Determinants of brain cell metabolic phenotypes and energy substrate utilization unraveled with a modeling approach
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Text S1. Model description

We consider a model (cf. Fig. 1) where glucose (Glc) leads to pyruvate (
[image: image1.wmf]) via the glycolysis (
[image: image2.wmf]), then pyruvate is metabolized by the PDH complex (
[image: image3.wmf]PDH

J

), leading to acetyl-CoA (
[image: image4.wmf]) which fuels the Krebs cycle in the mitochondria. Note that we define 
[image: image5.wmf]glyco

J

 as the production of pyruvate by glycolysis, so 
[image: image6.wmf] value is twice the value of glucose consumption. On one hand, extracellular lactate (
[image: image7.wmf]) can be taken up by brain cells via MCTs (in which case we write
[image: image8.wmf]0

>

MCT

J

) and further metabolized by LDH into pyruvate (
[image: image9.wmf]0

>

LDH

J

); on the other hand, pyruvate can lead to lactate (
[image: image10.wmf]) and be extruded via the MCTs (
[image: image11.wmf]0

<

MCT

J

); we make no a priori assumption about the direction of the reaction catalyzed by LDH and transports via the MCTs. Furthermore, we take into account the NADH and NAD+ changes due to glycolysis, LDH-catalyzed reaction, and mitochondrial shuttles for transporting reducing equivalents from cytosolic NADH into the mitochondrial matrix (
[image: image12.wmf]). Indeed, the role of these mitochondrial shuttles, malate-aspartate in particular, is to “transport” the NADH produced in the cytosol into the mitochondria. However, NAD+ and NADH cannot cross the mitochondrial membrane. To circumvent this, the shuttles rather transport electrons attached to malate. To do this, oxaloacetate in the cytosol is first reduced by NADH, yielding malate and NAD+ (this is what recycles NADH back to NAD+ in our model). Malate and the electrons it carries can then enter the mitochondria, while alpha-ketoglutarate is exported. Once inside, malate is transformed back to oxaloacetate by reducing mitochondrial NAD+ to NADH. Mitochondrial NADH is then free to transfer its electrons to the electron transport chain. Hence, the pools of mitochondrial and cytosolic NAD+/NADH are separated, but the presence of cytosolic NADH can yield the reduction of mitochondrial NAD+ to NADH.
Since we are interested in the cell behavior under various circumstances, we consider extracellular lactate as a parameter and we describe intracellular processes with a system of coupled differential equations:
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where:
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It can be noted that Eqs. (S1b) and (S1c) can be lumped together into one differential equation, with 
[image: image19.wmf]=

+

+

NAD

NADH

constant. Furthermore, the acetyl-CoA value can directly be obtained by a simple integration of 
[image: image20.wmf]PDH

J

. Thus from a mathematical point of view, the dimension of the phase space is three.

It can also be noted that 
[image: image21.wmf]  
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max,
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 and 
[image: image22.wmf]Glc

are parameters of the model. For the sake of simplicity, the possible changes in 
[image: image23.wmf]Glc

when a cell is stimulated are included in the 
[image: image24.wmf]  
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 term.

The equation and parameters for lactate transport were taken from 1[]
. In Text S2, we discuss another model for lactate transport 2[]
. 

The equation for the LDH reaction was taken from 3 (Eq. (152), p.104)[]
. It considers that 
[image: image25.wmf]  

NAD

+

 has to bind LDH before lactate can do so, and that 
[image: image26.wmf]  

NADH

 has to bind prior to pyruvate; this Ordered Bi-Bi mechanism is well documented for LDH 4


[ ADDIN EN.CITE ,5]
. Note that the subscripts A, B, p, q refer to 
[image: image27.wmf]+

NAD

, 
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, 
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, 
[image: image30.wmf]NADH

, respectively. Also, according to Eq. (151) in 3[]
,
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The constants Kxx can be expressed in terms of the kinetic rates kx of the intermediary steps 6 Table IX-2 p.564[]
:
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where we used the intermediary rates in 5 (Eq. (4), p.1981)[]
. Note that LDH*, LDH** are the NAD+-, NADH-activated LDH, respectively. Also, according to 5[]
, 
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 for heart LDH namely, LDH1 (in our simulations, we took the maximal rates in the forward and reverse direction from 7[]
 and adjusted Kia to 
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, which is the generally acknowledged value at pH = 7.0; see Text S2). Finally, Eq. (150) in 3[]
 gives two different formula for the total enzyme concentration as a function of the kx. Hence, the remaining free parameters, k-1 and k4, are chosen such that these two formula yield the same total enzyme concentration. The values of the two kinetic constants of the reaction which occurs between complexes, namely 
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 were somewhat difficult to choose, since this reaction may include several intermediary steps 5[]
; however, it is acknowledged that the equilibrium constant for these complexes is near unity 4


[ ADDIN EN.CITE ,5]
, and altering the kinetic constants while keeping this equilibrium constant close to unity resulted in very slight changes in the results.

The PDH-catalyzed reaction was considered to be irreversible and to follow Michaelis-Menten-type kinetics (parameters from 8[]
).

Glycolysis was also modeled using the irreversible Michaelis-Menten formalism, considering both glucose and NAD+ as substrates 9[,10]
.

Only stationary states were considered. See Table S1 for the parameters of a typical oxidative cell in its basal state (see also Fig. 2A).

Although there are no experimental data about increases of these parameters upon stimulation, numerous data about in vivo changes of oxygen consumption (CMRO2) and glucose consumption (CMRGlc) lead to likely values, which can then be varied to test the robustness of the results.

First, physiological increases of CMRGlc range in the [+17%;+51%] interval (for reviews, see 11


[ ADDIN EN.CITE ,12]
), while CMRGlc increase can be as high as [+100%;+400%] during seizures 11


[ ADDIN EN.CITE ,13]
. Thus it is probable that only part of the cells undergo enhanced glycolysis under physiological stimulation. Therefore an increase in the maximum glycolytic rate of individual cells of about 50% seems quite plausible.   

Second, increases of PDH and NADH shuttle rates are strongly linked to Krebs cycle and oxidative phosphorylation rates, thus to CMRO2 (see e.g. 9[]
). Reported CMRO2 increases upon physiological stimulations are various, ranging in the [+5%;+47%] interval 11


[ ADDIN EN.CITE ,12,14,15]
, bearing in mind that CMRO2 measures oxygen consumption in a tissue voxel including both oxidative and glycolytic cells. During seizures, CMRO2 can increase up to +267% 11[]
. Although CMRO2 increases need not fully match increases in PDH maximal rate and NADH shuttle kinetic constant, a +30% increase of these parameters is a plausible value. In addition, all the above-mentioned studies indicate that physiological CMRO2 increases are smaller than, or sometimes equal to, CMRGlc increases, which is consistent with the chosen parameter values.
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