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Abstract: Recently, we have applied the generalized Littlewood theorem concerning contour integrals
of the logarithm of the analytical function to find the sums over inverse powers of zeros for the
incomplete gamma and Riemann zeta functions, polygamma functions, and elliptical functions. Here,
the same theorem is applied to study such sums for the zeros of the Hurwitz zeta function ζ(s, z),
including the sum over the inverse first power of its appropriately defined non-trivial zeros. We also
study some related properties of the Hurwitz zeta function zeros. In particular, we show that, for any
natural N and small real ε, when z tends to n = 0, −1, −2. . . we can find at least N zeros of ζ(s, z) in
the ε neighborhood of 0 for sufficiently small |z + n|, as well as one simple zero tending to 1, etc.

Keywords: logarithm of an analytical function; generalized Littlewood theorem; Hurwitz zeta
function; zeros and poles of analytical function
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1. Introduction

For any fixed complex z ̸= 0,−1,−2 . . . and Re s > 1, the Hurwitz zeta function is
defined as

ζ(s, z) =
∞

∑
n=0

1
(n + z)s (1)

and with analytic continuation for Res ≤ 1. The only singularity of the function is the
simple pole at s = 1 with the residue one; see, e.g., references [1–5] for the discussion of
the main properties of this function. They are well known, so below, we give only a rather
short account.

Many integral representations of the Hurwitz zeta function can be established. These,

of course, include the “classic” representation ζ(s, z) = 1
Γ(s)

∞∫
0

xs−1e−ax

1−e−x dx, where Re s > 1 and

Re a > 0, but the most used for analytical continuation is Hermite’s integral representation,
valid for Re z > 0 and s ̸= 1:

ζ(s, z) =
1
2

z−s +
z1−s

s − 1
+ 2

∞∫
0

sin(sarctan(x/z))

(x2 + z2)s/2(e2πx − 1)
dx. (2)

For Re z < 0, the relation

ζ(s, z) =
1
zs + ζ(s, z + 1), (3)

With its evident subsequent applications, like ζ(s, z) = 1
zs + 1

(z+1)s + ζ(s, z + 2), etc.,

are exploited. Being an example of zeta functions, ζ(s, z) obeys the functional equation
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(Hurwitz formula) ζ(s, z) = 2Γ(1−s)
(2π)1−s

(
sin(πs

2 )
∞
∑

n=1

cos(2πna)
n1−s + cos(πs

2 )
∞
∑

n=1

sin(2πna)
n1−s

)
, valid for

Re s < 0 and 0 < a ≤ 1. For rational values of a, this equation acquires a rather compact
form known as Rademacher’s formula; see below for its concrete expressions.

The properties of the Hurwitz zeta function have been much studied due to its great
importance in number theory, statistics, and physics; for the latter, see especially [6]. Of
course, the particular question of the location of zeros of Hurwitz zeta function has also
been much studied, which is not surprising, given the celebrated Riemann hypothesis and
the circumstance that ζ(s, 1) = ζ(s). Probably, the theorem of Davenport and Heilbronn [7]
remains the most interesting result here: they proved that, for any rational or transcendent
irrational 0 < z < 1, z ̸= 1/2, there are infinitely many zeros of ζ(s, z) in any strip
1 < Res(s, z) < 1 + ε for any real positive ε; later on, the same was proven by Cassel
for algebraic irrational z [8]. There are also a number of both analytic and numerical
studies dealing with the (mainly real) zeros of ζ(s, z); see, e.g., [9–14]. In particular, for
real 0 < x ≤ 1, Spira [9] established the absence of zeros to the right of Res ≥ 1 + x,
as well as the absence of zeros for |Ims|≥ 1 if Res < −1, and showed that for |Ims|≤ 1
and Res ≤ (−4x + 1 + 2[1 − 2x]), the only zeros are (analogs of) trivial zeros, one in each
interval −2n − 4x ± 1; n is an integer and n ≥ 1 − 2x. He also indicated the formula
describing the number of zeros of ζ(s, x) with 0 < Res ≤ T:

N(x, T) =
T

2π
ln T − T(

1 + ln(2πx)
2π

) + O(ln T). (4)

(This relation was not explicitly proven by Spira; he presented only the statement that
it can be proven using a method of Berndt’s [15]. The same formula was conjectured and
tested numerically in [14]).

Nevertheless, despite these findings, the picture is far from fully clear, so the question
concerning the sum over inverse powers of Hurwitz zeta function zeros remains actual.
The calculations of such sums (and functions related to them) have a long tradition in
the theory of the special functions, apparently started already by Rayleigh for the case of
Bessel’s function in the XIX century [16] (for a good review of the Rayleigh function and
its applications, see, e.g., [17]); for other examples, see our recent publications [18,19]). In
many cases, such sums can improve our understanding of the function studied and enable
us to make certain statements concerning its zeros: in our opinion, the present work well
illustrates this circumstance, sf. Below, the discussion of the possibility of claiming the
infinite number of s-zeros of the ζ(s, z) function close to s = 0 when z approaches zero from
the analysis of the sums ∑

zeroes o f ζ(s, z),
z → 0

ki
ρn

i
.

We study the sums over inverse powers of the Hurwitz zeta function zeros, together
with some related questions, in the present paper. Our method is mainly based on the
generalized Littlewood theorem, and recently, analogous studies were undertaken for the
polygamma, incomplete gamma, and Riemann zeta functions [18], as well as elliptical
functions [19]. These applications followed our earlier applications to the Riemann zeta
function [20–22]; here, we would like to underline that one of them has been highlighted in a
recent encyclopedia of mathematics entry [23]. For this reason, only a very short discussion
of the method itself is given below. All details can be found in the aforementioned papers,
especially [18].

2. The Generalized Littlewood Theorem

The generalized Littlewood theorem concerning contour integrals of the logarithm of
the analytical function is stated as follows:

Theorem 1 (The Generalized Littlewood theorem). Let C denote the rectangle bounded by the
lines x = X1, x = X2, y = Y1, y = Y2, where X1 < X2, Y1 < Y2, and let f(z) be analytic and
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non-zero on C and meromorphic inside it, and let also g(z) be analytic on C and meromorphic inside
it. Let F(z) = ln(f(z)) be the logarithm defined as follows: we start with a particular determination
at x = X2, and we obtain the value at other points through continuous variation along y = const
from ln(X2 + iy). If, however, this path would cross a zero or pole of f(z), we take F(z) to be F(z± 0),
according to whether we approach the path from above or below. Let also F̃(z) = ln( f (z)) be the
logarithm defined through continuous variation along any smooth curve fully lying inside the
contour, which avoids all poles and zeros of f(z) and starts from the same particular determination
at x = X2. Suppose also that the poles and zeros of the functions f(z) and g(z) do not coincide.

Then,

∫
C

F(z)g(z)dz = 2πi

∑
ρg

res(g(ρg) · F̃(ρg))− ∑
ρ0

f

X0
ρ+iY0

ρ∫
X1+iY0

ρ

g(z)dz + ∑
ρ

pol
f

Xpole
ρ +iYpole

ρ∫
X1+iYpole

ρ

g(z)dz

. (5)

where the sum is over all ρg, which are poles of the function g(z) lying inside C, all ρ0
f = X0

ρ + iY0
ρ ,

which are zeros of the function f(z), both counted while taking into account their multiplicities (that
is, the corresponding term is multiplied by m for a zero of the order m) and which lie inside C, and
all ρ

pole
f = Xpole

ρ + iYpole
ρ , which are poles of the function f(z), counted while taking into account

their multiplicities, and which lie inside C. The assumption is that all relevant integrals on the
right-hand side of the equality exist.

The proof of this theorem [21] is very close to the proof of the standard Littlewood
theorem corresponding to the case g(z) = 1; see, e.g., [24]. Below, with the exception of
Section 4, we apply this theorem to certain particular cases when the contour integral∫
C

F(z)g(z)dz disappears (tends to zero) if the contour tends to infinity—that is, when

X1, Y1 → −∞ and X2, Y2 → +∞ This means that Equation (5) takes the form

∑
ρ0

f

X0
ρ+iY0

ρ∫
−∞+iY0

ρ

g(z)dz − ∑
ρ

pol
f

Xpole
ρ +iYpole

ρ∫
−∞+iYpole

ρ

g(z)dz = ∑
ρg

res(g(ρg) · F(ρg)). (6)

3. Sums over Inverse Powers of Zeros for the Hurwitz Zeta Function
3.1. General Formulae

At the point s = 1, the Hurwitz zeta function possesses absolutely and uniformly
converging Laurent expansion with the generalized Stieltjes constants [1–5]

γn(z) = limN→∞(
N

∑
k=0

lnn(k + z)
k + z

− lnn+1(N + z)
n + 1

) : (7)

ζ(s, z) =
1

s − 1
+

∞

∑
n=0

(−1)n

n!
γn(z)(s − 1)n. (8)

This expansion is evidently analogous to that of the Riemann zeta function

ζ(s) = 1
s−1 +

∞
∑

n=0

(−1)n

n! γn(s − 1)n. Here, γ0 := γ is the Euler–Mascheroni constant.

Thus,

(s − 1)ζ(s, z) = 1 − ψ(z)(s − 1)− γ1(z)(s − 1)2 +
1
2

γ2(z)(s − 1)3 + O((s − 1)4), (9)

and this solves the problem of the sum of inverse powers of “zeros minus one”; compare
with the similar results in our previous works [18,19]. We need just to add that the asymp-
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totic of the Hurwitz zeta function, similar to the Riemann zeta function, for large |s| is
O(sln(s)) [1–5], so we can use the generalized Littlewood theorem for n ≥ 3.

Let us slightly enlarge the scope of our elementary Lemma 1 from [18].

Lemma 1. Let f(z) be an analytical function defined on the whole complex plane except possibly a
countable set of points. Let also this function be represented in some neighborhood of the point
z = 0 via the Taylor expansion f (z) = 1 + a1z + a2z2 + a3z3 + . . ., and the contour integral∫
C

ln f (z)
z3 dz tends to zero when contour C tends to infinity (see Theorem 1 for the details). Then,

for the sum over zeros ρi,0 , having order ki, and poles ρi,pole, having order li, of the function f(z),
we have

∑ (
ki

ρ2
i,0

− li
ρ2

i,pole
) = a2

1 − 2a2, (10)

∑ (
ki

ρ3
i,0

− li
ρ3

i,pole
) = −a3

1 + 3a1a2 − 3a3, (11)

∑ (
ki

ρ4
i,0

− li
ρ4

i,pole
) = a4

1 − 4a1a3 + 2a2
2 − 4a4. (12)

Proof. We trivially have, in some neighborhood of the point z = 0, the Taylor expansion
ln( f (z)) = a1z + (a2 − 1

2 a2
1)z

2 + (a3 − a1a2 +
1
3 a3

1)z
3 + (a4 − 1

2 a2
2 + a1a3 − 1

4 a4
1)z

4 + . . ., and

now the direct application of Theorem 1 to the integrals
∫
C

ln f (z)
zn dz with n = 3, 4, and 5 gives

the statement of the current lemma. □

Remark 1. In such a particular form, the lemma is presented for the ease of subsequent applications.
Of course, this is possible to establish the difficult-to-use general relation between the coefficients
of the Taylor expansions of the functions f(z) and ln( f (z)) = b1z + b2z2 + b3z3 + . . ., and this
actually has been done in [25]. For completeness, we reproduce here Lemma 2.1 from that work
(given there for one particular function with the alternating signs in the Taylor expression, but this
is not important. Note also the misprint in the formulation of the lemma; the final formula in its
proof is correct).

Lemma 2. Let the function f(z) have the following Taylor expansion in the neighborhood of z = 0:

f (z) = 1 −
∞

∑
n=1

anzn. Then, ln( f (z)) =
∞

∑
n=1

bnzn, where

bn = − ∑
j1+2j2+3j3+...=n

(j1 + j2 + j3 + . . . − 1)!
j1!j2!j3! . . .

aj1
1 aj2

2 aj3
3 . . .

Proof.

ln( f (z)) = −
∞
∑

m=1

1
m (

∞
∑

k=1
akzk)

m
= −

∞
∑

m=1

1
m ∑

j1+j2+j3+...=m

m!
j1!j2!... z

j1+2j2+3j3+...aj1
1 aj2

2 aj3
3 . . .

= −
∞
∑

m=1
∑

j1+j2+j3+...=m

(m−1)!
j1!j2!... zj1+2j2+3j3+...aj1

1 aj2
2 aj3

3 . . .

= −
∞
∑

n=1
zn ∑

j1+2j2+3j3+...=n

(j1+j2+j3+...−1)!
j1!j2!j3!... aj1

1 aj2
2 aj3

3 . . .

□
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Using Lemma 1 and just substituting the appropriate values of ai into it, we obtain the
following:

∑
zeroes o f ζ(s,z)

ki

(ρi − 1)2 = ψ2(z) + 2γ1(z), (13)

∑
zeroes o f ζ(s,z)

ki

(ρi − 1)3 = ψ3(z) + 3ψ(z)γ1(z)−
3
2

γ2(z), (14)

∑
zeroes o f ζ(s,z)

ki

(ρi − 1)4 = ψ4(z) + 2ψ(z)γ2(z) + 2γ2
1(z) +

2
3

γ3(z). (15)

Here, we exploited γ0(z) = −ψ(z) [1–5], where ψ(z) is the digamma function (see,
e.g., [3–5]) for discussion of this function.

To find the sums ∑
zeroes o f ζ(s,z)

ki
ρ2

i
, ∑

zeroes o f ζ(s,z)

ki
ρ3

i
, etc., we also use our standard ap-

proach to write if z ̸= 1/2; 0,−1,−2,−3 . . .:

ζ(s, z)
ζ(0, z)

= 1 +
1

ζ(0, z)
ζ ′(0, z)s +

1
2ζ(0, z)

ζ ′′ (0, z)s2 +
1

6ζ(0, z)
ζ ′′′ (0, z)s3 + O(s4) (16)

(all derivatives in the paper are over the variable s), whence, per Lemma 1,

∑
zeroes o f ζ(s,z)

ki

ρ2
i
= 1 +

[ln Γ(z)− 1
2 ln 2π]

2

(1/2 − z)2 − ζ ′′ (0, z)
1/2 − z

, (17)

∑
zeroes o f ζ(0,z)

ki
ρ3

i
= 1 − 1

(1/2−z)3 (ln Γ(z)− ln 2π)3 + 3
2(1/2−z)2 (ln Γ(z)− ln 2π)ζ ′′ (0, z)

− 1
2(1/2−z) ζ ′′′ (0, z)

∑
zeroes o f ζ(0,z)

ki
ρ4

i
= 1 + 1

(1/2−z)4 (ln Γ(z)− ln 2π)4 − 2
3(1/2−z)3 (ln Γ(z)− ln 2π)ζ ′′′ (0, z)

+ 1
2(1/2−z)2 [ζ ′′ (0, z)]2 − ζ ′′′ ′(0,z)

6(1/2−z)

(18)

Here, we used the relations [1–5]

ζ(0, z) =
1
2
− z (19)

and
ζ ′(0, z) = ln Γ(z)− 1

2
ln 2π, (20)

readily following from the integral representation (1) and the second Binet’s integral

formula ln Γ(z) = (z − 1/2) ln z + 1
2 ln(2π) + 2

∞∫
0

arctan(x/z)
e2πx−1 dx [3–5] for Re z > 0. In these

equations, 1 is the contribution of the simple pole at s = 1.
Similarly, for any p ̸= 1, we have

∑
zeroes o f ζ(s,z)

ki

(ρi − p)2 =
1

(1 − p)2 +
[ζ ′(s, z)

∣∣s=p]
2

ζ2(p, z)
−

ζ ′′ (s, z)|s=p

ζ(p, z)
, (21)

provided that ζ(p, z) ̸= 0 and z ̸= 0,−1,−2,−3 . . ., and analogous relations can be without
difficulties established for the sums over larger inverse powers.
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3.2. Behavior of the s-Zeros When z Tends to Infinity

The behavior of the sums over inverse powers of zeros of the Hurwitz zeta function
when z tends to infinity is trivial and not interesting: all such sums tend to zero.

We know that, for any s ̸= 1, as z → ∞ in the sector arg(z) ≤ π − δ with an arbitrary,
small, positive, fixed δ, the following asymptotic holds [1,2]:

ζ(s, z) ∼ z1−s

s − 1
+

1
2

z−s +
∞

∑
k=1

B2k
(2k)!

(s)2k−1z1−s−2k. (22)

Here, B2k are Bernoulli numbers, and Pochhammer symbol notation is employed.
Corresponding asymptotics of the Hurwitz zeta function derivatives have also been much
studied; see, e.g., [26–28], with the main conclusion that the “naïve” differentiation of (22)
suffices. Substitution of these asymptotics to (21) readily shows that, for z → ∞ in the
sector arg(z) ≤ π − δ with an arbitrary small positive fixed δ and any p ̸= 1, the sum

∑
zeroes o f s,
ζ(s, z)

ki
(ρi−p)2 tends to zero for any such p, such that ρi ̸= p.

The necessary technical details can easily be provided, but indeed, the statement that
all ∑

zeroes o f ζ(s,z)

ki
(ρi−p)n , n ≥ 2, for the Hurwitz zeta function to tend to zero for any p not

equal to one or zero when z tends to infinity follows just from the circumstance that the
used “asymptotic function” (first term in (22)) z1−s

s−1 has no zeros (and one simple pole at
s = 1), there is nothing to prove and study. (If we consider two terms of the asymptotic
development (22), we do obtain one zero at s = 1−2z, where z1−s

s−1 + 1
2 z−s = 0—but clearly,

for any p, 1
(1−2z−p)n → 0 when |z| tends to infinity, etc.).

For p = 1, we have the same picture of the disappearance of the sums, provided that
the simple pole at z = 1 is removed; see Formulae (13–15). For n = 2, we can illustrate
this, applying the known asymptotics ψ(z) ∼ ln z + O(1/z) [3–5] and γ1(z) ∼ − 1

2 ln2 z +
O(ln z/z) [29] when z → ∞ in the sector arg(z) ≤ π − δ with an arbitrary small positive
fixed δ. We are unaware of the studies of the corresponding asymptotics for larger Stieltjes
constants. They can be inferred from the requirement that the sum in question tends to
zero. For example, from (17), we have γ2(z) ∼ − 1

3 ln3 z + o(ln3 z).
This asymptotic behavior merely reflects the fact that there is no small in-module

s-zeros when z tends to infinity except possibly the case of a large by-module negative real
z, in which case the question should be studied separately.

3.3. Behavior of the s-Zeros When z Tends to Zero

Quite the contrary, the behavior of the sums over inverse powers of zeros (that is, of
course, also the behavior of the zeros themselves) is interesting and complicated when z
tends to zero. Let us start with the analysis of ∑

zeroes o f ζ(s, z),
z → 0

ki
ρ2

i
.

We know Γ(z) = 1
z − γ + O(z) [3–5]. From ζ(k)(0, 1) = ζ(k)(0) = O(1) and ζ(s, z) =

1
zs + ζ(s, z + 1), we have for small z

ζ(k)(0, z) = (−1)k lnk z + ζ(k)(0) + O(z). (23)

(In particular, from (20), ζ ′(0, z) = − ln z − 1
2 ln 2π − γz +O(z2). Sf. Also the paper of

Deniger, who showed that, for real positive z,

ζ ′′ (0, z) = ζ ′′ (0) + γ1z + ln2 z +
∞
∑

n=1
(ln2(z + n)− ln2 n − 2z ln n

n ), the series converges

absolutely and uniformly on any compact subset of R+ [30], and the result is analytically
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continued to all z except z = 0, −1, −2. . .). Thus, from (23), it immediately follows that,
when z → 0 , (ln Γ(z)− 1

2 ln(2π))
2
= ln2 z + ln(2π) · ln z + 1

4 ln2(2π) + O(z),
ζ ′′ (z) = ln2 z + ζ ′′ (0) +O(z), and thus, the asymptotic of ∑

zeroes o f ζ(s,z)

ki
ρ2

i
with the O(z)

precision is ∑
zeroes o f ζ(s, z),
z → 0

ki
ρ2

i
= 2 ln2 z + 4 ln(2π) · ln z + 1 + ln2(2π)− 2ζ ′′ (0) + O(z).

For completeness, we present the value of ζ ′′ (0) here (see, e.g., [30]): ζ ′′ (0) = 1
2 (− ln2 2π −

π2

12 + γ2 + γ1) ≃ −2.006. Thus,

∑
zeroes o f ζ(s, z),
z → 0

ki

ρ2
i
=2 ln2 z + 4 ln(2π) · ln z + 1 + 2 ln2(2π) +

π2

6
− 2γ2 − 2γ1 + O(z). (24)

Certainly, this sum tends to the plus infinity, so attesting the presence of s-zeros tending
to zero when z → 0 .

We have ζ(s, z) = z−s + ζ(s, 1+ z); thus, s-zeros of ζ(s, z) are the solutions of the equa-
tion z−s = −ζ(s, 1 + z). In the first approximation, the “asymptotic equation” is z−s = 1

2 ,
whose solutions are s = − ln 2

ln(1/z) +
2πin

ln(1/z) ; n is an arbitrary integer. The next approxima-

tion is given via exp(− ln z( ln 2
ln z + δs)) = 1

2 + 1
2 ln 2π · ln 2

ln z , so s0 = ln 2
ln z −

ln 2π·ln 2
ln2 z

+ o( 1
ln2 z

),

and similarly, for all complex solutions, the following applies: exp(− ln z( ln 2
ln z + δs)) =

1
2 + 1

2 ln 2π · ( ln 2
ln z +

2nπi
ln z ), thus

sn =
ln 2
ln z

− ln 2π · ln 2
ln2 z

+
2nπi
ln z

− 2nπi · ln 2π

ln2 z
+ o(

1
ln2 z

). (25)

Here, we used ζ ′(0) = − 1
2 ln 2π. Of course, such a series in the inverse powers of the

logarithm converges extremely slowly. It is also clear that not all n, but only their finite
number, is indeed the solution for any concrete finite z.

To enrich our consideration, we invoke Rouché’s theorem about zeros of the sums of an-
alytical functions; see, e.g., [31]. The searched zeros of the function ζ(s, z) = z−s + ζ(s, 1+ z)
can be seen as zeros of the sum of the two functions: ζ(s, z) = f (s, z) + g(s, z) with
f (s, z) = z−s − 1/2 and g(s, z) = 1/2 + ζ(s, 1 + z), both holomorphic in the region
|s| < 1 (remember that we are working with the function of s here; z is just some
complex number).

Theorem 2. For an arbitrary, large, positive integer N and arbitrary, small, realε, we can find such a
real value of z0(N, ε)that the function ζ(s, z) with |z|≤ z0 has at least N zeros in the area |s|< ε .

Proof. Let 0 <|z|≤ 3/4 (with the upper limit, we avoid the non-existence of the function
ζ(s, z) for z = −1), and consider the following close area D: a circle with its interior defined
as |s|≤ 1 − δ for an arbitrary small fixed positive δ < 1. (The most interesting case is, of
course, |s|≤ ε with an arbitrary small fixed positive ε). We, evidently, can select the value
of z (possibly with the very small module), such that the following applies:

(i) There are no zeros of the function f (s, z) = z−s − 1/2 on ∂D (i.e., on the circle
|s|= 1 − δ ; trivial);

(ii) On ∂D | f (s, z)|>|g(s, z|, because the module of g(s, z) = 1/2 + ζ(s, 1 + z) is bounded
there (although it can be very large when δ is small due to the presence of the pole at
s = 1), |z−s| is not.

Thus, Rouché’s theorem states that, inside D, the function ζ(s, z) has the same number
of zeros, when taking into account their orders, as the function f (s, z). The zeros of the
latter were described above. Taking smaller and smaller values of |z|, we will get larger
and larger numbers of zeros of ζ(s, z) lying in D. □
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The existence of such close-to-0 s-zeros is, in a sense, “predicted” through the counting
Formula (4), which states that the number of zeros of ζ(s, x) logarithmically tends to infinity
when x → 0 for any finite T. Note that the main asymptotic term of the sum (24) is exactly
the sum of zeros over the inverse squares of the solutions of the “asymptotic” equation
z−s = 1

2 , viz. s = − ln 2
ln(1/z) +

2πin
ln(1/z) . This case has already been considered by us for the

roots of the equation ez = a in [18], so we will not include its evident slight generalization
here again, and we will limit ourselves to the following remark.

Remark 2. The application of the generalized Littlewood theorem to zeros of f (z) = ebz − a =

0 , having for a ̸= 1 the Taylor expansion f (z)
1−a = 1 + b

1−a z + b2

2(1−a) z2 + O(z3), immediately

gives∑ ki
ρ2

i
= b2

(1−a)2 − b2

1−a —this can be written knowing nothing about the exact values of zeros.

Actually, we know that they all are simple (and equal to ρn = ln a
b + 2πin

b , provided thata ̸= 0;

otherwise, there are no zeros). Hence, ki can be omitted. If a = 1 and , we have f (z)
bz = 1 + 1

2 bz +
1
6 b2z2 + 1

24 b3z3 + 1
120 b4z4 +O(z5); thus,∑ ′ 1

ρ2
i
= b2

4 − b2

3 = − b2

12 . Here, as usual, the prime sign

in the sum means that the value z = 0 should be omitted during the summing. This is simply the

statement
n=∞
∑

n=−∞

′ b2

(2πni)2 = − b2

12 (Basel problem solution). Quite similarly, exploiting Equation (12),

we can establishζ(4) = π4

90 [32], etc.
Just for curiosity, we can find the sum over the inverse second powers of the roots ρiof

the equation f (z) := exp(bz) − 1 − bz = 0. We have 2 f (z)
b2z2 = 1 + 1

3 bz + 1
12 b2z2 + O(z3),

whence ∑ ′ 1
ρ2

i
= b2

9 − b2

6 = − b2

18 . (Can this be named “the general Basel problem”?) See also

the discussion of the general problem concerning the sums over inverse powers of roots of the
equation f (z) = ain [18].

In addition to those described above, there are also other s-zeros of ζ(s, z) when z
tends to zero, including that close to 1 (it is discussed below), zeros with Re s > 1, whose
existence was proven by Davenport and Heilbronn [7] and Cassel [8], and infinitely many
zeros in the critical strip 0 ≤ Res ≤ 1, where the function ζ(s) is unbounded. There
are also zeros close to the trivial zeros of the Riemann zeta function lying at s = −2,
−4, −6. . . To find such a zero at s = −2k + δ with a small |δ|, we have the equation
ζ(−2k + δ, z) = z2k−δ + ζ(−2k + δ, 1 + z) = 0, whose solution is δ ∼ − z2k

ζ ′(−2k) , i.e.,

s ∼ −2k − z2k

ζ ′(−2k)
. (26)

For completeness, let us recall that ζ ′(−2k) = (−1)kζ(2k+1)(2k)!
22k+1π2k [32].

The following simple proposition holds.

Proposition 1. For any p with Rep < 0 and p not equal to −2, −4-, −6. . ., as well as not equal to
any zero of ζ(s, z), the following applies:

∑
zeroes o f ζ(s, z),
z → 0

ki

(ρi − p)2 =
1

(1 − p)2 +
[ζ ′(p)]2

ζ2(p)
− ζ ′′ (p)

ζ(p)
+ O(z−Rep ln2 z). (27)
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For any p with Rep > 0, when p is not equal to 1, as well as not equal to any zero of ζ(s, z),
the following applies:

∑
zeroes o f ζ(s, z),
z → 0

ki

(ρi − p)2 =
1

(1 − p)2 + O(zRep). (28)

Proof. From (21), we see, applying ζ(p, z) = 1
zp + ζ(p) + O(z), that in the neighborhood

of z = 0 for p not equal to one, ζ ′(p, z) = − ln z
zp + ζ ′(p) + O(z), and ζ ′′ (p, z) = ln2 z

zp +
ζ ′′ (p) + O(z). Thus, if Re p < 0 and p ̸= −2,−4,−6 . . ., and it is also not equal to any
zero of ζ(s, z), there are no peculiarities in the following sum: ∑

zeroes o f ζ(s, z),
z → 0

ki
(ρi−p)2 =

1
(1−p)2 +

[ζ′(p)]2

ζ2(p) − ζ ′′ (p)
ζ(p) + O(z−Rep ln2 z).

If Rep > 0, p ̸= 1, and it is also not equal to any zero of ζ(s, z), asymptotically,
we have

∑
zeroes o f ζ(s, z),
z → 0

ki
(ρi−p)2 = 1

(1−p)2 + ( z−p ln z+ζ′(1+z)
z−p+ζ(p,1+z) )

2
− z−p ln2 p+ζ ′′ (p,1+z)

z−p+ζ(p,1+z) =

1
(1−p)2 + ( ln z+zpζ′(1+z)

1+zpζ(p,1+z) )
2
− ln2 p+zpζ ′′ (p,1+z)

1+zpζ(p,1+z) = 1
(1−p)2 + O(zRep).

□

Similar statements hold for larger powers of zeros in the sums.
If p = 1, we need to use Formulae (13)–(15) and their analogs for a larger n. For z → 0 ,

the module of the sum ∑
zeroes o f ζ(s, z),
z → 0

ki
(ρi−1)2 = ψ2(z) + 2γ1(z) becomes infinitely

large, attesting the presence of zero close to s = 1 for the case. The asymptotics are well
known: ψ(z) = − 1

z + O(1) [3–5], while, for γ1(z), we use the equations γ1(z) = γ1(z +
1)− ln z

z (following again from ζ(s, z) = 1
zs + ζ(s, z + 1)) and γ1(1 + z) = O(1) to write

γ1(z) = − ln z
z + O(1). Similarly, γl(z) =

(−1)l lnl z
z + γl . Thus, ∑

zeroes o f ζ(s, z),
z → 0

ki
(ρi−1)2 ∼

1
z2 − 2 ln z

z + O(1), so we can deduce the existence of a zero at s = 1 − z + z2 ln z + O(z2)

when z → 0 . Asymptotic of all subsequent sums ∑
zeroes o f ζ(s, z),
z → 0

ki
(ρi−1)n , n > 2, is quite

consistent with the existence of such single s-zero when z tends to zero.
Again, using Rouché’s theorem, we can show that this zero is isolated and simple.

Stronger versions of the theorem given below can be proven, but for our purposes, the
following one seems sufficient.

Theorem 3. For any z, such that and |z|≤ 0.01 , the circle with its interior D|s − 1|≤ 0.1 contains
only one simple s-zero of the Hurwitz zeta function ζ(s, z). This zero approaches 1 as s = 1 − z +
z2 ln z + O(z2) when z approaches zero.

Proof. The consideration includes the holomorphic on the whole complex plane function
δ · ζ(1 + δ, z), where δ = s − 1. We write δ · ζ(1 + δ, z) = f (δ) + g(δ) with f (δ) = δ

z1+δ + 1
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and g(δ) = δ · ζ(1 + δ, 1 + z)− 1. The numerical analysis readily shows that, in the chosen
area of s, z, |g(δ)|=|δ · ζ(1 + δ, 1 + z)− 1|< 1 . It is also clear that the chosen circle D
contains only one simple zero of the function f(s) (there exists only one simple solution of
δ = −z1+δ)—viz., that which approaches 1 as s = 1− z+ z2 ln z+O(z2) when z approaches
zero. Finally, for ∂D,∣∣∣ f (δ)

∣∣∣=∣∣∣ δ
z1+δ + 1

∣∣∣≥∣∣∣ δ
z1+δ

∣∣∣−1 ≥ 0.1
0.011−0.1 − 1 > 5 >

∣∣∣g(δ)∣∣∣. □
For a small real positive z, the existence of a single simple zero tending to 1 as 1-z +

z2lnz + O(z2) has been proven by Endo and Suzuki [10]. Note that, for such a z, Res < 1;
hence, the series representation (1) cannot be used to search for its value.

3.4. Behavior of the s-Zeros When z Tends to -n

Quite analogously, the sums over inverse powers of zeros become infinitely large
when z → −n for any non-negative n; compare with (16–18). Again, from ζ(k)(0, 1) = O(1)

and ζ(s, z) = 1
zs + ζ(s, z+ 1), that is, ζ(k)(s, z) = (−1)k lnk z

zs + ζ(k)(s, z+ 1), we have, through
induction (ζ(s, z − n) = 1

(z−n)s + 1
(z−n+1)s + . . . + 1

(z−1)s + 1
zs + ζ(s, z + 1), etc.), that for any

–n, the following applies: ζ(k)(0,−n + z) = (−1)k lnk z + O(1). We have, from (16), that
for s, δ → 0 ∑

zeroes o f ζ(s,−n+δ)

ki
ρ2

i
= 1 + ln2 δ

(1/2+n)2 − ln2 δ
1/2+n + o(ln2 δ)—the sum, which again

reflects the presence of s-zeros tending to 0. And, indeed, we have for z → −n , n ≥ 1,
the following “asymptotic equation”: ζ(−n + δ) ∼ n + δ−s − 1

2 = 0; hence, δ−s = −n + 1
2 ,

whose solutions are s = ln(−n+1/2)
ln(1/δ)

+ (2n+1)πi
ln(1/δ)

+ O( 1
ln2 δ

), sf. the corresponding discussion
for the case z → 0 given above. Note that, when n ̸= 0, we do not have real solutions
anymore; all zeros are complex, and the real part of the corresponding solutions for n ≥ 2
is positive, contrary to the cases n = 0, 1.

Quite similarly, when z → −n , for any non-negative n, we have ψ(−n + z) = − 1
z +

O(1) and γl(−n + z) = (−1)l lnl z
z + O(1) (compare with the discussion of the case p = 1 in

the previous section), and thus, similarly close to one zero, s = 1 − δ + δ2 ln δ + O(δ2) also
exists for the case.

Also similar to the case n = 0, for Rep > 0, p ̸= 1, asymptotically, we have
∑

zeroes o f ζ(s, z),
z → −n

ki
(ρi−p)m ∼ 1

(1−p)m . But when z → −n , analogs of the simple zeros do

not lie anymore in the close neighborhood of s = −2, −4, −6. . .

Remark 3. 1. Using Rouché’s theorem, the theorems analogous to those two of the previous
subsection can be easily proven when z → −n for any non-negative n.

2. Note, that for the s-zero tending to 1, as 1-z + z2lnz + O(z2), existing when z → 0 , the
sums ∑

zeroes o f ζ(s, z),
z → 0,−1,−2,−3 . . .

ki
(ρi−p)n for all n ≥ 2 are, of course, consistent with the only one such

s-zero. Quite the contrary, for the s-zeros tending to 0 when z → 0 , the sums
∑

zeroes o f ζ(s, z),
z → 0,−1,−2,−3 . . .

ki
ρn

i
are inconsistent with the only one, or even some finite number of zeros.

For example, from ∑
zeroes o f ζ(s, z),
z → 0

ki
ρ2

i
= 2 ln2 z+ o(ln2 z), supposing that there is only one zero,

we should anticipate ∑
zeroes o f ζ(s, z),
z → 0

ki
ρ3

i
= 23/2 ln3 z + o(ln3 z)(or ∑

zeroes o f ζ(s, z),
z → 0

ki
ρ3

i
=
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−23/2 ln3 z + o(ln3 z)) and ∑
zeroes o f ζ(s, z),
z → 0

ki
ρ4

i
= 4 ln3 z + o(ln3 z), while, from (17), we

have ∑
zeroes o f ζ(s, z),
z → 0

ki
ρ3

i
= 3 ln3 z+ o(ln3 z), and from (18), ∑

zeroes o f ζ(s, z),
z → 0

ki
ρ4

i
= 37

3 ln4 z+

o(ln4 z).

4. The Sums over Inverse Zeros of the Hurwitz Zeta Function

The sums over first powers of the inverse zeros of the Hurwitz zeta function,
∑

zeroes o f ζ(s,z)

ki
ρi−p , cannot be directly obtained through our method because the contour in-

tegral
∫
C

ln ζ(s,z)
(s−p)2 ds does not tend to zero in the limit of infinitely large contours C; it diverges.

But the same situation occurs for the Riemann zeta function—however, the “symmetric”
sum limT→∞ ∑

non − trivial zeroes o f ζ(s),
|Imρ| < T

ki
ρi−p well exists. It is known that the following

applies [32]:

limT→∞ ∑
non − trivial zeroes o f ζ(s),
|Imρ| < T

ki
ρi

=
1
2

γ + 1 − 1
2

ln 4π, (29)

etc. Indeed, the existence of such sums over non-trivial zeros readily follows from the
counting function for such zeros, the circumstance that their real parts are bounded (they
all are lying inside the critical strip), and the possibility of pairing complex conjugate zeros,
thus obtaining 1

σ+iT + 1
σ−iT = 2σ

σ2+T2 .
The Riemann xi-function ξ(s) = (s − 1)π−s/2Γ(1 + s/2)ζ(s) is entire, and its only

zeros are non-trivial zeros of ζ(s) [32], but in the frame of our method, we still cannot use
the integrals

∫
C

ln ξ(s)
(s−p)2 ds because the asymptotic of ln ξ(s) is O(slns). However, actually, we

can use this integral, and below, we will demonstrate how.

First, with our approach, we easily get ∑
zeroeso f ξ(s)

ki
(ρi−p)2 = − d

ds
ξ ′

ξ

∣∣∣∣∣
s=p

and then for-

mally integrate this relation, obtaining limT→∞ ∑
zeroes o f ξ(s),
|Imρ| < T

ki
ρi−p = − ξ ′

ξ (p) + C1—

provided, of course, that p is not equal to any non-trivial zero and that the corresponding
constant C1 exists. To find the latter, we can use the value p = 1/2, where, evidently,
limT→∞ ∑

zeroes o f ξ(s),
|Imρ| < T

ki
ρi−1/2 = 0 and ξ ′

ξ (1/2) = 0. Hence, C1 = 0 and, thus,

limT→∞ ∑
non − trivial zeroes o f ζ(s),
|Imρ| < T

ki
ρi − p

= − ξ ′

ξ
(p). (30)
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But this actually suggests that the limit of the value of the contour integral
∫
C

ln ξ(s)
(s−p)2 ds

for properly chosen infinitely large contours C exists (and, in particular, it is equal to zero
for p = 1/2), and now we will analyze similar contour integrals directly.

Let us introduce the function f (s) := ζ(s)Γ(1 + s/2), which has the simple pole at
s = 1, and whose only zeros are non-trivial zeros of the Riemann zeta function. We con-
sider the contour integral

∫
C

ln f (s)
(s−p)2 ds, dividing the contour C into two parts as follows: the

left, where Re s < 1/2, and the right, where Re s > 1/2. And “the paired symmetrical
contributions” − ln( f (s))ds and ln( f (1 − s))ds are summed; see Figure 1. For the func-
tion Γ(1 + s/2)ζ(s), its “symmetric partner” (reflection s 7→ 1 − s ) is Γ(3/2 − s/2)ζ(1 − s).
Now, we substitute in the functional equation ζ(1 − s) = 21−sπ−s sin

(
π(1−s)

2

)
Γ(s)ζ(s) [32]

the expressions sin
(

π(1−s)
2

)
= π

Γ( 1−s
2 )Γ( 1+s

2 )
and Γ(s) = π−1/22s−1Γ( s

2 )Γ(
1+s

2 ) (reflec-

tion and duplication rules for the gamma function [3–5]) to write ζ(1 − s)Γ( 1−s
2 ) =

π−s+1/2Γ( s
2 )ζ(s). (Of course, this is nothing other than the quite known other form

of the functional equation [32], and thus, it can be written immediately without any
calculations. We present these calculations because they will be useful later on, dur-
ing the proof of Theorem 4.) Finally, from Γ(s + 1) = sΓ(s), we have the following:
2
s (

1
2 − s

2 )
−1

πs−1/2ζ(1 − s)Γ(3/2 − s/2) = Γ(1 + s/2)ζ(s). In terms of the logarithms,

ln[ 2
s (

1
2 − s

2 )
−1

πs−1/2] = − ln[ζ(1 − s)Γ(3/2 − s/2)] + ln[Γ(1 + s/2)ζ(s)], we explicitly
expressed the difference of the ln(f(s)) for both the “left and right parts of the contour”.
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Figure 1. Illustrating the division of the contour C, using in the integral
∫
C

f (s)ds, into left and right

parts with the vertical line Res = 1/2. The integral value is then calculated by pairing the “symmetric
contributions” at s and 1−s: − f (s)ds+ f (1− s)ds. The segments, removed from consideration during
the calculations (their contributions clearly tend to zero in the limit of infinitely large contours), are
also shown.
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For the integral
∫
C

A(s)
(s−p1)

2 ds with the function A(s), such that A(s) = A(1−s), we have,

when considering the contour integral as the sum of its left and right parts, the follow-
ing:

∫
C

A(s)
(s−p1)

2 ds =
∫

C/2
[ A(s)
(s−p1)

2 −
A(s)

(1−s−p1)
2 ]ds. Here and below, C/2 under the integral

sign denotes the integration over “left half of the contour”, viz. the joined segments
[1/2 + iT,−T + 1/2 + iT], [−T + 1/2 + iT,−T + 1/2 − iT] and [−T + 1/2 − iT, 1/2 − iT];
see Figure 1. Evidently,

∫
C/2

[ A(s)
(s−p1)

2 −
A(s)

(s−p2)
2 ]ds=

∫
C/2

A(s)(2s−p1−p2)(p1−p2)

(s−p1)
2(s−p2)

2 ds = 0 for any p1,

p2, and A(s) having asymptotic o(s); thus, only the factor ln[ 2
s (

1
2 − s

2 )
−1

πs−1/2], presented in

the C/2, contributes to the contour integral value. The contribution of ln[ 2π−1/2

s ( 1
2 − s

2 )
−1

],
which is O(lns), tends to zero, so only the term ln[πs] = s ln π contributes. Its contribution
is just one-half of the value of the contour integral

∫
C

ln πs

(s−p)2 ds = 2πi · ln π.

Thus, the generalized Littlewood theorem statement (see (5)) is as follows: 1
2 ln π =

limT→∞(− 1
1−p + ∑

non − trivial zeroes o f ζ(s),
|Im(ρi)| < T

ki
ρi−p +

ζ ′

ζ (p)+ 1
2 ψ(1+ p/2)). And we have

proven that

limT→∞ ∑
non − trivial zeroes o f ζ(s),
|Im(ρi)| < T

ki
ρi − p

=
1
2

ln π +
1

1 − p
− ζ ′

ζ
(p)− 1

2
ψ(1 + p/2), (31)

provided, of course, that p is not equal to one or any trivial or non-trivial zero of the Riemann
zeta function. For p = 0, using the quite known ζ ′

ζ (0) = ln(2π) and ψ(1) = −γ [32], we
immediately restore Equation (29).

Certainly, this is much easier to prove (31) from the definition of the Riemann xi-
function and (30), but the above consideration will guide us through the proof of the
following theorem. First, let us give the necessary definition.

Definition 1. We will name zeros ρj of the Hurwitz zeta function ζ(s, z) with Reρ ≤ −1 trivial,
and we will order them in such a way that Reρ0 ≥ Reρ1 ≥ Reρ2 ≥ . . ..

Theorem 4. Let m and n be positive integers and 0 < m/n ≤ 1. The following formula holds for p
not equal to 1, any zero of the ζ(s, m

n ) , and an arbitrary complex number u such that u+p/2 is not a
pole of the digamma function ψ(u + p/2):

limT→∞ ∑
non − trivial zeroes o f ζ(s, m/n),
|Im(ρi)| < T

ki
ρi−p = 1

2 ln π + 1
2 ln(n/m)− ζ ′(s,m/n)

ζ(s,m/n) (p)− 1
2 ψ(u + p/2) + 1

1−p−

∞
∑

trivial zeroes o f ζ(s, m/n),
j = 0

[ 1
ρj−p + 1

2j+p+2u ]
(32)

In other words, the symmetric sum over inverse non-trivial zeros of the Hurwitz
zeta function ζ(s, m

n ) can be expressed via the logarithmical derivative of this function,
elementary functions (we count digamma function in this class), and the sum

∞
∑

trivial zeroes o f ζ(s, m/n),
j = 0

[ 1
ρj−p + 1

2j+p+2u ]. The latter is needed to handle the diverging

sum over inverse trivial zeros of the Hurwitz zeta function. It might be instructive to
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compare this with a similar approach to polygamma functions, where inverse zeros and
poles are paired when summing [18].

Proof. Our first aim is to evaluate the contour integral
∫
C

ln[ζ(s,m/n)Γ(s/2)]
(s−p)2 ds in the limit of

infinitely large “symmetric” contour C and then to exclude the simple poles of Γ(s/2) from
the sums, thus obtaining the result pertinent to the Hurwitz zeta function. Clearly, due to
the asymptotic of the functions that occur here, we can omit some finite segments of the
contour, say [−1+ iT, 2+ iT], [−1− iT, 2− iT] and [T + i/4, T − i/4], [−T + i/4,−T − i/4],
from the calculations; they contribute nothing within the limit in question.

To start with, we note that the results of Spira [9], briefly reviewed in the introduction,
show that, except the “trivial zeros”, all zeros of the function ζ(s, x) with real 0 < x ≤ 1
are contained in the strip −1 < Res < 1 + x. They are complex-conjugated, and the
counting function of zeros Equation (4) implies the convergence of the “symmetric” sum
limT→∞ ∑

zeroes o f ζ(s, z),
Res > −1, |Ims| < T.

ki
ρi−p if p is not a non-trivial zero of the function ζ(s, x). An-

other result of Spira’s, that for |Ims|≤ 1 and Res ≤ (−4x + 1+ 2[1− 2x]), the only zeros are
(analogs of) trivial zeros, one in each interval−2n−4x±1, n is an integer and n ≥ 1−2x, guar-

antees the convergence of the sum
∞
∑

trivial zeroes o f ζ(s, z),
j = 1

[ 1
ρj−p + 1

2j+p+2k ]—provided,

of course, that p is not a trivial zero of the function ζ(s, z) and also does not coincide
with any pole of the digamma function ψ(k + p/2), i.e., p ̸= −2k − 2j, where j is any
non-negative integer.

We have the following functional equation (Rademacher’s formula) [1–5]:

ζ(1 − s,
m
n
) =

2Γ(s)
(2πn)s

n

∑
k=1

[cos(
πs
2

− 2πkm
n

)ζ(s,
k
n
)], (33)

so, using reflection and duplication rules for the gamma function (see above) we obtain the
following:

ζ(1 − s, m
n )Γ(

1−s
2 ) = 2Γ(s)Γ( 1−s

2 )(2πn)−s n
∑

k=1
cos

(
πs
2 − 2πkm

n

)
ζ(s, k

n )

= 2π−1/22s−1Γ( s
2 )Γ(

1+s
2 )Γ( 1−s

2 )(2πn)−s n
∑

k=1
cos

(
πs
2 − 2πkm

n

)
ζ(s, k

n )

= π1/22sΓ( s
2 )

1
sin(π/2−πs/2) (2πn)−s n

∑
k=1

cos
(

πs
2 − 2πkm

n

)
ζ(s, k

n )

= π1/2Γ(s/2)(πn)−s n
∑

k=1
[cos(2πkm/n) + tan(πs/2) sin(2πkm/n)]ζ(s, k

n ).

We write, supposing ζ(s, m/n) ̸= 0, the following:

ζ(1 − s, m
n )Γ

(
1−s

2

)
= π1/2Γ(s/2)(πn)−sζ(s, m

n )×
n
∑

k=1
[cos(2πkm/n) + tan(πs/2) sin(2πkm/n)]ζ(s, k

n )/ζ(s, m
n )

That is, we have established the relation between the functions in the right and
left parts of the contour in the contour integral

∫
C

ln[ζ(s,m/n)Γ(s/2)]
(s−p)2 ds. From the previous

consideration for the Riemann zeta function, we know that only those factors in such a
relation whose logarithms asymptotically are at least O(s) are important for the integral
value. Thus, rather rough estimations suffice, and below, in this section, the writing
f (s) ∼ g(s) means ln f (s) = ln g(s) + o(s) for a large |s|. We can use, for Re s > 1 (see the
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note in the beginning of the proof that we exclude certain finite segments of the contour
from the consideration), ζ(s, m

n ) = ns

ms + ζ(s, 1 + m
n ), where ζ(s, 1 + m

n ) = O(1), and the
circumstance that all trigonometrical functions appearing here are O(1) (for estimation of the
tan(πs/2), remember that we exclude the segments [T+ i/4, T− i/4], [−T+ i/4,−T− i/4]
from the calculations; see again the note in the beginning of the proof). We get

ζ(1 − s,
m
n
)Γ

(
1 − s

2

)
∼ Γ(s/2)(πn)−sζ(s,

m
n
)×

n

∑
k=1

[cos(2πkm/n) + tan(πs/2) sin(2πkm/n)]
ms

ks ,

where actually, in the sum, only the term with k = 1 is important:

ζ(1 − s,
m
n
)Γ

(
1 − s

2

)
∼ Γ(s/2)(πn/m)−sζ(s,

m
n
) (34)

because, for any complex numbers ak,
n
∑

k=1
ak

ms

ks = a1ms · (1+
n
∑

k=2

ak
a1

1
ks ) with ln(1+

n
∑

k=1

ak
a2

1
ks ) =

O(1)—for our case, definitely a1 ̸= 0. Thus, only the factor (πn/m)−s contributes to the
contour integral value. Again, this contribution is one-half of the contour integral value∫
C

ln (πn/m)s

(s−p)2 ds = 2πi · (ln π + ln(n/m)). Thus, the application of the generalized Littlewood

theorem to the integral over the symmetric contour C,
∫
C

ln[(πn/m)−s/2ζ(s,m/n)Γ(s/2)]
(s−p)2 ds, reads

as follows:

1
2 ln π + 1

2 ln(n/m) = limT→∞( ∑
non − trivial zeroes o f ζ(s, m/n),
|Im(ρi)| < T

ki
ρi−p ) +

ζ ′(s,m/n)
ζ(s,m/n) (p) + 1

2 ψ(p/2)− 1
1−p+

∞
∑

trivial zeroes o f ζ(s, m/n),
j = 0

[ 1
ρj−p + 1

2j+p ]

In the last sum, the contributions of the trivial zeros are combined with the contribu-
tions of the simple poles of Γ(s/2) lying at −2j, where j is any non-positive integer. Finally,

limT→∞ ∑
non − trivial zeroes o f ζ(s, m/n),
|Im(ρi)| < T

ki
ρi−p = 1

2 ln π + 1
2 ln(n/m)− ζ ′(s,m/n)

ζ(s,m/n) (p)− 1
2 ψ(p/2) + 1

1−p−

∞
∑

trivial zeroes o f ζ(s, m/n),
j = 0

[ 1
ρj−p + 1

2j+p ]

The essential part of the proof is finishing here. Now we just remind that ψ(p +

u) = −γ +
∞
∑

n=0

(
1

n+1 − 1
n+p+u

)
[3–5] so that, correspondingly, 1

2 (ψ(p/2 + u)− ψ(p/2)) =

∞
∑

n=0

(
1

2n+p − 1
2n+p+2u

)
. We substitute these relations into the above formula in such a way

immediately obtaining Equation (32). This generalization is quite consistent with the

known asymptotic of the ratio Γ(s+u)
Γ(s+v) , which is

∞
∑

k=0

(−1)kΓ(v−u+k)
Γ(v−u) B(v−u+1)

k su−v+k, where s

tends to infinity with |arg(s + u)|< π , |arg(s + v)|< π , and B denotes the generalized
Bernoulli polynomial [33]. For us it is sufficient to consider only the first term k = 0 here
to see that, in the sense of our definition, Γ(s + u) ∼ Γ(s + v) and thus for any complex
u ζ(s, m

n )Γ
(

u + 1−s
2

)
∼ Γ(s/2 + u)(πn/m)−sζ(s, m

n ). □
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Remark 4. 1. The value m/n = 1, inserted into (32), restores the corresponding theorems for the

Riemann zeta function. In particular, for u = 1 the sum
∞
∑

trivial zeroes o f ζ(s),
j = 0

[ 1
ρj−p + 1

2j+p+2 ] is

exactly zero, and we obtain the formulae discussed just above the proof of Theorem 4.
2. For m/n = 1/2, ζ(s, 1/2) = (2s − 1)ζ(s) [32]. Then, what is the meaning of an additional

term 1
2 ln 2 in (32)? Why does the derivative ζ ′

ζ (p, 1/2) not suffice? It is instructive to see that
this term reflects the appearance of an additional factor 2s/2, multiplied on the “symmetrical”
function 2sinh( s ln 2

2 ), describing the sum over new “non-trivial” (in the sense of our definition)
zeros ρn = ± 2πin

ln 2 , n = 0, 1, 2. . ., of the function ζ(s, 1/2): 2s − 1 = 2s/2 · 2sinh( s ln 2
2 ). With

the term 1
2 ln 2, the contribution of this additional “disturbing” factor is removed from ζ ′

ζ (p, 1/2)

during the calculation of limT→∞ ∑
non − trivial zeroes o f ζ(s, 1/2),
|Im(ρi)| < T

ki
ρi−p .

Remark 5. It is hardly doubtful that the formula analogous to (32) is applicable to the func-
tion ζ(s, z) for any real 0 < z< 1 (very probably for a not-real z too), not only the rational z = m/n.
However, the present author did not succeed in proving such a more general version of the theorem.

5. Some Exact Values for the Sums Considered

Formulae obtained in the paper solve the problem of the calculation of the sums of the
inverse powers of zeros of the Hurwitz zeta function, expressing them via the derivatives
of this function at zero or the derivatives of the function (s − 1)ζ(s, z) at s = 1, i.e., via the
generalized Stieltjes coefficients. But for the Hurwitz zeta function, the specific question of
the expression of the values of the derivatives at zero via the generalized Stieltjes coefficients
received a lot of attention; see, e.g., [34–36] and the references therein, especially in [33].
This is due to the existence of the functional equation (Rademacher’s formula) [1–5]: for
the rational positive z = m/n, 1 ≤ m ≤ n,

ζ(s,
m
n
) =

2Γ(1 − s)

(2πn)1−s

n

∑
k=1

[sin(
πs
2

+
2πkm

n
)ζ(1 − s,

k
n
)], (35)

and, of course, also ζ(1 − s, m
n ) = 2Γ(s)

(2πn)s

n
∑

k=1
[cos(πs

2 − 2πkm
n )ζ(s, k

n )], written above as

Equation (33).
Following the tradition, a rather cumbersome expression of the second derivative

of the Hurwitz zeta function ζ ′′ (0, m
n ) via elementary functions (here, we count gamma

function in this class), and the generalized Stieltjes coefficients γ1(
k
n ), γ2(

k
n ) (more precisely,

via the sums
n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) and

n
∑

k=1
cos( 2πkm

n )γ1(
k
n )) are given in the Appendix A.

As a result, numerous expressions are known for many (mostly first) generalized
Stieltjes coefficients γn(z) and their relations with the derivatives of the Hurwitz zeta
function at zero; see, e.g., [34–36] and the references therein, especially the research results
and references that can be found in Blagouchine’s paper [34]. Many of these results might
be used for the calculations of the sums over zeros considered here. For example, at least
for the cases m

n =
{

1
2 , 1

4 , 3
4 , 1

3 , 2
3 , 1

6 , 5
6

}
, the coefficients γ1(

m
n ) are known in close forms (see

p. 100 of [35] and the references therein), which immediately enables to write rather elegant
expressions for the corresponding sums ∑

zeroes o f s

ki
(ρi−1)2 . For instance,

γ1(1/4) = 2π ln Γ(1/4)− 3π
2 ln π − 7

2 ln2 2 − (3γ + 2π) ln 2 − γπ
2 + γ1

∼= −5.5181,

γ1(3/4) = −2π ln Γ(1/4) + 3π
2 ln π − 7

2 ln2 2 − (3γ − 2π) ln 2 + γπ
2 + γ1

∼= −0.391381,
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etc.

For the sums ∑
zeroes o f s

ki
ρ2

i
, an interesting case appears for n = 3. We know

m−1
∑

l=1
ζ ′′ (0, l

m ) =

− 1
2 ln2 m − ln m · ln 2π, a Formula (58) of [34]. Thus, ζ′′(0, 1/3) + ζ′′(0, 2/3) = − 1

2 ln2 3 −
ln 3 · ln 2π, and this enables us to express the difference in the sums over the inverse square
of zeros of two Hurwitz zeta functions in a rather elegant form, which does not include any
generalized Stieltjes coefficient:

∑
zeroes ζ(s,1/3)

ki
ρ2

i
− ∑

zeroes ζ(s,2/3)

ki
ρ2

i
= 36[ln2 Γ(1/3)− ln2 Γ(2/3)− ln Γ(1/3) · ln 2π + ln Γ(2/3) · ln 2π]+

ln2 3 + 6 ln 3 · ln 2π ∼= 2.2436
.

This equality has been tested: the numerical application of Formula (16) gives
∑

zeroes ζ(s,1/3)

ki
ρ2

i

∼= 5.9583 and ∑
zeroes ζ(s,2/3)

ki
ρ2

i

∼= 3.7146, so the difference in question is around

2.2436, indeed.

The relation ζ ′′ (0, p) + ζ ′′ (0, 1− p) = −2(γ + ln 2π) ln(2 sin πp) + 2
∞
∑

n=1

cos 2πpn·ln n
n (p.

575 of [34]) is also worthwhile to note: it enables us to calculate ∑
zeroes ζ(s,p)

ki
ρ2

i
− ∑

zeroes ζ(s,1−p)

ki
ρ2

i

for any positive rational p of less than 1 without the recourse to any generalized Stieltjes
coefficient or second derivatives of the Hurwitz zeta function (but with the recourse to
infinite series).

6. Numerical Illustration

It seems really interesting and, we believe, illuminative to see how s-zeros of the
function ζ(s, z) evolve when z moves from a small, real, positive value to z = 1/2 and
then to z = 1; sf. some data in this direction in [14]. As a prototype of such research, we
can indicate the very interesting papers by Kölbig [37,38] about the incomplete Riemann
and gamma functions; it seems that the questions put forward by him there still remain
unanswered. For example, the following questions about s-zeros of the Hurwitz zeta
function arise. Do its “numerous” zeros existing in the neighborhood of s = 0 for a small
z evolve to “false” sk = 2πin/ ln 2 zeros of the function ζ(s, 1/2) when z increases from
(almost) zero to 1/2? What happens with them after, when z further moves to 1 (i.e., only
the Riemann zeta function’s zeros rest), and so on?

These questions evidently require extensive numerical research and are not inves-
tigated in the present paper (however, see some simple observations at the end of the
section). Our aim is much more modest: just to exploit the circumstance that the above
formulae are quite fit for numerical calculations due to the availability of the option to cal-
culate derivatives of the Hurwitz zeta function, e.g., hurwitzZeta(n, s, z) in MATLAB, which
returns dnζ(s,z)

dsn , or StieltjesGamma[n,a] in Matematica, which returns generalized Stieltjes

coefficients γn(a). (But take caution; in Matematica, the function ζ(s, z) =
∞
∑

n=0

1

((n+z)2)
s/2 is

implemented as the Hurwitz zeta function).
In Figure 2, we present the numerical results obtained by exploiting the aforemen-

tioned hurwitzZeta(1, s, z) and hurwitzZeta(2, s, z) functions.
Our other numerical observations are the following. We confirm the presence of small

by-module real negative zeros of the Hurwitz zeta function when real positive z → 0 , the
absence of small by-module positive real zeros for such a case, and the absence of small
by-module real zeros when z → −1,−2,−3 . For example, for z = 10−5, ζ(s, z) = 0 for
s ≈ −0.071; for z = 10−4, ζ(s, z) = 0 for s ≈ −0.094; for z = 10−3,s ≈ −0.135; for z = 0.1,
s ≈ −0.623, and so on, we have tested that this zero moves to the first trivial zero of ζ(s, z)
lying at s = −2 when z moves to ½. We also confirm the presence of small by-module
complex conjugate complex zeros when z → 0 .
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Finally, the presence of s-zero tending to 0 as s ∼ − 2δ
ln 2 + o(δ) when z = 1

2 + δ with
real δ → 0 (a trivial consequence of Equations (16)–(18) in the neighborhood of z = 1/2),
was also confirmed. We tested that it moves to the first trivial zero of ζ(s, z) lying at s = −2
when z moves to 1, and it moves to the zero close to 1 when z moves to 0.

7. Discussion and Conclusions

To finish, let us briefly discuss the question of the sum of inverse powers of zeros
of the Hurwitz zeta function as a function of z with fixed s. Unfortunately, as of today,
such a question cannot be put forward for an arbitrary s because, for a non-integer s, the

expression ζ(s, z) =
∞
∑

n=0

1
(n+z)s simply is not a continuous function of z. For example (we

follow J. Lewittes’s paper [39]), limy→0+ =
∞
∑

n=0
( 1

2 + iy + n)
−s ̸=

∞
∑

n=0
( 1

2 + n)
−s

due to the

discontinuity of the argument function, usually defined to be −π ≤ arg(z) < π, on the
negative real axis. Thus, some restrictions of the permissible z values should be introduced
for an arbitrary s, which makes our approach inapplicable. It seems that only the integer
values of an s larger than one, that is s = 2, 3, 4. . ., where the function is determined by the
absolutely convergent series on the whole complex plane, can be considered. Then, this
function is just the polygamma function, and the corresponding sums over inverse powers
of zeros were earlier considered in [18].

The following question also seems natural to the present author. The aforementioned
theorem of Davenport and Heilbronn [7] was proven using Kronecker’s theorem about the
Diophantine approximation and Rouché’s theorem for a specially (ingeniously) constructed
function Z(s), which is quite close to ζ(s, x) and definitely has zeros with
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Re s >1, for all real rational 0 < x < 1. Given that the rational numbers are everywhere
in the segment 0 < x < 1, and that the sums over zeros ∑

zeroes o f ζ(s,z)

ki
ρn

i
are certainly

continuous, can a (kind of) topological proof for non-rational x be constructed? (Cassel’s
generalization [8] is not topological.) Can zeros with Re s >1 “abruptly” disappear for
all (or “topologically many”) non-rational values of x? It seems not. (Certainly, there is
no problem that such zeros “disappear” at certain isolated points such as, e.g., x = 1/2:
this means only that limx→1/2 ∑

zeroes o f ζ(s, x),
Res > 1

ki
ρn

i
= 0 for all n, and in principle, there is

nothing surprising here.) Similarly, we believe, some (kind of) topological proof of Theorem
4 for an arbitrary real 0 < z < 1 might be possible.

Thus, in this paper, the generalized Littlewood theorem concerning contour integrals
of the logarithm of analytical function was applied to find the sums over inverse powers of
zeros of the Hurwitz zeta function, including appropriately arranged sums over the first
powers of such zeros. Certain properties of zeros closely connected with these sums, e.g.,
the existence of the infinite number of tending to zero s-zeros of ζ(s, z) when z → 0 , were
also studied.
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Appendix A

In a sense, the question of expression of the derivatives ζ ′(0, m
n ), ζ ′′ (0, m

n ) via the
generalized Stieltjes coefficients γ1(

k
n ) has been solved by J. Musser in his thesis work [36].

However, his final formulae, see pp. 27 and 21, contain parameters Cl (“the coefficients
of the Taylor expansion of cos

(
πs
2 − 2πkm

n

)
2

(2πn)s about s = 1”) and are not fully explicit.
Here, we present the answer in the form similar to that given by Blagouchine [34], who has
solved, in a sense, the inverse problem of expressing the generalized Stieltjes coefficients
γ1(

k
n ) via ζ ′(0, m

n ), ζ ′′ (0, m
n ).

Starting from (35), where m, n are natural numbers, n ≥ 1 and 1 ≤ m ≤ n, we have
with the O(s3) precision the following Laurent expansion:

1
2 − m

n + sζ′(0, m
n ) +

s2

2 ζ ′′ (0, m
n ) + O(s3) = 2

2πn [1 + γs + π2

12 s2][1 + s ln(2πn)− s2

2 ln2(2πn)]×
n
∑

k=1
[sin 2πkm

n + πs
2 cos 2πkm

n − π2s2

8 sin 2πkm
n − π3s3

48 cos 2πkm
n ][− 1

s − ψ( k
n ) + γ1(

k
n )s +

1
2 γ2(

k
n )s

2]
. (A1)

The last factor in the square brackets (that under the sum sign) is equal to

−
n
∑

k=1
sin( 2πkm

n )ψ( k
n ) + [

n
∑

k=1
sin( 2πkm

n )γ1(
k
n )−

π
2

n
∑

k=1
cos( 2πkm

n )ψ( k
n )]s

+[ 1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π2

8

n
∑

k=1
sin( 2πkm

n )ψ( k
n )]s

2,
(A2)

the O(1/s) term disappears due to the evident
n
∑

k=1
sin( 2πkm

n ) = 0, and the contribution

π3s2

48

n
∑

k=1
cos( 2πkm

n ) = 0 similarly disappears. In addition to these two, below, we will also

use the summation rules
n
∑

k=1
k cos( 2πkm

n ) = n and
n
∑

k=1
k sin( 2πkm

n ) = − n
2 cot πm

n . All of these

classic rules are valid for m = 1, 2, 3. . . n−1 and readily follow from the sine and cosine
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representation via e±ix, the sum of geometric progression formula
n
∑

k=1
eikx = eix(n+1)−eix

eix−1 , and

differentiation.
Now we apply the following, more complex, but still quite known summation

rules, which are Gauss’s identities
n−1
∑

k=1
cos( 2πkm

n )ψ(m
n ) = γ + n ln(2 sin mπ

n ), whence

n
∑

k=1
cos( 2πkm

n )ψ(m
n ) = n ln(2 sin mπ

n ) and
n
∑

k=1
sin( 2πkm

n )ψ( k
n ) =

π
2 (2m − n).

Thus, the third factor in A1 (that under the sum sign) is

π
2 (n − 2m) + [

n
∑

k=1
sin( 2πkm

n )γ1(
k
m )− πn

2 ln(2 sin mπ
n )]s

+[ 1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π3

16 (2m − n)]s2.

Equating the O(s) terms should give the known ζ ′(0, m
n ) = ln Γ(m

n )−
1
2 ln 2π. In such

a way, we obtain the summation rule

n

∑
k=1

sin(
2πkm

n
)γ1(

k
n
) =

π

2
(γ + ln(2πn))(2m − n)− πn

2
(ln π − ln sin

mπ

n
) + nπ ln Γ(

m
n
), (A3)

which is contained in Theorem 2 of Blagouchine [34]. In the same theorem, he also presents
the sum

n

∑
k=1

cos(
2πkm

n
)γ1(

k
n
) = n(γ+ ln(2πn)) ln(2 sin

mπ

n
)+

n
2
[ζ ′′ (0,

m
n
)+ ζ ′′ (0, 1− m

n
)]. (A4)

(We added the term corresponding to k = n to his original sum). We will use this rule
later on, but at this stage, it is inapplicable due to the presence of second derivatives of the
Hurwitz zeta function.

Thus, finally, the factor under the sum sign in (A1) is

π
2 (n − 2m) + [π

2 (γ + ln 2πn)(2m − n)− πn
2 (ln π − ln sin mπ

n ) + nπ ln Γ(m
n )−

πn
2 ln(2 sin mπ

n )]s

+[ 1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π3

16 (2m − n)]s2,

and we have the following with O(s3) precision:

πn[( 1
2 − m

n + sζ ′(0, m
n ) +

s2

2 ζ ′′ (0, m
n )] = [1 + γs + π2

12 s2][1 + s ln(2πn)− s2

2 ln2(2πn)]×{
[π

2 (n − 2m) + [π
2 (γ + ln 2πn)(2m − n)− πn

2 ln 2π + nπ ln Γ(m
n )]s

+[ 1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π3

16 (2m − n)]
}

s2.

(A5)

Now we compare the O(s2) terms. To simplify the appearance of the subsequent
formulae, let us denote Cmn = π

2 (γ + ln 2πn)(2m − n)− πn
2 ln 2π + nπ ln Γ(m

n ). This gives

1
2 πnζ ′′ (0, m

n ) =
1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π3

16 (2m − n)+

π
2 (n − 2m)(π2

12 − 1
2 ln2 2πn) + C(m, n)(γ + ln 2πn)

That is,
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1
2 πnζ ′′ (0, m

n ) =
1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) +

π
2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n ) +

π3

16 (2m − n)+

π
2 (n − 2m)(π2

12 − 1
2 ln2 2πn) + [π

2 (γ + ln 2πn)(2m − n)− πn
2 ln 2π + nπ ln Γ(m

n )](γ + ln 2πn),

(A6)

which is our final formula. Remember that m = 1, 2, 3, . . .n−1 here.

Remark A6. Equation (A5), together with the sum A4, can be used to estimate

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) :

1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) = −π

2

n
∑

k=1
cos( 2πkm

n )γ1(
k
n )−

π3

16 (2m − n) + πn
2 ζ ′′ (0, m

n )−

π
2 (n − 2m)(π2

12 − 1
2 ln2 2πn)− [π

2 (γ + ln 2πn)(2m − n)− πn
2 ln 2π + nπ ln Γ(m

n )](γ + ln 2πn).

Thus,

1
2

n
∑

k=1
sin( 2πkm

n )γ2(
k
n ) =

πn
4 (ζ ′′ (0, m

n )− ζ ′′ (0, 1 − m
n ))−

π3

16 (2m − n)−π
2 [n(γ + ln(2πn)) ln(2 sin mπ

n )]−

π
2 (n − 2m)(π2

12 − 1
2 ln2 2πn)− [π

2 (γ + ln 2πn)(2m − n)− πn
2 ln 2π + nπ ln Γ(m

n )](γ + ln 2πn).

(A7)

Finally, we would like to note that the Laurent series expansion of Rademacher’s
formula written in the form (33), and the subsequent equating of the coefficients in front of
the s terms, may be used to prove the main Theorem 1 of [34]. We believe that the following
short exposition might still be useful.

From (33), we have the following with O(s2) precision:

− 1
s − ψ(m

n ) + γ1(
m
n )s = 2[1 − s ln 2πn + s2

2 ln2 2πn][ 1
s − γ + ( 1

2 γ2 + π2

12 )s]×

[
n
∑

k=1
[cos( 2πkm

n ) + π
2 sin( 2πkm

n )s − π2

8 cos( 2πkm
n )s2][ 1

2 − k
n + (ln Γ( k

n )−
1
2 ln 2π)s + 1

2 ζ ′′ (0, k
m )s2]

With the same precision, the last term in the square brackets under the sign of sum is

− 1
2 + [− π

2n

n
∑

k=1
k sin( 2πkm

n ) +
n
∑

k=1
cos( 2πkm

n ) ln Γ( k
n )]s+

[ 1
2

n
∑

k=1
cos( 2πkm

n )ζ ′′(0, k
m ) + π

2

n
∑

k=1
sin( 2πkm

n ) ln Γ( k
n ) +

π2

8 ]s2
,

Thus,

− 1
2s −

1
2 ψ(m

n ) +
1
2 γ1(

m
n )s = [1 − s ln 2πn + s2

2 ln2 2πn][ 1
s − γ + ( 1

2 γ2 + π2

12 )s]×{
− 1

2 + [π
4 cot πm

n +
n
∑

k=1
cos( 2πkm

n ) ln Γ( k
n )]s+

[ 1
2

n
∑

k=1
cos( 2πkm

n )ζ ′′ (0, k
m ) + π

2

n
∑

k=1
sin( 2πkm

n ) ln Γ( k
n ) +

π2

8 ]s2
} ,

where the aforementioned summation rule for
n
∑

k=1
k sin( 2πkm

n ) was used.

Equating of O(1) terms gives
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− 1
2 ψ(m

n ) = γ
2 + 1

2 ln 2πn+π
4 cot πm

n +
n
∑

k=1
cos( 2πkm

n ) ln Γ( k
n ), and then recalling

Γ(1 − z)Γ(z) = π
sin πz and pairing the terms with ln Γ(m

n ) and ln Γ(1 − m
n ), we arrive at the

standard [3–5]

ψ(
m
n
) = −γ − ln 2n − π

2
cot

πm
n

+ 2
[ n−1

2 ]

∑
k=1

cos(
2πkm

n
) ln sin(

πk
n
). (A8)

Equating O(s2) terms leads to Blagouchine’s first theorem [34]:

γ1(
m
n ) = [

n
∑

k=1
cos( 2πkm

n )ζ ′′ (0, k
m ) + π

n
∑

k=1
sin( 2πkm

n ) ln Γ( k
n ) +

π2

4 ]+

[π
2 cot πm

n + 2
n
∑

k=1
cos( 2πkm

n ) ln Γ( k
n )][− ln 2πn − γ]+

− 1
2 ln2 2πn − γ ln 2πn − ( 1

2 γ2 + π2

12 ).

He then made some additional manipulations: he substituted ζ ′′ (0, 1) = ζ ′′ (0) =

γ1 +
1
2 γ2 − π2

24 − 1
2 ln2 2π, paired terms with k

m and m−k
m in the sums, used explicit form for

ζ ′′ (0, 1/2), etc.
The consideration of a larger quantity of terms in the aforementioned Taylor expansion

will lead to the expressions of higher generalized Stieltjes coefficients γn(
m
n ) via higher

derivatives ζ(m)(0, m
n ) (cf. also the second part of [34]). In particular, due to the appearance

of the values of the Riemann zeta function of odd integers in the Taylor expansion of

Γ(s), e.g., Γ(s) = 1
s − γ + ( 1

2 γ2 + π2

12 )s + (−π2

12 γ − γ3

6 − 1
3 ζ(3))s2 +O(s3) in such a way we

may obtain probably not-without-the-interest expressions of ζ(2n + 1) via the generalized
Stieltjes coefficients γk(

m
n ) and derivatives ζ(k)(0, m

n ).
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