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Abstract. From protists to primates, intergroup aggression and warfare over resources has been observed

in several taxa whose populations typically consist of groups connected by limited genetic mixing. Here, we

model the co-evolution between four traits relevant to this setting: (i) investment into common-pool resource

production within groups ("helping"); (ii) proclivity to raid other groups to appropriate their resources ("bel-

ligerence"); and investments into (iii) defense and (iv) offense of group contests ("defensive and offensive brav-

ery"). We show that when traits co-evolve, the population often experiences disruptive selection favouring two

morphs: "Hawks", who express high levels of both belligerence and offensive bravery; and "Doves", who ex-

press neither. This social polymorphism involves further among-traits associations when the fitness costs of

helping and bravery interact. In particular if helping is antagonistic with both forms of bravery, co-evolution

leads to the coexistence of individuals that either: (i) do not participate into common-pool resource production

but only in its defense and appropriation ("Scrounger Hawks”); or (ii) only invest into common pool resource

production ("Producer Doves"). Provided groups are not randomly mixed, these findings are robust to several

modelling assumptions. This suggests that inter-group aggression is a potent mechanism in favoring within-

group social diversity and behavioural syndromes.
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1 Introduction

Warfare –the coalitionary aggression between groups of individuals – is one of the defining features of the hu-

man lineage. It is not only thought to have driven the advent of large-scale societies, but also that small scale

hunter-gatherer societies regularly took part in coalitionary contests for material resources and reproductive

opportunities [1–3]. Warfare is also well known to occur in chimpanzees [4], and has further been observed in

several taxa outside of primates: in banded mongoose, where it is initiated by females who seek to mate with

extragroup males [5]; in army ants, where colonies engage in contests for access to new territories [6]; and even

in some strains of bacteria, who use a large assemblage of different offensive weapons to dislodge patches of

rival cells [7]. As highlighted by these examples, warfare typically involves a resource over which conflict occurs
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between groups, and such conflict depends on individual contributions into offensive and defensive group-

level activities [8]. This leads to an overall structure of interactions involving in-group solidarity and out-group

hostility.

There is a large theoretical literature on the behavioral underpinnings of warfare that use different approaches

to consider related questions about within-group solidarity and between-group hostility. In economics and

game theory, models often focus on understanding the Nash equilibrium strategies for two types of behaviours

under different scenarios of intergroup conflict: effort into material resource production and/or effort into

fighting for appropriating these resources produced by others (e.g., [8–14]). This approach therefore assumes

that individuals choose their behaviours freely with the goal of maximising their payoff, i.e., the rational actor

model, while the material nature of the resources over which groups contest means that warfare can be re-

garded as a type of subsistence strategy in these formalizations. There is a parallel literature in evolutionary

game theory, where instead of being freely chosen by individuals, strategies are genetically or culturally inher-

ited (e.g., [15–18]). Both of these strands of the literature usually assume that groups are formed randomly, so

that individuals mix freely between groups.

Social vertebrates and invertebrates, however, have in common that their evolution occurs in populations com-

posed of groups of finite size with limited genetic mixing between groups [19, 20]. Such structure is relevant

as it leads to interactions between genetically related individuals. Kin selection, which occurs whenever a trait

expressed by an actor affects the fitness of others who are genetically related to the actor at the loci deter-

mining the trait [21–24], is therefore likely to affect the evolutionary dynamics of warfare. The literature that

investigates the effects of limited genetic mixing on warfare evolution typically focuses on understanding how

the demographic properties of groups, such as migration rate or sex-differences, influence the evolution of

two types of behaviours: the propensity for between-groups contests and/or the fighting effort into contests

[25–33]. Most of these models consider that the resources over which groups contest are reproductive in nature

(e.g., mates or reproductive breeding spots). Warfare in this case should therefore be regarded as a reproductive

rather than a subsistence strategy.

In this paper, we blend key elements from these different strands of the literature with the goal of contributing

in two main ways. First, we decompose the individual behaviours that underpin in-group solidarity and out-

group hostility by considering the genetic co-evolution between four individual traits in a group-structured

population subject to limited genetic mixing: (i) the effort into a common-pool resource within groups; (ii)

the proclivity to contest other groups to appropriate their common-pool resources; and efforts into (iii) de-

fensive and (iv) offensive structures. Distinguishing between defense and offense allows to consider potential

trade-offs between the two, something that has been been somewhat neglected by previous formalizations [34].

Hence, our model can be regarded as an extension of "Guns versus butter" models, which involve a trade-off

between appropriating and producing resources ([14] for review), to a situation allowing for trade-offs between

appropriating, defending, and producing resources. The second way we aim to contribute is by expanding

current evolutionary analyses to understand the conditions that are conducive to the emergence of polymor-

phism in traits underlying warfare (instead of focusing on monomorphic evolutionary equilibria like all current

models). In particular, we investigate whether there are situations where peaceful individuals, characterised by

low levels of belligerence and bravery ("Doves"), can coexist with hostile ones, characterised by high levels of

belligerence and bravery ("Hawks"). As it turns out, our analysis suggests that such a situation can readily arise.
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2 The Model

2.1 Life-cycle and evolving traits

We consider a population of asexual haploid individuals that is subdivided among Ng groups (where Ng À 1 is

large), each containing N adult individuals. All groups are subject to the same environmental conditions and

are equally connected to one another by uniform random dispersal (i.e. Wright’s island model [35]). We census

this population at discrete demographic time points between which the following events occur in sequence: (1)

Within groups, adult individuals produce a common-pool resource that yields a material payoff (e.g. calories).

(2) Each group may raid another one to appropriate its common-pool resource, leading to contests (fights)

among pairs of groups over resources. (3) Each adult individual produces many offspring in quantity that

depends on outcome of the previous events, i.e. on the eventual amount of resources available for reproduction

after raiding (we detail this in (2.2) below). (4) Independently from one another, each offspring then disperses

with a probability 0 < m ≤ 1 to another randomly chosen group (or remains in its natal group otherwise).

(5) Finally, a randomly chosen adult dies in each group and one offspring among those competing locally is

randomly chosen to fill the open reproductive spot (i.e., a Moran reproductive process [36]). Generations are

thus overlapping in our model (unlike Wright-Fisher models for e.g. [36]), with individuals living on average

for N −1 demographic time periods. This assumption of a Moran life-cycle as well as of asexual reproduction

improves mathematical tractability without loss of generality (Supplementary Material - SM for short - S5 for

further discussion on this).

Against this demographic backdrop, we are interested in the co-evolution between four quantitative traits that

influence interactions within- and between-groups: (1) the effort (or investment) h ≥ 0 made by an individual

into the production of a common-pool resource for its group (helping for short); (2) the proclivity or motivation

a ≥ 0 of an individual to raid another group, which we refer to as “belligerence”; (3) the effort b ≥ 0 an individual

makes into group contest when its group raids another one, which we refer to as “offensive bravery”; and finally

(4) the effort d ≥ 0 made by an individual into group contest when its group is attacked by others, which we

refer to as “defensive bravery". We assume that each of these four traits (a, b, d and h) is encoded by a separate

genetic locus, at each of which we assume there is a continuum of possible alleles (i.e., the standard continuum

of allele model of population genetics [37, 38]). Specifically, mutations occur during reproduction with a small

probability µ at each locus, in which case the effect size of a mutation on the trait value is random, unbiased

and weak; namely, a mutation causes a small trait deviation from the parental trait value and this deviation has

mean 0 and small variance σ2.

Under these assumptions, each individual expresses a potentially unique genetically-determined trait. Thank-

fully, we do not need to take into account the full breadth of this variation in order to evaluate the payoff,

reproduction and survival of individuals that underlay our evolutionary analysis. To that end, it is sufficient

to focus here on three levels of phenotypic specification. First, we consider a focal individual (i.e. a repre-

sentative or randomly sampled individual in the population), whose phenotype we will denote by the vector

z• = (a•,b•,d•,h•). Second, because we will assume that individuals within groups interact in a way that can be

characterised by the average trait within groups (section 2.2 for details), we do not need to specify the traits of

each individual in the focal group but rather summarise this by z0 = (a0,b0,d0,h0), which collects the averages

of each trait among all adults of the focal group (thus including the focal individual). Finally, since mutations

are rare with small effects on the phenotype, variation among individuals in the rest of the population will typ-

ically be small. We can in fact ignore the variation among- and within- groups other than in the focal group
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[39], and in effect consider that the rest of the population is monomorphic for the population average, which

we denote by z = (a,b,d ,h). In the next section, we specify under these assumptions how the evolving traits

influence common-pool production within groups and raiding between groups (stages (1)-(2) stage of the life

cycle in section 2.1), and in turn how this affects individual reproduction.

2.2 Helping, belligerence and bravery: costs and benefits

Common-pool production. We assume that the material payoff yielded by the common pool resource pro-

duction in the focal group is given by a function B(N h0), which increases in a decelerating manner with the

total amount of investment, N h0, into helping within the group (i.e. exhibiting diminishing returns; B(0) = 0,

B ′(x) > 0, and B ′′(x) < 0 where throughout a prime ’ denotes differentiation; and as with other relevant func-

tions used in our model, we will later specify and explore different forms for B(x), see section 3.2 and SM S5).

Attacking. We assume that the probability that the focal group raids another group is given by a function

0 ≤ α(a0) ≤ 1, which increases with the average group belligerence (α(0) = 0, α′(a0) > 0). Following the island

model of warfare [29], we assume that when a group decides to attack another one, the group it raids is sampled

randomly from the population. If two or more groups decide to raid the same group, one group is chosen

at random from the attackers to perform the raid and engage into the contest for the appropriation of the

common-pool resource of the raided group. As a result of these assumptions, the probability that a focal group

engages into a fight over the resource of another group (i.e. decides to attack and is chosen among the attackers

if there are more than one) is

φ0(a0, a) =α(a0)

(
1−exp(−α(a))

α(a)

)
, (1)

where a is the average level of belligerence in the rest of the population (Appendix S1 of [29] for derivation).

Meanwhile, the probability that this same focal group is attacked by another group and engages locally in a

contest over its own common-pool resources is

φ1(a) = 1−exp(−α(a)). (2)

Winning a contest. When a group raids another one, who wins the ensuing contest depends on how much

the attacking group has invested into offense compared to how much the attacked group has invested into

defense. More specifically, a raiding focal group with average level of offensive bravery b0 is assumed to win

the contest against a raided group with average level of defensive bravery d with probability

ν(b0,d) = ωg (N b0)

ωg (N b0)+ (1−ω)g (N d)
, (3)

where g is a positive, increasing function of its argument (g (y) > 0, g ′(y) > 0). The parameter 0 <ω< 1 allows

to tune the advantage of being offensive relative to being defensive (e.g., in the extreme case ω = 0, attackers

always lose whereas they always win whenω= 1). Note that by symmetry of eq. (3), ν(b,d0) gives the probability

that a focal group with average level of defensive bravery d0 loses a contest when it is attacked by another group

with average level of offensive bravery b. In the context of conflict, eq. (3) is typically referred to as a “contest

success function”, in which the choice of the function g allows to model different qualitative types of conflicts

[8, 10, 11, 40].
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Resource distribution and fighting costs. If the attacking group wins the contest, it appropriates all the col-

lectively produced resources of the raided group (who thus loses all its collective resources). If the attacking

group loses, then both the raiding and raided groups keep their own resources. Fighting, however, is costly (for

instance due to lost opportunities). We assume that the payoff available to a group is reduced by a constant

−c1 < 0 when this group fought once (as an attacker or defender), and by −c2 < 0 when this group fought twice

(once as an attacker and once as a defender).

Individual payoff benefits and costs. After fighting is done, the resources that remain (if any) in a group are

pooled and divided equally among its members. For example, consider the focal group with average level of

helping h0 that (i) raided (and won against) another group with average investment h into helping, and (ii) was

attacked by yet another group but also won this second fight. An individual from such a focal group will then

obtain a payoff of [B(N h0)+B(N h)−c2]/N . Individuals also pay an individual cost due to the expression of their

traits. For instance, an investment h• by a focal individual to the common-pool resource will incur a cost to that

individual (that increases with the actual investment h•). We additionally assume that both offensive (b•) and

defensive (d•) bravery are costly to express, for instance due to individual resources being redirected towards

offensive or defensive structures (e.g. bows, arrows or trenches). Belligerence (a•), by contrast, is assumed to

not be associated with a direct individual cost (there are however indirect costs due to fighting captured by c1

and c2, see above paragraph). To reflect these assumptions, we write C (h•,b•,d•) for the material costs that a

focal individual pays when expressing trait values h•, b•, and d• (we assume these costs increase monotonically

with each trait, at least linearly, i.e. C (0,0,0) = 0, ∂C /∂x > 0 and ∂2C /∂x2 ≥ 0 for x ∈ {h•,b•,d•}). To continue

with the above example, a focal individual with traits h•, b• and d• that is a member of the focal group will then

receive a payoff of [B(N h0)+B(N h)− c2]/N −C (h•,b•,d•).

Taking into account all possible outcomes, the expected material payoff to a focal individual can be written as

π(z•, z0, z) = vb +
[
φ0(a0, a)ν(b0,d)

B(N h)

N
+ (

1−φ1(a)[1−ν(b,d0])
) B(N h0)

N

]
−

[(
φ0(a0, a)+φ1(a)

) c1

N
+φ0(a0, a)φ1(a)

c2 −2c1

N

]
−C (h•,b•,d•),

(4)

where the first term, vb > 0, is some baseline payoff; the term within square brackets on the first line is the

average amount of resources (over offensive and defensive contests) an individual obtains; the term within

square brackets on the second line is the decrease in the amount of such resources due to the costs of contests;

and the final term is the individual costs of expressing helping and bravery (see SM S1 for a derivation). When

fighting probabilities are equal to one (φ0 = φ1 = 1) and the cost of fighting one or two fights are the same

(c2 = c1 = c), eq. (S1) reduces to

π(z•, z0, z) = vb +ν(b0,d)
[B(N h)− c]

N
+ (1−ν(b,d0))

[B(N h0)− c]

N
−C (h•,b•,d•). (5)

This has the same structure as the payoff function used in classical model of contests (e.g. eq. 7 of [8], eq. 1 of

[14], second equation on p. 1017 of [18]), with the difference that here, a group experiences two contests: one

in offense and another in defense.

Evolutionary dynamics. We assume that the fecundity of an individual increases with its payoff. From eq. (4),

it is then only a matter of bookkeeping to calculate the individual fitness of a focal individual, which depends

on the payoff of other individuals in the population (SM S1 for these calculations). This lays the basis of our
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method of analysis of evolutionary dynamics, which is detailed in our SM S2. One can then follow our mathe-

matical analysis from SM S3 and via an accompanying Mathematica Notebook.

3 Results

3.1 Directional selection on helping and belligerence

From our assumptions, it is clear that belligerence and bravery can only evolve by selection if other groups have

produced some amount of common resource that can be appropriated by raiding. It is therefore useful to first

understand the evolution of the production of the common good within groups in the absence of belligerence

and bravery (a = b = d = 0). We find that provided helping can increase when absent in the population, then

there is a unique equilibrium h∗ for helping that satisfies the first-order condition

B ′(N h∗)κR = ∂C (h•,0,0)

∂h•

∣∣∣∣
h•=h∗

, (6)

where

κR = 1

N
+ N −1

N

1−m

1−m +N︸ ︷︷ ︸
=κ

≥ 0, (7)

decreases with dispersal and group size (SM S3.1 for derivation). The equilibrium h∗ defined by eq. (6) is both

convergence stable and locally uninvadable under our assumptions for the benefits and cost functions (SM S2.1

for a formal definition of these terms). The population mean of helping will therefore converge to h∗ and the

phenotypic distribution will remain unimodally distributed around that mean (Suppl. Fig. 2 for e.g.). Eq. (6)

says that the equilibrium investment into common pool resource production is such that the marginal cost of

helping (right hand side of eq. 6) is offset by the marginal effect B ′(N h) of helping by an individual on group

productivity weighted by κR. To understand this parameter κR, let us note first that in eq. (7), κ is the scaled

relatedness between two individuals within groups taking kin competition into account [41, 42]. This κ can be

interpreted as the number of units of fecundity or payoff that a focal individual is willing to forgo to increase

the fecundity or payoff of a randomly sampled neighbor by one unit (for details see [43]). The parameter κR can

then be understood as the number of such sacrificed units when the one unit increase can be obtained by any

individual in the group, including the focal individual (i.e. sampled with replacement from the group, hence

the superscript R). This stems from the fact that public good production benefits all individuals equally within

the group, including the focal actor. Since κ and κR are both monotonically increasing functions of relatedness,

they vary with demographic parameters in similar ways as relatedness (i.e. decrease with dispersal and group

size, Suppl. Fig. 1). From this observation and eq. (6), we thus see that helping and common good production

evolve to greater levels under directional selection when dispersal is weak and group size is small, which is a

standard result across many incarnations of this problem in the literature ([41, 42] for reviews).

Let us now suppose that helping has evolved towards the equilibrium (eq. 6), but belligerence as well as brav-

ery are absent (a = b = d = 0). By studying selection on belligerence in this situation (SM S3.1), we find that

belligerence is favored by selection when the expected benefit from a raid exceeds its cost, i.e. when

ωB(N h∗) > c1, (8)

where ω is the probability of winning a fight when attacking when b = d = 0 in eq. (3). This shows that inter-
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group belligerence readily evolves, provided helping within groups leads to a sufficient amount of common

goods that makes fighting for worth it. Once belligerence has evolved (so eq. 8 holds), this should set the stage

for bravery to be favored by selection since it increases one’s chances to win a contest, either in offense or

defense. We investigate this in the next section.

3.2 The co-evolutionary equilibrium between belligerence, bravery and helping

In order to analyse the co-evolution of all traits, we assume the following relationships: (1) B(N h) = β
p

N h

for the benefits of the common good (where β > 0 is a constant); (2) α(a) = a for the probability of attacking

in a group with belligerence a (so that when N = 1, the trait 0 ≤ a ≤ 1 is simply the probability of attacking);

(3) g (b) = b for the effect of bravery b on the winning probability; and finally, (4) C (h,b,d) = h + cbb + cdd

for the individual cost of expressing helping and bravery, so that helping has a baseline cost of 1, and relative

to this, offensive and defensive bravery have costs cb and cd, respectively. These relationships capture the

main properties of our model, while being simple enough to allow us to characterise analytically evolutionary

equilibria (SM S5 for relaxation of these assumptions).

Under these assumptions, we show in SM S3.2 that there is a unique convergence stable strategy z∗ =
(a∗,b∗,d∗,h∗) that can be expressed as

a∗ = log

(
c2 −2c1

c2 − c1 −ν∗B(N h∗)

)
(9a)

b∗ =
[

1−e−a∗]
ν∗(1−ν∗)

B(N h∗)

N cb
κR (9b)

d∗ =
[

1−e−a∗]
ν∗(1−ν∗)

B(N h∗)

N cd
κR (9c)

h∗ =
[

1−
(
1−e−a∗)

ν∗
]2

(
1

2

βp
N
κR

)2

, (9d)

where we used

ν∗ = ν(b∗,d∗) = cdω

cdω+ cb(1−ω)
(10)

to denote the probability of winning a contest when attacking, or equivalently, of losing a contest when defend-

ing one’s own resources at the equilibrium (found by substituting the equilibria for bravery, eqs. 9b-9c, into the

contest function eq. 3 with g (y) = y).

Belligerence. To interpret eq. (9a), note first that ν∗B(N h∗) corresponds to the equilibrium expected payoff

that a group receives if it raids another one (since it wins the contest with probability ν∗ and then obtains

payoff B(N h∗)). Thus, the equilibrium for belligerence a∗ increases with the expected group payoff of a raid

and decreases with the cost of two contests relative to one contest (i.e. with c2/c1). Eq. (9a) also reveals that for

a∗ to be an interior equilibrium (i.e. 0 < a∗ < 1 since here a∗ is a probability), the cost of two contests must be

greater than twice the cost of a single contest (c2 > 2c1). If the cost of two contests is lower than this (c2 ≤ 2c1),

then the cost of contests for groups that both raid and are raided is relatively low. This favours the evolution of

“total” belligerence where every group attempts to raid (i.e. a → 1).

Bravery. To understand eqs. (9b)-(9c), we can decompose these as the product of four quantities with which

both forms of bravery therefore increase: (1) the probability [1−e−a∗
] of raiding or being raided in a population
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where the average belligerence is a∗ (eqs. 1 and 2 with a0 = a = a∗); (2) the variance or uncertainty, ν∗(1−ν∗), in

the outcome of a contest for a group either in offense or defense. Selection on both forms of bravery increases

with this uncertainty because when one is certain to win or lose irrespective of the investment into offense or

defense (e.g. when ω = 0 or 1), then there is no incentive for such investment; (3) the ratio of the individual

benefit in the case of the group winning a contest relative to the individual cost of the relevant bravery trait,

which is [B(N h∗)/N ]/cb when raiding and [B(N h∗)/N ]/cd when raided; and finally (4) scaled relatedness with

replacement κR (eq. 7). We further see that when the costs of investments into offense and defense are equal

(cb = cd), individuals evolve to invest the same amount of resources into offense and defense (i.e. b∗ = d∗) and

that this amount is greatest when ω= 1/2 (so that ν∗ = 1/2 and there is maximum uncertainty ν∗(1−ν∗) = 1/4

over outcome). The equilibrium given by eqs. (9b)-(9c) is consistent with previous models of bravery evolution

for randomly mixed groups (i.e. when m = 1 so κR = 1/N , e.g. eq. 10 of [8], first equation p. 1018 of [18]), but

inconsistent with those in [17, 18] concerning evolution under limited genetic mixing. The equations presented

in [17, 18], however, fail a number of sanity checks (SM S3.2.2 for details).

Helping. Finally, eq. (9d) can be understood by first recognising that the quantity ψ(a∗) = [1− (1− e−a∗
)ν∗]2,

is the probability that a group is left with just its own common good in a population at equilibrium. This can

be seen by decomposing ψ(a∗) as the product between the probabilities of two events: (1) that the group does

not attack and win the ensuing contest (with probability [1− (1− e−a∗
)ν∗]); and (2) that the group does not

get attacked and lose the ensuing contest (also with probability [1 − (1 − e−a∗
)ν∗]). In this light, eq. (9d) is

intuitive. Selection for helping and participation to the common good increases with the certainty that this

common good is the only source of payoff to oneself and to relatives (from κR in eq. 9d). Accordingly, belliger-

ence between groups, a∗, reduces helping at equilibrium (as in the absence of belligerence, helping stabilises

to
(

1
2

βp
N
κR

)2
, see also eq. 6).

Payoff at equilibrium. From eq. (9), it is straightforward to obtain an explicit solution for each trait (i.e. a

solution that depends only on model parameters, eq. S21 in SM S3.2.3). As expected, one characteristic feature

of these solutions is that all traits at equilibrium increase with relatedness and therefore decrease with dispersal

between groups (Fig. 1 A-C). What is perhaps less intuitive is that the coevolution of all four traits leads to

a non-monotonic relationship between payoff at the evolutionary equilibrium and relatedness (or dispersal,

Fig. 1D-F). Specifically, depending on the individual cost of offensive bravery, cb, the payoff in an equilibrium

population can: (1) decrease with relatedness (for small cb, Fig. 1D); (2) first increase and then decrease in a

quadratic fashion with relatedness (for intermediate cb, Fig. 1E); or (3) increase with relatedness (for high cb,

Fig. 1F). This reflects the fact that payoff increases with helping within groups and decreases with belligerence

between groups. As dispersal goes down and relatedness increases, selection favours more helping (which

increases payoff) but simultaneously also more fighting (which decreases payoff). These antagonistic effects

on payoff can lead to a situation where payoff does not monotonically increase with relatedness (in contrast to

most models of social evolution). In particular, when cb is small, belligerence tends to increase compared to

helping (Fig. 1 A) causing overall a decrease in payoff (Fig. 1 D). The coevolution of belligerence and helping

can therefore lead to a somewhat counter-intuitive scenario where greater relatedness and greater prosociality

within groups are associated with lower payoff at equilibrium.
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3.3 The emergence and polymorphic coexistence of belligerent and pacifist individuals

Additive individual costs and the emergence of Hawks and Doves. Our results so far indicate that the mean

phenotypes will gradually converge towards an interior evolutionary equilibrium point, provided the cost of

two contests are greater than twice the cost of a single contest (c2 > 2c1, eq. (9)). However, we find that once

such convergence has occurred, selection becomes disruptive and favors an increase in phenotypic variance,

and in particular in the covariance between belligerence and offensive bravery (SM S3.2.5 for analysis). Specif-

ically, selection favours belligerence and offensive bravery to become positively associated within individuals

because genotypes that code for either more belligerence and greater investment into offense (i.e. with a > a∗

and b > b∗), or less belligerence and fewer resources in offense (i.e. with a < a∗ and b < b∗), have greater

fitness than average when the population is at the evolutionary equilibrium. These two types gain fitness by

employing two opposite strategies: to attack and win contests by investing more resources into offense, or not

to attack and bypass the need to invest costly resources into offense. We respectively refer to these two types as

"Hawks" and "Doves" owing to their overall phenotypic similarity to the strategies of the classical Hawk-Dove

game [44, 45] as well as the nature of selection that acts upon them (see below).

We checked our mathematical analyses and investigated whether Hawks and Doves can coexist in the long

run by running individual based simulations (SM S4 for procedure). Starting with a monomorphic population

where each trait is absent (i.e. the value of each trait is zero), the population average of each trait rapidly con-

verges to its predicted equilibrium (Fig. 2A). Concomitantly, the variance in belligerence also increases, with

individuals gradually expressing either no or complete belligerence (a = 0 or 1, Fig. 2B-C). Offensive bravery

b meanwhile also becomes polymorphic, with individuals eventually investing either some resources into of-

fense or none at all (Fig. 2D). In contrast, defensive bravery d and helping h remain unimodally distributed so

that these traits do not become significantly differentiated in the population (Fig. 2E-F). The joint equilibrium

distribution of belligerence and offensive bravery (Fig. 3A) confirms our analytical predictions that these two

traits become positively associated, and further reveals that highly-differentiated Hawks and Doves coexist in

the long run (respectively the top right and bottom left clusters in Fig. 3A). By contrast, there is no clearly dis-

cernible association among any other pair of traits, so that Hawks and Doves both express helping and defense

bravery in about the same amount (Fig. 3B-F). These weak associations are confirmed by the weak equilibrium

covariances among traits other than between belligerence and offensive bravery (Fig. 3G).

These analyses show that the evolution in our model leads to the gradual emergence and maintenance of

highly differentiated-types owing to negative frequency-dependent interactions. The pattern of frequency-

dependence can be understood by focusing on Hawks. These are particularly successful when they are rare as

they tend to engage their group into a raid and to win contests against groups consisting mainly of Doves. But

as Hawks become common, their groups suffer from attacks by other groups consisting mainly of Hawks, and

as a result pay the high cost of two contests rather than one (i.e. pay c2 rather than c1, where c2 > 2c1). Passed

a critical frequency, Hawks thus become less successful than Doves, allowing both types to be maintained in

the population. This frequency-dependence is thus reminiscent to that of the Hawk-Dove game [44, 45], with

interactions here mediated by group-structure rather than occurring strictly among individuals.

Polymorphism within and between groups. The group structure of the population raises the question

whether coexistence occurs within or between groups, in other words whether groups tend to be composed

of one type (only Hawks or only Doves) or a mix of both. The distribution of belligerence in a single focal group

over time suggests the latter (Fig. 4A), with the group very often consisting of both types. Nevertheless, when
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we compare the average level of belligerence within a focal group to the population average (dots vs full lines

in Fig. 4B), we see that the focal group experiences significant variation over time. In other words, even though

both Hawks and Doves co-occur within a group, one morph will typically dominate at any given time. Groups

will therefore tend to be differentiated according to whether they are composed of more or less of one type. We

can quantify this at the level of the population by calculating the phenotypic differentiation among groups at

the belligerence locus (Fig. 4C, red). We find that this differentiation is no different before and after the poly-

morphism emerged or to differentiation at the helping locus (which recall never becomes clearly polymorphic,

Fig. 4C, blue). In fact, differentiation among groups at the belligerence locus is the same as expected for a

neutral locus (Fig. 4C, black). This shows that negative frequency-dependent selection does not generate sig-

nificant departures in morph distribution among groups compared to neutral expectation. Put differently, how

the two different morphs are distributed among groups is primarily determined by dispersal and local genetic

fluctuations (due to variance in reproductive success that generates identity-by-descent) and thus reflect the

pattern of relatedness.

We additionally examined the effects of different levels of dispersal on polymorphism (i.e. different values of

m). Although simulations generally show significant phenotypic variation at the belligerence and offensive

bravery loci (Suppl. Fig. 3A-C), differentiation among the Hawk and Dove morph is clearest and most stable

where relatedness within groups is high (Suppl. Fig. 3D). This reflects that much of the frequency-dependent

selection in our model is due to interactions between groups. As a result, selection is most able to discrimi-

nate among morphs and therefore favour their differentiation when morphs are unequally distributed among

groups, which as we saw in the preceding paragraph happens when relatedness is non-zero. In fact, polymor-

phism among Hawks and Doves is weak if non-existent under complete random group mixing (and relatedness

is zero, Suppl. Fig. 3A & D).

Non-additive costs and the emergence of Scrounging Hawks and Producing Doves. One assumption we

have made so far is that the individual costs of investing personal resources into bravery (offensive and defen-

sive) and helping are additive (within and between traits, i.e. that C (h•,b•,d•) = h• + cbb• + cdd•). Comple-

mentarity or antagonistic effects between traits (i.e. when different traits respectively have positive or negative

non-additive effects) on individual costs can significantly influence how selection shapes associations between

social traits and therefore on the nature of adaptive polymorphism when fitness depends on multiple traits [e.g.

39, 46–48]. In the context of inter-group contests and intra-group helping, one relevant scenario to investigate

is where bravery traits complement one another, for instance because weapons or behaviours that are useful in

offense are also useful in defense, but antagonistic with helping, for e.g. because characteristics that are bene-

ficial in situations of conflict are counter-productive in prosocial situations. One way to capture this scenario

is to implement non-additive individual costs in eq. (4) of the form

C (h•,b•,d•) = chh2
• + cbb2

• + cdd 2
• −γbdb•d•+γbhb•h•+γdhd•h•, (11)

where γbd > 0 controls the complementarity among offensive and defensive bravery (so that individual costs

are lower when one unit of resource is invested in both types of bravery compared to two units invested in a

single type), while γbh > 0 and γdh > 0 tune the antagonism between each respective bravery trait and helping.

Numerical exploration of the mathematical model using eq. (11) suggests that polymorphism still emerges in

this case and that it is still driven by the coevolution between belligerence and offensive bravery (Mathematica

Notebook). However, phenotypic associations now involve more traits. In particular, selection now favours a
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negative association between helping with offensive and defensive bravery. Individual-based stochastic sim-

ulations confirm this and further highlight the maintenance of a negative association among belligerence and

helping (Fig. 5). Specifically, the Hawk morph is now also characterised by little within-group helping (morph

on the top left of Fig. 5A), and the Dove morph by high levels of helping (morph on the bottom right of Fig. 5A).

In fact, all other traits are now negatively associated with helping (last column of Fig. 5B). This is due to the extra

individual costs suffered by individuals that combine helping with any form of bravery. Since Hawks are char-

acterised by high levels of bravery, they evolve lower helping because of these extra costs. Doves, meanwhile,

can continue to invest resources in helping since they invest little or no resources into bravery.

These results show how complementarity and antagonistic effects among traits can lead the polymorphism in

our model to become more complex and involve further traits (such as helping). The main characteristics of

the Hawk and Dove morphs, however, have not changed due to such non-linear effects, with some individuals

with a strong preference for raiding and investing resources into offense, and others favouring not to raid and

investing no resources into offense. We test and discuss the robustness of this polymorphism further in our

SM S5, where in particular we investigate the effects of various contest functions (via g (y)), group decision

making (via α(a)) and benefit functions (via B(y)). We find that in all examined cases, Hawks and Doves are

still expected to emerge as in our baseline model.

4 Discussion

Our results indicate that selection can readily lead to the emergence of a social polymorphism where two

highly-differentiated morphs relevant to warfare eventually co-exist: one that codes for belligerence and of-

fensive bravery (Hawks) and the other for neither (Doves, Fig. 3). The frequency-dependent interactions that

maintain this polymorphism are close to those characterising the classical Hawk-Dove game [44, 45], where

Hawks are favored when rare but disfavored when common as they engage with other Hawks and suffer an

extra (non-additive) cost due to fighting. This extra cost is typically captured in the classical Hawk-Dove game

by the condition that the cost C for a Hawk to lose against another Hawk is greater than the value V of the

resource obtained in case of a win (i.e. C >V ; whereas in the additive case, C =V which would disfavor Doves,

always). Similarly, one prerequisite for frequency-dependent interactions to lead to co-existence in our model

is that the cost of contests is greater than additive (with the cost of two contests c2 greater than twice the cost

of a single contest c1, c2 > 2c1, eq. S21 in SM S3). These extra costs prevent groups of Hawks to dominate at all

frequencies and allow Doves to thrive when rare.

There are nonetheless also significant differences between the classical Hawk-Dove game for inter-individual

conflicts and our inter-group conflict interaction scenario. First, the two morphs that are held in stable poly-

morphism in our model are not preexisting, but rather emerge from disruptive selection and gradual evolu-

tion. In the same way that polymorphism does not emerge when belligerence evolves alone in our model

(SM S3.2.5), the mixed strategy characterized by the probability of taking the action "Hawk", usually under-

stood as "Attack", also converges towards an equilibrium point and does not experience disruptive selection

in the classical Hawk-Dove game [49]. This brings us to a second difference: the strategies that the two coex-

isting types employ at equilibrium in our model are more complex than simply playing "Attack" or not. Rather

those strategies consist of composite behaviours including the propensity to raid and investment into offensive

abilities. Interestingly, a similar polymorphism has been found to emerge in well-mixed populations with inter-

individual conflicts (as in the Hawk-Dove game), and where the probability of playing Hawk coevolves with a
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physiological trait that is costly to express but that increases the probability of a win against another Hawk [50].

Like in our model, it is the coevolution of these two traits that leads to polymorphism emergence. One fur-

ther conceptual difference regarding strategies is that Hawks always beat Doves in the classical game, whereas

here, individuals of low belligerence nevertheless also invest significant resources into defense. Accordingly,

groups consisting mainly of Doves in our model have a non-zero probability of winning against raiding groups

consisting of mostly Hawks.

But perhaps the most significant way that we depart from the classical Hawk-Dove (as well as [50]), is that

frequency-dependent interactions are mediated through group-structure in our model. Rather than lone indi-

viduals, it is groups with a majority of Hawks that tend to partake in raids and groups with a majority of Doves

that tend not to. So even though most groups are composed of a mix of both morphs due to dispersal (Fig. 4A),

the maintenance of polymorphism through negative frequency-dependent interactions relies on variation in

this mix among groups (Fig. 4B-C for e.g.). Accordingly, when groups are formed via complete random mixing

(i.e. complete dispersal, m = 1 and relatedness is zero) or group size is infinitely large (N → ∞), selection is

unable to discriminate among morphs and cause their differentiation since groups show very little variation

in their composition (Suppl. Fig. 3A). By contrast, where relatedness is positive, highly-divergent morphs can

be observed (Suppl. Fig. 3B-D). In fact, limited dispersal tends to stabilise the polymorphism (Suppl. Fig. 3D),

with selection remaining disruptive even where dispersal is severely limited (i.e. very close to m = 0, Math-

ematica Notebook). This differs also from previous models where frequency-dependent interactions happen

only among individuals of the same group, in which limited dispersal and thus relatedness inhibits disruptive

selection [as it reduces the amount of local genetic variation and thus differentiation within groups, 39, 51–53].

In spite of these group-effects, one should keep in mind that selection occurs at the level of the gene (or repli-

cator) and that these are expressed by individuals. As a result, where the individual fitness costs of the dif-

ferent traits interact with one another, evolutionary dynamics can lead to more traits becoming associated to

the social polymorphism. In particular, if helping is antagonistic with offensive and defensive bravery while

both forms of bravery are complementary (eq. 11), then the two co-existing morphs we observe consist of

individuals that either do not participate in common-pool resource production but only in its defense and ap-

propriation ("Scrounger Hawks”); or only invest into common pool resource production ("Producer Doves",

Fig. 5). The negative frequency-dependent interactions that maintain these two morphs are then reminiscent

to those characterising the classical Scrounger-producer game [54]. Beyond this scenario, our results suggest

that through fitness interactions with bravery traits, other relevant social traits (such as the tendency to lead or

follow) may become associated to the social polymorphism we have described.

The apparent ease with which polymorphism emerges in our model raises the question why it has not been re-

ported in previous papers that have investigated the (genetic) co-evolution of traits involved in warfare [26, 28–

31, 33]. By comparing these models to ours, we find that this is likely due to divergent formulations for fit-

ness (compare eqs. S5 and S6 in SM). This divergence comes from our perspective of warfare as a subsistence

strategy, whereas previous papers allowing for the coevolution of belligerence and bravery considered it as a

reproductive strategy (but see [30]). These models typically assume that (i) groups loosing contests are re-

populated (partially or completely, or their females mated) by winning groups, and (ii) that belligerence has

fixed or unconditional costs to the individual that expresses it (in contrast to our model where belligerence has

conditional costs, which are incurred only if raids take place). The direct extra costs associated with greater

belligerence under such assumptions make it more difficult for Hawks to differentiate from the population in

these models compared to ours and therefore for polymorphism to emerge (SM S1.2.2 and S3.2.5 for a more

formal explanation). But nothing in principle precludes from considering conditional costs in models of war-
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fare as a reproductive strategy and thus allow for polymorphism. Meanwhile, models that consider warfare

as a subsistence strategy typically ignore belligerence and focus on bravery evolution (e.g., [15–18]). But as we

have established, this coevolution between belligerence and bravery is necessary to the emergence of polymor-

phism.

To sum up, we have proposed a model of warfare evolution in which an initially asocial and undifferen-

tiated population evolves towards within-group solidarity and between-group hostility enacted by highly-

differentiated individuals. This as long as group size is not too large and dispersal is limited. Indeed, with

complete dispersal, no differentiation occurs in our model, and with large group size, no social trait evolves to

begin with as the selection pressure on each trait is of the order of the inverse of group size (1/N ). This effect

of group size on the strength of selection is, provided a few exceptions, common to all models of evolution of

prosocial traits affecting group members indiscriminately [55], and thus applies to those aforementioned on

warfare evolution as recently illustrated in simulations [33]. These models and ours are therefore most relevant

to small-scale societies (or populations with small local effective size and effective migration rate, e.g., eq. 9.59

in [24]). For such societies, our model suggests that between-group aggression can be a potent mechanism for

the maintenance of within-group trait diversity and behavioral syndromes, in particular favouring a positive

association between belligerence and bravery.
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Figure 1: Traits z∗ = (a∗,b∗,d∗,h∗) and payoff π(z∗, z∗, z∗) at evolutionary equilibrium. A-C: Evolu-
tionary equilibria of belligerence (a∗ in red), offensive bravery (b∗ in black), defensive bravery (d∗ in
gray) and helping (h∗ in blue) as a function of pairwise relatedness (found by fixing N = 8 and solving
r2 eq. (S12) for m, which is then substituted into equilibrium eqs. 9 with eqs. 7 and (S21); other param-
eters: c1 = 18, c2 = 115, cd = 0.67, ω = 0.5, β

p
N = 100, vb = 0, see legend for cb). All traits increase with

relatedness. D-F: Payoff as a function of pairwise relatedness (using eqs. (S1)- (S3) and traits in top row).
When the cost of offensive bravery is low (cb = 0.25), payoff decreases with relatedness (in D). This is be-
cause belligerence (red in A) increases more than helping (blue in A) with relatedness. By contrast, when
cb = 0.73, helping increases more than attack (in C) with relatedness causing a simultaneous increase in
fecundity (in F).

17



� �� ��� ��� ���
�

���

�

� �� ��� ��� ���
�

���

�

time (x1000)

𝒛 𝑎

fre
qu

en
cy

𝑎 𝑏 𝑑 ℎ

time (x1000)

A.

C. D. E. F.

B.Dynamics of average trait values Dynamics of the distribution of belligerence 

belligerence offensive bravery defensive bravery helping

Figure 2: The emergence of polymorphism. A: Average trait values in the population as a function of
time (with a unit of time corresponding to an iteration of the life cycle) in a population where all traits
are initially absent (at in red; bt in black; dt in gray; ht in blue; observed in a simulation in dots, SM S4
for simulation details; analytically predicted in full lines, from eq. (S9) with variance-covariance matrix
G = δ2I where I is the identity matrix and δ= 0.043 was chosen heuristically; N = 8 and m = 0.467 so that
r2 = 0.125; otherwise same parameters as Fig. 1 middle). B: Individual values of belligerence observed
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stabilised. C-F: Distribution of each trait in a simulation (calculated from time 250’000 for 100’000 time
steps, same parameters as A).

18



� ��� �
�

���

�

� ���
�

���

�

� ��� �
�

���

�

� ���
�

���

�

� ��� �
�

���

�

� ��� �
�

���

offensive bravery, 𝑏A. B. C.

D. E.

F.G.

defensive bravery, 𝑑 helping, ℎ

be
llig

er
en

ce
, 𝑎

of
fe

ns
ive

 b
ra

ve
ry

, 𝑏

de
fe

ns
ive

 b
ra

ve
ry

, 𝑑

Variance-covariance matrix

! " # ℎ
! 0.21

± 0.010
0.13
± 0.011

−0.014
±0.0093

−0.015
± 0.014

" - 0.089
± 0.012

−0.0091
±0.0063

−0.0092
± 0.0082

# - - 0.0062
±0.0022

0.0012
± 0.0027

ℎ - - - 0.0081
± 0.0042

Figure 3: Correlations among traits. A.-F. Joint distribution of each pair of traits in a simulated pop-
ulation at equilibrium (calculated from time 250’000 for 100’000 time steps, same simulation as Fig. 2,
darker shade means greater density). G. Mean ± standard deviation of the variance-covariance matrix
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Figure 4: Polymorphism within and between groups. A. Distribution of belligerence (number of indi-
viduals) in a focal group over time (150 steps, same simulation as in figure 2 from time 299’000 onwards).
B. Focal group- (dots) and population- (full line) average belligerence (same group as in A). C. Genetic
differentiation among groups F R

ST (FST with replacement, i.e. the ratio of the variance among groups of
group-averages to the total trait variance in the population) over time at the belligerence (in red) and
helping (in blue) loci in a simulated population, against neutral expectation (in black full line, calculated
from F R

ST = 1/N + (N −1)r2/N where r2 is the neutral relatedness coefficient, eq. S12, same simulation as
in figure 2).
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B. Variance-covariance matrix

Figure 5: Negative association between helping and contest traits. A. Joint distribution of belligerence
and helping in a simulated population at equilibrium, where offensive and defensive bravery have com-
plementarity effects among each other but antagonistic effect with helping (at the individual level), i.e.
where C (h•,b•,d•) is given by eq. (11) (with cb = 0.7, cd = 1.3,ch = 1, γbd = 0.5, γbh = 2.2, γdh = 2.2; other
parameters: same as Fig. 2; joint distribution calculated over 100’000 time points after 150’000 of evolu-
tion). B. Mean ± standard deviation of the variance-covariance matrix evaluated for the same simulated
population as A. In contrast to Fig. 3G, the covariance among helping (h) and belligerence (a) is now
significantly different to zero and negative. And while this covariance may seem small, the correlation
among belligerence (a) and helping (h) is large (as shown in A).
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S1 Payoff and fitness

In this first supplement, we derive the expected payoff that a focal individual obtains (in S1.1) from which we

then characterise its fitness (in S1.2).

S1.1 Expected payoff

From the assumptions and notations of the main text (section 2.2), it follows that the expected material payoff

to a focal individual with traits z• in a group with average trait values z0 when the population average trait

values are z can be written as

π(z•, z0, z) = vb +φ0(a0, a)πa(z0, z)+ (1−φ0(a0, a))πb(z0, z)−C (h•,b•,d•), (S1)

where vb > 0 is some baseline payoff, πa(z0, z) is the expected payoff to the focal individual, conditional on its

group engaging into a raid [which occurs with probability φ0(a0, a)], and πb(z0, z) is the expected payoff to the

focal, conditional on the focal group not raiding another group [which occurs with probability 1−φ0(a0, a)].

Let us first consider πb(z0, z) as it is simpler to obtain. Given that the focal group has not raided another one,

the expected payoff to the focal individual is

πb(z0, z) =φ1(a)

[
−c1

N
+ (1−ν(b,d0))

B (N h0)

N

]
+ (1−φ1(a))

B(N h0)

N
, (S2)

which can be understood as follows. With probability φ1(a), the focal group is attacked. In this case, the focal

individual necessarily pays a cost −c1/N for one fight but only gets to retain its share B(N h0)/N of the common

resource if its group wins the fight against its raiders, which occurs with probability 1−ν(b,d0). With probabil-

ity (1−φ1(a)), the focal group is not attacked and therefore the focal individual always gets its share B(N h0)/N .

Using similar arguments, we find that the expected payoff of the focal individual given that its group has par-
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ticipated in a raid is

πa(z0, z) = ν(b0,d)

{
B(N h)

N
+φ1(a)

[
−c2

N
+ (1−ν(b,d0))

B(N h0)

N

]
+ (1−φ1(a))

[−c1 +B(N h0)

N

]}
+ (1−ν(b0,d))

{
φ1(a)

[
−c2

N
+ (1−ν(b,d0))

B(N h0)

N

]
+ (1−φ1(a))

[−c1 +B(N h0)

N

]}
,

(S3)

where the first line consists of the probability ν(b0,d) that the focal group wins the raid it engaged in, multiplied

to the expected payoff in this case (between curly brackets). Conversely, the second line is the probability

1−ν(b0,d) that the focal group loses the raid it engaged in multiplied by the relevant payoff obtained in that

case (between curly brackets also). Substituting eqs. (S2)–(S3) into eq. (S1) and re-arrangements yield eq. (4).

S1.2 Fitness

We assume that an individual’s fecundity, i.e. the number of offspring produced during stage (3) of the life cy-

cle, increases with its expected payoff according to a function F , so that the fecundity of a focal individual with

payoff π is written as F (π). We assume that this function is positive and decelerating with expected payoff (i.e.

F ′′ ≤ 0). Formally, the fecundity of an individual should really be a function of its realised payoffs, which depend

on a specific sequence of events (such as whether fighting took place, whether the fight was won and so on),

rather than expected payoffs, which are averaged over all possible outcomes (as in eqs. S1-S3). In writing fe-

cundity directly as a function of expected payoffs only, we are essentially assuming that the deviation between

realised and expected payoffs is small (specifically, with Π denoting the random variable for the payoff to the

focal individual, we ignore terms of order E[(Π−π)2] and higher, where E[·] stands for the expectation operator

over all relevant stochastic effects). This is a standard albeit often left unspecified assumption in evolutionary

game theory. One alternative to such an assumption is to define payoff directly in units in fecundity, in which

case payoff is simply fecundity (i.e. π = F (π)). In any event, once we have specified its fecundity we can de-

termine the fitness of an individual, which is its expected number of surviving offspring produced over one full

iteration of the life-cycle (e.g., [1, 2]) and lays the foundation of our evolutionary analysis. We detail such fit-

ness function for our model, which considers warfare as a subsistence strategy, below (in S1.2.1), as well as the

typical fitness function that characterises models where warfare should rather be considered as a reproductive

strategy for contrast (in S1.2.2).

S1.2.1 Warfare as a subsistence strategy

In order to obtain the expression for the fitness of a focal individual under the assumptions of our model (sec-

tion 2.1), let us first label the other individuals in the focal group (i.e., the focal’s neighbours) as individual "2",

"3" until "N ", and denote their respective traits as z2, z3 and so on, whereby we can write the average trait in

the focal group as

z0 =
z•+ z2 + z3 +∑N

j=4 z j

N
. (S4)

It will also be useful to collect all the trait values of the neighbours of the focal into the vector z−• = (z2, z3, . . .).

Then, according to the life-cycle detailed in section 2.1, the fitness of the focal individual is

w(z•, z−•, z) = N −1

N
+ (1−m)F (π(z•, z0, z))

(1−m)[F (π(z•, z0, z))+∑N
j=2 F (π(z j , z0, z))]+mN F (π(z , z , z))

+ mF (π(z•, z0, z))

N F (π(z , z , z))
, (S5)
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where recall π is the payoff function (eq. S1) and F (π) is the fecundity of an individual with payoff π. Equa-

tion (S5) can be read as the sum of three fitness components. (1) The first summand is the probability that the

focal survives. (2) The second summand is the probability that the open philopatric spot is filled by one of its

offspring. This consists of the ratio of the number of the focal’s offspring that remain philopatric to the total

number of offspring that enter competition in the focal patch (comprised of all those that remain philopatric

– factored by (1−m) – and all those that disperse from other patches – factored by m). (3) The last summand

is the expected number of spots filled in other patches, given by the ratio of the number of the focal’s offspring

that disperse to the expected total number of offspring that compete in another patch.

Equation (S5) has the standard form of individual fitness under the island model of dispersal coupled with a

Moran process (Box 1 in [3]). It could be straightforwardly expanded to consider the case where payoffs affect

survival rather than fecundity [3]. Note also that to obtain the expression for fitness under a Wright-Fisher

process (i.e. where all individuals are replaced per life-cycle iteration), one simply removes the first summand

of eq. (S5) and multiplies the rest by N . More generally, assuming that the spoils of warfare only influence

fecundity or survival, i.e. where warfare is conceived as a subsistence strategy, eq. (S5) can easily be amended

to consider other common variations, such as where regulation occurs before dispersal, or where individuals

survive with fixed probability.

S1.2.2 Warfare as a reproductive strategy

In order to highlight the key difference in fitness between co-evolutionary models where warfare is a subsis-

tence (as in eq. S5) vs. a reproductive strategy (as in [4–9]), let us consider a simple representative case of the

latter under the following assumptions: that the winning group takes over all the breeding spots of the losing

group; that density-dependent regulation of offspring occurs before dispersal (i.e. soft selection); and that there

is no difference between offensive and defensive bravery (b = d). In this case, the fitness of a focal individual

can be written as

w(z•, z0, z) =

1+φ0(a0, a)ν(b0,b)︸ ︷︷ ︸
gaining a patch

− φ1(a)ν(b,b0)︸ ︷︷ ︸
loosing own patch

× 1−C (a•,b•)

1−C (a0,b0)
(S6)

(obtained from eq. 11 of [6] by setting m = 0 and h = 0). The main differences between eq. (S5) and eq. (S6) is

that for the latter: (i) there is no common pool resource production; (ii) the cost of belligerence is fixed, i.e., it

now appears along the other traits in the cost function C (a•,b•) (in contrast to eq. S1 where belligerence has

conditional costs, c1 and c2); (iii) the benefits of warfare and the costs of trait expression are multiplicative

(i.e., the benefits of warfare, which are in the square brackets, multiply the costs, while in eq. S1 the benefits

of warfare and these costs of trait expression add up); and finally, (iv) the gains of warfare will not be partly

destroyed by competition, i.e., the gains of warfare affect the denominator in eq. (S5) but not in eq. (S6). Having

these differences in mind is useful to contrast our results with those of previous studies (see section S3.2.5).

S2 Mathematical evolutionary approach

In this supplement, we outline our mathematical analysis for the joint evolution of the four traits of interest

(a, b, d and h). It is based on an evolutionary quantitative genetics and adaptive dynamics model for group-

structured populations that is tightly connected to invasion analysis [10]. This model tracks the dynamics

of a multi-trait phenotypic distribution, assuming that the processes of selection and mutation are such that
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this distribution is approximately multi-variate Gaussian across the whole population (i.e. over all individuals

and all groups) with small (co)variance (specifically, assuming that the largest absolute value among all traits’

(co)variances can be written as δ2 where 0 < δ¿ 1 is a small parameter). Note that this assumption does not

require that the realized distribution of phenotypes within a focal group at any given demographic time period

is Gaussian, but rather that its time average is. Such assumption of normality has been shown to give accurate

predictions for the evolution of traits’ means and (co)variances, even where selection generates significant

deviations from normality (refs. [11] for well-mixed, and [10] for dispersal-limited populations).

With the assumption of multivariate normality, the phenotypic distribution at any time t for our warfare model

can be described by the vector of means,

zt =


at

bt

dt

ht

 , (S7)

and the (symmetric) variance/covariance matrix

Gt =


Gaa,t Gab,t Gad ,t Gah,t

Gba,t Gbb,t Gbd ,t Gbh,t

Gd a,t Gdb,t Gdd ,t Gdh,t

Gha,t Ghb,t Ghd ,t Ghh,t ,

 (S8)

where Guv,t ∼O
(
δ2

)
is the genetic covariance among traits u and v at time t (so that Guv,t =Gvu,t ). Hence the

dynamics of the phenotypic distribution are given by the joint dynamics of the vector zt and the matrix Gt .

However, as we detail below, we do not need to consider these dynamics jointly when δ is small.

S2.1 Evolution in two time scales

In brief, the upshot of the analysis we follow is that when mutations are rare and have small effects on phe-

notypes (so that δ is small), the evolutionary dynamic can be decomposed into two time scales. First, the

population evolves under directional selection whereby the average trait values zt in the population change

gradually, but the variance in each trait and covariance among each pair of traits remains small and approxi-

mately constant (i.e., zt changes while Gt can be held constant). Once the population average has converged

to an equilibrium for directional selection, a so-called “convergence stable strategy” (that is thus an attractor of

the evolutionary dynamics), selection shapes the traits’ (co)variances (i.e. Gt changes while zt remains fixed for

its equilibrium). An analysis of selection close to convergence stable strategies then allows to establish whether

selection is (a) stabilising, keeping traits’ (co)variances small so that the phenotypic distribution remains uni-

modal and centred around the equilibrium which is thus “locally evolutionary stable” or “uninvadable” (so

that Gt converges); or (b) disruptive, favoring an increase in the variance (and possibly covariance) of some

traits (so that Gt diverges). Due to disruptive selection, the population may eventually undergo “evolutionary

branching” [12], whereby the phenotypic distribution becomes multi-modal so that two or more clearly differ-

entiated morphs emerge. These morphs may differ in multiple traits owing to correlational selection, which

favours specific associations between traits within individuals. We detail mathematically the two time scales of

evolutionary dynamics and corresponding effects of selection in the next two sections (directional selection in

S2.2 and stabilising/disruptive selection in S2.3).

4



S2.2 Directional selection

The selection gradient. First, the population evolves under directional selection. To the leading order in δ,

the change ∆zt = zt+1 − zt in average trait is given by

∆zt = G · s(zt ), (S9)

(eq. 3 of [10]) where G is the matrix of traits’ genetic (co)variance (which is assumed to be constant during the

evolution of the means so we can drop its time index for this section S2.2; in fact since we assume that each

trait is encoded by a separate locus and all loci mutate in a similar way, it is reasonable to assume that G = δ2I

here with I being the identity matrix), and

s(zt ) =


sa(zt )

sb(zt )

sd (zt )

sh(zt )

 , (S10)

is the so-called selection gradient, which is a vector where each entry tells us whether selection favours an

increase (when su(z) > 0) or decrease (when su(z) < 0) in the corresponding trait (u ∈ {a,b,d ,h}) when the

population average is z . Such selection coefficient is given by

su(z) = ∂w(z•, z−•, z)

∂u•
+ (N −1)r2

∂w(z•, z−•, z)

∂u2
, (S11)

where here and hereafter, derivatives are evaluated where all individuals have the average phenotype, z• =
z = z2 = . . . = z . The first term of eq. (S11) corresponds to the direct fitness effect of trait u: the marginal

effect of a change in trait u in the focal on its own fitness. The second term of eq. (S11), meanwhile, is the

relatedness-weighted indirect fitness effect: the effect of a change in trait u in a neighbour on the fitness of

the focal individual, weighted by the coefficient r2 of pairwise of relatedness, which is the probability that two

individuals randomly sampled in a group are identical-by-descent, IBD, under neutrality. For the specific life-

cycle described in the main text, this coefficient is given by

r2 = 1−m

1+m(N −1)
, (S12)

(e.g., [3] for the Moran model). As such, eq. (S11) can be seen as the marginal form of Hamilton’s rule, −c +r2b,

with direct effect as cost, −c, and indirect effect as a benefit, b.

Singular strategy and convergence stability. The dynamics given by eq. (S9) may eventually converge to an

equilibrium, z∗, so that the means no longer change (i.e. ∆zt = 0). Such convergence first requires that

s(z∗) = 0. (S13)

Indeed, because G is a positive-definite matrix (since it is a covariance matrix), condition eq. (S13) is the only

way for zt+1 = zt = z∗. A strategy satisfying eq. (S13) is typically referred to as a singular strategy [13]. Whether

a singular strategy is an attractor for directional selection (i.e. whether means will converge to z∗ defined by
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eq. S13) can be investigated from the Jacobian matrix

J(z∗) =


Jaa(z∗) Jab(z∗) Jad (z∗) Jah(z∗)

Jba(z∗) Jbb(z∗) Jbd (z∗) Jbh(z∗)

Jd a(z∗) Jdb(z∗) Jdd (z∗) Jdh(z∗)

Jha(z∗) Jhb(z∗) Jhd (z∗) Jhh(z∗)

 (S14)

with (u, v)-entry

Juv (z∗) = ∂su(z)

∂v

∣∣∣∣
z=z∗

. (S15)

A necessary condition for a singular strategy to be an attractor is that the real parts of the eigenvalues of J(z∗)

are all negative. If so, we say that z∗ is weakly convergence stable, “weakly” because it is still possible that

the evolutionary dynamics do not converge towards z∗ in the presence of genetic correlations among traits

(i.e. there may exist non-diagonal matrix G so that iteration of eq. (S9) do not converge to z∗). A sufficient

condition for a singular strategy to be an attractor is that J(z∗) is negative-definite [14, 15], i.e. that its symmetric

part, [J(z∗)+ J(z∗)T]/2 has only negative eigenvalues (where T denotes transpose; note that since J(z∗)+ J(z∗)T

is symmetric with real entries, all its eigenvalues are real). A singular strategy z∗ satisfying this sufficiency

condition is said to be strongly convergence stable [15] in reference to the fact that as a result of mutation

and selection, a population close to z∗ will always gradually converge to z∗, whatever the genetic correlations

among traits (i.e, whatever the positive-definite G matrix). But since we assume that each trait is encoded by

an independently mutating locus, there should be no genetic correlation among traits (under weak selection

at least) . So the necessary condition for convergence stability should also be sufficient for trait averages to

converge towards an equilibrium in our model.

S2.3 Stabilising, disruptive and correlational selection

Hessian matrix. Once the average traits in the population have converged to an equilibrium z∗ under direc-

tional selection, the traits’ (co)variances given by G around this population mean then start changing under the

actions of mutations and selection. To the leading order ofδ, this change∆Gt = Gt+1−Gt over one demographic

time step when the population mean is at a convergence stable phenotype is captured by

∆Gt = M+Gt ·H(z∗) ·Gt (S16)

(eq. 3b of [10] with vanishing selection gradient), where the constant positive-definite matrix M captures the

input of mutations (in the absence of pleiotropy and each trait mutating with the same probability and effects,

as in our model, we can write this equation as M = δ2I), and the symmetric Hessian matrix

H(z∗) =


Haa(z∗) Hab(z∗) Had (z∗) Hah(z∗)

Hba(z∗) Hbb(z∗) Hbd (z∗) Hbh(z∗)

Hd a(z∗) Hdb(z∗) Hdd (z∗) Hdh(z∗)

Hha(z∗) Hhb(z∗) Hhd (z∗) Hhh(z∗),

 (S17)

captures the effects of selection. Each entry of this matrix informs on the nature of selection on traits’

(co)variances at a singular strategy. Specifically, the sign of each diagonal entry indicates whether selection

favours a decrease (when Huu(z∗) < 0) or increase (when Huu(z∗) > 0) in the variance of the corresponding

trait (here u) when this trait evolves in isolation of the other traits [16]. In other words, Huu(z∗) tells us whether
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selection on trait u alone is stabilising (when Huu(z∗) < 0) or disruptive (when Huu(z∗) > 0). Further, the sign

of each off-diagonal entry indicates whether selection favours a positive (when Huv (z∗) > 0) or negative (when

Huv (z∗) > 0) correlation among the two corresponding traits (here u and v) when these traits evolve in iso-

lation from the others. The quantity Huv (z∗) (with u 6= v) has accordingly been coined as the coefficient of

“correlational selection” [16].

Under our life-cycle assumptions (i.e. Moran reproductive process), the (u, v)-entry of the Hessian matrix is

given by

Huv (z∗) = ∂2w(z•, z−•, z)

∂u•∂v•
+ (N −1)r2

[
∂2w(z•, z−•, z)

∂u2∂v2
+ ∂2w(z•, z−•, z)

∂u•∂v2
+ ∂2w(z•, z−•, z)

∂u2∂v•

]
+ (N −1)(N −2)r3

∂2w(z•, z−•, z)

∂u2∂v3

(S18)

(eq. 7.b of [10]), where derivatives are all evaluated at the singular phenotype, z• = z = z2 = . . . = z∗, and

r3 = 2(1−m)

2+m(N −2)
r2 = 2(1−m)2

[1+m(N −1)][2+m(N −2)]
(S19)

is the three way relatedness coefficient for the Moran model, i.e., the probability that three individuals ran-

domly sampled from the same group are IBD under neutrality (more generally, the Hessian matrix eq. S17 is

comprised of extra terms that capture the effects of traits on relatedness, eq. 7.a & c of [10], but these vanish

under fecundity effects under a Moran life-cycle at a singular phenotype, eq. 16 of [3] for details, and so we can

ignore them here).

Stabilising and disruptive selection. With all traits coevolving, whether selection is: (1) stabilising, keeping

traits’ (co)variances small so that the phenotypic distribution remains unimodal around the equilibrium; or

(2) disruptive, favoring an increase in the variance of some traits (and possibly some covariances), depends on

the leading eigenvalue of the Hessian matrix ρ (H(z∗)) (where ρ(A) denotes the leading eigenvalue of a matrix

A). Selection is stabilising when ρ (H(z∗)) < 0. In this case, selection purges genetic variation that deviates

from the singular strategy. Such a strategy z∗ is said to be uninvadable. As a result of stabilising selection

combined with mutation, traits in the population reach an equilibrium that is characterised by a distribution

concentrated around the singular strategy. By contrast, selection is disruptive when ρ (H(z∗)) > 0. In this case,

genetic variation increases along the eigenvector associated with the leading eigenvalue. This may lead to

evolutionary branching whereby the phenotypic distribution goes from being unimodal to bimodal so that

two highly differentiated morphs or types coexist in the population (for further considerations on this when

multiple traits coevolve, [17]).

The analysis of the eigenvalue ρ (H(z∗)) can be prohibitively complicated. Fortunately there exists simpler con-

ditions that are sufficient for disruptive selection to occur (i.e. for ρ (H(z∗)) > 0), which use the fact that the Hes-

sian is a symmetric matrix [18]. In particular, if any diagonal entry is positive (Huu(z∗) > 0), then ρ (H(z∗)) > 0,

i.e. if selection is disruptive on any trait when it evolves in isolation from the others, then selection is disruptive

when they all co-evolve. Alternatively when Huu(z∗) < 0 for all u, selection is disruptive (ρ (H(z∗)) > 0) if the

off-diagonal entry of any 2×2 submatrix of H(z∗) is large relative to the diagonal entries of this submatrix so that

Huv (z∗)2 > Huu(z∗)Hv v (z∗) (for some u 6= v). Put differently, selection is disruptive if correlational selection

among two traits is large relative to stabilising selection on both isolated traits.
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S3 Analyses

In this supplement, we detail the mathematical analyses underlying the results summarized in the main text.

In particular, we derive the singular strategies (eq. 9 of the main text), show that we expect these strategies to be

convergence stable but not uninvadable, i.e., that we expect evolutionary branching to happen in our model.

The basis of all our results is obtained by first computing payoff (substitute eqs. (1)–(3) into eq. (S1)) that is

substituted into eq. (S5) to calculate fitness, which is in turn substituted into the selection gradient vector

eq. (S11) and Hessian matrix eq. (S18). All the relevant quantities for our evolutionary analysis unfold from

these operations. We provide a Mathematica notebook to follow and check all computations reported below

([19], see attached M-file).

S3.1 Helping and belligerence

To begin with, we derive the conditions under which belligerence emerge (eq. 6 of main text). First, we set the

selection gradient on helping to zero when belligerence and both forms of bravery are absent in the population,

i.e. we set sh(z) = 0 with z = (0,0,0,h). After rearrangements, we obtain eq. (6) of the main text which gives the

first order condition to the equilibrium of helping when the other traits are absent. Condition eq. (6) shows

that helping equilibrium increases with the parameter κR which increases with relatedness (eq. 7, Fig. 4). This

parameter κR in fact incorporates two antagonistic effects of limited dispersal on the evolution of helping or

other pro-social traits. On one hand, high relatedness due to limited dispersal favors prosocial behavior within

groups because in this case, the recipients of the actions of an individual tend to bear the same genes underly-

ing those actions (i.e. kin selection operates). On the other hand, group members typically also compete more

strongly for the same local resources than two randomly sampled individuals in the populations (which is the

case in our model, section 2.1). As a result, the positive effects of relatedness on the evolution of behaviour

tend to be mitigated by competition between relatives, referred to as "kin competition". This is typically re-

flected in models of social evolution under limited dispersal where evolutionary stable trait values depend on

relatedness scaled by local competition, which is captured by the parameter κ< r2 (eq. 7, Fig. 4; e.g., [2, 20–24]).

As mentioned in the main text, our condition for helping evolution depends on κR rather than κ because the

benefits of helping are shared equally within the group. An individual therefore always recoup a share 1/N of

its own investment, which increases selection on helping (i.e. κR > κ, eq. 7, Fig. 4). Since all traits we study

are in effect pro-social and benefit the whole group equally, this quantity κR will also emerge in the selection

gradients of the other traits other than helping (a, b and d).

Second, we look at where the selection gradient on belligerence is positive when helping is present in the pop-

ulation but bravery is not, i.e. look at where sa(z) > 0 with z = (0,0,0,h). This gives us eq. (8) of the main

text.

S3.2 All traits co-evolving

S3.2.1 Singular strategies

Recall that in order to go further in our analysis and analyse the case where all traits are co-evolving, we make

the assumptions: (1) B(N h) = β
p

N h (where β > 0 is a constant); (2) α(a) = a; (3) g (b) = b; (4) C (h,b,d) =
h + cbb + cdd ; and (5) F (π) =π.
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First, the singular values for offensive and defensive bravery (eqs. 9b-9c) are found by setting the selection

gradients for offensive and defensive bravery to zero and solving these equations for b∗ and d∗ (i.e. find b∗ and

d∗ in z∗ = (a∗,b∗,d∗,h∗) such that sb(z∗) = sd (z∗) = 0). The singular value for helping (eq. 9d) is in turn found

by solving sh(z∗) = 0 for h∗ where b∗ and d∗ are given by eqs. (9b)-(9c). Similarly, the (implicit) singular value

for belligerence (eq. 9a) is found by solving sa(z∗) = 0 for a∗ where b∗ and d∗ are given by eqs. (9b)-(9c).

S3.2.2 Connections with previous results on bravery evolution

The equilibrium for bravery in our model (eq. 9b-9c) is consistent with previous models. In particular, when

fighting is certain (setting φ = 1− e−a∗ = 1), offensive and defensive bravery costs are equal (cb = cb = c), and

there is no inherent advantage to being in an offensive or defensive position (ω= 1/2), eqs. (9b)-(9c) reduce to

b∗ = d∗ = 1

4
× B

N c
×κR. (S20)

Under complete dispersal (i.e. random group formation, m = 1), we have κR = 1/N (eq. 7) so that eq. (S20)

reads as, b∗ = d∗ = (1/4)B/(cN 2). This is equal to the equilibrium found in classical models of investment into

contest (e.g. eq. 10 of [25], first equation p. 1018 of [26]). Such congruence follows from the connection between

our payoff function and that used in classical model (eq. 5).

Rusch and Gavrilets [26] also present an expression for investment into contest where it is claimed groups con-

sists of relatives due limited dispersal (their first equation p. 1023 of ref. [26], referred to as eq. (RG) hereafter).

This eq. (RG) is inconsistent with our eq. (S20). While the exact source of this inconsistency is not fully clear

to us, there are several problems with eq. (RG). First, it is in conflict with [26]’s own equation without relat-

edness (i.e. in the same paper, on p. 1018), as eq. (RG) with r2 = 0 does not reduce to the latter. Second, it

disagrees with the notion that when r2 = 1, the equilibrium strategy should maximizes group payoff (as there

is no conflict within groups of clones). Third, eq. (RG) was taken from [27] in which there are several discrep-

ancies between biological assumptions and fitness accounting1. These issues lead us to believe that eq. (RG) is

erroneous.

S3.2.3 Explicit solutions

Our implicit expressions for the equilibria (eq. 9) highlight the inter-dependence between the four co-evolving

traits. To obtain explicit expressions in terms of model parameters only, we substitute for h∗ (eq. 9d) into

eq. (9a) and solve the resulting equation yielding

a∗ = log

(
c2 −2c1 +ν∗2β2κR/2

c2 − c1 −ν∗(1−ν∗)β2κR/2

)
. (S21)

Substituting eq. (S21) into eq. (9d) and in turn these into eqs. (9b)-(9c) gives explicit solutions for the equilibria

of the other traits.

1For e.g.: fitness in the model of [27] goes to zero when the number of groups in the population becomes large, see their eqs. (2) and (4);
the “correction” factor in their eq. 6, i.e. their eq. 13, is just stated, it is neither derived nor supported by reference to previous literature;
the equation for relatedness (above their eq. 14) is for a model with isolation by distance but nowhere in the manuscript is such isolation
by distance evoked and the equations are more consistent with uniform dispersal.
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S3.2.4 Convergence stability

From our general assumption that benefits of the common good decelerate (B ′′(h) < 0) but that costs associ-

ated with obtaining this common good (either through production or attacking) do not, it seems reasonable to

expect that traits will not grow indefinitely. In other words, we expect that provided helping and belligerence

emerge (section 3.1), the joint singular trait value given by eqs. (9) is an evolutionary attractor (i.e. convergence

stable). Although the Jacobian matrix (eq. S14) for our model is too complicated to check this expectation an-

alytically, a numerical approach supports it (Mathematica Notebook for results). Indeed, when we sampled

106 random combinations of model parameters such that helping and belligerence emerged, we found that in

99.9% of cases the real part of the dominant eigenvalue of the Jacobian matrix at the singular value was nega-

tive (i.e. that z∗ is – weakly – convergence stable), and that for 55% of those combinations, the Jacobian matrix

was further negative-definite (i.e. that z∗ is – strongly – convergence stable). This tells us that in the majority

of cases, the population will gradually converge to a state where its phenotypic mean is given by the singular

strategy z∗, whatever the genetic correlations among traits. If traits are not genetically correlated, which should

be the case under our assumption that each trait mutates independently (provided selection is not too strong),

such convergence should happen in essentially all cases.

S3.2.5 Local evolutionary stability

The above analysis suggests that first, the mean phenotype in the population will converge to the singular value

z∗ while the traits’ (co)variances remain small. Selection on these (co)variances then depend on the Hessian

matrix H(z∗) (eqs. S17–S18). Although the Hessian matrix have complicated entries for our model, it turns out

to have a simple sign structure,

H(z∗) =


0 > 0 0 0

> 0 < 0 0 0

0 0 < 0 > 0

0 0 > 0 < 0

 (S22)

(Mathematica Notebook). This sign structure tells us a few things. The first is that since none of the diagonal

element is positive, none of the traits are under disruptive selection when they evolve in isolation from one an-

other. Further, since Haa(z∗) = 0, selection on bravery alone is neither stabilizing nor disruptive at the singular

strategy, and this holds for all scenarios investigated in this paper (section S5). This entails that in the 2×2 upper

left submatrix, Hab(z∗)2 > Haa(z∗)Hbb(z∗) = 0, which means that whenever belligerence coevolves with offen-

sive bravery, selection is disruptive favouring polymorphism. In addition, since Hab(z∗) > 0 and Hdh(z∗) > 0,

we expect this polymorphism to be characterised by a positive correlation between belligerence and offensive

bravery, and between helping and defensive bravery. Note that because the Hessian matrix provides informa-

tion on the nature of selection locally, i.e. based on the assumption that the phenotypic distribution is peaked

around the singular strategy, our conclusions on correlations hold at least for when the polymorphism ini-

tially emerges. As a result, we cannot say anything about the long term nature of the polymorphism [17]. Our

simulations provide nonetheless insights into this (Figs. 2-3).

The key feature of eq. (S22) that promotes the emergence of polymorphism is the fact that Haa(z∗) = 0. This

property will typically not hold when warfare is modelled as a reproductive strategy. This can be seen by con-

sidering that when eq. (S6) is substituted into eq. (S18), we are likely to have Haa(z∗) < 0. In other words,

selection on belligerence alone will tend to be stabilising and thus inhibit disruptive selection.
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S4 Individual based simulations

To confirm our mathematical analysis and investigate trait associations in the longer term, we used individual

based stochastic simulations (with finite number of groups Ng <∞). Such simulations have been carried out

extensively across several papers, in which they been shown to generally be in excellent agreement with results

from local analyses in group-structured populations, irrespective of group-size and dispersal as long as m > 0

and Ng is sufficiently large for genetic drift to be negligible ([3, 10, 28, 29]; for discussions on the effects of drift

on polymorphism in well-mixed populations, see [30, 31]). With this in mind and given the time taken for such

simulations to run, we focused simulations here on a specific set of parameter values representative of our

model.

Our individual based simulations follow a population composed of Ng = 1250 groups, each populated by N = 8

individuals, using Mathematica 10.2.0.0 (see attached M-file, [19]). Starting with a monomorphic popula-

tion, we track the evolution of the phenotypic distribution for a fixed number of generations. Each individual

i ∈ {1, . . . , NgN } at each generation is characterised by a vector of traits (ai ,bi ,di ,hi ). At the beginning of a gen-

eration, we first calculate the payoff πi of each individual according to its traits, those of its neighbours and the

average traits in the population (using eqs. S1-S3). Fecundity is taken as payoff (i.e. F (πi ) = πi ). We also ran

simulations where we explicitly modelled individual battles following the (finite) island model of warfare [6] so

that individual fecundity depended on a specific sequence of events (e.g. whether a raid took place, whether

it was won, how many units of resources were present in the specific group raided). As expected from the

considerations of section S1.2, these simulations were consistent with those where fecundity was given by ex-

pected payoff (using eqs. S1-S3) provided baseline fecundity vb was high enough. Since the former were more

stochastic and significantly more time consuming, we focused on the latter (i.e. using eqs. S1-S3 to calculate

fecundity).

After fecundity is calculated, an individual is randomly sampled in each group to be replaced by an offspring.

This offspring is then chosen independently in each group by sampling among the population an individual

according to its group and the group in which an breeding spot is being filled. Specifically, if an individual

belongs to the same group in which the breeding spot is filled, then its weight is πi (1−m), where m is the

dispersal probability. If it belongs to another group, then its weight is πi m/(Ng − 1). Once an individual is

chosen to fill the breeding spot, each of its traits mutate independently with probability µ = 0.01. If a trait

does not mutate, then it has the same value as in the parent. If a trait does mutate, then we add to parental

values a small perturbation that is sampled from a normal distribution with mean 0 and variance σ2 = 0.022.

The resulting phenotypic values are truncated to remain positive (and less than 1 for belligerence a as it is a

probability in our examples). We repeat the procedure for a fixed number of generations (Figure legends for

parameter values used).

S5 Robustness of results

In addition to exploring different individual cost function (eq. 11 in main text), we relaxed our baseline model

(detailed at the beginning of section 3.2) in three other directions, and (1) considered two further contest func-

tions that have been suggested in the literature: g (y) = yλ and g (y) = exp
(
λy

)
(e.g., [32, 33]); (2) explored the

effect of group decision by modeling it as majority "voting" α(a0) = aλ0 /[aλ0 + (1−a0)λ], so that as λ increases,

the decision to raid increasingly becomes binary according to whether the group-average of belligerence a0
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is below or above 1/2; and finally (3) allowed for a sigmoidal relationship between total investment into help-

ing in the group and the benefits of this common-pool resource, with B(N h) = β(N h)λ/((N h)λ+χ). We find

that in all examined cases, these different functions influence the value of the equilibrium for each trait in a

quantitative way (Suppl. Fig. 4A-D) but not the qualitative nature of these equilibria. Those are still internal

evolutionary attractors under directional selection when the costs of fighting are non-additive (c2 > 2c1), and

once the population has converged to the joint equilibrium, selection becomes disruptive favouring the emer-

gence of polymorphism (Suppl. Fig. 5A-D). Our analysis additionally indicates that this polymorphism should

again be characterised by a positive association between belligerence and offensive bravery (as indicated by a

positive correlational selection coefficient among these two traits, Suppl. Fig. 5A-D).

These extensions suggest that the polymorphism we observed under our baseline model assumptions (sec-

tion 3.2) is robust to changing the behavioral rules of within- and between-groups interactions. Variations of

the demographic assumptions are also unlikely to change these results. We chose the Moran process for sim-

plicity but of course many different alternative life-cycle assumptions are possible (e.g., all individuals die per

time step, each individual survives with a fixed probability; density-dependent regulation occurs before dis-

persal "soft-selection"; dispersal occurs through propagules of individuals). Yet we know from previous social

evolution models that these alternatives do not qualitatively affect equilibrium conditions (eq. 9), as all these

life-cycle variations can be accounted by varying the scaled-relatedness coefficient [23, 24]. Such variations are

also unlikely to qualitatively alter the analysis of disruptive selection (and therefore polymorphism) as disrup-

tive selection can also be expressed in terms of summary demographic variables [3].

One particularly strong assumption when applying our model to animals is that individuals are haploid and

reproduce asexually. Thankfully, neither the condition for equilibrium nor for disruptive selection will be qual-

itatively influenced by diploidy and sexual reproduction when genes have additive effects within individuals

[2, 34]. The emergence of polymorphism due to correlational selection may however depend on the genetic ar-

chitecture of traits [29]. Nonetheless, if the genetic architecture of belligerence and bravery are such that their

associations are heritable (e.g. tightly linked or encoded by the same pleiotropic locus), or alternatively if such

architecture is allowed to evolve, then the emergence of polymorphism will unfold as in our model [29, 34–36].
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Supplementary Figure 1: (Scaled) Relatedness, with and without replacement. A. Relatedness r2

(eq. S12), in the island model when a single reproductive spot is replaced in each generation; B. Scaled
relatedness κ (eq. 7); C. Scaled relatedness with replacement κR (eq. 7) as a function of dispersal m and
group size n (legend for values).
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Supplementary Figure 2: The evolution of helping. A: The average level of helping as a function of
demographic time t (dots: observed in simulations, section S4 for details; full line: analytical predictions
from eq. (S9) with variance-covariance matrix G composed of all zeroes except Ghh = 0.00375, chosen
heuristically) when the other traits are absent in the population, i.e., a = d = b = 0 for all individuals
throughout; with B(N h) = β

p
N h, C (h,b,d) = h, β

p
N = 100, vb = 0, N = 8, m = 0.476. B: Individual

values of helping observed in a simulation (shown for 5 individuals randomly sampled every 800 time
points). C: Distribution of helping in a simulated population (calculated from time 100’000 for 50’000
time steps).
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Supplementary Figure 3: The effect of limited dispersal and relatedness on polymorphism. A-C Joint
distribution of belligerence and offensive bravery in simulated populations at equilibrium for different
levels of relatedness (found by fixing N = 8 and varying m in r2 eq. (S12)) with: A. r2 = 0 (so m = 1); B. r2 =
0.125 (so m = 0.467); r2 = 0.75 (so m = 0.04) (other parameters, same as Fig. 1 middle; joint distribution
calculated over 100’000 time points after 150’000 of evolution). D. Distribution of covariance between
belligerence and offensive bravery over time at equilibrium according to relatedness within groups (same
as A other than m).
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Supplementary Figure 4: The effect of changing functional relationships on equilibrium. Equilibrium
value of each trait (a in red, b in black, d in gray, h in blue) against λ that is used as the parameter
in the different following function: A. g (y) = yλ; B. g (y) = exp

(
λy

)
; C. α(a0) = aλ0 /[aλ0 + (1− a0)λ]; D.

B(N h) =β(N h)λ/((N h)λ+χ) (with β= 100 and χ= 10, varying λ for the steepness of the sigmoid; unless
otherwise stated: α(a) = a, g (y) = y , and B(N h) =βpN h; Other parameters: C (h,b,d) = h2+cbb2+cdd 2,
c1 = 18, c2 = 115, cd = 1, cb = 0.8, ω = 0.5, β

p
N = 100, vb = 0, N = 8, m = 0.467 so that r2 = 0.125). All

computed from solving the selection gradients numerically for singular values (see Mathematica Note-
book). All these equilibria strategies are at least weakly convergence stable (see text below eq. S14) but
not locally stable due to correlational selection among belligerence and offensive bravery (Suppl. Fig. 5).
This indicates that they are attractors under directional selection but that once the population expresses
these traits on average, selection becomes disruptive, favoring an association between belligerence and
offensive bravery.
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Supplementary Figure 5: Summary analysis of the effect of contest types and group decisions. A-D
Leading eigenvalues of the Jacobian (in dashed gray), symmetric part of the Jacobian (in full gray), and
Hessian (in black), showing that the singular values plotted in Fig. 4 are all (at least weakly) convergence
stable but none is locally stable. This suggests that polymorphism also emerges under these different
assumptions (Fig. 4 for details on parameters values). E-H Correlational selection among belligerence
and offensive bravery at the singular strategy. It is always positive, highlighting that selection still favours
a positive selection.
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