytical expres-

sions resulting from the GMIX formulation are juxtaposed to (A-D) sample correlation function, ρR,

and (E-H) excess of kurtosis, Eκ∆R associated with the rate maps shown in Fig. 4.12.A-D.
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4.3 Results of experimental Setting 3 - Masked samples

We discuss discuss experimental and modeling results obtained by imaging a masked calcite

sample subject to continuous flow conditions (i.e., experimental Setting 3, see Section 2.3.3).

Fabrication of the inert mask relies upon the workflow described in Section 2.5. We scan a

20 × 20µm2 area of the sample surface, comprising a portion covered by the non-reactive

mask ≈ 45% of the observation window (see Fig. 4.17.A). Imaging is performed in tapping

mode and the acquisition frequency is here set to fa ∼ 1.1Hz, yielding a temporal resolution

∆t ∼ 17min. The pixel size is set to dl = 19.7 nm. The degree of spatial heterogeneity

of associated absolute dissolution rate fields is modeled upon resting on the Gaussian Mix-

ture (GMIX) framework (see Section 3.3). The alignment of topographic data measured at

subsequent times is assessed upon relying on fiducial points coinciding with centroids of

precipitates underneath the inert mask (see Section 2.6). Fig. 4.16.A depicts the phase shift

signal associated with the topography measured at t1. Here, clusters of precipitates are

indicated by white arrows. The comparison of the positions of such points at subsequent

temporal instants is illustrated in Fig. 4.16.B. These results confirm that the horizontal drift

between topography maps is negligible (i.e., below our lateral resolution) as centroids are

overlapping at all times. The results illustrated in the following are included in Recalcati

et al. (2024).

4.3.1 Evolution of calcite dissolution patterns

Figs. 4.17.F-H depict snapshots of topographies (scaled with respect to the inert layer, see

Section 2.2) at three observation times. The reaction is dominated by vertical deepening

and horizontal spreading of two multilayer etch pits oriented according to Fig. 4.17.C and

schematically depicted in Fig. 4.17.B. The two pits exhibit different temporal behaviors,

yielding a complex surface pattern. The deep etch pit on the left of Figs. 4.17.F-H (de-

noted as MP-L) evolves by forming trains of steps. The latter behavior is consistent with

a description based on a stepwave model (Lasaga and Lüttge, 2001, 2003). The latter con-

ceptualizes material fluxes from the surface as governed by spreading of steps originating



4.3. RESULTS OF EXPERIMENTAL SETTING 3 - MASKED SAMPLES 93

(A) (B)

φ(x,t1) t1t2
t3

t4t5t6

Ti layer

2 μm

Figure 4.16: (A) AFM phase shift signal measured at t1. Clusters of precipitates that have formed

during the optical lithography phase of the mask fabrication workflow and have been covered by the

Ti layer are indicated through white arrows. (B) Locations of centroids of the precipitates at times

t1 − t6, documenting that results are virtually indistinguishable.

from etch pits, which then travel across the crystal surface. In contrast, the spreading of

the etch pit on the right of Figs. 4.17.F-H (denoted as MP-R) remains limited. It is hy-

pothesized that such a distinct behavior arises from the presence of different phases across

which the etch pit deepening processes evolves. An etch pit displaying a MP-R type pat-

tern results from the coalescence of two multilayer etch pits. Each of these is related to

screw dislocation lines that were parallel to the z direction (and thus active in promoting

stepwave emanation from pit center and, in turn, vertical deepening of the pit) within up-

per layers of the crystal lattice. These layers have been dissolved prior to the beginning

of our acquisition. During our temporal observation window, dislocation lines associated

with pits that have coalesced to form MP-R might not be oriented anymore along the z

direction. Hence, emanation of young dissolution pulses could not be observed at MP-R.

Details about the role of dislocations as drivers for etch pit formation and evolution are

available in, e.g., Pollet-Villard et al. (2016) and MacInnis and Brantley (1992). Therefore,
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only the spreading of old stepwaves marking the edges of MP-R can be documented in the

experiments. The screw dislocation associated with MP-L remains active throughout our

entire observation window. The flat bottom of MP-R acts as a nucleation site for other

small etch pits that spread and coalesce. Fig. 4.17.D provides a qualitative appraisal of

such small-scale features by depicting an enlargement of the AFM phase shift signal associ-

ated with z(x, t3) within box 1 of Fig. 4.17.G. Merging of stepwaves radiated in the acute

direction from MP-L and MP-R yields a complex pattern of steep rhombohedral steps in

the region comprised between these two main features (Fig. 4.17.E).
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Figure 4.17: (A) Sketch of the experimental setup. Topography images at observation times

(F) t1 = 17 min, (G) t3 = 51 min, and (H) t5 = 85 min from the beginning of the experiment.

(B) Representation of multilayer etch pits governing the surface pattern evolution and (C) their

crystallographic orientation. (D) and (E) enlargements of the AFM phase shift signal, ϕ(x, t3),

associated with z(x, t3) within box 1 and 2 of (G), respectively.
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Fig. 4.18 depicts spatial distributions of R(x, t∗j ) (t
∗
j = ti+∆t, j = i = 1, ..., 5) evaluated

from the acquired sequence of experimental topographic data though Eq. 2.2. Rate maps

exhibit traits that are consistent with recent experimental findings by Fischer and Lüttge

(2018) (see Section 2.1). Figs. 4.18.F-L and Figs. 4.18.M-Q depict values of R(x, t∗) evalu-

ated along segments AA′ and BB′, respectively. These sections are oriented along the [481̄]

crystallographic direction (see Fig. 4.17.E) and their analysis supports the aforementioned

different behavior of the two etch pits. A clear sequence of stepwaves emanating from the

center of MP-L (identified as a red dot in Figs.4.18.F-L) is observed along section AA′. At

each time, stepwaves located farther away from the dislocation center correspond to older

stepwaves, exhibiting lower peak heights as compared to younger stepwaves closer to the

center of the etch pit. Three prominent trains of steps can be clearly distinguished at time

t∗1 (Fig.4.18.F) (labeled as c - d, b - e, and a - f , where c, b, and a represent obtuse-oriented

stepwaves, while d, e, and f correspond to acute-oriented stepwaves). As the reaction pro-

gresses (Fig.4.18.G), these stepwaves propagate across the surface and move away from the

dislocation center. Acute stepwaves e and f gradually disappear (Fig.4.18.H-I and 4.18.L)

as they merge with stepwaves originating from MP-R along the [4̄41]− direction. Sections

BB′ display a primary stepwave (labeled as g in Figs. 4.18.M-Q), that propagates in the

[481̄]− direction, together with the flat bottom of MP-R. Fluctuations of R observed at

times t∗1, t
∗
2, and t∗5 are related to smaller stepwaves emanating from etch pits formed at

the bottom of MP-R. No obtuse stepwaves corresponding to g are observed for MP-R.

It is hypothesized that these are annihilated due to the spreading of MP-L in the [481̄]−

direction.

4.3.2 Analysis and statistical modeling of dissolution rates

Evaluation and analysis of sample probability densities is critical to obtain information

about the probability of occurrence of given ranges of rate values across the mineral sur-

face. Unlike standard approaches grounded on the assessment of an average rate (i.e., a

constant rate value), which is then considered as a unique value characterizing the bulk
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Figure 4.18: Spatial heterogeneity of absolute dissolution rate, R(x, t∗), at (A) t∗1 = 34 min, (B)

t∗2 = 51 min, (C) t∗3 = 68 min, (D) t∗4 = 85 min, and (E) t∗5 = 102 min. Reaction rate evaluated

along profiles AA′ (F-L) and BB′ (M-Q) as indicated in (E).

surface retreat, relying on a stochastic approach enables one to capture the richness of in-

formation governing the complexity underlying the evolution of mineral surface reactivity

(Lüttge et al., 2013b; Fischer et al., 2012). Fig. 4.19 depicts sample PDFs associated with

spatial maps of R detected at five observation times. The overall width of the support

of measured values of R (in terms of their order of magnitude) is consistent with data

reported for similar chemical conditions. The red circle in Figs. 4.19.A-E denotes the av-

erage dissolution rate measured by Arvidson et al. (2003) through ex-situ VSI observations

of a calcite crystal exposed to a solution of deionized water and Na2CO3 at pH = 8.8 at
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T = 25◦C in a stirred reactor. The yellow circle in Figs. 4.19.A-E corresponds the value of

the rate evaluated by Bouissonnié et al. (2018) upon relying on ex-situ VSI measurements

of the topography of a polished calcite crystal subject to dissolution in a mixed flow reactor

(Q = 0.24mLmin−1) in a solution of MilliQ water, NaHCO3, and NaCL at pH = 8. Sam-

ple distributions exhibit pronounced multimodal traits leading to long right tails. Similar

features have been observed for calcite and other carbonate minerals through AFM analyses

(Emmanuel, 2014; Siena et al., 2021, 2023) as well as at larger spatial scales typical of VSI

(Bibi et al., 2018; Bollermann and Fischer, 2020), DHM (Brand et al., 2017), or X-ray micro-

tomography (Noiriel et al., 2018). Modeling results based on Eq. 3.31 juxtaposed to sample

PDFs are depicted in Figs.4.19.A-E, documenting the remarkable ability of our theoreti-

cal framework to capture the essential elements of the experimental observations. Vertical

orange and blue lines depict estimated component means, µ̂m, along with corresponding

intervals of semi-width equal to one standard deviation, σ̂m (m = A,B). These identify

ranges for low and high rates that are fully consistent with those obtained by Brand et al.

(2017), which are associated with identical chemical conditions to those considered here,

even as acquired at a larger spatial scale via DHM observations of a polished calcite surface

(green rectangles in Figs. 4.19.A-E).
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Figure 4.19: Sample PDFs and GMIX model (Eq. 3.31) of dissolution rates at five observation times.

Vertical orange and blue lines depict estimated component means, µ̂m, along with the intervals of

semi-width corresponding to one standard deviation, σ̂m (m = A,B). Average value (black circle)

and literature data (red and yellow circles) are also depicted. Green rectangles delineate intervals

of low, medium, and high rates as evaluated by Brand et al. (2017). Triangles depicted on (A-E)

correspond to peak values attained by R evaluated along profiles AA′ and BB′ and illustrated in

Figs. 4.18.F-Q.
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4.4 Results of experimental Setting 3 - Unmasked samples

In the following, we discuss experimental and modeling outcomes obtained from the inves-

tigation of the evolution of the surface of a (non-masked) calcite sample. A portion of the

surface of extent 6 × 6µm2 is imaged across a 512 × 512 grid (pixel size dl = 11.7 nm) in

tapping mode. The acquisition frequency is set to fa = 1.28Hz, yielding a temporal reso-

lution ∆t = 6.6min. Image alignment in the x-y plane at subsequent times is performed

upon considering as fiducial points the centroids of precipitates spontaneously forming on

the surface during the reaction (see black arrow depicted in Fig. 4.20.A). Such image reg-

istration procedure restricts our observation window to 5.3 × 5.3 µm2 (corresponding to

450 × 450 cells). Modeling of the statistical behavior of dissolution rate fields, R′, and

of associated spatial increments, ∆R, relies upon the Generalized sub-Gaussian mixture

(GSG-MIX) model introduced in Sections 3.4 and 3.4.1.

4.4.1 Evolution of calcite dissolution patterns

Fig. 4.20 depicts spatial maps of topography, z′(x, ti), measured at various times, ti (i =

1, ..., 7). At all instants sampled during our experiment, we observe an evolution of the

surface pattern driven by the mechanisms described in Section 2.1, i.e., step retreat and

nucleation and spreading of shallow and/or deep etch pits. At t1, the reaction is entirely

dominated by the dynamics of shallow etch pits and by step retreat (Fig. 4.20.A). A mul-

tilayer etch pit (MP1) enters our observation window at time t2 from the left boundary

(Fig. 4.20.B) and grows laterally at t3 (Fig. 4.20.C). Horizontal spreading of MP1 at time

t4 is coupled with nucleation of a new deep etch pit (MP2) at another dislocation that

is positioned at the center of our observation window (Fig. 4.20.D). This pit considerably

grows laterally at t5 and t6 (Figs. 4.20.E-F). At these times, the retreat of steps emanated

from the center of MP2 favors exposure of crystal terraces to the fluid solution. In turn,

numerous shallow etch pits form on such terrace. The edges of MP2 start to display an

irregular (spatial) pattern at t7. This feature is typical of the final phase of the action of

the portion of the screw dislocation parallel to the z direction and associated with MP2 in
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driving the material flux. Our hypothesis is that the dislocation line originating MP2 is no

more oriented along the z direction starting from t6. As younger dissolution pulses are not

radiated anymore from the center of MP2, the reaction proceeds by retreat of the steps that

have previously formed. A new etch pit (MP3) is seen to nucleate at t7 at the bottom right

of our field of view. Even as we only have partial observations concerning the evolution of

MP1 and MP3, our temporal observation window encompasses the entire evolution of MP2.
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Figure 4.20: Spatial distributions of fluctuations (about their mean) of calcite topography, z′(x, ti),

acquired at times (A) t1 = 6.6min, (B) t2 = 13.2min, (C) t3 = 19.8min, (D) t4 = 26.4min, (E)

t5 = 33.0min, (F) t6 = 39.6min, and (G) t7 = 46.2min from the beginning of the experiment; (H)

enlarged view of the multilayer etch pit MP2 nucleating within time interval t3 − t4 and enclosed in

the dashed box depicted in (D).

This documented evolution of the surface pattern leads to highly heterogeneous spatial

distributions of reaction rates, R′(x, t∗j ). These are evaluated through Eq. 2.4 at times t∗j =

ti +∆t (j = i = 1, ..., 6) and are depicted in Figs. 4.21.A-F. The lateral expansion of MP1,

MP2, and MP3 yields dissolution stepwaves that are schematically delineated in orange, blue

and green in Fig. 4.21.G, respectively. These regions correspond to portions of the surface
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that experience enhanced material fluxes. From a qualitative standpoint, reaction rates

within such regions are seen to decrease as time proceeds and MPs spread horizontally. This

observation is particularly striking for MP2, whose entire temporal evolution is captured

within our observation window. The increase of the areal extent of the spatial region

comprised between the edges of MP2 at subsequent times (Figs. 4.21.C-F) is associated

with a decrease of the strength of R′. Such a temporal evolution of R′ is consistent with a

description of the dissolution process as driven by stepwave emanation (Lasaga and Lüttge,

2001, 2003; Fischer and Lüttge, 2018). Otherwise, lower values of rate are attained at

spatial locations where the reaction is governed by shallow etch pits and step dynamics.
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Figure 4.21: Spatial maps of R′(x, t∗j ) evaluated with Eq. 2.4 from AFM topography measurements

depicted in Fig. 4.20 at times (A) t∗1 = 13.2 min, (B) t∗2 = 19.8 min, (C) t∗3 = 26.4 min, (D)

t∗4 = 33.0 min, (E) t∗5 = 39.6 min, and (F) t∗6 = 46.2 min; (G) schematic depiction of dissolution

stepwaves emanated from MP1, MP2, and MP3.

4.4.2 Analysis and statistical modeling of dissolution rates

As a consequence of the presence of diverse regions, each characterized by a given dissolu-

tion mechanism, sample probability densities of R′(x, t∗j ) exhibit marked multimodal traits.
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As an illustrative example, Fig. 4.22.B shows the sample probability density (PDF) associ-

ated with the spatial field R′(x, t∗4) depicted in Fig. 4.21.D. The PDF is characterized by a

dominant peak centered at R′ ∼ 0 and a secondary peak located at R′ > 0. We relate the

former with kinetic processes taking place on crystal terraces, i.e., the dynamic evolution

of shallow etch pits and the retreat of steps. Otherwise, the latter is associated with high

material fluxes due to stepwaves radiating from MP2. A similar behavior is observed at

all times (see Figs. G.1-G.5.B in Appendix G). Similar to the other experimental settings

here considered, modes associated with high and low values of rate are hereafter denoted

as A and B, respectively. Fig. 4.22.C depicts sample probability densities of incremental

values evaluated at three lags, s = 10, 40, 80. At each lag, sample PDFs display a central

dominant peak at ∆R ≈ 0 and lateral secondary peaks that are symmetric with respect

to the origin. These arise from differences of R′ values evaluated between two locations,

one of which is associated with region A, the other one being located in region B. Sample

PDFs of ∆R are characterized by a pronounced scaling tendency with separation distance,

in the sense that they change depending on the lag at which increments are evaluated. All

of the above-mentioned traits of the PDFs of R′ and ∆R are consistent with a description of

the behavior of the spatial field of the dissolution rate grounded on the GSG-MIX modeling

framework introduced in Section 3.4 and 3.4.1. We rely on a lognormal distributional form

of the subordinator associated with each component of the mixture (see Appendix E) for

our analyses.

We rest on the parameter estimation scheme described in Section 3.6.3 and obtain a

classification of the observed R′ fields in two regions together with the estimate of GSG-MIX

model parameters. Initialization of the algorithm relies upon the identification of (i) terrace

regions and (ii) dissolution stepwaves emanated by MP1, MP2, and MP3. Fig. 4.22.A shows

the indicator field I(x, t∗4) resulting from the classification of R′(x, t∗4). Here, the portion of

the surface involved in stepwave radiation is assigned to region A. Results of similar quality

are obtained at all times t∗1 − t∗6 (see Figs. G.1-G.5.A in Appendix G). Estimates of the

correlation of the underlying Gaussian field, ρ̂Gm (m = A,B), and of the indicator field, ρ̂I ,
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are depicted versus lag in Fig. 4.22.D. We evaluate spatial increments within region A only

up to separation distances corresponding to half of the characteristic length of this region.

We estimate the latter by relying upon the maximum Feret diameter (Walton, 1948). This

metric is typically employed to evaluate an equivalent representative size to characterize

irregular shapes in various contexts of application (see, e.g., Mazzoli and Favoni, 2012, Lolo

et al., 2023, and Weber et al., 2014). It is defined as the maximum difference between two

parallel tangents to the convex hull enclosing an area (i.e., the biggest connected cluster of

region A in our case). The estimated correlation of I exhibits a marked oscillating behav-

ior about 0 at all times (see Figs. G.1-G.5.D in Appendix G). This behavior arises from

the geometrical pattern characterizing the indicator field and is strictly linked to stepwave

emanation from multilayer etch pits. Similar traits are also observed for the correlation

function ρ̂GB
, although this is associated with a less pronounced oscillating behavior. We

relate such pattern to the dynamic evolution of monolayer etch pits taking place across

crystal terraces. Oscillating behaviors at large lags also emerge for the variogram related to

the mixture, γR (see Fig. 4.22.E for γR(t
∗
5) and Figs. G.1-G.5.E in Appendix G for all of the

other observation times). Analysis and interpretation of these types of correlation behaviors

could rely, e.g., upon nested models entailing a hole-effect component (see Section 4.1.3).

While we leave this modeling analysis to future developments, here we directly employ ρ̂Gm

(m = A,B) and ρ̂I to specialize the analytical GSG-MIX formulations. Modeling results

obtained through Eq. E.1 and Eq. E.5 are juxtaposed to sample PDFs of R′ and ∆R in

Figs. 4.22.B and C, respectively. Visual inspection of these results documents a remark-

able agreement between modeled and sample statistics. For completeness, the analytical

expression of the GSG-MIX variogram (Eq. E.9) is juxtaposed to sample data in Fig. 4.22.E.

Results of similar quality are obtained at all times (see Figs. G.1-G.5.B,C, and E).

Fig. 4.23 depicts temporal trends of estimated model parameters embedded in Eq. E.1

(i.e., p̂, µ̂m, σ̂2
Gm

, and α̂m, with m = A,B), along with the temporal evolution of the

statistical moments of the mixture (i.e., variance, σ2
R, skewness SkR, and of kurtosis, κR).

Being strictly linked to the dissolution mechanisms, model parameters can be viewed as
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Figure 4.22: Application of the GSG-MIX modeling framework to the spatial field R′(x, t∗4). (A)

indicator field, I(x, t∗4), resulting from the classification resting on the algorithm illustrated in Sec-

tion 3.6.3. Sample and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and

80). (D) Estimated correlations of each m− th mode of the mixture, ρ̂Gm
(m = A,B), and of the

indicator field, ρ̂I . (E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9.

aggregate indicators of the evolution of the kinetic processes driving the reaction. Analysis

of their temporal trend can therefore increase our knowledge on the competition among

different mechanistic components and/or on the evolution of dissolution stepwaves. As such,

it can assist one to unravel the effect of these mechanisms on the statistical traits exhibited

by R′. The temporal trend of p̂ (Fig. 4.23.A) displays a certain degree of symmetry (with

respect to a horizontal axis) to the behavior of µ̂A, a peak in the former corresponding to a

trough in the latter (Fig. 4.23.B). At t∗1− t∗2, µ̂A is almost constant. Similarly, the estimated

proportion coefficient p̂ is virtually constant within this temporal window and is nearly zero.

This behavior reflects the ending of the action of the dislocation originating MP1 as parallel

to the z direction. The maximum value of µ̂A is attained at time t∗3. The latter corresponds
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to the emanation of young dissolution pulses from MP2. As such, material fluxes are higher

at this instant than at other times. However, high values of R′ are localized in a limited

portion of the mineral surface, i.e., close to the center of the dislocation. Then, the value of

µ̂A decreases at times t∗4− t∗5. This is consistent with the expected evolution of a dissolution

stepwave (Lasaga and Lüttge, 2001, 2003; Schabernack and Fischer, 2024). Even as the

horizontal spreading rate of MP2 remains approximately constant in time, the intensity

of the material flux in the region comprised within pit edges at subsequent times (i.e., the

region associated with the stepwave) decreases as the trains of steps move further away from

the dislocation. Otherwise, p̂ increases in this time interval, following the lateral expansion

of the pit, and then drops at t∗6. The latter time corresponds to the ending of stepwave

radiation from MP2. Hence, at t∗6 only a part of the area comprised between pit edges at

subsequent times is attributed to the high-rate component of the mixture (see Fig.G.5.A).

The formation of a new stepwave at MP3 induces a slight increase in µ̂A at t∗6. The mean of

the low-rate component, µ̂B, exhibits a slightly oscillating behavior in time that is ascribed

to the dynamic evolution of shallow etch pits. The temporal trend of the estimated shape

parameter, α̂m (m = A,B), is depicted in Fig. 4.23.C. These results suggest that the degree

of non-Gaussianity of the statistics within each region is (i) mild (α̂m ∼ 1.7−1.8), (ii) similar

for the two regions, and (iii) does not change significantly with time. We recall that the

variance (σ2
Rm

) of each component of the mixture is jointly governed by parameters αm and

σ2
Gm

. Hence, temporal variations of σ2
Rm

are essentially controlled by changes of the variance

of the underlying Gaussian fields, σ2
Gm

. The estimated variances of each m− th mode and

of Gm are depicted against time as dotted and dashed lines, respectively, in Fig. 4.23.D.

Whereas σ̂2
RB

remains constant at all times, σ̂2
RA

exhibits pronounced variations. As far as

MP1 is the only etch pit driving the reaction (i.e., at t∗1 and t∗2), significant changes of σ̂
2
RA

are not observed. Similarly, at t∗4, t
∗
5, and t∗6, MP2 is governing the dissolution process and

σ̂2
RA

is almost constant. Such temporal trend reflects that the degree of spatial heterogeneity

within region A at these times is ascribed to the nucleation of shallow etch pits on terraces

that are freshly exposed to the solution by the retreat of steps originating from MP2. This
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interpretation is supported by the small difference observed at t∗4−t∗6 between σ̂2
RA

and σ̂2
RB

.

Indeed, the variance of region B is also governed by the formation of shallow etch pits and

is almost constant at all times. Otherwise, σ̂2
RA

is considerably higher at t∗4 than at all of

the other times. At this particular time, the region that is identified as contributing to high

rates is seen to comprise two sub-regions. The presence of these could be observed due to

the temporal resolution of our experimental setting. Values of R′(x, t∗3) are assessed starting

from topographies z′(x, t3) and z′(x, t4). As no evidence of the presence of MP2 at t3 is

observed, the dislocation originating MP2 is exposed to the solution in the time interval

comprised between t3 and t4. Since the initial stage of stepwave formation at etch pits is

extremely fast, our temporal resolution does not enable us to capture the first phases of this

evolution. Therefore, the topographic map z′(x, t4) can be considered as a temporal average

of the processes taking place on the surface in the time interval between t3 and t4. These

encompass (i) the nucleation of MP2 and (ii) the emanation of initial dissolution pulses.

Hence, the spatial map R′(x, t∗3) includes (i) a sub-region associated with the emanation of a

new stepwave and (ii) a sub-region arising from the spreading of the dissolution pulses that

have been radiated during the time interval (t3 − t4). Fig. 4.20.H provides an enlargement

of the topography measured at t4 (corresponding to the dashed box in Fig. 4.20.D) and

illustrates these trains of steps.

Sample statistical moments of second, third and fourth order evaluated across the entire

field are depicted against time in Figs. 4.23.E-G, respectively. Corresponding analytical

expressions evaluated through Eq. E.2, E.3, and E.4 are also included as red asterisks and

document a remarkable level of agreement with experimental results. The statistical mo-

ments are controlled by (i) the square difference of the means, (µA−µB)
2, (ii) the difference

of the variances, (σ2
RA

− σ2
RB

), and of the fourth order moments,
(
⟨R′4

A⟩ − ⟨R′4
B⟩
)
of the

two components of the mixture, together with (iv) the proportion coefficient, p. As shallow

etch pit dynamics drive heterogeneity within each region, statistical moments of second

and fourth order of R′
m (m = A,B) attain similar values at all times (see Appendix H).

Therefore, the temporal evolution of the statistical moments characterizing the PDF of R′
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is essentially controlled by the behavior of (µA − µB)
2 and p. Fig. 4.23.E illustrates the

temporal trend of the variance of R′, σ2
R. Overall, one can observe that the temporal be-

havior of σ2
R mirrors the trend exhibited by µ̂A with a temporal shift corresponding to ∆t.

At times t∗1 − t∗3, σ
2
R approximately coincides with σ2

RB
, as the relative proportion of region

A across the overall domain is approximately zero (Fig. 4.23.A). A sudden increase of σ2
R

is then observed at t∗4, followed by a decreasing trend at t∗5 − t∗6. The latter reflects the ho-

mogenization of regions A and B that takes place as a consequence of the end of the action

of the dislocation originating MP2 along the vertical direction. The temporal behavior of

σ2
R documents a delay between the actual formation of the MPs driving the reaction and

the time at which this propagates the statistical behavior of the entire field. Indeed, even

as the difference of the means is maximized at t∗3 (Fig. 4.23.B), the small lateral extent of

the region involved in stepwave emanation at the initial phase of MP2 evolution somehow

tempers its effect. For the same reason, the stepwave arising at MP3 at t7 does not affect

σ2
R at t∗6. The skewness of R′, SkR, is depicted against time in Fig. 4.23.F. A decreasing

trend is documented at the beginning, corresponding to the end of the effect of the action

of the dislocation emanating MP1. The PDF of R′ is almost symmetric at time t∗2 (see

also Fig. G.2.B in Appendix G), consistent with the nearly zero value of p̂ ≈ 0 observed

at this instant. The strength of the asymmetry of the distribution then increases from t∗3

(i.e., from the beginning of the effect of MP2). Following Eq. E.3 and similar to what

we observe for σ2
R, the third order central moment R′ (i.e., the numerator of Eq. E.3) is

jointly driven by (µA−µB)
2 and p when (σ2

RA
−σ2

RB
) → 0. Therefore, since the emission of

stepwaves at MP2 affects both terms similarly, SkR exhibits oscillations around a constant

value slightly greater than 1. Fig. 4.23.G depicts the kurtosis of R′, κR, as a function of

time. The behavior of this moment closely resembles the pattern observed in the mean of

region A. In agreement with the behavior observed for α̂m and σ̂2
Gm

(see Figs. 4.23.C-D),(
⟨R′4

A⟩ − ⟨R′4
B⟩
)
→ 0 in Eq. E.4, similarly to (σ2

RA
− σ2

RB
) → 0. Hence, κR is controlled

by (i) the fourth order central moment of RB and (ii) the joint action of p and (µA−µB)
2.

In this case, ⟨R′
B
4⟩ is almost constant in time. Therefore, changes in κR are controlled by



108 CHAPTER 4. RESULTS

variations of (µA − µB)
2 and p. In this specific case, the difference between the means of

the two components counteracts the effect of p and drives the temporal behavior of κR.
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Figure 4.23: Temporal trends of estimated GSG-MIX parameters embedded in Eq. E.1, i.e., (A)

p̂, (B) µ̂m, (C) α̂m, and (D) σ̂Gm (m = A,B), and of (E) second, (F) third, and (G) fourth

order statistical moments of the mixture. Analytical expressions for the latter evaluated according

to Eqs. E.2, E.3 and E.4 are also included.



5 Conclusions

This PhD dissertation contributes to (a) strengthening our ability to directly observe re-

action rates through original nano-/microscale imaging experiments and (b) providing an

interpretation of the observed rates through rigorous stochastic approaches. The work is

grounded on an original combination of experimental and theoretical/modeling advance-

ments. Major conclusions stemming from the work are illustrated in the following. These

are structured with emphasis on the experimental as well as on the theoretical/modeling

components.

Experimental protocols are developed to enable direct investigation of mineral reac-

tive kinetics associated with a high fidelity reproduction of diffusion-limited and surface-

controlled conditions. We target dissolution reactions of non-polished calcite {104} un-

der far-from-equilibrium conditions. We design original platforms for sample preparation

enabling one to acquire absolute topographic measurements (referenced to an engineered

non-reacted surface). These, in turn, allow documenting the spatial heterogeneity of the

surface of a mineral in contact with a flowing fluid and subject to dissolution. Imaging is

grounded on high resolution Atomic Force Microscopy (AFM). The ensuing high-quality big

datasets can be readily employed to obtain spatial fields of corresponding absolute reaction

rate with nanoscale resolution. Coupling the high horizontal resolution allowed by AFM

with the tailored experimental procedure for the application of an inert metallic mask on

the crystal surface offers an unprecedent opportunity for direct observation and stochastic

analyses of absolute material fluxes and of the details of their spatial heterogeneity.

We design different setups for fluid flow regulation during in-situ experiments. Setting

109
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1 (Section 2.3.1) is designed to mimic typical processes associated with (extremely) low

velocity/stagnant regions in porous systems where reactions are dominated by diffusion.

Otherwise, flow-through conditions are reproduced through Settings 2 (Section 2.3.2) and 3

(Section 2.3.3), thus empowering us with the ability to examine surface-controlled processes.

The designed experimental settings include the following key elements.

• Setting 1 corresponds to promoting the formation of a diffusive boundary layer. The

selected temporal observation window allows following transitions from a surface- to

a diffusion-controlled reaction. The observed dissolution pattern documents (i) a

change of the main mechanism driving the reaction from etch-pit nucleation to step

retreat following local increase of saturation in the boundary layer and (ii) a temporal

decrease in the surface reactivity.

• Setting 2 involves the use of two synchronized syringes connected to the fluid cell.

Flow-through conditions are established by intermittent refreshment of the solution

between each AFM image, whereas the fluid stagnates in the cell during scanning. The

contact time between the solution and the sample is linked to the AFM acquisition

parameters, i.e., the number of grid elements, n, the scanning frequency, fa, being

selected as a trade-off between resolution and quality of images. Surface topogra-

phy images acquired with this setting document a dynamic evolution of mono- and

multilayer etch pits on the surface that is consistent with highly undersaturated con-

ditions. Rounding of obtuse-obtuse pit edges is also observed, thus suggesting that

(slight) variations in dissolved calcium saturation are still present.

• Setting 3 is grounded on the use of a high precision syringe pump enabling scanning

the system in the presence of a continuous flow in the cell. The fluid/solid contact

time is independent of acquisition parameters as is determined solely by the flow rate.

Otherwise, the force field associated with the flow may induce disturbances that result

in a degradation of the quality of AFM images. The flow rate is selected upon resting on

(i) analysis of qualitative aspects and target experimental quantities associated with
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calcite dissolution pattern in highly unsaturated conditions and (ii) assessment of the

quality loss due to fluid flow. Temporal series of topography images of calcite surface

are acquired for various values of the Reynolds number, Re. The latter is defined on

the basis of the flow rate and of the geometry of the fluid cell. Relying upon such

dimensionless quantity enables one to generalize results and replicate conditions in

other experimental settings. Consistency of the dissolution pattern with far-from-

equilibrium conditions and constant surface reactivity are observed for Re > 0.60.

The quality loss resulting from the presence of a fluid flow is assessed upon evaluation

of the distortion of the topography of a reference calibration grating imaged with

identical acquisition parameters. While quality loss (slightly) increases with Re, we

conclude that operating at Re = 0.60−0.70 ensures that dissolution takes place under

stable chemical conditions, while preserving good quality of the images.

We model the heterogeneous field of dissolution rate as a random spatial field. We define

the rate as the sum of an average value, ⟨R⟩, and a random fluctuation about the mean,

R′. The former represents an average material flux across the whole surface, whereas the

latter is informative about the spatial variability of the rate and is subject to our stochastic

analysis. Modeling of the statistical behavior of dissolution rate field obtained through the

designed experimental settings is grounded on robust original theoretical models. These

provide a unified framework of analysis for the probability distributions of R′ and its spatial

increments (∆R) evaluated at various separation distances (or lags). In this sense, our

theoretical frameworks enable one to infer distributions of quantities of interest through a

joint analysis of data about values of the target quantity and its (spatial) increments. We

then ensure consistency between these two sets of observations.

We rely on the well-established Generalized sub-Gaussian (GSG) formulation by Riva

et al. (2015a). This flexible and versatile model has been documented to accurately capture

non-Gaussian behaviors of a unimodal variable and of its associated spatial increments at

other spatial scales (Riva et al., 2015a; Guadagnini et al., 2018; Siena et al., 2019, 2020;

Li et al., 2022). Typical non-Gaussian traits entail (i) sharp peaks and (ii) heavy tails
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of sample PDFs of the target variable, together with (iii) scaling tendencies of associated

spatial increments.

Otherwise, multimodal behaviors are observed in sample probability density functions

(PDFs) of R′ (Fischer et al., 2015; Fischer and Lüttge, 2017; Brand et al., 2017) and ∆R.

Key elements observed for such distributions include (i) a slight to moderate asymmetry in

the distribution of R, resulting from the presence of multiple peaks, and (ii) the occurrence

of a dominant peak together with multiple secondary peaks in the distribution of ∆R. The

relative importance of these peaks tends to vary with the lag at which increments of R

are taken across the system. This gives rise to a stark and observable scaling behavior

of the PDF of ∆R. We start by focusing on the particular case of a bimodal Gaussian

mixture, whose modes are identified through an indicator random field. These traits of

sample PDFs arise from a unified description of the otherwise composite nature of a field

that encompasses various regions, each being associated with a different degree of internal

heterogeneity. The presence of such distinct regions in spatial fields of dissolution rates is

related to the coexistence and/or competition of different kinetic mechanisms underpinning

dissolution reactions. We provide theoretical frameworks enabling one to capture these

statistical traits. When considering a bimodal Gaussian mixture model (GMIX), we extend

mathematical formulations by Lu and Zhang (2002) to embed the stochastic nature and

behavior of spatial increments. Then, we further extend our modeling framework to consider

bimodal mixtures associated with Generalized sub-Gaussian modes (GSG-MIX). The latter is

a general formulation that includes the GMIX and the GSG as particular cases. It enables one

to capture bimodal traits encompassing non-Gaussian patterns exhibited by each component

of the mixture. The implementation of the GSG and GSG-MIX models adopted in this thesis

relies on a log-normal subordinator. The latter has been tested for the interpretation of

the spatial statistics of a wide range of data (e.g., Riva et al., 2015a, Siena et al., 2019,

Li et al., 2022). It is emphasized that the theoretical framework illustrated in this thesis

includes the possibility of selecting a general form of the subordinator. The application of

alternative formulations of the GSG and GSG-MIX models on dissolution rates will be the



113

subject of future investigations.

We propose two general procedures to estimate model parameters, which include parti-

tioning the domain into the two components of the mixture, A and B. A first methodology

relies on a well-established Expectation-Maximization (EM) algorithm. The latter estima-

tion scheme is otherwise grounded on a Bayesian classification approach. The robustness

of the proposed methodologies is assessed through extensive tests on a collection of syn-

thetically generated random fields. Application of the ensuing workflows enable one to

characterize the statistical traits of each component of the PDF through mode deconvolu-

tion. Note that the mathematical formulations employed (GSG) or developed (GMIX and

GSG-MIX) in the context of this PhD thesis can be readily applied to interpret other key

environmental variables at different spatial scales and is not restricted to nano-/microscale

spatial observation supports/windows. As an example, the GMIX yields accurate charac-

terization of sample PDFs and statistical moments associated with air-permeability data

obtained by Tidwell and Wilson (1999) on a centimeter scale block of tuff (Siena et al.,

2023).

Experimental topographic data obtained upon relying on the designed settings can be

promptly employed for a stochastic analysis of spatial maps of reaction rates through the

modeling approaches described above.

Setting 1 yields quantitative spatial distributions of fluctuations of dissolution rates,

R′, at various observation times elapsed from the renewal of the fluid (deionized water) in

contact with the mineral surface. The evolution of surface patterns evidenced by AFM images

is consistent with the temporal increase of the solution saturation in a boundary layer at the

fluid/solid interface. The spreading rate evaluated on monolayer etch pits is monotonically

decreasing in time. Otherwise, the multilayer etch pit expansion rate is highest at an

intermediate time during the experiment and then displays a steep decrease. A similar

trend is also documented by (i) the shape parameter and (ii) the scale parameter of the GSG

model employed for the joint characterization of the statistical behavior of R′ and ∆R. We

provide qualitative and quantitative results about the relationship between the parameters
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of the GSG stochastic model and the dynamics of multilayer pits, documenting that the

evolution of these structures significantly affects the statistical features of dissolution rates.

Relying on the Kullback-Leibler Divergence metric, we find that the GSG model generally

shows a higher fidelity to the interpretation of the sample probability distribution of R′ than

the Generalized Extreme Values (GEV) model, which has been previously used (e.g., Brand

et al., 2017). We emphasize that the GSG formulation offers the additional advantage of fully

embedding the features of the probability distributions of both R′ and ∆R in a unified and

consistent manner, an element which is not included in the above mentioned interpretations

based on the GEV model. The stochastic characterization of incremental data yields critical

information about the spatial correlation of the rate field through the correlation function

(ρG) associated with the GSG model. Among the various theoretical models analyzed for the

interpretation of ρG, we find that a nested structure with a short-range and a long-range

correlation component (see Eq. 4.4) is consistently ranked as best according to rigorous

model identification criteria. The temporal behavior of these characteristic length scales

appears to be linked to the evolutionary dynamics of step retreat/monolayer pits and multi-

layer pit structures documented in the experiments. The importance of characterizing the

spatial correlation of key variables driving mineral dissolution processes was highlighted by

Pollet-Villard et al. (2016). These authors develop a numerical model to describe dissolution

and ground model calibration on the comparison between sample variograms evaluated on

experimental data of surface topography and its numerically based counterpart. Our results

reveal the impact that the diverse dissolution patterns can have on the correlation structure

of reaction rates. This information can potentially lead to the development of future flexible

numerical models, which can imbue us with the ability of taking into account multiple length

scales resulting from the occurrence of diverse reaction mechanisms.

Upon relying on Setting 2, we collect spatial maps of R′ comprising two distinct regions

associated with high and low values of dissolution rate, respectively. The presence of the

former region arises from the horizontal spreading of a multilayer etch pit, whereas the

latter is associated with the dynamic evolution of shallow etch pits on crystal terraces.
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Our homogenized view of the otherwise composite nature of these fields leads to a clear

bimodal character of sample PDFs. The latter is amenable to an interpretation based on

a Gaussian mixture model composed by two modes, hereafter termed A or B. These are

respectively associated with high and low material fluxes taking place across the mineral

surface. Our theoretical framework also enables us to capture the behavior of sample

statistical moments associated with increments (as rendered through correlation function,

ρR, and excess kurtosis, Eκ∆R) at different lags, although some discrepancies between

sample and modeled values are observed for a specific range of separation distances. Here,

we notice that sample PDFs of (spatial) increments of reaction rates evaluated for component

A appear to display slight deviations from a Gaussian behavior. These deviations could also

be at the basis of the imperfect agreement observed between sample and theoretical values

of Eκ∆R. The temporal behavior of the GMIX model parameters is seen to be closely related

to the evolution of the observed dissolution patterns.

Setting 3 is employed to obtain spatial maps of (a) absolute dissolution rates and (b)

fluctuations of R about the mean. The constant saturation conditions guaranteed by contin-

uous flow imposed throughout the duration of the experiment enable us to observe pulsating

behaviors associated with emanation of stepwaves from etch pits. Such a pulsating nature

of the dissolution reaction has been recently observed by Fischer and Lüttge (2018) for

the dissolution of calcite and Zinc Oxyde at a higher spatial scale typical of VSI. Recent

findings by Schabernack and Fischer (2024) attribute the formation of dissolution pulses to

the inherent variability of the surface reactivity arising from the nano-topography at the

lattice level.

We rely on Setting 3 to acquire spatial maps of the topography of a portion of the

crystal surface encompassing the reactive mineral and the inert layer. Rescaling reactive

data to the latter enables one to obtain spatial maps of absolute reaction rates at the

high spatial resolution offered by AFM imaging. Associated sample frequency distributions

are characterized by an overall width of the corresponding support that aligns with data

from VSI and DHM observations related to similar (Bouissonnié et al., 2018; Arvidson et al.,
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2003) or identical (Brand et al., 2017) chemical conditions. Sample PDFs display multimodal

traits arising from the coexistence of various dissolution mechanisms and/or different phases

across the temporal evolution of the same kinetic process. We view these mechanisms as

contributing to two major statistical modes, A and B, upon relying on the GMIX framework.

Modeling results show a remarkable agreement between modeled and sample statistics.

Considering Setting 3, our temporal observation window captures the entire evolution of

a stepwave radiated from an etch pit. Sample probability densities of R′ are characterized

by a stark bimodal tendency that mirrors stepwave evolution. Distributions of ∆R show (i)

a central dominant peak coupled to lateral secondary peaks and (ii) a pronounced scaling

behavior with the separation distance at which increments are evaluated. Each of the two

modes observed exhibits non-Gaussian traits such as heavy tails, sharp peak and scaling of

the PDFs of increments evaluated within each of the two spatial regions identified. All of the

aforementioned traits are embedded in the GSG-MIX formulation. Modeling results denote a

striking agreement between sample and theoretical values of the PDFs and of the statistical

moments of R′ and ∆R. The strong link between dissolution mechanisms and GSG-MIX

model parameters enables one to view the latter as aggregate indicators of the evolution of

the surface processes governing the dissolution reaction. Analysis of their temporal trend

can therefore provide critical knowledge on the evolution of kinetic processes and on how

these impact on the behavior of R, as viewed in a stochastic context.

While we exemplify the joint use of our experimental findings and statistical model-

ing frameworks to document (nanoscale) spatial distributions of rates observed across the

surface of a calcite crystal subject to dissolution, our experimental and theoretical frame-

works are flexible and readily transferable to a variety of minerals to quantify the rates and

mechanisms governing chemical weathering thereof. Future investigations are envisioned to

target coupled dissolution-precipitation reactions taking place at solid-fluid interfaces. The

dissolution of a mineral substrate leads to the availability in the liquid phase of dissolved

compounds. In turn, these might react with chemicals in the solution to form a new solid

phase on the surface. Coupled chemical phenomena of this kind underpin critical processes
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such as, e.g., geological sequestration of CO2 or incorporation of heavy metals in natural

geomaterials (see, e.g., Renard et al., 2019; Putnis and Putnis, 2022). Understanding time-

scales and process parameters governing such coupled reactions at a fundamental level is

key to engineer efficient design strategies of target environmental scenarios. Recent experi-

mental efforts devoted to study these processes yield detailed information about nanoscale

interactions of, e.g., a carbonate solid phase and Cadmium (Julia et al., 2023), Chromium

(Guren et al., 2020) or Antimony (Renard et al., 2018). In these works, temporal changes

in the surface reactivity ascribed to the competition between dissolution and precipitation

processes are quantified through average values such as etch pit spreading rates. In contrast,

the experimental setup and the mask fabrication procedure designed in the context of this

PhD thesis would allow to obtain quantitative spatial maps of absolute reaction rates.

The modeling frameworks employed (GSG) or developed (GMIX and GSG-MIX) within the

context of this PhD thesis respond to the critical need to include small scale processes in the

interpretation of sample rate PDFs to provide a comprehensive description of the reaction

kinetics. Having at our disposal modeling tools capable of encapsulating the dynamics of the

physical mechanisms taking place at the solid-liquid interface within a robust theoretical

framework providing a joint accurate description of the statistics of the variable and its

increments can be beneficial to transfer information to other spatial scales. In this context,

we envision to investigate the statistical scaling nature of R through analysis of sample

structure functions. These are defined as sample moments of order q of spatial increments,

i.e.,

Sq
N (s) =

1

N(s)

N(s)∑
n=1

|∆R(s)|q, (5.1)

N(s) being the number of incremental values associated with a given lag s. Structure

functions exhibit a power law scaling if

Sq
N ∝ sξ(q), (5.2)

ξ(q) being a scaling exponent depending solely on q. The nature of scaling is reflected in

the functional relationship between ξ(q) and q. If ξ(q) is linearly proportional to q such
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that ξ(q) = Hq, then the field is a (self-affine) monofractal random field/process (i.e., a

fractional Brownian motion), H being the (constant) Hurst exponent. In contrast, if ξ(q) is

nonlinear in q such that ξ(q) ≤ Hq, the field is considered to be multifractal (e.g., Veneziano

and Yoon, 2013). Significantly diverse behaviors are attributed to monofractal and mul-

tifractal fields/processes. Whereas the former arise from additive components, the latter

are associated with multiplicative phenomena characterized by continuous variations of the

Hurst exponent with q. Despite attempts to associate such multiplicative phenomena with

universal multiplicative energy cascades (Schertzer and Lovejoy, 1988) or fractional Laplace

motion (Meerschaert et al., 2004), there is no rigorous and universally valid theoretical ba-

sis underpinning multifractal behaviors. Apparent multifractal traits might otherwise arise

from truncation of a monofractal field (see, e.g., Guadagnini et al., 2012; Guadagnini and

Neuman, 2011). This is in turn consistent with a theoretical description based on the

truncated fractional Brownian motion (tfBm), as defined for statistically isotropic functions

by Di Federico and Neuman (1997) and for statistically anisotropic functions by Di Federico

et al. (1999). The correlation structure of a tfBm is characterized by a Truncated Power

Variogram (TPV) associated with lower and upper cutoffs proportional to the measurement

(or resolution) scale of the data and to the scale of the domain across which the data are

sampled, respectively (Di Federico and Neuman, 1997). Leveraging on the GSG model and

viewing the underlying Gaussian field as a tfBm, one could incorporate such scaling features

of a field in the unique theoretical framework offered by the GSG model. We envision to

consider such a conceptualization to characterize (i) nanoscale dissolution rate fields ob-

tained through AFM upon relying on the setups designed in the context of this thesis and

(ii) VSI-based observations taken at a larger spatial scale. We will investigate whether sam-

ple structure functions at these two scales exhibit traits that are consistent with apparent

multifractal behaviors. We will then rely on the GSG-MIX framework developed in this thesis

and view each of the component of the mixture as a tfBm subordinated to Um(x). Interpre-

tation of the ensuing correlation length scale associated with each underlying Gaussian field

will be grounded on the TPV model. We plan to investigate the temporal trend of lower-
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and upper-cutoffs of the TPV to link these to mechanistic processes driving the reaction, as

well as to the data support scale. Such a modeling workflow would provide a first direct

comparison of the statistical behavior of R at two different spatial scales.

A parallel line of research that might stem from this PhD thesis work will address the

long-standing challenge of deriving accurate predictive Reactive Transport Models (RTM)

at the continuum level embedding the inherent surface reactivity. High fidelity topographic

measurements taken at various times and ensuing reaction rate fields can be readily em-

ployed to assess model formulations. Analyses of this type have been recently performed by

Schabernack and Fischer (2022, 2024). These authors implement a RTM in COMSOL Mul-

tiphysics using VSI data of polished calcite from Bibi et al. (2018) and Fischer and Lüttge

(2018) as targets. Parametrization of the surface reactivity is grounded on the local topo-

graphic gradient. We envision to further advance these formulations based on a so-called

empirical surface slope factor to derive a theoretically robust relationship between local

rates and spatial gradients of crystal surface topography. Such a mathematical formulation

could include information and/or constraints associated with the crystallographic structure

of the mineral through model parameters that could be inferred by taking advantage of the

high resolution offered by AFM. The inherent reactivity of the crystal surface could also be

encapsulated in a RTM by solving the latter in a typical Monte Carlo framework. In this

context, a collection of random rate fields could be generated according to the GSG, GMIX,

or GSG-MIX models.
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A Reliability of Setting 1
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Figure A.1: Exemplary evolution (Series 2 ) of the topography of calcite surface imaged upon

relying on experimental Setting 1 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment.
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1 µm
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Figure A.2: Exemplary evolution (Series 3 ) of the topography of calcite surface imaged upon

relying on experimental Setting 1 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment.
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B Reliability of Setting 2
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Figure B.1: Exemplary evolution (Series 2 ) of the topography of calcite surface imaged upon

relying on Experimental Setting 2 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel (F) depicts the

number of monolayer etch pits, npit, versus time.
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Figure B.2: Exemplary evolution (Series 3 ) of the topography of calcite surface imaged upon

relying on Experimental Setting 2 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel (F) depicts the

number of monolayer etch pits, npit, versus time.
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Figure B.3: Exemplary evolution (Series 4 ) of the topography of calcite surface imaged upon

relying on Experimental Setting 2 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel (F) depicts the

number of monolayer etch pits, npit, versus time.
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Figure B.4: Exemplary evolution (Series 5 ) of the topography of calcite surface imaged upon

relying on Experimental Setting 2 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel (F) depicts the

number of monolayer etch pits, npit, versus time.
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Figure B.5: Exemplary evolution (Series 6 ) of the topography of calcite surface imaged upon

relying on Experimental Setting 2 at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel (F) depicts the

number of monolayer etch pits, npit, versus time.
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C Reliability of Setting 3

z [ nm ]

‘

1 µm

1.5

-1.5

0

(A) t1 = 6 min (B) t2 = 12 min (C) t3 = 18 min

(D) t4 = 24 min (E) t5 = 30 min

Figure C.1: Exemplary evolution of the topography of calcite surface imaged upon relying on

Setting 3 at Q = 5µLs−1 (Re = 0.37) at (A) t1 = 6 min, (B) t2 = 12 min, (C) t3 = 18 min, (D)

t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment.
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Figure C.2: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 8µLs−1 (Re = 0.59) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.
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Figure C.3: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 9µLs−1 (Re = 0.66) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.



C. RELIABILITY OF SETTING 3 131

10 15 20
0

0.5
1

1.5

z [ nm ]

‘

1 µm

30

-30

0

(A) t1 = 6 min (B) t2 = 12 min (C) t3 = 18 min

(D) t4 = 24 min (E) t5 = 30 min

time [min]

ν 
[n

m
 s-1

]

(F)

ν
_

Figure C.4: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 10µLs−1 (Re = 0.74) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.
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Figure C.5: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 11µLs−1 (Re = 0.81) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.
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Figure C.6: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 12µLs−1 (Re = 0.89) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.
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Figure C.7: Exemplary evolution of the topography of calcite surface imaged upon relying on

experimental Setting 3 at Q = 15µLs−1 (Re = 1.11) at (A) t1 = 6 min, (B) t2 = 12 min, (C)

t3 = 18 min, (D) t4 = 24 min, and (E) t5 = 30 min from the beginning of the experiment. Panel

(F) depicts the etch pit spreading rate, νt, as a function of time. The average value, ν̄, is reported

as a dashed red line.
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D Lognormal Generalized sub-Gaussian model

In the following we specialize the derivation of the GSG model considering the subordinator

as lognormally distributed. Therefore, the distributional form of U reads

fU (u) =
1√

2πu(2− α)
e
− ln2 u

2(2−α)2 . (D.1)

Substituting Eq. D.1 into Eq. 3.11 yields

fY ′(y′) =
1

2π(2− α)

∫ ∞

0

1

u2
e
− 1

2

(
1

(2−α)2
ln2 u

σG
+ y′2

u2

)
du. (D.2)

The q − th order raw moment of U can be evaluated as

⟨U q⟩ = e
q2

2
(2−α)2 . (D.3)

Eq. D.3 dictates that ⟨U q⟩ → 1 if α → 2. Variance and kurtosis respectively read

σ2
Y = e2(2−α)2σ2

G, (D.4)

κY = 3e4(2−α)2 . (D.5)

Substituting Eq. D.1 in Eq. 3.16 leads to

f∆Y (∆Y ) =
1

2π2(2− α)2

√
π

2

∫ ∞

0

∫ ∞

0

e
− 1

2

[
1

(2−α)2

(
ln2

u1
σG

+ln2
u2
σG

)
+

(∆y)2

r

]
r

du1
u1

du2
u2

. (D.6)

with r =
√
u21 + u22 − 2ρGmu1u2. Making use of Eq. D.6, second and fourth order moment

and kurtosis of the increments read

⟨∆Y 2⟩ = 2σ2
Ge

(2−α)2
[
e(2−α)2 − ρG

]
, (D.7)

⟨∆Y 4⟩ = 6σ4
Ge

4(2−α)2
[
e4(2−α)2 + 1− 4e4(2−α)2ρG + 2ρ2G

]
, (D.8)

κ∆Y = 3e2(2−α)2

1 +
1

2

[
e2(2−α)2 − 1

e(2−α)2 − ρG

]2 . (D.9)

The covariance and the variogram of Y respectively are expressed as

CY = e(2−α)2CG, (D.10)
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γY = ν + e(2−α)2γG. (D.11)

where CG = σ2
GρG is the covariance of the G and ν = σ2

Ge
(2−α)2

[
e(2−α)2 − 1

]
is the nugget

effect. The integral scale of Y ′ is obtained as

IY = e−(2−α)2IG. (D.12)
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E Lognormal Generalized sub-Gaussian Mixture model

In the following we specialize the derivation of the GSG-MIX model considering the subordi-

nator as lognormally distributed according to Eq. D.1. Substituting Eq. D.1 into Eq. 3.31

yields

fY (y) =
p

2πσGA
(2− αA)

∫ ∞

0

1

u2
e
− 1

2

[
1

(2−αA)2
ln2 u

σGA
+

(y−µA)2

u2

]
du

+
1− p

2πσGB
(2− αB)

∫ ∞

0

1

u2
e
− 1

2

[
1

(2−αB)2
ln2 u

σGB
+

(y−µB)2

u2

]
du

(E.1)

The q − th order raw moment of Um can be evaluated through Eq. D.3. Substituting the

latter into Eqs. 3.52, 3.53, and 3.54 yields

σ2
Y = pσ2

GA
e2(2−αA)2 + (1− p)σ2

GB
e2(2−αB)2 + p(1− p) (µA − µB)

2 , (E.2)

SkY =
1

σ3
Y

{
p(1− p)(µA − µB)

[
(1− 2p)(µA − µB)

2

+ 3
(
σ2
GA

e2(2−αA)2 − σ2
GB

e2(2−αB)2
)]} (E.3)

κY =
1

σ4
Y

{
3p
[
σ4
GA

e8(2−αA)2 − σ4
GB

e8(2−αB)2
]
+ 3σ4

GB
e8(2−αB)2

+ p(1− p)(µA − µB)
2
[
(1− 3p(1− p))(µA − µB)

2

+ 6
(
σ2
GA

e2(2−αA)2 − p
(
σ2
GA

e2(2−αA)2 − σ2
GB

e2(2−αB)2
))]}

.

(E.4)

Eq. E.2 dictates that the variance of Y attains a minimum for [α
min(σ2

Y )
A → 2, α

min(σ2
Y )

B →

2]. The skewness of the PDF of Y is minimized for
α
min(SkY )
A → 2

α
min(SkY )
B = 2−

√
1
2 ln

(1−p)(µA−µB)2+(3−p)σ2
GA

(1−p)σ2
GB

,

and maximized for 
α
max(SkY )
A = 2−

√
1
2 ln

p(µA−µB)2+(2+p)σ2
GB

pσ2
GA

α
max(SkY )
B → 2

.
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The kurtosis of Y is minimized along αh → 2, with h = A if p < 0.5, h = B otherwise.

Substituting Eq. D.1 in Eq. 3.55 leads to

f∆Y (∆Y ) =
p2 + CI(s)

(2π)3/2(2− αA)2σGA

∫ +∞

0

∫ +∞

0
e
− 1

2

[
ln2 u1+ln2 u2

(2−αA)2
+ ∆y2

2σ2
GA

r2

]
du2du1
u1u2r

+
(1− p)2 + CI(s)

(2π)3/2(2− αB)2σGB

∫ +∞

0

∫ +∞

0
e
− 1

2

[
ln2 u1+ln2 u2

(2−αB)2
+ ∆y2

2σ2
GB

r2

]
du2du1
u1u2r

+
p(1− p)− CI(s)

(2π)3/2(2− αA)(2− αB)

∫ +∞

0

∫ +∞

0
e
− 1

2

[
ln2 u1

(2−αA)2
+

ln2 u2
(2−αB)2

+
(∆y−µA+µB)2

v2

]
du2du1
u1u2v

+
p(1− p)− CI(s)

(2π)3/2(2− αA)(2− αB)

∫ +∞

0

∫ +∞

0
e
− 1

2

[
ln2 u1

(2−αB)2
+

ln2 u2
(2−αA)2

+
(∆y+µA−µB)2

w2

]
du2du1
u1u2w

(E.5)

with r =
√

u21 + u22 − 2ρGmu1u2 (m = A,B), v =
√
σ2
GA

u21 + σ2
GB

u22, and w =
√
σ2
GB

u21 + σ2
GA

u22.

Making use of Eq. E.5, second and fourth order moment of the increments respectively read

⟨∆Y 2⟩ = 2
{
p2σ2

GA
e(2−αA)2

[
e(2−αA)2 − ρGA

]
+ (1− p)2σ2

GB
e(2−αB)2

[
e(2−αB)2 − ρGB

]
+ p(1− p)

[
(1− ρI)(µA − µB)

2 + σ2
GA

e(2−αA)2
(
e(2−αA)2 − ρIρGA

)
+ σ2

GB
e(2−αB)2

(
e(2−αB)2 − ρIρGB

)]}
,

(E.6)

⟨∆Y 4⟩ = 6
{
p2σ4

GA
e4(2−αA)2

[
1 + e4(2−αA)2 − 4e(2−αA)2ρGA

+ 2ρ2GA

]
+ (1− p)2σ4

GB
e4(2−αB)2

[
1 + e4(2−αB)2 − 4e(2−αB)2ρGB

+ 2ρ2GB

]
+ p(1− p)ρIσ

4
GA

e4(2−αA)2
[
1 + e4(2−αA)2 − 4e(2−αA)2ρGA

+ 2ρ2GA

]
+ σ4

GB
e4(2−αB)2

[
1 + e4(2−αB)2 − 4e(2−αB)2ρGB

+ 2ρ2GB

]}
+ 2
{
p(1− p)(1− ρI)

[
(µA − µB)

4 + 6(µA − µB)
2
(
σ2
GA

e2(2−αA)2 + σ2
GB

e2(2−αB)2
)

+ 3
(
σ4
GA

e8(2−αA)2 + σ4
GB

e8(2−αB)2 + 2σ2
GA

σ2
GB

e2((2−αA)2+(2−αB)2)
)]}

.

(E.7)
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The covariance and the variogram of Y respectively yield

CY =


σ2
Y if s = 0

p2σ2
GA

e(2−αA)2ρGA
+ (1− p)2σ2

GB
e(2−αB)2ρGB

+ if s > 0

+p(1− p)ρI

[
(µA − µB)

2 + σ2
GA

e(2−αA)2ρGA
+ σ2

GB
e(2−αB)2ρGB

]
(E.8)

γY = ν + p2e(2−αA)2γGA
+ (1− p)2e(2−αB)2γGB

+ (µA − µB)
2γI

+ p(1− p)
[
e(2−αA)2(1− ρIρGA

) + e(2−αB)2(1− ρIρGB
)
]
,

(E.9)

where the nugget effect, ν, reads

ν = pσ2
GA

[
e(2−αA)2

(
e(2−αA)2 − 1

)]
+ (1− p)σ2

GB

[
e(2−αB)2

(
e(2−αB)2 − 1

)]
. (E.10)

The integral scale of the mixture is obtained as

IY =
1

σ2
Y

{
p2σ2

GA
e(2−αA)2λGA

+ (1− p)2σ2
GB

e(2−αB)2λGB

+ p(1− p)
[
(µA − µB)

2λI + σ2
GA

e(2−αA)2
∫ ∞

0
ρIρGA

ds+ σ2
GB

e(2−αB)2
∫ ∞

0
ρIρGB

ds
]}

.

(E.11)
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F Generation of synthetic bimodal fields

Multiple realizations of synthetic GMIX fields are generated to provide a transparent assess-

ment of the reliability of the parameter estimation strategies described in Sections 3.6.1 and

3.6.3.

The generation of synthetic bimodal mixtures of Gaussian and Generalized sub-Gaussian

fields is structured according to the four steps illustrated in the following and is perfomed

on a two-dimensional regular grid formed by n× n nodes.

• Step 1. We generate an unconditional realization of the random indicator field, I.

• Step 2. We generate an unconditional realization of YA.

• Step 3. We generate an unconditional realization of YB.

• Step 4. We generate a bimodal field by setting (i) Y = YA (see Step 2) at locations

where I = 1 (see Step 1) and (ii) Y = YB (see Step 3) at locations where I = 0 (see

Step 1).

Steps 1-4 are repeated N times.

F.1 Generation of synthetic bimodal Gaussian fields

To assess the reliability of the EM algorithm as a classification methodology for GMIX fields,

we generate N = 100 fields across a 100× 100 grid. A schematic representation of the gen-

eration of GMIX fields according to steps 1-4 is depicted in Fig. F.1. An unconditional real-

ization of the indicator field (step 1; Fig. F.1.A) is generated employing a Transition Prob-

ability simulation approach (which takes advantage of the widely tested code T-PROGS;

e.g., Carle and Fogg, 1996, 1997). Here, we set p = 0.2 and lA = 8. The Gaussian fields

YA(x) and YB(x) are generated through a sequential Gaussian simulation framework (based

on the broadly used and tested code SGSIM; e.g., Deutsch and Journel, 1998). YA and YB

are obtained by two sets of N unconditional realizations of Gaussian random fields char-

acterized by and exponential covariance function with λA= λB = 6, µA = 2.5, µB = 0.5,
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σ2
A = 0.15 and σ2

B = 0.05 (step 2-3; Fig. F.1.B-C). The value of Y in each node of the grid

is then computed via Eq. 3.28 (step 4; Fig. F.1.D).
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Figure F.1: Generation procedure of an exemplary GMIX random field; (A) synthetic realization

of the indicator field, I; (B-C) synthetic realizations of the Gaussian fields, YA and YB ; (D) final

realization of the GMIX field obtained through Eq. 3.28.

F.2 Generation of synthetic bimodal Generalized sub-Gaussian

fields

Analysis of the reliability of the algorithm resting on a Bayes classifier is grounded on

the generation of fields resembling patterns that are typically observed for experimental

dissolution rate fields. The generation procedure is schematically depicted in Fig. F.2 and is

here detailed for the more general GSG-MIX case. We recall that the latter model includes the

GMIX model as a particular case. The indicator field is constructed to resemble the typical

rhombohedral shape of stepwaves emanated from an etch pit (Fischer and Lüttge, 2018)

(step 1; Fig. F.2.A). The system is characterized by a proportion p = 0.1. Unconditional

GSG fields associated with YA and YB are generated through a modified version of the

SGSIM code (Riva et al., 2015b) (Steps 2-3; Fig. F.2.B-C). We rely upon an exponential

model for the spatial correlation of Gm, i.e., ρGm(s) = e−s/λGm (m = A,B), and known

parameter sets (µA = 2.5, σ2
GA

= 0.05, αA = 1.7, λGA
= 10 and µB = 0.5, σ2

GB
= 0.15, αB =

1.85, λGB
= 20). Similar to the GMIX case, the bimodal Generalized sub Gaussian field is

then obtained through Eq. 3.28 (step 4; Fig. F.2.D).
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YA(x) = GA(x) ·UA(x) Y(x)
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Figure F.2: Generation procedure of a GSG-MIX random field; (A) generation of an indicator

random field, I, resembling geometrical patterns observed for dissolution rate maps; (B-C) synthetic

realizations of the Generalized sub-Gaussian fields, YA and YB ; (D) final realization of the GSG-MIX

field obtained through Eq. 3.28.
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Figure G.1: Results of the GSG-MIX modeling framework applied to R′(x, t∗1). (A) indicator field,

I(x, t∗1), resulting from the classification resting on the algorithm illustrated in Section 3.6.3. Sample

and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and 80). (D) Estimated

correlations of each m − th mode of the mixture, ρ̂Gm
(m = A,B), and of the indicator field, ρ̂I .

(E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9
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Figure G.2: Results of the GSG-MIX modeling framework applied to R′(x, t∗2). (A) indicator field,

I(x, t∗2), resulting from the classification resting on the algorithm illustrated in Section 3.6.3. Sample

and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and 80). (D) Estimated

correlations of each m − th mode of the mixture, ρ̂Gm
(m = A,B), and of the indicator field, ρ̂I .

(E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9.
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Figure G.3: Results of the GSG-MIX modeling framework applied to R′(x, t∗3). (A) indicator field,

I(x, t∗3), resulting from the classification resting on the algorithm illustrated in Section 3.6.3. Sample

and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and 80). (D) Estimated

correlations of each m − th mode of the mixture, ρ̂Gm
(m = A,B), and of the indicator field, ρ̂I .

(E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9.
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Figure G.4: Results of the GSG-MIX modeling framework applied to R′(x, t∗5). (A) indicator field,

I(x, t∗5), resulting from the classification resting on the algorithm illustrated in Section 3.6.3. Sample

and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and 80). (D) Estimated

correlations of each m − th mode of the mixture, ρ̂Gm
(m = A,B), and of the indicator field, ρ̂I .

(E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9.
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Figure G.5: Results of the GSG-MIX modeling framework applied to R′(x, t∗6). (A) indicator field,

I(x, t∗6), resulting from the classification resting on the algorithm illustrated in Section 3.6.3. Sample

and GSG-MIX PDFs of (B) R′ and (C) ∆R (evaluated at lags s = 10, 40 and 80). (D) Estimated

correlations of each m − th mode of the mixture, ρ̂Gm
(m = A,B), and of the indicator field, ρ̂I .

(E) Sample and analytical GSG-MIX variogram, γR, evaluated through Eq. E.9.



148 Appendices

H Temporal trend of moments of R′

The statistical moments of the GSG-MIX model are controlled by (i) the square difference of

the means, ε2 = (µA − µB)
2, the difference of (ii) the variances, ζ = σ2

RA
− σ2

RB
, and of the

fourth order central moments, θ = 3
(
⟨R′4

A⟩ − ⟨R′4
B⟩
)
of the two components of the mixture,

together with (iv) the variance of the indicator variable, σ2
I = p(1− p). Eqs. 3.52, 3.53 and

3.54 can be rewritten upon highlighting the latter terms as

σ2
R = σ2

RB
+ pζ + σ2

Iε
2, (H.1)

SkR =
1

σ3
R

{
σ2
Iε
[
(1− 2p)ε2 + 3ζ

]}
, (H.2)

κR =
1

σ4
R

{
pθ + ⟨Y ′4

B⟩+ σ2
Iε

2
[(
1− 3σ2

I

)
ε2 + 6

(
σ2
YA

− pζ
)]}

. (H.3)

Analysis of the partial contribution to σ2
Y , SkY and κY of each of the term embedded in

Eqs. H.1, H.2, and H.3 can assist one to discriminate which GSG-MIX parameters have

the highest impact on the statistical moments of the mixture. As GSG-MIX parameters

are strictly linked to the evolution of the surface pattern, this is informative about the

effect on the statistics of R′ of the kinetic processes driving the reaction. Second, third, and

fourth order moments of the mixture, together with their partial contributions, are depicted

versus time in Fig. H.1. As the mechanism that is driving the level of heterogeneity of RA

and RB is the same (i.e., dynamic evolution of shallow etch pits), ζ, θ → 0 at all times

(orange and dark red lines in Fig. H.1). Analysis of model parameters characterizing region

B (Figs. 4.23.B-D) documents that statistical moments associated with this mode of the

mixture are constant in time (blue lines in Fig. H.1). Furthermore, the proportion of region

A with respect to the overall field is < 0.1 at all times (Figs. 4.23.A). Hence, all terms in

Eqs. H.1, H.2, and H.3 that are multiplied by p are negligible with respect to the others

(pink and green lines in Fig. H.1). As such, the temporal behavior of σ2
R, SkR, and κR is

controlled by σ2
I and ε2 (light blue lines in Fig. H.1).
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Lasaga, A. and Lüttge, A. (2003). A model for crystal dissolution. Eur. J. Mineral.,

15(4):603–615.



158 BIBLIOGRAPHY

Li, K., Wu, J., Nan, T., Zeng, X., Yin, L., and Zhang, J. (2022). Analysis of heterogeneity in

a sedimentary aquifer using generalized sub-gaussian model based on logging resistivity.

Stochastic Environmental Research and Risk Assessment, 36(3):767–783.

Liang, Y. and Baer, D. (1997). Anisotropic dissolution at the caco3(101̄4)-water interface.

Surface Science, 373(2-3):275–287.

Liu, H. H. and Molz, F. J. (1997). Comment on “evidence for non-gaussian scaling behavior

in heterogeneous sedimentary formations” by scott painter. Water Resources Research,

33(4):907–908.

Lolo, F.-N., Walani, N., Seemann, E., Zalvidea, D., Pavón, D. M., Cojoc, G., Zamai,

M., Viaris de Lesegno, C., Mart́ınez de Benito, F., Sánchez-Álvarez, M., et al. (2023).
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