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Abstract

Identifying adaptive genetic variation is a challenging task, in particular in non-model species for

which genomic information is still limited or absent. Here, we studied distribution patterns of

amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13

alpine plant species consistently sampled across the entire European Alps. Multiple linear

regressions were performed between AFLP allele frequencies per site as dependent variables and

two categories of independent variables, namely Moran’s eigenvector map MEM variables (to

account for spatial and unaccounted environmental variation, and historical demographic

processes) and environmental variables. These associations allowed the identification of 153 loci

of ecological relevance. Univariate regressions between allele frequency and each environmental

factor further showed that loci of ecological relevance were mainly correlated with MEM

variables. We found that precipitation and temperature were the best environmental predictors,

whereas topographic factors were rarely involved in environmental associations. Climatic factors,

subject to rapid variation as a result of the current global warming, are known to strongly

influence the fate of alpine plants. Our study shows, for the first time for a large number of
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species, that the same environmental variables are drivers of plant adaptation at the scale of a

whole biome, here the European Alps.

Keywords

adaptation; climate change; environmental association analysis; genome scan; landscape genetics;
loci of ecological relevance

Introduction

Detecting adaptive genetic variation in response to environmental variation helps to better

understand the potential of organisms for rapid evolutionary adaptation (Hoffmann & Willi

2008). However, identifying adaptive genetic variation is challenging, in particular in non-

model species for which genomic information is still limited or absent (Stinchcombe &

Hoekstra 2008). Nevertheless, technical advances in genomic screening for numerous

molecular loci spread over the genomes of many individuals allow us to identify genetic

variation linked to the environment even in non-model organisms. Such environmental

association studies are based on the relationship of the frequencies of alleles at particular

loci with the variation in particular environmental variables (Manel et al. 2010a). The

underlying assumption is that natural selection along environmental gradients generates

gradual changes in allele frequencies at loci physically linked to adaptive genes (Haldane

1948; Endler 1986; Schmidt et al. 2008). The distribution of alleles at loci of ecological

relevance is thus different from the distribution of alleles at neutral loci (Holderegger et al.

2010).

Patterns of genetic variation that seem to be caused by natural selection may in fact also

result from historical demographic processes (Excoffier et al. 2009; Siol et al. 2010). First,

isolation by distance may limit gene flow among populations over a large scale, and the

frequency of neutral alleles will change simply as a result of genetic drift (Wright 1938).

Second, contact and admixture zones, where populations that diverged in spatial isolation

(e.g. glacial survival in different refugia) come into secondary contact, could confound

adaptive genetic patterns (Endler 1977). Third, bottlenecks and inbreeding create patterns

that mimic those of selective sweeps (Storz 2005). Searching for congruent patterns of

adaptive loci across replicated regions represents one way of limiting the confounding

effects of historical demographic and spatial processes, as it is unlikely that the latter

produced similar genetic patterns at a given locus across independent environmental

gradients (e.g. Poncet et al. 2010; Buehler et al. unpublished data). In this study, we argue

that finding similar patterns of correlation between loci and ecological factors in different

species within the same vast study area constitutes another way of avoiding confounding

effects, as it is unlikely that different species are subject to the same demographical

processes.

Previous studies in plant species found distinct patterns of genetic variation in allozyme

frequencies along environmental gradients (Allard et al. 1993; Linhart & Grant 1996;

Prentice et al. 2000). For example Hirao & Kudo (2004) found a correlation between

allozyme frequencies and flowering time in Primula cuneifolia along a snowmelt gradient.
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Shimono et al. (2009) detected morphological traits co-varying with allozyme frequencies in

fellfield and snowbed populations of Potentilla matsumurae. Their results suggest that the

timing of snowmelt causes a selective pressure that drives local adaptation in this alpine

plant species (but see Stanton & Galen 1997). Recent technological advances in molecular

markers have made larger genome scans feasible, more powerful and with high genomic

resolution, facilitating the identification of loci that are potentially of ecological relevance

(Manel et al. 2010a). For example Poncet et al. (2010) studied 825 amplified fragment

length polymorphism (AFLP) loci at 208 locations across the European Alps in Arabis

alpina. They detected four AFLP loci, common in two independent regions of the French

and Swiss Alps, which are linked to mean annual temperature and/or precipitation. Recent

studies at the whole genome level also confirmed the existence of loci under selection by

climatic factors in the model plant Arabidopsis thaliana (Fournier-Level et al. 2011;

Hancock et al. 2011a).

Here, we present patterns of AFLP allele distributions in response to environmental

variation in 13 alpine plant species collected across the entire range of the European Alps

following a stratified sampling design (Gugerli et al. 2008). Our objective was to (i) identify

topographic and climatic factors potentially involved in the adaptation of alpine plants to

their environment, to derive testable hypotheses about the mechanisms underlying patterns

of adaptive genetic variation (Feder & Mitchell-Olds 2003). Once the important

environmental factors were identified per species, we addressed the question of (ii) whether

there are common patterns of genetic adaption to environmental variables across alpine

plants. To date, published studies have largely focused on single species, preventing the

detection of general patterns of adaptation to environmental factors (e.g. Jump & Penuelas

2005; Joost et al. 2007; Segelbacher et al. 2010; Cox et al. 2011). In contrast, multi-species

studies, such as the one we provide here, make it possible to draw general conclusions about

the environmental factors involved in the adaptive response of species.

Material and method

Plant collection and genotyping

The sampling and genotyping of the 13 alpine plant species studied were carried out

according to the methods described in detail in Gugerli et al. 2008; (Table 1, Fig. 1). All

samples were collected within a single growing season (June–September 2004). Sampling

was standardized across species by using a regular grid with a cell size of 20′ longitude by

12′ latitude across the whole area of the European Alps. Sampling was limited to those cells

comprising area above 1500 m a.s.l., and only every second cell was considered. Within

each grid cell considered, we arbitrarily chose one location per species based on known

occurrences or as expected from species-specific habitat requirements, optimizing field work

by searching for areas containing many species across just a few locations within each cell

(Gugerli et al. 2008). The number of locations ranged from 74 locations for Gentiana nivalis

to 137 for Carex sempervirens. Leaves were collected from three plants per sampling

location. Despite the small number of specimens sampled per location, data were considered

informative given the main objectives of our study, i.e. identifying broad-scale patterns of

general adaptation. At the same time, the large number of sampling locations distributed
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over a large ecological and altitudinal range per species resulted in a broad variety of

environmental conditions (Thiel-Egenter et al. 2009). All samples were genotyped using

AFLPs (Vos et al. 1995) with three primer–enzyme combinations (for details, seeGugerli et

al. 2008). The primer–enzyme combinations were species specific. Thus, the AFLP loci

amplified were clearly independent across species.

Nei’s gene diversity (Nei 1973), which corresponds to the mean number of pairwise

differences between individuals across AFLP loci per sampling site (Kosman 2003), was

averaged across sampling sites per species using program ARLEQUIN 3.5.1.3 (Excoffier &

Lischer 2010). Overall genetic differentiation per species was estimated with ΦST (Excoffier

et al. 1992), assuming Hardy–Weinberg equilibrium at AFLP loci (Bonin et al. 2007) and

testing significance based on 1000 bootstrap replicates in ARLEQUIN 3.5.1.3.

Environmental variables

Fourteen monthly and annual environmental variables related to temperature, precipitation,

radiation and topography at 200 m resolution were extracted for each sampling location

from published GIS topo-climatic layers from 1980 to 1989 (Zimmermann & Kienast 1999;

Table 2, Fig. 1). These environmental variables, excluding topographic aspect, were

transformed into quadratic orthogonal polynomials to account for non-linear relationships

between AFLP allele frequencies and these variables (Legendre & Legendre 2012). Aspect

was transformed into sin(aspect) and cos(aspect), rendering this variable appropriate for use

in linear regressions.

Moran’s eigenvector map variables

Moran’s eigenvector map (MEM) variables were used as explanatory variables in the

regressions, to account for purely spatial and for unmeasured environmental variables. They

make it possible to separate and model the spatial patterns comprised in the variations in

response data, which in this case are AFLP allele frequencies. Moran’s eigenvector map

variables are the eigenvectors of a spatial weighting matrix calculated from the sites’

geographical coordinates (Borcard & Legendre 2002; Dray et al. 2006). Moran’s

eigenvector map analysis produces uncorrelated spatial eigenfunctions used to dissect the

spatial patterns of the studied variation across a range of spatial scales. The first few MEM

variables with large Moran’s I coefficients model broad-scale processes (e.g. genetic

variation at large spatial scales such as phylogeographic patterns), whereas subsequent

MEM variables with smaller Moran’s I coefficients refer to the spatial autocorrelation

generated by processes such as gene flow among sub-populations and genetic drift (Dray et

al. 2006). As in our data set the number of sites varied among species, the number of MEM

variables was species-specific. For our analysis, we only used the broad-scale MEM

variables, i.e. the first half of the MEM eigenfunctions with positive eigenvalues, which

model broad-scale spatial variation (Manel et al. 2010b). MEM variables were computed

using the ‘PCNM’ R package 2.12.2 (available at http://r-forge.r-project.org/R/?

group_id=195). The computation of MEM variables is explained in detail in Borcard et al.

(2011; Chapter 7) and Legendre & Legendre (2012; Chapter 14).
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Identification of loci of ecological relevance using multiple regression

Our study aimed to find the general responses of AFLP allele frequencies to environmental

variation across several species. However, the correlations among environmental variables

were species-specific. This meant we could not select only those environmental variables

that were uncorrelated before performing single-species multiple regressions. We, therefore,

used a two steps-approach:

In the first step, (i), multiple linear regressions were performed between AFLP allele

frequencies per site as dependent variables and MEM variables and all environmental

variables as independent variables for each of the 13 studied species. This allowed us to

identify loci of ecological relevance. In the second step, (ii), these loci putatively under

selection were regressed against each of the environmental and MEM variables separately to

identify particular variables in the environmental association. By doing so, we were able to

assess the relative effects of spatial structure, climate and topography (Fig. 1), although it

was not possible to separate these partly interdependent factors fully. This approach is

described in more detail below.

i. For each species and each AFLP locus, the allele frequency of band presence (i.e.

the frequency of a particular AFLP fragment) per site was regressed simultaneously

on 14 environmental factors (Table 2), either untransformed or transformed, for a

total of 28 environmental variables tested (i.e. including both linear and quadratic

effects, cos and sin aspect), and on MEM variables. Part of the variation accounted

for by MEM variables in regression analysis was also explained by the above 28

environmental factors, as the latter could be correlated with MEM variables. The

remaining variation explained by MEM variables represented environmental

variation that was not modelled by the environmental variables included in the

study. We assumed that this broad-scale spatial variation could be partly related to

environmental variables that had not been measured in our study, and partly to the

historical dynamics of alpine plants (e.g. colonization routes during range

contraction and expansion, survival in refugial areas, secondary contact after re-

immigration, etc.; Alvarez et al. 2009). Note that in the multiple linear regressions,

allele frequencies are discrete rather than continuous variables, with only four

possible states (0, 0.33, 0.66 and 1) because only three individuals per site were

taken into account.

The significance of the multiple regressions per locus against the environmental

and MEM variables was corrected for multiple tests by the Holm correction

(Wright 1992). Although the Holm procedure produces a correct experiment-wise

error rate, it may still be seen as a liberal criterion because many loci with

significant, but small amounts of explained variation will be retained. To make a

conservative judgement on the importance of loci of ecological relevance, we

therefore also required that a fixed proportion of the variation per locus, measured

by  (i.e. 50%), was explained by the environmental variables and the

broad-scaled MEM variables. The adjusted coefficient of determination, 

provides unbiased estimates of a response variable’s variation accounted for in a
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linear model (i.e. explanatory power of variables in multiple regression) (Ohtani

2000). We only considered loci fulfilling both criteria (i.e. significance after

accounting for multiple testing and ) as being of ecological relevance.

ii. Because the explanatory variables were not uncorrelated, but species-dependent

(Fig. S1, Supporting information), allele frequencies at the identified loci of

ecological relevance were then related with each environmental variable and each

MEM variables separately in univariate regressions, to estimate the explanatory

power provided by each predictor variable.

Results

For the present analysis, a total of 3963 individuals were genotyped for AFLP loci varying

in number from 70 in Saxifraga stellaris to 234 in Phyteuma hemisphaericum (Table 1).

This produced a total of 1615 AFLP loci analysed across 13 species. The reproducibility of

the markers identified was checked with positive controls and 5–10% replicates from DNA

isolation to selective polymerase chain reaction. We obtained mismatch error rates of < 5%

for all species (Gugerli et al. 2008), which represents a fairly low value for AFLPs (Bonin et

al. 2007).

Nei’s gene diversity across AFLP loci averaged across all sampling sites per species ranged

between 0.061 for Arabis alpina and 0.201 for Sesleria caerulea (Table 1). All studied

species showed significant overall genetic differentiation (ΦST, P < 0.05). Inversely to Nei’s

gene diversity, Sesleria caerulea showed the lowest genetic differentiation (0.196), and

Arabis alpina revealed the highest genetic differentiation (0.664). These results show that

there was ample genetic diversity within and genetic differentiation among the sampling

sites in our study species, a prerequisite for the application of environmental association

analysis.

The ranges of the environmental variables across the altitudes considered were broad,

reflecting the variability of ecological conditions under which populations for all species

were sampled in this study (Fig. S2, Supporting information). The number of broad-scaled

MEM variables varied from 12 in Geum montanum to 24 in Rhododendron ferrugineum and

Phyteuma hemisphaericum (Table 1).

We identified 153 loci (9%) that were significantly related to environmental and MEM

variables across the 13 species studied (Table 1). The percentages of loci of ecological

relevance varied among species and ranged from 2% in Gypsophila repens to 18% in

Rhododendron ferrugineum. Details (i.e. P values and ) of loci identified as being

of ecological relevance in multiple regressions are reported in Table S1 (Supporting

information).

Univariate regressions showed that the broad-scaled MEM variables were involved in

significant relations with allele frequencies in 149 of the 153 AFLP loci identified as being

of ecological relevance (Table 3). They were detected as significant predictors for all loci of

ecological relevance in six species, and as a major predictor in the seven other species
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(Tables 1 and 3). After accounting for broad-scale MEM variables, temperature and

precipitation were the two major environmental factors related to AFLP allele frequencies at

the identified loci of ecological relevance (Table 3). Summer seasonal precipitation was the

major environmental factor, involved in 40 significant relations, followed by the number of

days with minimum temperatures below 0 °C, involved in 36 significant relations (Table 3).

Except for Saxifraga stellaris, for which only altitude was detected as a significant predictor,

for all the other species either a precipitation or a temperature variable or both were involved

when MEM variables were not the only relevant predictor variables (Table 3). We identified

three types of species–environment interaction patterns according to these relations. In three

species, precipitation was the major environmental factor affecting AFLP allele frequencies

(Campanula barbata, Carex sempervirens and Phyteuma hemisphaericum); in five species,

temperature played that role (Arabis alpina, Gypsophila repens, Juncus trifidus, Loiseleuria

procumbens and Rhododendron ferrugineum) and, in four species, both precipitation and

temperature were involved (Dryas octopetala, Gentiana nivalis, Geum montanum and

Sesleria caerulea; Table 3). Topographic variables were only rarely involved in relevant

relationships between AFLP allele frequencies and environmental variables (Table 3).

Discussion

Considering spatial structure caused by both unaccounted environmental variation and

historical demographic processes, we found that environmental factors, mainly temperature

and precipitation, influenced allele distributions at nearly 10% of the AFLP loci tested

across 13 alpine species from the European Alps. These loci of ecological relevance may be

considered as either potentially adaptive or as linked to the genes or genomic regions under

selection.

Population-based approaches of Bayesian geographical analysis can be used to test for

correlations between allele frequencies and environmental variables, after correcting for

background levels of population structure and differences in sample size (Yu et al. 2006;

Hancock et al. 2008, 2010, 2011b). However, these approaches can only be applied to cases

where a high number of individuals can be sampled in well-defined populations. In addition,

they require independent genetic data to estimate population structure. As we only sampled

three individuals per species per site, we could not apply these methods and, thus, we used

instead the linear regression method described by Manel et al. (2010b). For instance, for

most species considered to be relevant in conservation biology regarding climate change, it

will neither be possible to sample large numbers of individuals from numerous populations

nor to have an independent genetic data set available to test for genetic structure. To

consider spatial demographic history, we used MEM variables as complementary

explanatory variables. MEMs allowed us to model (i) pure large-scale spatial effects, (ii)

environmental effects resulting from unmeasured environmental variables and (iii) spatial

effects co-varying with measured environmental variables. However, one cannot fully

disentangle these different effects from each other.

After considering spatial effects by MEM variables, the close relationship found between

AFLP allele frequencies and temperature and/or precipitation across the 13 species studied

(Table 3) strongly suggested that climatic factors are generally involved in affecting
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(putatively) adaptive genetic variation in alpine plants. This finding confirmed previous

single-species studies on various plant species (e.g. Parisod & Bonvin 2008; Richardson et

al. 2009; Cox et al. 2011). As we model the spatial effects of the historical dynamics of

species using MEM variables and used AFLP loci that are considered being randomly

distributed across the genome, it is unlikely that many of the loci identified were false

positives (e.g. Richardson et al. 2009; Sork et al. 2010; Bierne et al. 2011). However, the

occurrence of false positives cannot be completely ruled out, but should be rather low in this

study.

Temperature and precipitation are well known to strongly influence the survival of alpine

plants, although their effect may involve complex pathways (Körner 2003). Therefore, these

environmental factors are likely to act as major drivers of selective responses in alpine

plants (Boyer 1982; Chaves et al. 2003). In concordance with our results that found either or

both of these two environmental factors to be important in different species, previous studies

have shown the prominent role of temperature and precipitation in the general adaptation of

plants (Skot et al. 2002; St Clair et al. 2005; Richardson et al. 2009). The importance of the

above two environmental factors in the adaptation of alpine plants has also been found, at

different spatial scales, in Arabis alpina (Manel et al. 2010b; Poncet et al. 2010). In

Boechera stricta, a wild relative of Arabidopsis thaliana, Lee & Mitchell-Olds (2011)

recently emphasized the role of ecological factors versus geographical distance in creating

and maintaining adaptive genetic differentiation across a species’ range. However, our study

shows, for the first time, and for a large number of species, that the same environmental

variables are drivers of plant adaptation at the scale of a whole biome, here the European

Alps. One major limitation of this study is that we only tested climatic and topographic

factors and that we did not include soil properties, namely calcareous or siliceous bedrock,

as environmental factors in this analysis. It is well known that soil properties affect the

distribution of alpine plants (Alvarez et al. 2009) and are therefore also likely to play an

important role in adaptive evolutionary responses (Körner 2003). However, data for soil

variables are currently not available for the entire Alps at the spatial resolution needed for an

environmental association analysis.

One contemporary, yet challenging question is whether adaptive evolution can keep pace

with the rate and direction of environmental and climate changes induced by human

activities (Lavergne et al. 2010). Several studies have shown that species have already

shifted their geographic ranges in response to climate change (Walther et al. 2002; Frei et al.

2010), whereas the general potential of species to adapt to rapid environmental change is

still being debated (Davis et al. 2005; Reusch & Wood 2007; Jay et al. 2012). Our results

identified temperature and precipitation as potential drivers of adaptation. Such information

is highly useful in modelling future vegetation dynamics under climate change, which relies

on scenarios of ecological change and respective responses of plant communities. As a

consequence of the ever-increasing genomic data available as a result of technological

progress (Shendure & Ji 2008), it might become possible not only to predict species

distributions in response to climate change (Guisan & Thuiller 2005), but also to develop

scenarios regarding the spatial distribution of adaptive genetic variation at the whole-

genome level in response to changes in temperature and precipitation regimes as proposed
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by Fournier-Level et al. (2011) and Hancock et al. (2011a). Future steps will be to integrate

the results on drivers of genetic adaptation into bioclimatic models and to test the

evolutionary and functional relevance of temperature and precipitation in alpine plants under

experimental conditions.

The results presented here provide multi-species empirical evidence of genetic variation

related to climatic variables. The correlation of temperature and precipitation to signals of

adaptation in the alpine species studied here suggested that there should indeed be ample

standing genetic variation available in alpine plants based on which adaptation could occur

during the course of climate change.

Conclusions

Local adaptation is the only possible response that living organisms have to cope with

climate change to avoid extinction, if their dispersal capacity and phenotypic plasticity are

insufficient to keep pace with environmental change. So far, the scientific community has

largely ignored the potential of adaptive genetic variation as a rapid response to

environmental change. By combining genetic and topo-climatic data, we found that loci

potentially linked to genes or genomic regions showing adaptive responses to climatic

factors are present in alpine plant species. Our approach might allow researchers to assess

general patterns of adaptive genetic response to environmental variation at the scale of

whole biomes in virtually any group of organisms. This opens new perspectives for

understanding the interplay between dispersal and adaptation in the evolutionary response of

species to climate change.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Approach used in this study to detect loci of ecological relevance in 13 alpine plant species.
(a) Map of the European Alps showing the study range and sampling intensity (circle area proportional to number of species

genotyped per grid cell). (AUT, Austria; FRA, France; GER, Germany; ITA, Italy; SLO, Slovenia; SWI, Switzerland). The

number of sampling sites per species is given in Table 1. (b) Type of genetic, environmental and spatial data (MEM variables:

Moran’s eigenvector maps) used. (c) Schematic of the statistical analyses. The example given in (a) is Phyteuma

hemisphaericum, one of the alpine plants studied.
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Table 1
Alpine plant species (with family) analysed at amplified fragment length polymorphism
(AFLP) loci and tested for relations between AFLP allele frequencies and environmental
variation.

For each species, the laboratory responsible for AFLP genotyping is indicated. Number of sampling sites and

individuals genotyped, Nei’s (1973) gene diversity averaged over all sampling sites (± standard error, SE) and

overall genetic differentiation (ΦST) are given for each study species. Ntot, total number of loci; Nler, number

of loci of ecological relevance; NMEM, number of broad-scale Moran’s eigenvector map (MEM) variables

Species
Sampling

sites
Individuals
genotyped Gene diversity Φ ST N tot N ler N MEM

(1) Arabis alpina L. (UJF)* [Brassicaceae] 129 385 0.061 ± 0.004 0.664 140 20 22

(2) Campanula barbata L. (UNE)† [Campanulaceae] 104 307 0.107 ± 0.004 0.385 114 13 16

(3) Carex sempervirens Vill. (WSL)‡ [Cyperaceae] 137 408 0.083 ± 0.002 0.328 122 3 31

(4) Dryas octopetala L. (UJF) [Rosaceae] 124 370 0.123 ± 0.003 0.197 99 4 24

(5) Gentiana nivalis L. (UNE) [Gentianaceae] 74 218 0.079 ± 0.006 0.600 157 16 10

(6) Geum montanum L. (WSL) [Rosaceae] 122 363 0.091 ± 0.003 0.313 85 12 24

(7) Gypsophila repens L. (WSL) [Caryophyllaceae] 107 319 0.110 ± 0.003 0.238 94 2 22

(8) Juncus trifidus L. (WSL) [Juncaceae] 91 269 0.126 ± 0.005 0.289 86 8 14

(9) Loiseleuria procumbens (L.) Desv. (UJF) [Ericaceae] 90 270 0.188 ± 0.004 0.293 116 22 16

(10) Phyteuma hemisphaericum L. (UV)§ [Campanulaceae] 76 225 0.112 ± 0.004 0.342 234 24 15

(11) Rhododendron ferrugineum L. (UJF) [Ericaceae] 126 377 0.135 ± 0.004 0.375 111 24 12

(12) Saxifraga stellaris L. (UV) [Saxifragaceae] 100 283 0.074 ± 0.003 0.428 70 2 22

(13) Sesleria caerulea (L.) Ard. (UCSB)¶ [Poaceae] 113 265 0.201 ± 0.009 0.196 187 19 21

*
University Joseph Fourier, France.

†
University de Neuchâtel, Switzerland.

‡
WSL Birmensdorf, Switzerland.

§
University of Vienna, Austria.

¶
UCSB Piacenza, Italy.
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Table 2
Topo-climatic variables used in this study

Yearly or seasonal climate layers
 (period 1980-1989)

(1) Annual mean of daily global radiation (horizon/terrain-corrected) [kJ/m2/day]

(2) Mean annual precipitation sum [cm]

(3) Summer seasonal precipitation: number of rain days from June to August [mm]

(4) Spring seasonal precipitation: number of rain days from March to May [mm]

(5) Annual degree days above 0 °C from daily climate maps [°C × days]

(6) Number of days with maximum temperature below 0 °C

(7) Annual mean of maximum daily temperatures [°C]

(8) Number of days with minimum temperatures below 0 °C

(9) Annual mean of minimum daily temperatures [°C]

Topography (10) Slope [%]

(11) Integrated topographic exposure map

(12) Potential soil humidity*

(13) Aspect [degree]

(14) Altitude [m]

*
Ratio of the upslope contributing region on the tangent of the slope angle (Beven & Kirby 1979).
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Table 3
Number of significant univariate regressions per species and environmental or MEM
variables.

The names of the environmental variables (1–14) are shown in Table 2. Significance values were corrected for

multiple tests. If both untransformed and transformed square variables of a particular environmental factor

were simultaneously significant in a particular species, we considered only one significant relationship. The

same rule was applied to MEM variables. For MEM variables, an AFLP marker associated with any number

of the broad-scaled MEM variables was counted as a single relationship. Variables related to precipitations are

highlighted by light grey shading and variables related to temperatures by dark grey shading

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 MEMs

Arabis alpina 0 1 11 0 1 12 12 13 13 0 0 0 0 3 17

Campanula barbata 5 1 1 1 13

Carex sempervirens 1 3

Dryas octopetala 1 1 1 1 1 1 4

Gentiana nivalis 7 1 0 2 2 1 1 1 1 12

Geum montanum 1 3 3 1 2 2 11

Gypsophila repens 1 1 1 1 1 1 1 1 2

Juncus trifidus 3 2 1 3 5 4 8

Loiseleuria procumbens 1 6 6 21

Phyteuma hemisphaericum 4 1 16 4 20

Rhododendron fetrugineum 7 1 3 6 7 7 1 1 20

Saxifraga stellaris 1 2

Sesleria caerulea 1 2 1 1 1 16

Total 0 9 40 27 10 20 24 36 35 1 3 1 0 7 149
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