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“Nothing in life is to be feared,

it is only to be understood.

Now is the time to understand more,

so that we may fear less.”

- Marie Curie
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Abstract - English

PhD Candidate (department): Tommaso Di Noto (Department of Radiology, CHUV)

The goal of this PhD thesis was to address some recurrent limitations that are associated with Deep

Learning (DL)-based Computer-Aided Detection/Diagnosis (CAD) systems in medical imaging. We

focused our analysis on two clinical tasks routinely performed in radiology: the detection of intracra-

nial aneurysms on Magnetic Resonance Angiography (MRA) scans and the longitudinal monitoring

of high-grade gliomas in T2-weighted MR scans. The first limitation that we tackled was the lack

of annotated data; to mitigate this, in both tasks we made use of weak labels to drive the learning

process. These are coarse labels that are typically imprecise, but fast/cheap to obtain. For the

aneurysm detection task, our weak labels corresponded to oversized annotations which resulted to be

4 times faster to create with respect to their voxel-wise counterparts. In the glioma change detection

task, the weak labels were automatically extracted from textual radiology reports with a Natural

Language Processing (NLP) framework, and allowed us to increase the amount of labeled data more

than 3 fold. A further contribution of this thesis to reduce data scarcity in medical DL applications

is the open release of our two in-house datasets. To date, our cohort for aneurysm detection is

the largest in the community (N=284, 127 controls, 157 patients with aneurysms), while our cohort

for glioma change detection (N=183 patients, 1693 difference maps) is the first longitudinal dataset

ever made open access. The second limitation that we addressed was domain shift, which corre-

sponds to a change in data distribution between a model’s training data, and the unseen test data

it will be fed with at inference time. To alleviate domain shift, we investigated Transfer Learning

(TL), and in particular we automated the choice of TL sub-type treating it as a hyperparameter

to optimize which avoids empirical and sub-optimal choices that are frequent in similar works. The

last limitation of DL-based tools that we tried to mitigate was the lack of interpretability, with DL

models often being addressed as incomprehensible“black-box” models: in the aneurysm project, we

added prior anatomical knowledge constraining the analysis only to areas of the brain that are

plausible for aneurysm occurrence. This aimed at simulating the radiologists’ reading of images and

avoiding unrealistic model outputs. Although the use of prior anatomical knowledge is not the most

frequently used technique to improve interpretability, it has been shown to help increasing model

transparency in related works. Overall, we believe that the combination of our open-source contribu-

tions and open-access datasets have the potential to make DL-based CAD tools more reproducible,

and bring them closer to clinical application.
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Résumé - Français

Doctorant (Service): Tommaso Di Noto (Service de radiodiagnostic et radiologie interventionnelle,

CHUV)

L’objectif de cette thèse est d’aborder certaines limitations récurrentes associées aux systèmes de

diagnostic assisté par ordinateur (CAD) basés sur le Deep Learning (DL). Nous avons concentré notre

analyse sur deux tâches couramment réalisées en radiologie : la détection d’anévrismes cérébraux

sur des examens d’angiographie par résonance magnétique et le suivi de gliomes de haut grade sur

des images par résonance magnétique pondérées T2. La première limitation que nous avons abordée

est le manque de données annotées. Pour atténuer ce problème, nous utilisons dans les deux tâches

des weak labels : il s’agit d’annotations généralement imprécises, mais rapides et peu coûteuses à

obtenir. Pour le projet des anévrismes, nos weak labels correspondent à des annotations grossières

qui ont été créées quatre fois plus rapidement que leurs équivalents à l’échelle d’un voxel. Dans

le projet des gliomes, les weak labels ont été extraites automatiquement des rapports radiologiques

avec un modèle de Natural Language Processing, et nous ont permis de tripler la quantité de données

annotées. Une autre contribution majeure de cette thèse pour pallier la pénurie de données repose sur

la publication de nos datasets. À ce jour, notre dataset pour la détection des anévrismes est le plus

important de la communauté en terme de nombre de sujets (N=284), tandis que notre dataset pour

la détection des changements dans les gliomes (N=183) est le premier dataset longitudinal jamais

publié. La deuxième limitation que nous avons abordée est le domain shift, un scénario fréquent en

imagerie médicale qui se traduit par un changement dans la distribution des données entre les données

d’apprentissage d’un modèle et les données de test non vues qui lui seront fournies au moment de

l’inférence. Pour atténuer le domain shift, nous avons étudié le Transfer Learning (TL), et en

particulier nous avons automatisé le choix du type de TL en le traitant comme un hyperparamètre

à optimiser, évitant ainsi des choix empiriques, fréquents dans des études similaires. La dernière

limitation que nous avons abordée est le manque d’interprétabilité des modèles : dans le projet des

anévrismes, nous avons inclus des connaissances anatomiques a priori en restreignant l’analyse

aux zones du cerveau susceptibles d’être impactées par la survenue d’un anévrisme. Cette démarche

vise à simuler la lecture des images par les radiologues et à éviter des résultats irréalistes. Nous

sommes convaincus que nos contributions à la science ouverte ont le potentiel de rendre les systèmes

de CAD basés sur le DL plus reproductibles et de les rapprocher de l’application clinique.
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Chapter 1

Introduction

1.1 Anomaly and change detection in radiology

Pathologies in medical imaging correspond to rare deviations from a distribution of normal, healthy

samples [1]; in other words, they can be considered as outliers (or anomalies) in the standard pop-

ulation data. One primary task performed by radiologists in cross-sectional imaging is the visual

detection of these anomalies with the goal of tailoring diagnosis and follow-up treatment. In addition

to anomaly detection, a recurrent task carried out in radiology departments is change detection: this

corresponds to a longitudinal monitoring of a pathology over time. Regardless of the physicians’

expertise, both anomaly and change detection can still be limited by several factors, such as image

noise, fatigue, distraction, or work overload [2]. To overcome these limitations, in the early 1980s

the medical imaging community began to invest resources in a new line of research dedicated to

Computer-Aided Detection (CADe), and Computer-Aided Diagnosis (CADx) systems [3, 4], whose

dissemination was facilitated by the rapid advent of digital technologies, the creation of ever larger

medical databases, and the concurrent steady improvements in the field of Machine Learning (ML).

1.1.1 Computer-Aided Detection/Diagnosis

CADe and CADx can be defined as complementary, “second opinion” tools for detection/diagnosis

that radiologists can use when reading medical images [5]. The ultimate goal of both is to improve

the productivity of radiologists by increasing the accuracy and consistency of diagnoses, while ideally

reducing image reading time [6]. The difference between the two lies in the aid provided to clinicians:

a CADe highlights potential abnormalities on diagnostic exams, whereas a CADx analyzes an image
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1.1 Anomaly and change detection in radiology

finding and helps to discriminate between different disease processes (e.g. benign versus malignant

lesion) [3]. CAD is often used as an umbrella term to include both CADe and CADx. From their onset

in the ’80s, CAD tools found widespread adoption in several clinical tasks, especially in screening

settings [7–10].

The first wave of CAD systems was mostly based on standard image processing expedients such

as image filtering, enhancement methods, edge detectors, adaptive histogram equalization, or image

subtraction after registration [11]. Then starting from the early 2000s, a second wave of CAD systems

based on pattern recognition and Machine Learning (ML) started to spread. These systems used

“classical” ML architectures which will be briefly described later in section 1.2.1. For the sake of this

paragraph, it suffices to understand the general pipeline behind these tools: after some pre-processing

and the definition of a Region Of Interest (ROI), the core blocks of a CAD based on classical ML

are feature extraction and classification. During the former, we extract relevant image features that

describe the ROI, whereas in the latter we feed these extracted features to a statistical computer

algorithm that finds patterns in the features and learns how to discern between relevant classes (e.g.

normal vs. abormal brain MRI [12], brain aneurysm vs. infundibulum [13]). The expansion of

CAD systems during the first decade of the third millennium has been impressive: first of all, CAD

tools were developed for virtually every imaging modality; second, they also expanded to clinical

tasks which were not necessarily part of a screening program [14]. To have an overview of all these

applications, interested readers are encouraged to delve into seminal review papers such as [15–17]

for applications in breast mammography and Magnetic Resonance Imaging (MRI), [18–20] for chest

radiography and Computed Tomography (CT), [21, 22] for colonography, [23] for brain tumors, [24]

for dementia, or [25,26] for aneurysm detection, to mention just a few.

A third wave of CAD tools that goes under the name of “radiomics” started around 2010 [27–30]:

many traits of radiomics overlap with classical CAD systems since we still extract large amounts

of quantitative imaging features from medical images with the intent of uncovering relevant bio-

logical biomarkers. The major differences are the standardization of the feature extraction process

(with initiatives such as [31, 32]), the high throughput and diversity of features (e.g. shape-based,

histogram-based, texture-based), and the increased focus on combination of imaging data with other

patient information (demographic, histologic, genomic, or proteomic data).

The most recent wave of CAD systems began around 2015 and is centered around Deep Learning

(DL). In section 1.2, we will explore the differences between shallow and deep learning architectures.

For now, we can imagine DL models as specific types of artificial neural networks (a type of ML archi-

tecture) that bypass the feature extraction block of traditional CADs and rather learn discriminative

2



1.1 Anomaly and change detection in radiology

features directly from raw data [33]. Out of all the revolutions in the field of CAD systems, the deep

learning one was the most disruptive, with CAD tools reaching performances on par, or superior to

trained radiologists for some specific and limited pathologies and modalities [34]. Nevertheless, the

DL revolution also posed several hurdles that need to be overcome before DL-based CAD tools can

be safely adopted during routine clinical practice [33].

The first limitation is the lack of large (thousands/millions of samples), multicentric and hetero-

geneous datasets. This hinders predictive performance, because DL algorithms have high capacity

and benefit from more data than classical ML algorithms. Also, it hampers generalization ability,

because there is no guarantee that an algorithm trained on local data would perform well on data

from other centres. Collecting such datasets is a costly process, especially if together with images

we also want to collect manual labels/annotations generated by radiologists. One possible

solution to mitigate this annotation bottleneck is the use of “weak” labels [35–40] which is at the

core of this PhD thesis, and will be discussed in sections 1.2.3, 1.3.4 and 1.4.3.

A second limitation of DL-based CAD tools is the lack of generalization when applied to unseen

real-world data that exhibit a feature distribution that differs from the training distribution, a

phenomenon known as domain shift [41]. One solution that is commonly adopted to alleviate

domain shift isTransfer Learning (TL): the main idea behind TL is to leverage knowledge acquired

from a specific task or domain (source) to solve the real-world related task (target). The use of TL

to alleviate domain shift and data scarcity is also a recurrent theme of this PhD thesis, and will be

discussed in sections 1.2.4, 1.3.5 and 1.4.4.

A third limitation of DL-based tools is the lack of model interpretability [42, 43], with deep

neural networks (explained in section 1.2.2) often being addressed as incomprehensible “black boxes”.

This issue is especially delicate in medical imaging, where decisions made by DL-based CAD tools

should be understandable/explainable to clinicians, patients, and ML practitioners. Among the

numerous techniques being proposed in the literature to address model interpretability [44, 45], one

is the use of prior anatomical knowledge [33,46] which can help to understand whether we have

extracted relevant features, can narrow the analysis to anatomically-plausible areas, or can help

interpreting the model output. The use of prior anatomical knowledge is also a contribution of this

thesis and will be later discussed in sections 1.2.5, and 1.3.4.

3



1.2 The advent of Deep Learning, and its limitations

1.1.2 Goal of the PhD thesis

In this PhD thesis, we address two clinical tasks that are routinely performed in radiology depart-

ments. The first task is the detection of unruptured intracranial aneurysms in Time-Of-Flight Mag-

netic Resonance Angiography (TOF-MRA) scans, while the second task is the longitudinal change

detection for patients with high-grade gliomas. For each task, we develop a specific DL-based CADe

tool and, as we will see in the following paragraphs, we address some of the DL limitations that were

presented above. The ultimate goal for both projects is then the development of a CADe system: for

the aneurysm project, the CADe system would help radiologists to increase their sensitivity and thus

avoid risky oversights, while for the glioma project the CADe tool would rather be used to highlight

the parts of the scans that have changed over time in order to facilitate and speed up the diagnosis,

while ideally providing quantitative indicators to radiologists. For both tasks we address the lack of

large annotated dataset by devising time-saving weak labels. In addition, though in slightly different

ways, for both projects we leverage TL to increase performances on the ultimate target task. Last,

for the aneurysm detection project we make use of prior anatomical knowledge to constrain the

analysis only to anatomically-plausible locations, an expedient that increases detection performances

and reduces model opaqueness. In Figure 1.1, we report the inherent limitations of medical DL that

we aimed to mitigate in this PhD thesis, together with our proposed solutions.

The rest of the thesis is organized as follows: in section 1.2, we describe the advent of DL, starting

from classical (shallow) ML models and ending with an overview of its current limitations. In section

1.3, we introduce the first clinical task of brain aneurysm detection. In section 1.4, we present the

second clinical task of change detection for longitudinal glioma imaging. Following the format of

“thesis with articles” recommended by the University of Lausanne, we then present in Chapter 2

a summary of the results for the 3 most important manuscripts written throughout the PhD (2

accepted [35,47] and 1 submitted [36]). In Chapter 3, we discuss and contextualize the results, then

we provide an outlook on future steps, and finally we draw the conclusions of the thesis. Last, the 3

manuscripts are attached.

1.2 The advent of Deep Learning, and its limitations

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that gives computers the ability

to learn through experience and without being explicitly programmed to do so [48]. ML can be

broadly divided into two main sub-fields: classical ML and DL [49]. Although the two clinical tasks

4



1.2 The advent of Deep Learning, and its limitations

Figure 1.1: Top row: recurrent limitations of DL-based CAD tools in medical imaging: the anno-
tation bottleneck corresponds to the difficulty of retrieving large amount of labeled data; domain
shift is a change in the feature distribution between an algorithm’s training dataset, and the dataset
it encounters when deployed; interpretability is the lack of understanding associated to DL models.
Bottom row: proposed solutions to mitigate such limitations.

addressed in the thesis are based on DL algorithms, it is worth understanding how the field moved

from classical (shallow) ML towards deeper architectures, and what the key differences are.

1.2.1 Classical Machine Learning

Classical ML refers to computer algorithms (or models1) that are fed with a variety of input data

(e.g. tabular, image, text, audio) and learn how to become better at evaluating and acting on that

data over time. A more formal definition was given by Tom Mitchell in 1997 and says: “A computer

program is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience E.” [48].

1The terms algorithm and model will be used interchangeably throughout the thesis.

5



1.2 The advent of Deep Learning, and its limitations

A common notation used to summarize this concept defines ML algorithms as models that learn a

target function (f) that best maps input variables (X) to an output variable (Y), following:

Y = f(X) (1.1)

where f is unknown and needs to be learned from data. In classical ML, X comprises a set

of discriminative features that describe the samples in the dataset. If considering a supervised

scenario (more details in section 1.2.3), together with features, X would also include corresponding

labels which indicate the class each sample belongs to. The combination of features (denoted x) and

labels (denoted y) forms what is typically called the training dataset Dtrain = {X, Y } = {xi,yi|i =
1 : Ntrain}, where Ntrain corresponds to the number of samples. Once the dataset is collected, the

next step in a classical ML pipeline is the choice of one model (often called classifier) that will

learn a consistent relationship (function f) between the features and the labels of Dtrain. Many

different classifiers have been developed in the past decades [50], and describing their differences

is out of the scope of this thesis. What is important to know is that each classifier has a unique

learning process (called training) during which its internal parameters are updated in the best possible

way in order to distinguish the classes in Dtrain. Supposing we choose a multi-layer perceptron

classifier [51, 52], at the end of the training process our model would have updated its parameters

in the best possible configuration to distinguish the classes of the samples in Dtrain. The last step

of the classical ML pipeline is inference: during this phase, we use the trained classifier to generate

predictions for new, distinct samples. These unseen samples make up what is called the test dataset

Dtest = {xi|i = 1 : Ntest}, where Ntest is the number of test samples for which we want to generate

predictions ŷi. If training was successful, the classifier should be able to assign, with a certain degree

of confidence, the new Ntest samples to their corresponding classes.

The process of computing/choosing which features to use in the classical ML pipeline is called

feature engineering : although this approach is straightforward and explainable, it has the main

drawback of requiring domain expertise which, depending on the field of application, can be hard to

obtain. In addition, even when domain expertise is available, the generation (engineering) of hand-

crafted features is not always optimal, since potentially informative descriptors might be neglected.

These limitations of manual feature engineering, combined with the explosion of available data and

advances in computing power of the last decade (low-cost graphical processing units, and increasing

storage capacity), progressively led to the widespread adoption of deep learning [52].
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1.2.2 Deep Learning (DL)

The multi-layer perceptron classifier that we saw in the previous paragraph belongs to a broad family

of models called Neural Networks (NNs). Their commonality is a layered structure of interconnected

nodes that is inspired by the neuronal connections in the human brain. NNs learn from training

data how to recognize useful patterns, and then make predictions for future events. During training,

the connections between nodes (commonly denoted as weights) are adjusted according to a specified

learning rule in order to improve predictions. As shown in Figure 1.2, a NN is made of an input

layer, one or more hidden layers, and an output layer. Each layer is composed of several nodes

and the nodes in each layer use the outputs of all nodes in the previous layer as inputs. By doing

so, all neurons interconnect with each other through the different layers. The models that we have

Figure 1.2: Typical architecture of a feed-forward neural network.

discussed so far are usually denoted as shallow NNs, and understanding their structure is important

to introduce the concept of DL because most DL methods are based on NN architectures. As a matter

of fact, DL models are often referred to as Deep Neural Networks (DNNs), where the adjective Deep

simply indicates that we are dealing with a NN that has more than 3 hidden layers. In general,

the higher the number of layers (and thus of parameters), the deeper the NN will be. Since the

first perceptron model introduced in 1958 by Frank Rosenblatt [53], increasingly complex NNs have

been developed by researchers, a path that led to today’s deepest networks that can contain up to

530 billion parameters (e.g. Megatron-Turing model [54]). Overall, NNs are especially suitable for

modeling non-linear relationships. In the field of DL, deep neural networks have been extensively

adopted for numerous tasks in the fields of Computer Vision (CV) (e.g. image recognition, object

detection, etc.), natural language processing (e.g. machine translation, speech recognition, etc.),

optimized search engines, and content recommendation, to name just a few. A more detailed list of
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1.2 The advent of Deep Learning, and its limitations

ML applications was provided by [55]. The most important novelty brought by DL with respect to

the classical ML approach is that the feature engineering step disappears from the pipeline: instead

of creating hand-crafted features which are later passed to a ML model, DNNs can be fed with

minimally preprocessed data (e.g. directly with input images) and then automatically learn features

from this raw data through multiple nonlinear layers of representation. Because of this concept, DL

can also be referred to as representation learning. Figure 1.3 illustrates this key difference for a toy

image classification problem. Explaining the different sub-types of DNNs is out of the scope of this

Figure 1.3: Difference between classical ML and DL for image classification. The manual feature
extraction (feature engineering) disappears from the DL pipeline where features are extracted directly
from the input images.

thesis, though a detailed overview can be found in [56]. Since this work focuses on DL models in the

field of radiology, it is sufficient to know that the most common architectures applied in this domain

are Convolutional Neural Networks (CNNs), mainly because of their excellent capacity to deal with

images as input samples [57]. In the next paragraph, we shed light on the main limitations of DL

algorithms, with a special focus on medical imaging.
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1.2 The advent of Deep Learning, and its limitations

1.2.3 Weak labels to mitigate the annotation bottleneck

Machine learning can be divided in 3 main categories2: unsupervised, semi-supervised and supervised,

depending on the amount of labels that are available; supervised learning is the most common,

thus only a brief introduction will be provided for the unsupervised and semi-supervised learning

paradigms, while more attention will be given for supervised learning where the annotation bottleneck

is more prominent.

Unsupervised Learning - We refer to unsupervised learning when there are no labels available

in the dataset. The goal of the ML algorithm in this scenario is to discover hidden patterns and/or

create clusters (i.e. subgroups) in the dataset without the need for human intervention. Unsupervised

learning models can be utilized for three main tasks: clustering, association, and dimensionality re-

duction. Clustering groups unlabeled data based on their similarities or differences. Association rules

are techniques for discovering relationships across the samples of the dataset. Last, dimensionality

reduction is used when the number of features in the dataset is too high and must be reduced.

Semi-supervised Learning - We refer to semi-supervised learning when a problem involves

a small number of labeled examples and a (typically larger) number of unlabeled examples [59].

Semi-supervised learning is well-suited for applications where data is relatively easy to obtain, but

the subsequent labeling process is challenging or expensive, as in medical imaging [60]. The goal in

semi-supervised learning is to use the set of unlabeled data to improve the predictions for the task at

hand. Two main goals can be targeted in self-supervised learning: either we try to predict the labels

for future data or we try to predict labels for the already available unlabeled data. For a detailed

overview of semi-supervised applications in medical imaging, interested readers can refer to [60].

Supervised Learning - This corresponds to applications where all available data is labeled.

Supervised learning can be divided into two subcategories: classification and regression. The main

difference between the two is that in classification we predict/classify discrete values (e.g. email is

spam or not spam), while in regression we predict a continuous value (e.g. price of a house based

on the city where it is built). As we have seen in sections 1.2.1 and 1.2.2, during training the ML

algorithm (be it a classifier or a regressor) searches for patterns in the data that correlate with

the desired output labels. Then, during inference, the model is fed with new unseen samples and

generates predictions according to the patterns that were learned.

During the last two decades, countless supervised algorithms have been developed for medical

imaging tasks, both based on classical ML and on DL [61]. However, it soon became clear that

2we neglect reinforcement learning here, currently still under-explored in medical imaging [58]

9



1.2 The advent of Deep Learning, and its limitations

achieving high discriminative power for complex medical patterns required sufficiently large training

cohorts [33], especially for DL-based models. As mentioned in section 1.1.1, the collection of labeled

data is extremely costly in medical imaging: unlike CV tasks, where image annotations are relatively

simple (and can even be performed via crowdsourcing [62]), the creation of labels in medical imaging

requires technical expertise and is extremely time-consuming for radiologists. In this PhD thesis,

we explore the use of “weak” labels, which represents one potential solution to mitigate the manual

annotation bottleneck. Weak labels can be defined as coarse, incomplete, limited, undersized, or

oversized annotations that are less precise, but considerably faster to create with respect to stan-

dard labels. The ultimate goal of weak labels is to simplify and speed up the annotation process

for clinicians who often face work overload and should rather spend their time on more clinically

relevant tasks. In line with this trend, numerous works have been published in the medical imaging

community. For instance, the authors in [37] developed a DL pipeline to predict the concentration

of different stains in multiplex immunohistochemistry images. Instead of labeling all the pixels for

each cell, pathologists were only asked to mark a dot at the center of each cell. From each dot, the

authors then used SLIC [63] to generate superpixels (meaningful regions). Similarly, the authors

in [38] asked their specialists to annotate teeth in Cone-Beam Computed Tomography (CBCT) 3D

images only drawing rough bounding boxes on certain axial slices. These bounding boxes are much

faster to draw with respect to a voxel-wise labeling of the teeth done in every slice. In another

study [39], the experts were asked to only draw a rough region inside each object of interest on

Scanning Electron Microscopy (SEM) images. In line with these works, one of the papers of this

PhD thesis [35] investigates the use of oversized weak labels for automated aneurysm detection and

will be discussed in section 1.3.4.

An alternative approach for the creation of weak labels that has gained increasing interest in the

community is the use of Natural Language Processing (NLP) on textual medical reports. NLP is

the branch of ML that helps computers understand, interpret, and manipulate human language [64].

In medical imaging, NLP has the goal of extracting clinically relevant information from radiology

reports. Medical reports are a valuable source of information since they are always stored together

with corresponding images, they contain high-level insights from physicians, and they are less de-

manding than images from a computational point of view. In fact, reports require less disk space to

be stored and training time of report-based ML models is much shorter compared to image-based

models. Despite all these advantages, medical reports also come with intrinsic drawbacks; in par-

ticular, most reports are stored as unstructured, free-text documents and exhibit a strong degree

of ambiguity, uncertainty and lack of conciseness [65]. Nevertheless, advances in NLP have enabled
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the extraction of relevant labels from radiology [66–72] and histopathology [40, 73] reports. One of

the manuscripts presented in this thesis [47] follows this line of research and aims to extract weak

labels from radiology reports of patients with high-grade gliomas. More details about this work are

presented in section 1.4.3.

1.2.4 Transfer Learning to alleviate data scarcity and domain shift

Humans have an inherent capacity to transfer knowledge acquired from one task to a related, similar

task [74]. Typically, the “closer” the tasks, the easier it is for us to transfer our knowledge and skills.

For instance, learning how to drive a motorbike, having previously ridden a bicycle, can benefit from

transferring some of the bicycle skills. Contrary to human learning, ML models were historically

developed to solve specific, isolated tasks. However, this one-model-one-task paradigm soon revealed

its obvious limitation: whenever the feature space of the new input data was changing (phenomenon

known as “domain shift” [75]), performances at inference time decreased considerably [76], and the

model had to be re-trained from scratch including new observations that resembled the target feature

distribution. In medical imaging, domain shift can be induced by several factors such as different

image acquisition protocols, different acquisition devices, different image resolution or even more

fundamental differences like variations in populations’ features (e.g. source cohort younger than

target cohort) [77]. Transfer Learning (TL) is one research field that tries to mitigate domain shift

and overcome the isolated learning paradigm by utilizing knowledge acquired from a specific task or

domain (source) to solve a downstream, related task (target) [76]. In addition to domain shift, TL

techniques can also help in tackling the problem of data scarcity, especially for scenarios in which

collecting additional training data is too costly, time-consuming, or even unrealistic [78], such as

in medical imaging, where datasets used by most research groups are typically small (hundreds of

samples, more rarely thousands) [79]. In any TL scenario, there are three fundamental questions that

must be answered: 1) What to transfer? Indeed, we must understand which part of the knowledge

can be transferred from source to target in order to improve the performance on the target task.

For instance, we can try to uncover which portion of knowledge is source-specific and which one is

shared between source and target. 2) When to transfer? We must ensure that the transfer of

knowledge is worth the effort; there can be scenarios in which knowledge transfer is detrimental for

performances (phenomenon known as negative transfer [76]). 3) How to transfer? Once the other

two questions have been addressed, we can start analyzing different techniques to transfer knowledge

across domains and tasks. Adopting the notation from [80], we formally define a domain D and a task
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T as D = {X,P (X)} and T = {Y, f(·)}, where X is the feature space, P (X) is the corresponding

marginal probability distribution, Y is the label space, and f(·) is the objective predictive function.

Moreover, we use the notations Ds, Dt, Ts, and Tt to indicate source domain, target domain, source

task and target task, respectively. Exploring all TL techniques is out of the scope of this thesis, but

interested readers can refer to [81, 82] for an overview of TL and domain adaptation (specific type

of TL) in medical imaging applications, both for shallow and deep architectures. Since the models

used in this PhD thesis are all DL-based, we report hereafter the main variants of TL that can be

adopted with deep neural networks [83]:

1. Fine-tuning: the DL model is pre-trained on the source domain Ds and then all its weights

are fine-tuned on the target domain Dt.

2. Feature Extraction: the DL model is pre-trained on Ds and then only some of its weights

(typically the last linear layers) are fine-tuned on Dt. Instead, the convolutional backbone

layers are usually “frozen” (i.e. not trained again).

3. Mixed Training1: the DL model is trained only once on a mixed dataset composed of Ds and

the training portion of Dt.

The core idea behind fine-tuning and feature extracting is that DNNs learn different features at

different layers, with initial layers that have been shown to represent abstract, generic features, and

later ones which capture more specific features related to the task at hand [84]. Most papers dealing

with medical TL focused on the choice of the source domain Ds, trying to understand which is the

best Ds from which we should transfer knowledge. For instance, several works investigated the use

of natural images (e.g. the ImageNet dataset [85]) for model pre-training [86–89]. Conversely, more

recent works showed that the use of natural images for model pre-training could lead to negligible

performance improvements [90], and rather suggested that using a medical domain as source is

preferable [91–93]. Similarly to the discussion about the choice of Ds, there is also a lack of consensus

in the medical imaging community regarding which type of TL is the most effective (e.g. is fine-tuning

better than feature extraction?), with most of the works trying several combinations empirically [83].

In one of the manuscripts presented in this thesis [36], we explore the use of TL: we aim to

understand to what extent it is possible to transfer knowledge from a source domain which has

a different label distribution from the target domain, a scenario called “inductive” TL (Ts ̸= Tt

1Although strictly speaking there is no transfer of knowledge for this subgroup, we loosely include Mixed Training
among the TL types.
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because of distinct label spaces Ys ̸= Yt) [80]. More specifically, we address the task of glioma

change detection with Ys consisting of the above-mentioned weak labels generated automatically

from radiology reports, and with Yt consisting of manual labels created by human experts (Ys ̸= Yt),

again from radiology reports. Details about this work will be provided in section 1.4.4.

1.2.5 Prior anatomical knowledge to improve interpretability

In addition to the annotation bottleneck and the domain shift effect, DL models suffer from a third

major limitation: the lack of interpretability, an issue often referred to as the “black box problem”

of AI [94]. Over the last decade, research on model transparency and explainability has grown

steadily, also because of the pervasive adoption of DL systems across the most diverse fields of

applications and domains [95]. According to [96], interpretability can be defined as “the degree to

which a human observer can understand the reason behind a decision (or a prediction) made by

the model”. Simple ML models that are traditionally considered interpretable are linear models

(linear regression, logistic regression) or decision trees, especially when fed with a limited number

of hand-crafted, clinically derived features (e.g. age, sex, history of smoking, etc.) [97]. Conversely,

DNNs are considered the least interpretable models because of their inner feature extraction process,

their hierarchical structure and their high number of trainable parameters. Several lines of research

have been pursued to improve model interpretability in radiology [97]. Among the most common,

we find visualization techniques such as saliency maps [98, 99], guided backpropagation [100], and

gradient-weighted class activation maps (Grad-CAM) [101]. Although in different ways, the main

idea behind these techniques is to highlight areas of an image that drive the prediction of the DL

model. Other tools that can help increasing interpretability are model-agnostic techniques, such as

the Local interpretable model-agnostic explanations (LIME) [102], or Regression Concept Vectors to

assess the importance across features [103].

One (less frequent) expedient that can be adopted to reduce model opacity is the use of prior

anatomical knowledge [104] as in [35,46,105,106]. The idea behind these studies it to inject anatomical

prior knowledge somewhere along the pipeline by specifying body parts of interest, and then guide

the ML/DL model to learn from these regions. For instance, the authors in [105] improved contrast

phase classification for dynamic CT images by narrowing the analysis only to relevant landmark

points. Similarly, the authors in [46] leveraged prior anatomical knowledge to improve the quality of

post-hoc explanations generated with LIME [102] on histopathology images. Along the same lines

as these works, in one of the manuscript presented in this thesis [35], we exploit prior anatomical
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knowledge to constrain the analysis only to parts of the brain that are plausible for the task of

aneurysm detection. Details about this work will be described in section 1.3.4. In the next section,

we dive into the first clinical task addressed in this PhD thesis: the detection of cerebral aneurysms.

1.3 Automated Detection of Cerebral Aneurysms

1.3.1 Clinical background

Unruptured Intracranial Aneurysms (UIAs) are abnormal dilatations in the brain arteries caused by

a weakness in the blood vessel wall [107]. UIAs typically appear in the form of a bulge or balloon and

their prevalence in the adult population ranges between 1% and 5% [108]. UIAs are typically small

structures (average diameter ≈ 5 mm) and are the predominant cause of nontraumatic SubArachnoid

Hemorrhages (SAH) [109]. The mortality rate of aneurysmal SAH is around 40% and only half of

post-SAH patients return to independent life. The majority of UIAs occur primarily in proximal

arterial bifurcations in the circle of Willis (see Figure 1.4) and 85% of these lesions are anterior in

location. About 20% of patients with UIAs have more than one aneurysm [110]. UIAs are more

common in women than in men, with a 3:1 ratio. Also, they are more common in elderly people and

rarer in children. Although Digital Subtraction Angiography (DSA) is considered the gold standard

for diagnosing cerebral aneurysms, its invasive nature limits routine application [111]. Thus, the two

non-invasive alternative techniques routinely applied to detect UIAs are TOF-MRA or Computed

Tomography Angiography (CTA). In this thesis, we focus on TOF-MRA which, compared to CTA,

has the advantage of avoiding radiation exposure. Screening is typically recommended for first-degree

relatives of affected family members when two or more members of the family have UIAs or SAH.

Untreatable risk factors include old age, female sex, and genetic factors, while treatable factors include

smoking and hypertension. When an UIA is found, several factors must be considered to identify the

optimal patient management. Even though there are no randomized clinical trials that define the

optimal management of an UIA, clinicians can rely on data from prospective or retrospective studies

to take an informed decision. To speed up the decision process, Greving et al. devised a standardized

grade called PHASES score that indicates the absolute 5-year risk of rupture of UIAs [112]. Since the

publication of the work, the PHASES score has been widely adopted since it is fast to compute and

it efficiently summarizes the main risk factors. Each risk factor has several categories with associated

points which are then summed to obtain a final risk score. The risk factors can be directly derived

from the PHASES acronym (P: population, H: hypertension, A: age, S: size of aneurysm, E: earlier
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Figure 1.4: Frequent sites of formation of intracranial saccular aneurysms.

SAH, S: site of aneurysm). There are two main interventional options for UIAs: surgical clipping

and endovascular management, with no large clinical trials comparing the two. For more details,

readers are referred to [109].

1.3.2 Aneurysm visual detection

Manually assessing a TOF-MRA scan is a time-consuming process which requires high expertise

from experts: radiologists detect aneurysms by selectively scrolling through the TOF-MRA volumes

in different planes. For instance, they check in the axial plane the most recurrent locations where

aneurysms can occur. Then, the sagittal view permits better views of areas like the basilar trunk;

afterwards, the coronal view can be used for areas like the anterior cerebral arteries or the Sylvian

segments. In addition, Maximum Intensity Projection (MIP) images can be used to search for

stenoses, or to confirm potential aneurysms that were spotted [35]. The visual detection of aneurysms

carried out by radiologists presents several limitations: first, sensitivity for small aneurysms (<5mm)

can be as low as 35% [113], especially for inexperienced radiologists. More generally, it has also been

reported that about 10% of all UIAs are missed during routine clinical practice [114]. Moreover, it

may be hard to spot even medium-sized aneurysms on maximum intensity projection (MIP) images

because of overlap with adjacent vessels and unusual locations [6]. For these reasons, the development
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of a CADe tool able to help clinicians detecting UIAs would be highly beneficial, especially considering

that the workload of radiologists is projected to increase in coming years [115].

1.3.3 Automated detection

There have been several research groups that proposed automated CADe tools for detecting UIAs

throughout the last 20 years. Before the advent of Deep Learning (DL), [25] detected aneurysms

with image filtering techniques, [116] proposed a method based on lesion candidate extraction and

subsequent false positive reduction, and later [26] used candidate points of interest in the brain

arteries to locate aneurysms. Then, starting from 2016, most studies shifted towards the development

of DL algorithms, which have permitted to achieve unprecedented performances and have become the

de facto standard for UIA detection [117–121]. Despite their success, these DL approaches are still

constrained by one of the major bottlenecks presented in sections 1.2.3 and 1.2.4: the lack of large,

labeled datasets. This is mainly due to two factors: first, the creation of voxel-wise labels for medical

images is tedious and time-consuming; second, none of these TOF-MRA studies to date made their

dataset publicly available. This hampers reproducibility and multi-site analyses that are paramount

for building robust DL architectures. A significant leap forward for the community was brought by

the Aneurysm Detection And segMentation (ADAM) challenge [122]. This allowed for the first time

to obtain a fair and unbiased comparison across methods and it revealed the true difficulty of the

detection task, considering that none of the top-5 algorithms exceeded a sensitivity of 70% (i.e. 30%

of UIAs are missed by all automated methods). In addition, the ADAM training dataset was the

first open dataset that could be used in the community for benchmarking. Of all the related studies

mentioned above, only [121] evaluated their models on the challenge dataset.

1.3.4 Proposed approach

In this section, we describe the methodological contributions of the the first paper included in this

PhD thesis [35]. The goal of this manuscript was to develop a fully automated DL network for

UIA detection. The work has 4 main contributions. First, to mitigate the data availability bottle-

neck we explored the use of weak labels. Second, to improve model interpretability we leveraged

prior anatomical knowledge to constrain the analysis only to areas that are anatomically plau-

sible. Third, we released our in-house dataset to the community to foster reproducibility and

benchmarking. To date (December 2022), this is the largest TOF-MRA labeled dataset available on-

line. Last, we assessed multi-site generalization by evaluating our model on the external ADAM
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challenge data. Below, we report a summarized version of the Materials & Methods section of the

manuscript, starting from an overview of the in-house dataset, and ending with the description of

the experiments that we performed. For more details, readers are referred to [35]. Results related to

this work will be shown in section 2.1.

In-house dataset - We included consecutive patients that underwent TOF-MRA between 2010

and 2015, and for which the corresponding radiological reports were available. Patients with rup-

tured/treated aneurysms or with other vascular pathologies were excluded. Totally thrombosed

aneurysms and infundibula (dilatations of the origin of an artery) were likewise excluded. In total,

we retrieved 284 TOF-MRA subjects: 157 had one (or more) UIAs, while 127 did not present any.

The dataset was anonymized and organized according to the Brain Imaging Data Structure (BIDS)

standard [123]. It is available on OpenNeuro [124] at https://openneuro.org/datasets/ds003949.

Aneurysm annotation, size, location and risk groups for in-house dataset - Aneurysms

were annotated by one radiologist with 2 years of experience in neuroimaging, and double-checked by

a senior neuroradiologist with over 15 years of experience. Two annotation schemes were followed:

1. Weak labels: for most subjects (246/284), the radiologist used the Multi-image Analysis GUI

(Mango) software to create the aforementioned weak labels. These correspond to spheres that

enclose the whole aneurysm, regardless of the shape. The size of the spheres was chosen

manually by our radiologist on a case-by-case basis ensuring that the whole aneurysm was

entirely enclosed within the sphere. A visual example of one weak label is shown in Figure 1.5.

2. Voxel-wise labels: for the remaining subjects (38/284), the radiologist used ITK-SNAP (v.3.6.0)

[125] to create voxel-wise labels drawn slice by slice scrolling in the axial plane.

The overall number of UIAs included in the study was 198 (178 saccular, 20 fusiform). These

were grouped according to the PHASES score presented in section 1.3.1. In addition, for post-hoc

analyses, we divided the UIAs into two groups based on their risk of rupture: low-risk and medium-

risk. Aneurysms in the low-risk group are those that are monitored over time, but do not require

any intervention. Instead, aneurysms in the medium-risk group can be considered for treatment.

We computed for each aneurysm a partial PHASES score that only considered size, location, and

patient’s age: if an aneurysm had partial PHASES score ≤ 4, it was assigned to the low-risk group,

while if it had a partial score > 4, it was assigned to the medium-risk group. After removing fusiform

UIA (the PHASES score was built for saccular UIA) and extracranial carotid artery UIA (they do

not bleed in the subarachnoid space), we ended up with 141 low-risk and 23 medium-risk aneurysms.
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Figure 1.5: TOF-MRA orthogonal views of a 62-year-old female patient. Red areas correspond to
our oversized spherical weak labels. Top-left: axial plane; top-right: 3D posterior reconstruction of
the cerebral arteries; bottom-left: sagittal plane; bottom-right: coronal plane.

Data processing - Several preprocessing steps were carried out for each subject. First, we

performed skull-stripping with the FSL Brain Extraction Tool [126]. Second, we applied N4 bias field

correction [127]. Third, we resampled all volumes to a median voxel spacing. Last, a probabilistic

vessel atlas built from multi-center MRA datasets [128] was co-registered to each patient’s TOF-MRA

using ANTS [129]. The atlas was used both during training and inference (see below).

Network, Cross-Validation, Metrics and Statistics - The deep learning model used in this

study is a custom 3D UNET, inspired by the original work [130]. We used 3D TOF-MRA patches

as input to our network. We set the side of the input patches to 64x64x64 voxels to include even

the largest aneurysms. All patches were Z-score normalized, as is common practice [131]. Further

details about the network can be found in [35].

Cross-validation - To evaluate detection performances, we conducted a five fold cross-validation

on the 246 subjects with weak labels (details in [35]). In order to make results comparable across

experiments, we always used the same cross-validation split. In all experiments on the in-house

dataset, we always pre-trained our network on the whole ADAM training dataset and then fine-
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tuned it on the in-house training data. Ablation experiments of domain adaptation across the two

datasets can be found in Supplementary Materials of the manuscript. The code used for this work

is available at https://github.com/connectomicslab/Aneurysm_Detection

Metrics and Statistics - In line with the ADAM challenge, we used sensitivity and false

positive (FP) rate as detection metrics. A detection was considered correct if the center-of-mass of

the predicted aneurysm was located within the maximum aneurysm size of the ground truth mask.

In addition, we computed the Free-response Receiver Operating Characteristic (FROC) curve [132].

To compare different model configurations, we used a two-sided Wilcoxon signed-rank test of the

areas under the FROC curves across test subjects, as similarly performed in [133]. To compare

the performances of a configuration with respect to aneurysm rupture risk, location and size we

performed several Chi-squared tests [134]. For all tests, we set a significance threshold α = 0.05.

Experiments - In this section, we will present the four experiments that we conducted.

1) Use of Weak Labels - The goal of this experiment was to answer the following questions: 1) how

much faster is the creation of weak labels with respect to the creation of voxel-wise labels? 2) what

is the impact of using weak labels in terms of detection performances when comparing to voxel-wise

labels? To answer the first question, we selected a subset of 14 patients (mean aneurysm size (s.d.)

= 5.2 (1.0) mm), and we assessed the time difference between the two annotation schemes (i.e. all

14 patients were annotated first with weak labels, and then with voxel-wise labels). To answer the

second question, we used the 38 subjects with voxel-wise labels and for these patients we artificially

generated corresponding weak spherical labels (“weakened” labels, details in Supplementary of the

paper). Then, to evaluate the influence of annotation quality (weakened vs. voxel-wise) in terms

of detection performances, we conducted 3 experiments in which we used an increasing number of

patients with voxel-wise labels: (i) all 38 patients with weakened labels, (ii) 19 patients with weakened

labels and 19 with voxel-wise labels, and (iii) all 38 patients with voxel-wise labels.

2) Use of Anatomical Information - Because the task of aneurysm detection is extremely spatially

constrained, we exploited the prior information that aneurysms a) must occur in vessels, and b) tend

to occur in specific locations of the vasculature. To include this domain knowledge, one of our

radiologists pinpointed in the probabilistic vessel atlas the location of 20 landmark points where

aneurysm occurrence is most frequent (list in Supplementary Materials). These points were chosen

according to the literature [109] and were co-registered to the TOF-MRA space of each subject, as

illustrated in Figure 1.6. We exploit this domain knowledge both during training and inference:

Training - We apply an anatomically-informed selection of training patches to sample both

negative (without aneurysms) and positive (with aneurysms) patches. Specifically, 8 positive patches
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Figure 1.6: left: 20 landmark points (in red) located in specific positions of the cerebral arteries
(white segmentation) in MNI space. right: same landmark points co-registered to the TOF-MRA
space of a 21-year-old, female subject without aneurysms.

per aneurysm were randomly extracted in a non-centered fashion. Then, we extracted 50 negative

patches per TOF-MRA volume. Out of these, 20 were centered in correspondence with the landmark

points, 20 were patches containing vessels (details in Supplementary Materials), and 10 were extracted

randomly. Overall, this sampling strategy allows us to extract most of the negative patches which

are comparable to the positive ones in terms of average intensity. To mitigate class imbalance,

we applied data augmentations on positive patches: namely, rotations (90°, 180°, 270°), flipping

(horizontal, vertical), contrast adjustment, gamma correction, and addition of gaussian noise.

Inference - The patient-wise evaluation was performed following a sliding window approach. We

exploited again the prior anatomical knowledge described above by retaining only the patches which

are both within a minimum distance from the landmark points and fulfill specific intensity criteria

(details in Supplementary). The rationale behind this choice was to only focus on patches located

in the main cerebral arteries, as shown in Figure 1.7. Two post-processing steps were adopted: first,

we kept a maximum of 5 candidate aneurysms per patient (only the 5 most probable). Second, we

applied test-time augmentation to increase sensitivity.

Validation - To validate the effectiveness of our two anatomically-informed expedients, we first

evaluated an anatomically-agnostic baseline where none of the two expedients is used and the 38

added subjects have weakened labels. Second, we evaluated the same anatomically-agnostic baseline

(none of the two expedients used) but with the 38 subjects having voxel-wise labels. Third, we tested

one model where only the anatomically-informed patch sampling is carried out. Last, we computed
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Figure 1.7: TOF-MRA orthogonal views of a 62-year-old female subject: blue patches are the ones
which are retained in the anatomically-informed sliding-window approach. (top-right): 3D schematic
representation of sliding-window approach; out of all the patches in the volume (white patches), we
only retain those located in the proximity of the main brain arteries (blue ones).

performances when only the anatomically-informed sliding window is performed.

3) Participation to the ADAM Challenge - To evaluate model performances in data coming

from a different institution, we participated to the ADAM challenge. The ADAM training dataset is

composed of 113 TOF-MRA (93 patients with 125 UIAs, 20 controls). The voxel-wise annotations

were drawn in the axial plane by two radiologists. Instead, the test dataset is made of 141 cases (117

patients, 26 controls) and it is solely used by the organizers to compute patient-wise results.

4) Performances with Respect to Risk-of-rupture, Location and Size - We investigated

how detection performances would vary with respect to the risk-of-rupture groups described above.

In addition, we explored how performances would vary with respect to aneurysm location and size.
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1.3.5 Clinical evaluation

In this section, we introduce the next step for the aneurysm detection project. This is a work in

progress that we are planning to submit soon for consideration in a journal. The goal of this new

work will be to assess the clinical validity of the CADe tool developed in [35]. Specifically, we are

planning to conduct a retrospective, within-subject reading with two radiologists, including both

patients with UIAs and control subjects. The two readers (one senior and one junior) will be asked

to visually inspect 140 TOF-MRA scans (70 patients, 70 controls, distinct from the 284 of [35]) under

two different settings:

1. Baseline: the readers only have access to the original TOF-MRA sequence. The readers can

freely explore all three views (axial, sagittal, coronal), as well as the MIP reconstruction.

2. ML-assisted: the readers have access both to the original TOF-MRA sequence (3 views +

MIP) and to the same sequence that contains potential aneurysm candidates generated by the

DL model proposed in [35]. We denote this sequence as overlay.

Patient age and sex will be visible to the readers under both settings. We will conduct two reading

sessions: on the first session, the 140 subjects will be randomly assigned either to the Baseline or to

the ML-assisted setting, while on the second session, the opposite scenario will be presented to the

readers. Although the order of Baseline/ML-assisted is random, we will keep the same random order

for both readers (junior and senior), since patient order might influence detection performances,

for instance due to fatigue. The time interval between the two reading sessions will be of one

month. The readers will be blinded to the performance levels of the CADe system, and to the exact

aneurysm prevalence in the test set, in order to avoid expectation bias [135]. The outcomes that

we are planning to monitor across the two settings (Baseline and ML-assisted) are, for each reader,

sensitivity, specificity, reading time, and confidence in the diagnosis. Moreover, we will also measure

intra- and inter-rater agreement. The statistical test used to measure aneurysm-wise sensitivity and

subject-wise specificity will be the McNemar’s test [136]. To establish the number of patients with

aneurysm needed to run the paired reading (N=70), we ran a sample size calculation assuming an

increase of 15% in sensitivity for the junior radiologist, a power of 80% and a Type I error α = 0.05,

and the same for establishing the number of controls (N=70). To find the top-performing model that

will be used for inference on the 140 TOF-MRA scans, we will leverage once again TL, with the goal

of uncovering the most efficient way to transfer knowledge from the ADAM source dataset to our

in-house target dataset (e.g. finetuning vs. feature extracting vs. mixed training).
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1.4 Change Detection in Longitudinal Glioma Imaging

In this section, we introduce the second radiological task addressed in this PhD thesis: change

detection in glioma imaging.

1.4.1 Clinical background

Gliomas represent 30% of all primary brain tumors, 80% of all malignant ones, and account for most

deaths caused by primary brain tumors [137]. Like most other tumors, they are essentially genetic

alterations of single cells whose pattern shapes the clinical features of the tumor. This group of tu-

mors is highly heterogeneous and includes astrocytomas, oligodendrogliomas, mixed oligoastrocytic

gliomas or ependymomas. The World Health Organization (WHO) has established a grading system

for glioma tumors that goes from I to IV, with grade IV (glioblastoma) indicating the most aggressive

variation [138]. The grading is based on five histopathology criteria that are related to the degree of

anaplasia (lack/loss of differentiation): cellular density, nuclear atypia, mitosis, endothelial prolifer-

ation and necrosis. Readers interested in the grading system can refer to [138,139]. The incidence of

gliomas increases with age and the only factor that is recognized as a direct causative agent is ionizing

radiation (exposure to a therapeutic dose) [140–142]. Gliomas are associated with rare familial syn-

dromes such as Neurofibromatosis type 1, neurofibromatosis type 2, tuberous sclerosis, Li–Fraumeni,

and Turcot syndrome. However, these syndroms only account for ≤ 1% of all gliomas [143]. The most

common symptoms that might suggest the presence of glioma are headache, nausea, memory loss,

seizure, personality changes, weakness in the arms, face or legs, numbness and problems with speech.

The principal treatment for gliomas is surgical resection followed by radiation and/or chemotherapy,

with temozolomide (Temodar) being the most frequently used chemotherapy drug. The gold stan-

dard imaging technique to detect glioma tumors is MRI, though the definitive diagnosis of gliomas

can only be obtained via histology [144,145]. A multitude of MRI sequences is routinely performed to

monitor glioma patients [146]. The standard imaging protocol recommended by the European Society

of NeuroRadiology (ESNR) includes the following sequences: 3D unenhanced T1-weighted (T1w),

3D T1w enhanced with gadolinium-based contrast agent, axial 2D T2-weighted (T2w), 2D FLuid

Attenuated Inversion Recovery (FLAIR), and axial 2D Diffusion-Weighted Imaging (DWI)/Apparent

Diffusion Coefficient (ADC). Protocol extensions might also include more advanced sequences such

as Diffusion Tensor Imaging (DTI), Susceptibility Weighted Imaging (SWI), Dynamic Susceptibil-

ity Contrast (DSC)-perfusion and MR spectroscopy. To date, no clear consensus exists for these

advanced sequences. However, it has been shown that multi-parametric MRI (the combined use of

23



1.4 Change Detection in Longitudinal Glioma Imaging

standard and advanced sequences) leads to a more accurate tumor characterization [147]. During

the last decade, a growing body of research has focused on quantifying tumor structures on multi-

parametric MR images and finding correlations between imaging and clinical features (as in [148]).

A crucial step to achieve these clinical tasks is the segmentation of tumor sub-compartments (such as

enhancing tumor, tumor core, whole tumor, necrotic core), a task that was facilitated by the Brain

Tumor Segmentation (BraTS) challenge [149–151]. This was first organized in 2015 and was later re-

proposed every year with constant improvements to the dataset and tasks. The open BraTS dataset

is one of the largest annotated datasets for segmentation and has become a milestone reference for

benchmarking ML and DL algorithms.

1.4.2 MRI-based longitudinal monitoring

Neuroradiological monitoring of gliomas has a crucial role for primary diagnosis and post-therapeutic

follow-up. For grades I and II (Low-Grade Gliomas, LGGs), imaging is conducted to monitor tu-

mor stability and evaluate possible anaplastic transformations. For grades III and IV (High-Grade

Gliomas, HGGs) imaging serves to distinguish, among other things, therapy-induced changes from

actual tumor-related changes. Since these two phenomena exhibit overlapping features (e.g. sur-

rounding oedema), discrimination for radiologists can be challenging. To facilitate and standardize

diagnostic monitoring of gliomas, several guidelines have been proposed in the literature. Since in

this PhD thesis we work with HGGs, here we report the most famous guidelines for HGGs. Readers

interested in longitudinal monitoring of LGGs can refer to [152]. For HGGs, one of the first widely

used guidelines were the Macdonald criteria [153]. However, with time these showed some limita-

tions [154] which were overcome in 2010 with the Response Assessment in Neuro-Oncology (RANO)

criteria [155]. Along with the 4 main types of response already present in the Macdonald criteria

(progressive disease (PD), partial response (PR), complete response (CR) and stable disease (SD)),

the RANO criteria helped to deal with more subtle scenarios involving non-enhancing tumour ar-

eas, radiation-induced pseudoprogression, surgery-induced enhancements, and pseudoresponse after

treatment with antiangiogenic therapies. Although more accurate, also the RANO criteria showed

some limitations. For instance, it was shown that bidirectional (2D) measurements of contrast en-

hancing tumor overestimate tumor volume and have high reader discordance [156]. In addition, the

thresholds used to define response and progression are relatively arbitrary and are not backed up

by sufficient literature. To mitigate these limitations, the modified RANO (mRANO) criteria were

proposed in [156]. Details regarding mRANO can be found in [156].
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1.4.3 Extracting weak labels from radiology reports with Natural Lan-

guage Processing

As we have seen in previous paragraphs, radiological monitoring of gliomas is extremely complex and

heterogeneous. In the following sections, we present 2 of the manuscripts included in this PhD thesis.

The goal of these works is to investigate the creation of weak labels from radiology reports, the use

of TL between weakly-annotated and human-annotated data, and the impact of model capacity in

medical TL. The clinical scenario that we envision is one where the developed CADe tool would

highlight relevant, tumor-related changes with respect to the previous exam to facilitate and speed

up the diagnosis for radiologists, while ideally providing quantitative indicators. The proposed CADe

tool is a DL-based model and it is explained more in detail in section 1.4.4. As we have learned in

section 1.2.3, the availability of large annotated dataset is a recurrent bottleneck for DL applications.

One solution to overcome this bottleneck that was discussed in section 1.2.3 is the use of NLP on

medical reports and that is exactly what we carried out for the glioma change detection project. In

the rest of this section, we provide a summarized version of the Materials & Methods section of the

work [47], the second manuscript of this PhD thesis.

Dataset - We retrospectively included 164 subjects that underwent longitudinal MR glioma

follow-up in the university hospital of Lausanne (CHUV) between 2005 and 2019. 71% of the pa-

tients in the cohort had Glioblastoma Multiforme (GBM), while the remaining 29% had either an

oligoastrocytoma or an oligodendroglioma. At every session, a series of MR scans were performed

including structural, perfusion and functional imaging. For the sake of this study, we only focused on

the native T1-weighted (T1w) scan, the T2-weighted (T2w) scan and the T1w-gad (post gadolinium

injection, a contrast agent). For 25 patients, we collected images and reports across multiple sessions

(on average, 9 sessions per subject). For the remaining 139 patients, we only retrieved images and

reports from 1 random session. Overall, we ended up with a dataset of 361 radiology reports to use

for the NLP pipeline. Every report was written (dictated) in French during routine clinical practice

by a junior radiologist after exploring all sequences of interest. Then, a senior radiologist reviewed

each case amending the final report when necessary.

Report Tagging - In order to build a supervised document classifier, one radiologist (4 years of

experience in neuroimaging) tagged the reports with labels of interest. For each report, the annotator

was instructed to perform two separate tasks: first, she had to assign 3 classes to the reports; one

class that indicated the global conclusion of the report, one class to indicate the evolution of the

enhanced part of the lesion (T1w conclusion) and the last one to indicate the evolution of the lesion
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on T2-weighted sequences (T2w conclusion). For each of these three groups, the annotator could

choose between the following labels:

• Stable: assigned when the tumor did not change significantly with respect to the previous

comparative exam.

• Progression: assigned when the tumor worsened with respect to the previous comparative

exam. This class included cases where the enhanced part of the tumor increased in size or

when the T2 signal anomalies surrounding the tumor increased in extension.

• Response: assigned when the tumor responded positively to the treatment.

• Unknown: used when the annotator was not able to assign any of the three classes above.

The second task of the annotator was to highlight the most recent comparative date in the reports.

Since the reports are not structured, this helped linking the current report being tagged with the

most meaningful previous one. For simplicity, in this work we only focused on the global conclusion

of the reports, and not on the T1w and T2w conclusions. Also, we removed all cases that were

tagged as unknown (21 reports) and we merged progression and response into one unique class

which we denote as unstable. By doing this, we narrowed the task to a binary classification problem

where the model tries to distinguish between stable (N=191) and unstable (N=149) reports. To

facilitate the annotation process, we utilized the open-source software Dataturks3.

Text Preprocessing & Embedding - Several preprocessing steps were carried out to reduce

the vocabulary size. First, we removed all proper nouns such as physicians’ and patients’ names.

Second, all the words in the reports were converted to lowercase. Third, we removed punctuation and

the most common French stop words. Among these, we ensured to keep the French negation ‘pas’

(not) since it is very frequent in the reports, and reverses the meaning of the sentence. Fourth, all

reports were tokenized using the wordpunct class of the Natural Language Toolkit framework (version

3.6.1) [157]. As last step, since all the reports contain the three sections ‘indications ’, ‘description’

and ‘conclusion’, we removed all content before the ‘indication’ section, which is either useless (e.g.

department phone number) or sensitive (e.g. patient identifier).

A key step in any NLP pipeline is text embedding. This corresponds to the conversion of tokenized

text into numerical vectors. In this work, we compare two widespread embedding techniques, namely

TF-IDF [158] and Doc2Vec [159]. The former is a standard term-weighting embedding scheme

3OpenSource Data Annotation tool - http://github.com/DataTurks/DataTurks
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(classical ML) that preserves the length of the tokenized documents, while the latter is a DL-based

technique that creates dense vectors which encode word order and context.

Experiments - All experiments were run in a 5-fold, nested, stratified cross validation (CV).

The internal CV was used to tune the hyperparameters of the pipeline with a custom Grid Search

algorithm. Instead, the external CV was used to compute results on hold-out test samples. For

details regarding hyperparameter optimization, readers are referred to [47]. To avoid overoptimistic

predictions, we also ensured that the reports from multiple sessions of the same subject were not

present some in the train set and some in the test set. Furthermore, to reduce the bias introduced

by the random choice of patients at each CV split, the whole nested CV was repeated 10 times, each

time performing the splitting anew, and results were averaged. For all experiments, we adopted the

Random Forest algorithm [160] to classify the embedded documents. To compare the two pipelines

(Doc2Vec vs. TF-IDF embedding), we computed all standard classification metrics, and we plotted

the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves. The reports indi-

cating tumor stability were considered as negative samples, whereas those indicating a change in the

tumor were considered as positives. The classification metrics and the curves were averaged across

the 10 runs. To statistically compare the results, a Wilcoxon signed-rank test was performed [161] on

the area under the ROC curve (AUC) across the 10 runs, with a significance threshold level α = 0.05.

We conducted an explainability analysis with the LIME toolkit to identify the most important

words than influenced the final prediction. This was run on the TF-IDF pipeline only since it resulted

in higher performances (as we will see in section 2.2.1). We set the best hyperparameters obtained

across the random runs and we ran LIME over all test reports. All the code developed for this study

is available at https://github.com/connectomicslab/Glioma_NLP.

1.4.4 Glioma change detection using weak labels and transfer learning

In this paragraph, the third manuscript [36] included in the PhD thesis is presented. The goal of this

work is to tackle image-based glioma change detection. The main contributions of the manuscript

are the following: (i) we propose a Transfer Learning (TL) approach that leverages inexpensive and

fast-to-create weak labels generated from the report classifier of [47]; (ii) we automate the choice

of TL type, treating it as another hyperparameter to optimize, and thus avoiding manual empirical

trials; (iii) we assess the impact of model size on the proposed TL pipeline and (iv) we evaluate our

pipeline on the longitudinal subjects of the public BraTS 2015 dataset. In the following paragraphs,

the Materials & Methods section of the paper is summarized.
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Related works - Previous works addressing glioma change detection, NLP to generate weak

labels, the automation of TL, or the influence of model size on TL are described in [36].

In-house dataset - We retrieved 2100 MR scans belonging to 183 retrospective patients with

high-grade gliomas who were scanned between 2004 and 2019 at the Lausanne University Hospital.

At every session, a series of MR scans including structural, perfusion and functional imaging were

performed. For simplicity, in this work we only focused on the T2-weighted (T2w) scans. Scans that

were too close to surgery (within 4 weeks) were excluded since they contained exaggerated intensity

changes and brain deformations around the resection cavity. In addition, we extracted the radiology

reports associated with each session. We released an anonymized version of our dataset on Zenodo4.

BraTS dataset - To assess the generalization of our pipeline to an external dataset, we ran in-

ference on the longitudinal subjects of the BraTS 2015 dataset. We selected the 2015 edition because

it is the only one that contains patients with multiple scans. Out of the 20 available longitudinal

patients, we discarded 5 because they only contained two scans (before and after resection). For the

remaining 15 subjects, we used 59 MR scans (average of 4 scans per subject), again only focusing on

T2w scans. From these 59 scans, we generated 51 difference maps (creation process described below)

which were tagged by one radiologist with over 18 years of experience, using the labels presented in

the next paragraph. We openly released these labels for other researchers.

Report Tagging - From the 183 glioma patients of the in-house dataset, we created two sub-

datasets: a Human-Annotated Dataset and a Weakly-Annotated Dataset.

Human Annotated Dataset (HAD) - For this sub-dataset, three radiologists tagged the MR

radiology reports with labels of interest following the same procedure described in section 1.4.3. In

total, 381 reports (belonging to 169 distinct patients) were manually annotated by human experts.

Out of these 381, 39 reports (belonging to 39 distinct patients) were tagged by a senior radiologist

with over 18 years of experience in neuroimaging (P.H), while 342 reports (belonging to 162 patients)

were tagged by two radiologists both with 4 years of experience. Cohen’s kappa coefficient between

the two readers for the T2w conclusion was k = 0.80 which is considered a “substantial agreement”

according to [162]. The 41/342 reports for which the two annotators disagreed were discarded. Also,

we discarded 90 reports for which the T2w conclusion was different from the global conclusion. Last,

we also excluded the 17 reports for which the T2w conclusion was unknown.

Weakly Annotated Dataset (WAD) - For this sub-dataset, reports were tagged with the classifier

proposed in our previous work [47] (described in section 1.4.3). We denote the labels generated from

the report classifier as weak because the classifier will commit errors, and because, differently from

4DOI: 10.5281/zenodo.7214605

28



1.4 Change Detection in Longitudinal Glioma Imaging

human readers, it cannot abstain when the reports are unclear (i.e. there is no unknown label).

Both for HAD and WAD we merged progression and response into one class which we denote

as unstable. This narrowed the task to a binary classification problem where we try to distinguish

between stable and unstable reports. After these modifications, HAD contained 233 reports (159

stable, 74 unstable), whereas WAD contained either 795 (333 stable, 462 unstable) or 361 (165 stable,

196 unstable) reports, depending on the hyperparameter fraction of WAD presented below.

Image-based change detection - Every radiology report links two time points, namely the

current scan and a previous scan which is used as baseline for comparison. Thus, for each report, we

generated a corresponding T2w absolute difference map as illustrated in Figure 1.8. The rationale

Figure 1.8: Creation of T2w difference maps. After registration and normalization of the previous and
current T2w volumes, the maps are computed via voxel-wise absolute difference. (a) 58-year-old male
patient with a progressing gliosarcoma. (b) 59-year-old male patient with a stable astrocytoma. (c)
60-year-old male patient with seemingly stable glioblastoma, but with enlarging cystic lesion (zoom
in cyan color). (d) 60-year-old male patient with a (less evident) stable oligodendroglioma.
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behind these difference maps is that parts of the tumor that either progress or respond to treatment

(unstable) should appear as hyper-intense; instead, if the tumor is stable across the two time-points,

the difference map will likely be hypo-intense overall. To generate the difference maps, we first applied

N4 bias field correction with ANTs [163] both to the previous and to the current T2w volumes.

Second, we registered the previous volume to the current volume. Third, we skull-stripped both

volumes (previous warped and current) with HD-BET [164]. Fourth, we applied z-score normalization

on both volumes. Last, we computed the absolute voxel-wise difference of the normalized volumes.

Classification Networks - The image-based change detection is treated as a binary classification

problem: as for the reports, we try to classify the difference maps into stable and unstable. We

used two Convolutional Neural Networks (CNNs) for the classification of the T2w difference maps: a

custom 3D-VGG [165] (henceforth called VGG) and a 3D-ResNeXt [166] with Squeeze-and-Excitation

[167] (henceforth called SEResNeXt). Details about the networks can be found in [36].

Experiments & Hyperparameter tuning - To create the weak labels, we adapted the report

classifier [47] and trained it to classify the T2w conclusion (in [47] it was trained to classify the

global conclusion). We ran a nested 5-fold cross-validation on the 233 HAD reports, selected the

best hyperparameters, and finally performed inference with the best model on all WAD reports to

obtain the weak labels later used for the image-based change detection.

Image-based glioma change detection - Because of computational constraints, we decided

to fix some hyperparameters, and tune others. Among the fixed (i.e. not tuned) hyperparameters we

chose a batch size of 4 and 60 training epochs with early stopping. Depending on the experiments

detailed below, other hyperparameters were tuned using the Optuna framework [168] (details in [36]).

To understand which TL type is the most appropriate to improve classification performances and how

model capacity can influence TL results, we performed two experiments (called Baseline and TL)

with the two CNNs models described above (VGG and SEResNeXt): in the Baseline experiment,

we conducted a 5-fold cross-validation only on HAD, and WAD was intentionally not used (no

TL). Evaluation was performed on the test subjects of each cross-validation fold and then results

were aggregated. The only two hyperparameters that were tuned for the Baseline experiment were

learning rate and weight decay. The former was chosen from {1×10−4, 1×10−5, 1×10−6}, whereas the
latter was chosen from {0, 0.01}. In the Transfer Learning (TL) experiment, we still performed

a 5-fold cross-validation on HAD, but this time we also exploited the WAD difference maps. In

addition to learning rate and weight decay (which are tuned identically to the Baseline), here we

also searched for the best TL configuration. Specifically, we tuned 3 additional hyperparameters:

mixed training, feature extraction and fraction of WAD.
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• mixed training can either be True or False: if True, we use for training a mixed shuffled dataset

that is composed of WAD difference maps and the difference maps of the training HAD patients;

if instead mixed training is False, we either perform feature extraction if feature extraction is

True, or fine-tuning if feature extraction is False.

• fraction of WAD indicates which portion of WAD to use. We added this hyperparameter

because not all weakly-labeled data is necessarily useful. In other words, by tuning frac-

tion of WAD we wanted to understand whether some reports (and hence some difference maps)

are more informative than others. The tunable values that we chose for fraction of WAD were

{WAD > 0.75,WAD > 0.95} where 0.75 and 0.95 are the output probabilities (soft labels) of

the report classifier from [47]. For instance, when using WAD > 0.95 we only use the reports

for which the report classifier is highly confident (output probability > 0.95).

Since running all combinations would have been impractical, we only ran each TL experiment

(VGG-TL and SEResNeXt-TL) for 4 days. To summarize, we ran 4 experiments: VGG-Baseline,

VGG-TL, SEResNeXt-Baseline, and SEResNeXt-TL. The comparisons between Baseline and TL

aimed to assess the effectiveness of the weak labels in WAD. Instead, comparisons between the two

CNNs aimed to understand the influence that model capacity can have on TL strategies for our task.

Cross-Validation - For the Baseline experiments, we performed a 5-fold cross-validation on

HAD. At each cross-validation split, 80% of the subjects were used to train the CNN (either VGG

or SEResNeXt), while the remaining 20% of the subjects were used to compute test results. Within

each cross-validation fold, we also used 25% of the training subjects as validation set for tuning the

hyperparameters. To avoid over-optimistic results, the cross-validation splits were always performed

at the subject level. For the TL experiments, we performed the same 5-fold cross-validation on HAD,

but then adapted the learning strategy according to the hyperparameters chosen during hypertuning.

We ensured that the same splits were performed on HAD both for the Baseline and TL experiments.

Metrics, Statistics & Code - The task that we address is binary classification of the T2w differ-

ence maps which are labeled either as stable or unstable. We report in the Results section accuracy,

sensitivity, specificity, F1 score, AUC, and Area Under the Precision-Recall curve (AUPR). We con-

sider the class unstable as “positive”, and the class stable as “negative”. To statistically compare

the four different models presented above, we ran permutations tests using the difference in AUCs

as test statistic, as similarly performed in [169]. We set a significance threshold α = 0.05 and we ran

10 000 permutations for each test. The code used for this paper and the corresponding configuration

files are available at https://github.com/connectomicslab/Glioma_Change_Detection_T2w.
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Chapter 2

Summary of Results

In the following pages, the main results of the papers included in the thesis [35,36,47] are summarized.

2.1 Automated Aneurysm Detection

In [35], our weak labels resulted to be four times faster to generate with respect to their voxel-wise

counterparts (two-sided Wilcoxon signed-rank test – annotation timings, W=0, p=0.001). The model

that achieved the highest sensitivity (83%, with false positive rate of 0.8) across the test folds was

the one for which we applied the anatomically-informed sliding window approach during inference,

but not the anatomically-informed patch sampling during training. Figure 2.1 illustrates the FROC

curves of 3 models under different configurations. Model 7 is the top-performing. When evaluating

this model on the ADAM test dataset, we achieved a sensitivity of 68% (false positive rate of 2.5)

and ranked 4th/18 on the open leaderboard. We found no significant difference in sensitivity between

aneurysm risk-of-rupture groups (p=0.75), locations (p=0.72), or sizes (p=0.15).

2.2 Glioma Change Detection

2.2.1 Report classification with Natural Language Processing

The report classifier developed in [47] reached 89% AUC when distinguishing reports indicating

tumor stability and tumor instability, with the TF-IDF embedding performing significantly better

than Doc2Vec (Wilcoxon signed rank test comparing AUC distributions, P = 0.009). Table 2.1

illustrates classification results for both embedding schemes.
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2.2 Glioma Change Detection

Figure 2.1: Mean Free-response Receiver Operating Characteristic (FROC) curves across the five
test folds of the cross-validation. Shaded areas represent the 95% Wilson confidence interval. The
three models correspond to Model 5, Model 6, and Model 7. Anatomically-agnostic model: none of
the two anatomically-informed expedients are used. Anat: Anatomically-Informed.

The interpretability analysis run with LIME showed that words like ‘progression’, ‘augmentation’

and ‘diminution’ that all indicate some sort of change were recurrent for predicting true positive

samples. Similarly, words like ‘no’, ‘stability’ and ‘unchanged’ are predominant when predicting true

negative reports. However, the error analysis also highlighted some recurrent mistakes, such as the

importance given to the words ‘t2 ’ and ‘axial’ which are not directly linked to the task at hand.

Overall, we deemed the high AUC attained with the TF-IDF pipeline to be sufficient for generating

report-based weak labels for a subsequent study, which led us to the last manuscript of the thesis [36].

2.2.2 Image change detection with transfer learning and weak labels

In [36], the weak labels allowed us to increase the amount of labeled T2-weighted difference maps

more than 3-fold. As we can observe in Table 2.2, this increase in dataset size permitted to raise

classification performances both for the VGG and the SEResNeXt models on the in-house dataset.

In fact, AUC and AUPR of the VGG-TL and SEResNeXt-TL experiments are higher with respect
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2.2 Glioma Change Detection

Table 2.1: Report classification results across the 10 random runs. Values are presented as mean
± standard deviation. Bold values indicate the highest performances. Acc = accuracy; Sens =
sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value;
F1 = F1-score; AUC = area under the ROC curve; AUPR = area under the PR curve.

Embedding Acc % Sens % Spec % PPV % NPV % F1 % AUC AUPR
TF-IDF 88±1 91±1 75±0 95±0 60±2 93±0 .89±.01 .97±.00
Doc2Vec 86±2 94±3 38±10 89±1 57±10 92±1 .83±.05 .96±.01

to VGG-Baseline and the SEResNeXt-Baseline, respectively. However, this raise was only significant

for the VGG model (AUC permutation test, p=0.05). In addition, we also found that model capacity

is negligible for the task at hand: when comparing the VGG-Baseline with the SEResNeXt-Baseline

experiment we found no significant difference (AUC permutation test, p=0.17) and similarly we found

no difference when comparing the VGG-TL with the SEResNeXt-TL experiment (AUC permutation

test, p=0.39). Overall, these results suggest that the VGG is preferable for the task at hand because

it is simpler and more computationally efficient (having ≈2.5X fewer parameters). When checking

the most frequent hyperparameters chosen from Optuna, we found a peculiar pattern for the TL

experiments: the hyperparameter mixed training was always True. This means that training from

scratch with a mixed dataset (WAD + training HAD) consistently leads to higher performances

with respect to either fine-tuning or feature extraction. Regarding classification performances on the

external BraTS dataset, the SEResNeXt-Baseline model showed the highest AUC, though it did not

significantly outperform the SEResNeXt-TL (p=0.46), or the VGG-Baseline (p=0.39).

Table 2.2: Classification test results. Upper part: in-house dataset. Lower part: BraTS-2015 dataset.
Bold values indicate the highest performances. N=# of difference maps; Baseline=pipeline where
only HAD data is used. TL=Transfer Learning: pipeline where both HAD and WAD are used.
ACC=accuracy; SENS=sensitivity; SPEC=specificity; F1=F1 score; AUC=Area Under ROC Curve;
AUPR=Area Under Precision-Recall Curve; PARAMS=# of parameters in the model.

Dataset N Model Acc Sens Spec F1 AUC AUPR Params

In-house 233

VGG-Baseline 70 55 77 54 .74 .55
7.5 M

VGG-TL 79 80 79 71 .82 .72
SEResNeXt-Baseline 76 50 88 57 .79 .63

19.4 M
SEResNeXt-TL 77 78 76 68 .83 .73

BraTS
2015

51

VGG-Baseline (inference) 75 82 50 83 .66 .90
7.5 M

VGG-TL (inference) 76 92 25 86 .59 .89
SEResNeXt-Baseline (inference) 73 69 83 79 .76 .93

19.4 M
SEResNeXt-TL (inference) 78 95 25 87 .60 .60
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Chapter 3

Discussion

In this last chapter, we will contextualize and discuss the results presented above. Then, we will

provide an overview of future steps for both the aneurysm and the glioma project. Last, we will

conclude the thesis with some final thoughts and remarks regarding the impact of the work.

3.1 Main contributions

The goal of this PhD thesis was to investigate the use of DL models for two routine tasks conducted

in radiology departments: aneurysm detection on TOF-MRA scans, and longitudinal monitoring of

patients with high-grade gliomas on T2-weighted MR scans. For both projects, we tried to tackle

some of the recurrent limitations that are associated to any DL-based pipeline in medical imaging.

Specifically, the main contributions of this PhD thesis are the following:

1. The use of weak labels to mitigate the manual annotation bottleneck

2. The use and automation of transfer learning to alleviate domain shift and data scarcity

3. The use of prior anatomical knowledge to reduce model opaqueness

4. The open release of our two in-house datasets and open-source models

In the following paragraphs, we will further discuss these contributions and highlight their impact

in the medical imaging community. The first research focus of this PhD thesis was the use of

weak labels. Although several initiatives have been put in place to facilitate the sharing of data

across research groups (e.g. The Cancer Imaging Archive [170], re3data [171], Grand Challenges in
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3.1 Main contributions

Biomedical Image Analysis [172], etc.), the need for large, multicentric and heterogeneous labeled

data will likely remain the major challenge for the deployment of robust DL-based systems in coming

years [173]. The main reason for this is that small sample sizes and the lack of diverse geographic areas

hinder model generalization, and DL models need to be continuously updated to cope with concept

drift [174]. The weak labeling strategy presented in this thesis aims at mitigating this annotation

bottleneck of medical DL and thus at increasing the amount of labeled data. In the aneurysm

project, we leveraged oversized weak labels which allowed us to reduce the annotation time fourfold

with respect to voxel-wise labels, while still maintaining competitive detection performances (ablation

experiments, Table 4 of [35]). If reasoning in terms of larger datasets (e.g., thousands of patients), the

proposed annotation process is a scalable and time-saving solution which can significantly alleviate

the annotation bottleneck. Similarly, in the glioma project, we generated weak labels from textual

radiology reports using an NLP classifier. Unstructured, semi-structured and structured radiology

reports represent an underexploited resource for numerous applications in medical informatics [175],

such as disease information and classification, diagnostic surveillance, quality compliance, cohort

creation, and source of weak labels for downstream imaging tasks [176]. Despite being more general

than image labels, weak labels extracted from radiology reports hold great potential for mitigating the

annotation bottleneck. The main advantage of NLP-generated weak labels is that report classifiers

are normally fast to train as compared to image-based models. (e.g. the NLP classifier presented

in [47] takes ≈10 minutes, while even the small-capacity VGG network in [36] takes ≈ 6 hours).

Moreover, even before the actual model training, also the creation of report labels is typically faster

than the creation of image labels (e.g. identifying “tumor progression” in a report is faster than

generating a voxel-wise manual mask of the progressing parts of the tumor). However, neither in [47]

nor in [36] we conducted a proper timing for the generation of report labels, plus the difference in

generation time might be task dependent. Nonetheless, once we have a trained report classifier,

labeling hundreds (or even thousands) of new samples becomes extremely fast and inexpensive. On

top of this, radiology reports have the advantage of being less computationally cumbersome in terms

of storage and data transfer which can have a drastic impact in large, multicentric studies. In the

work [47], we explored the use of NLP for classifying French radiology reports of patients with high-

grade gliomas with two embedding strategies. As pointed out in [176], and subsequently shown

in other works [177, 178], classical ML embedding techniques can lead to comparable results with

respect to DL techniques when properly tuned. Moreover, they are still frequent when the dataset

size is limited such as in medical imaging applications. Our work confirms this trend since, given the

same classifier (Random Forest), the TF-IDF pipeline statistically outperformed the Doc2Vec one.
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In [36], the weak annotation pipeline devised in [47] allowed us to obtain a more than 3-fold increase

in sample size (233 difference maps for the Human Annotated Dataset vs. 795 for the TL pipeline

with Weakly-Annotated Data > 0.75) at very little added cost. Results in section 2.2.2 showed that

the automatically labeled dataset WAD helped improving classification results both for the VGG

and the SEResNeXt model between Baseline and TL experiments, although the difference was only

significant for the VGG model. Nevertheless, as similarly reported in [179], we expect performances

of both models to increase even further as more weakly-labeled samples are added.

The second contribution of this thesis relates to the use of Transfer Learning (TL) to mit-

igate domain shift and data scarcity. Although TL in medical imaging applications is not

novel [90, 91, 180–182], the parallelism between TL in computer vision (CV) tasks and clinical tasks

remains underexplored [90]. For instance, it is unclear whether the direct correlation between larger

model capacity and increase in classification/segmentation performances usually witnessed in CV

holds true for medical DL models that typically operate in lower data regimes (hundreds, rarely

thousands of samples). Furthermore, the optimal type of TL (e.g. fine-tuning, feature extracting,

mixed training, etc.) also remains to be discovered. In the work [36], we tried to shed light on these

unanswered questions by exploring the impact that model capacity can have on medical TL, and by

automating the choice of TL type by framing the problem as a hyperparameter optimization task.

When studying the impact that model size can have on classification performances, we found no

significant difference between VGG and SEResNeXt neither for the Baseline nor for the TL exper-

iment. Therefore, for our application, we conclude that the VGG model is preferable because it is

simpler and faster to train. A similar result was found in [183] where a VGG19 model outperformed

much deeper networks in a TL pipeline for COVID-19 detection. Also, we found that the TL ex-

periment with weakly annotated data led to significantly higher performances with respect to the

Baseline experiment only for the VGG. This result differs from the similar study [90] since in the

small data regime we found the smaller network (VGG) to benefit more from TL with respect to the

larger SEResNeXt. In general, both our results and the ones in [183] show that the high-capacity

networks and TL strategies typically used for CV tasks in the high-data regime are not necessarily

optimal for medical imaging tasks, where models often operate in the low-data regime. Given that

DL scaling studies typically show log-linear or power laws [184, 185] relating loss to dataset size,

including for TL [186], it is possible that the higher-capacity SEResNeXt model in our study would

be superior if much more data was available. However, this is not visible with our small dataset as

we are far from the performance asymptote. Regarding the automation of the TL pipeline, instead of

searching for the best TL type manually (which is the standard approach in similar studies [83]), we
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framed the TL experiments as a hyperparameter optimization problem. Because the optimal value

of other hyperparameters (such as the learning rate) depends on the TL type, our approach avoids

the arbitrary choice of a TL type which can be potentially suboptimal. We believe that our pipeline

can be adopted by similar works that aim to automate TL for image classification. Surprisingly, we

found that mixed training TL led to higher classification performances with respect to fine-tuning or

feature extracting. From a computational and environmental point of view, this finding is alarming

because it indicates that the longest-running, least resource-efficient TL pipeline could be preferable,

at least for longitudinal monitoring of high-grade gliomas. However, further investigations on similar

tasks are needed to assess if this trend is isolated or recurrent.

The third contribution of the thesis is the use of prior anatomical knowledge to improve

detection results and increase model interpretability. In the work [35], our model leverages the

underlying anatomy of the brain vasculature (i.e., we “anatomically-informed” our network) in order

to simulate the radiologists’ exploration of the TOF-MRA scans. First, most of the negative patches

(i.e. patches without aneurysms) extracted during training either contained a vessel or were located in

correspondence with the aneurysm landmark points. Second, we limited the sliding window approach

only to regions of the brain that are plausible for aneurysm occurrence. These constraints aimed at

mimicking the radiologists’ behavior in the sense that only regions containing vessels, or at higher risk

for aneurysms are scanned, while the rest of the brain is neglected. Regarding model interpretability,

narrowing the analysis to these anatomically plausible areas makes the model more easily explainable

to clinicians because, for instance, we avoid false positive predictions in areas of the brain that are too

peripheral and therefore unrealistic. The results in section 2.1 showed that the anatomically-informed

sliding window is an effective expedient since it increases sensitivity, while reducing the average FP

rate. Instead, the anatomically-informed patch sampling proved to be negligible when combined

with the anatomically-informed sliding-window, or even detrimental when the sliding window was

anatomically-agnostic. We hypothesize that applying only the anatomically-informed patch sampling

leads to a domain shift issue: specifically, the model is trained using intensity-matched patches,

but then is tested with any patch in the brain (because there is no anatomically-informed sliding

window). We think this difference between training and test domain is what causes the decrease

in performances. Nevertheless, the anatomically-informed sliding window expedient suggests that

injecting prior anatomical knowledge in the pipeline can improve detection performances. We believe

this general principle is also applicable to other pathologies with sparse spatial extent.

The last noteworthy contribution of this PhD thesis, both for the aneurysm [35] and the glioma

project, [36] is the open release of our in-house datasets. The sate of the art for automated
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aneurysm detection methods clearly lacks multi-site validation which is paramount if we plan to

safely applying these CADe tools during routine clinical practice. Although [117, 118] did publish

results obtained from multiple institutions, none of them released their dataset publicly which makes

comparisons between algorithms unfeasible. The comparisons between methods are further hindered

by the use of non-standardized evaluation metrics (e.g. FROC/lesion-wise sensitivity/subject-wise

specificity) or by the fact that not all related studies include both patients (subjects with aneurysms)

and controls (subjects without aneurysms). By openly releasing our dataset, we aim to bridge the

data availability gap and foster reproducibility in the medical imaging analysis community. The

combination of our in-house dataset and the ADAM dataset will allow researchers to assess the

realistic robustness of proposed algorithms on heterogeneous data generated from different scanners,

acquisition protocols and study population. Moreover, the availability of both datasets (in-house and

ADAM) will allow researchers to try different supervised domain adaptation techniques and uncover

which is the most effective for the task at hand. For the glioma change detection project, the release

of our in-house dataset is arguably even more significant since, to best of our knowledge, ours is the

first longitudinal labeled dataset available in the community for monitoring high-grade gliomas. Also

for this project, the availability of both our in-house dataset and the labeled BraTS-2015 dataset

(that we released) will allow to investigate domain adaptation, even though the amount of labeled

BraTS data is limited (N=51 session pairs). We believe both our in-house datasets (aneurysm: [35],

glioma: [187]) will foster reproducibility in the community and allow a more rigorous benchmarking

for automated DL models.

3.2 Limitations and future steps

In this section, we present the major limitations of the developed DL models, and we point to future

steps that can be undertaken for overcoming such limitations.

Aneurysm Detection - Focusing on [35], even combining our in-house dataset with the ADAM

dataset, the number of subjects is still limited when compared to some related TOF-MRA [117,

118] or CTA [188, 189] studies. Also, we acknowledge that the number of patients for whom we

compared the different annotations schemes (i.e., weak vs. voxel-wise) is limited (N =38); it is

possible that statistically significant performance differences could be found with a larger sample

size. Furthermore, we have to further increase detection performances if we plan to deploy our model

as a second reader for radiologists, especially to detect tiny aneurysms or aneurysms in rare locations

which are more frequently overlooked [114]. Although our top-performing model reached a sensitivity
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of 83%, this value might not be high enough, especially when assisting senior radiologists. At the

same time, there should not be too many false positive predictions per subject (ideally not more

than 2 or 3, on average), otherwise reading time might become prohibitively long.

Finally, ablation experiments have shown that pre-training the model on the ADAM dataset did

not increase detection performances, thus different transfer learning techniques should be explored.

In the paper under preparation described in section 1.3.5, we are planning to overcome some of

these limitations. First, we will retrieve 81 new subjects (65 controls, 16 patients) to re-train the

model presented in [35] and further improve detection results. These 81 subjects are distinct from

the 140 that will be later used for the within-subject reading. In addition, we will compare different

TL techniques (fine-tuning, feature extraction, mixed training) to better exploit knowledge acquired

from the ADAM dataset on the target in-house dataset. This supervised TL scenario is similar to

the one faced in [36], though this case would correspond to a transductive TL scenario [80] where

Ds (ADAM dataset) ̸= Dt (in-house dataset). Last, we will use the top-performing configuration

discovered in [35] (i.e. no anatomically informed patch sampling, but anatomically informed sliding

window) to run inference on the new 140 subjects. This work will represent the ultimate step of the

CADe development and will help us understand the real practical value of our tool in a radiological

setting in terms of reading time, added clinical value, and acceptance by the readers.

Beyond the planned work, additional steps that can be explored to improve detection perfor-

mances in the future might include for instance trying different architectures to segment (e.g. V-

Net [190], UNETR [191], Swin UNETR [192], nnUnet [193]) or detect (e.g. nnDetection [121])

aneurysms, ideally combining these models with our anatomically-driven expedients. Also, one might

consider using a multi-scale approach with patches of larger (or smaller) size. In addition, it would

be useful to conduct further error analyses (as the one shown in Figure 3.1) to identify common

patterns for both false positive and false negative predictions.

Glioma Change Detection - In this clinical application, the first limitation of our approach [47]

is that the report annotations were performed by one single radiologist which is not the optimal

scenario for ambiguous NLP tasks. A second major limitation of the glioma project (both in [47]

and in [36]) is that we narrowed the classification problem to a binary scenario in which we only

distinguished stable vs. unstable tumor, mainly because we did not have enough cases of tumor

response in our cohort. This is a simplification because progression and response are distinct clinical

indicators. Another limitation of [36] is that we only focused on T2w MRI volumes, even though

a multi-modal assessment of glioma evolution would be more accurate [146]. A fourth limitation is

that the reports from the HAD for which the two annotators disagreed were discarded. Additionally,
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Figure 3.1: Qualitative analysis of predictions and errors. The heatmap generated by the network
ranges from 0 (low probability, yellow color) to 1 (high probability, red color) (a) True positive
prediction in the anterior communicating artery. (b) False negative in the internal carotid artery.
The ground truth label mask is shown in blue. (c) False positive prediction in the internal carotid
artery.

we only evaluated one approach for fine-tuning (i.e. all the layers of the networks were re-trained).

Future works should aim at extracting new patients and adapt the classification towards a 3-

class (stable, progression, response) or even 5-class (stable, progression, response, pseudoprogression,

pseudoresponse) problem. Ideally, the reports linked to these new patients should be annotated by

more than one radiologist (the more, the better) in order to have more robust ground truth labels

after a consensus has been reached for discordant examples. As shown in section 1.4.2, adding

more classes would require the use of additional sequences (e.g. enhanced T1w, FLAIR, etc.) on

top of the T2w scans. If moving toward this more granular scenario, researchers should be wary

because, as previously shown in [194], results might change significantly. Another approach to

increase performances could be to change the layers that are frozen/re-trained during fine-tuning

and the number of epochs during which they are re-trained, as in [89]. Eventually, the final goal

of the glioma change detection project would also be a clinical assessment of the utility of the

CADe system. Once a multi-modality approach will be put in place, with satisfactory classification

performances, a prospective trial should be run to understand whether the changes highlighted in

the new scan are relevant for the radiologists and actually facilitate and speed up diagnosis and

subsequent report writing.
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3.3 Conclusion

Estimates of the WHO indicate that the proportion of the world’s population over 60 years of age

will be 22% by 2050, nearly double that of 2015 [195]. And “the older population requires more

imaging”, said Dr. Harprit Bedi, vice chairman of radiology education at Boston University School

of Medicine. This aging trend is worrying because the number of practicing radiologists will likely

be insufficient to meet the growing demand for imaging care [196, 197]. Some studies have reported

that, in some extreme cases, an average reader should interpret one image every 3–4 seconds in an

8-hour shift to meet workload demands [198]. This mismatch between available radiologists and

disproportionate grow of imaging data is projected to have dire consequences for patients who will

experience ever longer waiting lists, and for radiologists who will have to cope with increasing backlog

of examinations.

One possible solution to face this looming scenario is the integration of CAD systems and ma-

chine learning algorithms into the radiological workflow, with the intent of increasing image reading

throughput while preserving high diagnostic accuracy. Tremendous progress has been made in the

field of CAD systems since their first introduction in the 1980s, with the latest wave, the one based

on deep neural networks, showing impressive performances across a rising number of specific, radi-

ological tasks [199]. As a matter of fact, DL-based algorithms excel at automatically recognizing

complex patterns in imaging data and providing quantitative, rather than qualitative, information

about radiographic characteristics [200]. According to [200], the three radiological tasks in which

DL-based CAD systems will likely have a large impact are anomaly detection (as in the case of

aneurysm detection presented in this thesis), subsequent characterization of objects of interest via

segmentation, diagnosis and staging, and finally the longitudinal monitoring of objects for diagno-

sis and assessment of treatment response (as for the monitoring of high-grade gliomas described in

previous sections).

Despite all the excitement about the added value that AI will bring to radiology, there is still

a great debate regarding the speed with which novel DL models will be implemented in clinical

practice [201]. As we have seen throughout this PhD thesis, there are still some undeniable limitations

linked to DL-based systems that need to be overcome, or at least mitigated, before these tools become

pervasive and routinely adopted in the clinics.

The first limitation that we addressed was the lack of large annotated medical dataset. This data

scarcity is considered one of the biggest obstacles for reaching human-level clinical performances (or

higher), because models trained with too few samples tend to overfit to the training data and lose the
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ability to generalize [202]. This issue is even more pronounced for rare diseases, where the retrieval

of large cohorts is extremely complicated. Our proposed solutions to mitigate this phenomenon were

the use of time-saving weak labels to speed up the collection of annotated data and the open release

of both our in-house datasets.

The second limitation that we addressed was domain shift, a recurrent phenomenon that occurs

when the unseen test samples have a different feature distribution with respect to the training

samples. To compensate for domain shift, in the glioma project we investigated the use of transfer

learning, and in particular the automation of TL types to avoid empirical choices. To further validate

this approach, we are planning to experiment it also in the clinical paper described in section 1.3.5.

A third limitation of DL models is the lack of interpretability. Even though there is a growing

trend in the ML community towards open-sourcing data and code, a strong theoretical understanding

of deep learning still needs to be established [203]. This lack of understanding complicates failure

prediction and makes it hard to isolate the logic behind a specific conclusion drawn by the model.

However, although model interpretability is paramount and will need extensive further investigation,

it has also been pointed out that numerous safe and effective Food and Drug Administration (FDA)-

approved drugs also have unknown mechanisms of action [204,205], which opens the floor to a more

general discussion that tries to answer the question: “up to which level do we want our model to

be explainable?”. In this PhD thesis, we tried to alleviate model opaqueness using prior anatomical

knowledge. Specifically, in [35] we constrained the analysis only to the areas of the brain that are

plausible for aneurysm occurrence. Although this approach is currently not the most widespread

in the literature, it can help to simulate the physicians’ exploration of medical images and reduce

unexpected behaviors of the model.

A fourth limitation that was not addressed in this work but that is worth mentioning is the

inability of DL models to address more than one task (a quality referred to as narrow intelligence,

or specific-purpose intelligence). A comprehensive (or general-purpose) DL system capable of per-

forming multiple tasks such as detecting different anomalies within the entire human body is yet to

be developed [200].

In summary, this PhD work explored several expedients that aim at mitigating intrinsic limitations

of DL-based CAD systems in radiology. Although we narrowed our analysis only to two specific tasks

(aneurysm detection and glioma change detection), we believe our contributions can help researchers

who are facing similar tasks (anomaly/change detection) to overcome such limitations and bring their

models closer to clinical application.
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In the following pages, the PDF versions of the papers included in the PhD thesis are attached.

Following the same order described throughout the thesis, first we report the work [35], then [47],

and finally [36]. Although not directly described in the thesis, here we also report some secondary

contributions of this PhD thesis:

• In [206], we compared classic ML architectures and a CNN to distinguish saccadic eye-movement

trajectories of healthy patients from eye-movement trajectories of patients with spatial neglect,

a neurological syndrome characterized by a lack of awareness of contralesional stimuli following

right hemispheric damage.

• In [207], we addressed the task of patch-wise classification on TOF-MRA patches (with and

without aneurysms), investigating the impact of negative sampling and prior anatomical knowl-

edge. This work was a precursor of [35] where instead we addressed patient-wise detection of

aneurysms.

• In [122], we helped writing the manuscript related to the ADAM challenge.
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Abstract
Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improve-
ments with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity 
of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that over-
comes the issue with “weak” labels: oversized annotations which are considerably faster to create. Our weak labels resulted 
to be four times faster to generate than their voxel-wise counterparts. In addition, our model leverages prior anatomical 
knowledge by focusing only on plausible locations for aneurysm occurrence. We first train and evaluate our model through 
cross-validation on an in-house TOF-MRA dataset comprising 284 subjects (170 females / 127 healthy controls / 157 patients 
with 198 aneurysms). On this dataset, our best model achieved a sensitivity of 83%, with False Positive (FP) rate of 0.8 per 
patient. To assess model generalizability, we then participated in a challenge for aneurysm detection with TOF-MRA data 
(93 patients, 20 controls, 125 aneurysms). On the public challenge, sensitivity was 68% (FP rate = 2.5), ranking 4th/18 on 
the open leaderboard. We found no significant difference in sensitivity between aneurysm risk-of-rupture groups (p = 0.75), 
locations (p = 0.72), or sizes (p = 0.15). Data, code and model weights are released under permissive licenses. We demonstrate 
that weak labels and anatomical knowledge can alleviate the necessity for prohibitively expensive voxel-wise annotations.

Keywords  Model robustness · Weak annotation · Domain knowledge · Deep learning · Magnetic resonance angiography · 
Aneurysm detection

Introduction

Time-Of-Flight Magnetic Resonance Angiography (TOF-
MRA) is a non-invasive and non-contrast imaging technique 
sensitive to the blood flow in brain vessels. TOF-MRA has 
found widespread clinical application to identify Unrup-
tured Intracranial Aneurysms (UIAs) which are small (typi-
cal diameter ≅ 5 mm) abnormal focal dilatations in cerebral 
arteries (Chen et al., 2018). If untreated, UIAs can rupture 

and lead to subarachnoid hemorrhages which have a mor-
tality rate of 40% and usually cause severe disability for 
patients (Frösen et al., 2012).

Manually assessing a TOF-MRA is a costly process: radi-
ologists detect aneurysms by selectively scrolling through 
the TOF-MRA volumes in different planes—for instance, 
they check in the axial plane the most recurrent locations 
where aneurysms can occur. Then, the sagittal view permits 
better views of areas like the basilar trunk; afterwards, the 
coronal view can be used for areas like the anterior cerebral 
arteries or the Sylvian segments. In addition, Maximum 
Intensity Projection (MIP) images can be used to search 
for stenoses, or to confirm potential aneurysms that were 
spotted.

Considering that the workload of radiologists is steadily 
increasing (Rao et al., 2021) and the detection of UIAs is 
a meticulous and non-trivial task (Nakao et al., 2018), the 
development of automated algorithms that aid clinicians in 
detecting aneurysms with high sensitivity is an active line of 
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research which holds the promise of improving care while 
reducing radiologists’ assessment times.

Before the popularization of Deep Learning (DL), 
(Arimura et al., 2004) detected aneurysms by means of 
image filtering, and later, (Yang et al., 2011) used candidate 
points of interest in the brain arteries to locate aneurysms. 
Then, starting from 2016, there was a shift towards DL 
algorithms, which have now become the de facto standard 
for UIA detection. Table 1 illustrates several recent studies 
that use DL for UIA detection. Despite their success, these 
DL approaches are still constrained by a major bottleneck 
common to several medical applications: the lack of large, 
labeled datasets. This is mainly due to two factors: first, the 
creation of voxel-wise labels for medical images is tedious 
and time-consuming for radiologists (Razzak et al., 2018); 
second, none of the TOF-MRA studies to date made their 
dataset publicly available (Joo et al., 2020; Nakao et al., 
2018; Sichtermann et al., 2019; Stember et al., 2019; Ueda 
et al., 2019). This hampers reproducibility and multi-site 
analyses that are paramount for building robust DL archi-
tectures. The lack of openly available data, such as the 
TOF-MRA challenge dataset (Timmins et al., 2021), also 

hinders comparisons across models. Of all reviewed studies 
of Table 1, only (Baumgartner et al., 2021) evaluated their 
models on the challenge dataset.

In this work, we develop a fully automated DL network 
for UIA detection and propose to mitigate the data avail-
ability bottleneck as follows: we explore the use of “weak” 
labels (Abousamra et al., 2020; Ezhov et al., 2018; Ke et al., 
2020). These can be coarse or oversized annotations that 
are less precise, but considerably faster to create for medi-
cal experts. In addition, we release our annotated in-house 
dataset to the community. To the best of our knowledge, this 
will be the largest openly available TOF-MRA aneurysm 
dataset to date.

Furthermore, we constrain the DL analysis only to the 
areas of the brain where aneurysm occurrence is plausible. 
This anatomically-informed approach aims at simulating 
the selective analysis that radiologists perform on the TOF-
MRA scans. Then, we assess multi-site robustness by evalu-
ating our algorithm on the external TOF-MRA challenge 
dataset (Timmins et al., 2021). Last, since every aneurysm 
can have a different prognosis, we investigate how the per-
formances of our model change with respect to aneurysm 

Table 1   Summary of papers that use deep learning models to tackle automated brain aneurysm detection/segmentation

Use anatomical information: whether the method uses some sort of anatomical prior knowledge during training, patch sampling or inference 
(more details in  Online Resources – Section A)
MRA Magnetic Resonance Angiography, CTA​ Computed Tomography Angiography, DSA Digital Subtraction Angiography, N number, Sub sub-
jects 

Paper Modality Task(s) N. Sub N. Aneurysms DL Model Model input Voxel-wise 
labels

Use anatomical 
information

Multi-Site

(Ueda et al., 
2019)

MRA Detection 1271 1477 ResNet 2D patches Not specified No Yes

(Joo et al., 2020) MRA Detection 744 761 3D ResNet 3D patches Yes Yes Yes
(Nakao et al., 

2018)
MRA Detection 450 508 CNN 2D MIP patches Yes Yes No

(Stember et al., 
2019)

MRA Detection 302 336 RCNN 2D MIP patches Yes No No

(Baumgartner 
et al., 2021)

MRA Detection 254 N/A nnDetection 3D patches Yes No No

(Sichtermann 
et al., 2019)

MRA Detection (via 
segmentation)

85 115 DeepMedic 3D patches Yes Yes No

(Shi et al., 2020) CTA​ Detection + Seg-
mentation

1177 1099 3D UNET 3D patches Yes Yes Yes

(Yang et al., 
2020)

CTA​ Detection 1068 1337 ResNet 3D patches Not specified No Yes

(Park et al., 
2019)

CTA​ Segmenta-
tion + CAD 
assessment

662 358 HeadXNet 3D patches Yes Yes No

(Dai et al., 2020) CTA​ Detection 311 352 RCNN 2D NP images Not specified No Yes
(Liu et al., 2021) DSA Detection + Seg-

mentation
451 485 3D UNET 3D DSA vol-

umes
Yes Yes No

(Duan et al., 
2019)

DSA Detection 281 261 2D CNN 2D DSA images Bounding Boxes Yes No

(Hainc et al., 
2020)

DSA Detection 240 187 2D CNN 2D DSA images ROI circle No No
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risk-of-rupture groups (defined in “Aneurysm Annotation, 
Size, Location and Risk Groups for In-house Dataset” sec-
tion), location and size.

Materials and Methods

In‑house Dataset

This study was approved by the regional ethics committee; 
written informed consent was waived. In this retrospec-
tive work, we included consecutive patients that underwent 
TOF-MRA between 2010 and 2015, and for which the cor-
responding radiological reports were available. Patients 
with ruptured/treated aneurysms or with other vascular 
pathologies were excluded. Totally thrombosed aneurysms 
and infundibula (dilatations of the origin of an artery) were 
likewise excluded. In total, we retrieved 284 TOF-MRA sub-
jects: 157 had one (or more) UIAs, while 127 did not present 
any. Table 2 illustrates the main demographic information 
for our study group. A 3D gradient recalled echo sequence 
with Partial Fourier technique was used for all subjects 
(acquisition parameters are reported in Online Resources—
Table 1). 214 subjects of this study were also used in (Di 
Noto et al., 2020). This prior article dealt with patch-wise 
classification, whereas here we address patient-wise aneu-
rysm detection. The dataset was anonymized and organ-
ized according to the Brain Imaging Data Structure (BIDS) 
standard (Gorgolewski, 2008). It is available on OpenNeuro 
(Markiewicz et al., 2021) at https://​openn​euro.​org/​datas​ets/​
ds003​949 under the CC0 license.

Aneurysm Annotation, Size, Location and Risk 
Groups for In‑house Dataset

Aneurysms were annotated by one radiologist with 2 years 
of experience in neuroimaging, and double-checked by a 
senior neuroradiologist with over 15 years of experience 
to exclude potential false positives or false negatives. Two 
annotation schemes were followed:

1.	 Weak labels: for most subjects (246/284), the radi-
ologist used the Multi-image Analysis GUI (Mango) 
software (v. 4.0.1) to create the aforementioned weak 
labels. These correspond to spheres that enclose the 
whole aneurysm, regardless of the shape. In other 
words, the size of the spheres was chosen manually by 
our radiologist on a case-by-case basis ensuring that the 
whole aneurysm was always entirely enclosed within the 
sphere. A visual example of one weak label is provided 
in Fig. 1.

2.	 Voxel-wise labels: for the remaining subjects (38/284), 
the radiologist used ITK-SNAP (v. 3.6.0) (Yushkevich 
et al., 2006) to create voxel-wise labels drawn slice by 
slice scrolling in the axial plane. No specific selection 
criterion was used to select the 38 subjects, which were 
consecutive to the 246 of the first group.

The overall number of aneurysms included in the study 
is 198 (178 saccular, 20 fusiform). Table 3 shows their loca-
tions and sizes grouped according to the PHASES score 
(Greving et al., 2014). This is a clinical score used to assess 
the 5-year risk of rupture of aneurysms. Although using the 
PHASES sizes leads to a very skewed distribution (e.g. the 
category size d ≤ 7 mm contains 91% of the aneurysms), we 
decided to stick to this grouping since it is the one used in 
the clinic.

In addition, for post-hoc analysis and stratification pur-
poses, we divided the aneurysms into two groups based on 
their risk of rupture: low-risk and medium-risk. Aneurysms 
in the low-risk group are those that are monitored over time, 
but do not require any intervention. Instead, aneurysms in 
the medium-risk group can be considered for treatment. 
We computed for each aneurysm a partial PHASES score 
that only considered size, location, and patient’s age, thus 
neglecting population, hypertension, and earlier aneurysmal 
hemorrhage, since this information was not available for all 
patients. If an aneurysm had partial PHASES score ≤ 4, it 
was assigned to the low-risk group, while if it had a partial 
score > 4, it was assigned to the medium-risk group. Each 
aneurysm was reviewed by our senior neuroradiologist to 
assess whether the partial PHASES score was reasonable. 

Table 2   Demographics of the 
study sample

Patients = subjects with aneurysm(s). Controls = subjects without aneurysms. Age calculated in years and 
presented as mean ± standard deviation. Two-sided t-test to compare age between patients and controls. 
Chi-squared test to compare sex counts between patients and controls
N number of samples, M males, F females, UIA Unruptured Intracranial Aneurysms

Patients Controls Test, p value Whole Sample

N 157 127 / 284
Age (y) 56 ± 14 46 ± 17 t = –4, 3, p = 7.6 × 10–7 51 ± 16
Sex 53 M, 104F 61 M, 66F χ2 = 5.9 p = 0.01 114 M, 170F
# UIA 198 0 / 198
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Fusiform aneurysms were excluded from the risk analy-
sis since the PHASES score was built for saccular aneu-
rysms. Similarly, extracranial carotid artery aneurysms were 
excluded since they do not bleed in the subarachnoid space. 
This resulted in 141 low-risk and 23 medium-risk aneu-
rysms. A table summarizing aneurysm shape, size, location, 
associated PHASES score and risk groups is provided as 
Supplementary Material.

Data Processing

Several preprocessing steps were carried out for each 
subject. First, we performed skull-stripping with the FSL 
Brain Extraction Tool (v. 6.0.1) (Smith, 2002). Second, we 
applied N4 bias field correction with SimpleITK (v. 1.2.0) 
(Tustison et al., 2010). Third, we resampled all volumes 
to a median voxel spacing, again with SimpleITK. This 
effectively normalizes nonuniform voxel sizes (Isensee 
et al., 2021). Last, a probabilistic vessel atlas built from 
multi-center MRA datasets (Mouches & Forkert, 2014) was 
co-registered to each patient’s TOF-MRA using ANTS (v. 
2.3.1) (Avants et al., 2014) (details in Online Resources 
– Section B). The atlas was used both during training and 
inference (see “Use of Anatomical Information” section).

Network, Cross‑Validation, Metrics and Statistics

Network  The deep learning model used in this study is a 
custom 3D UNET, inspired by the original work (Özgün 
et al., 2016). We used upsample layers in the decoding 
branch rather than transpose convolutions since these led to 
faster model convergence. Figure 2 illustrates the structure of 
our network. We used 3D TOF-MRA patches as input to our 

Fig. 1   TOF-MRA orthogonal 
views of a 62-year-old female 
patient. Red areas correspond to 
our spherical weak labels. Top-
left: axial plane; top-right: 3D 
posterior reconstruction of the 
cerebral arteries; bottom-left: 
sagittal plane; bottom-right: 
coronal plane

Table 3   Locations and sizes of aneurysms according to the PHASES 
score for the in-house dataset

ICA Internal Carotid Artery, MCA Middle Cerebral Artery, ACA​ Ante-
rior Cerebral Arteries, Pcom Posterior communicating artery, Poste-
rior posterior circulation, d maximum diameter

Count %

Location ICA 59 29.8 (59/198)
MCA 57 28.8 (57/198)
ACA/Pcom/Posterior 82 41.4 (82/198)

Size d ≤ 7 mm   180 91.0 (180/198)
7 − 9, 9 mm   7 3.5 (7/198)
10 − 19, 9 mm   10 5.0 (10/198)
d ≥ 20 mm   1 0.5 (1/198)
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network. We set the side of the input patches to 64x64x64 
voxels to include even the largest aneurysms. All patches 
were Z-score normalized, as is common practice (Bengio 
et al., 2016). A kernel size of 3x3x3 was used in all con-
volutional layers, with padding and stride = 1. We applied  
the ReLU activation function for all layers, except for the 
last layer which is followed by a sigmoid function. To fit the 
model, the Adam optimization algorithm (Kingma & Ba, 
2015) was applied with adaptive learning rate (initial learn-
ing rate = 0.0001). We trained the model for 100 epochs, 
and we adopted the Combo loss function (Taghanaki et al., 
2019) with α = β = 0.5. This function combines Dice and 
Cross-entropy, and has proven to be effective for imbalanced 
segmentation tasks. We used Xavier initialization (Glorot & 
Bengio, 2010) for all layers. Biases were initialized to 0 and 
a batch size of 8 was chosen. Batch normalization (Ioffe & 
Szegedy, 2015) was used to prevent overfitting. The num-
ber of convolutional filters, the batch size, the value of α 
(and therefore β = 1 − α) and the learning rate were chosen 
using the Optuna algorithm (Akiba et al., 2019) on an inter-
nal validation set (20% of training cases of external cross-
validation fold 1, see below for cross-validation details). 
The total number of trainable parameters in our network 

is 855,111. Training and evaluation were performed with 
Tensorflow 2.4.0 and a GeForce RTX 2080TI GPU with 
11 GB of SDRAM.

Cross‑validation  To evaluate detection performances, 
we conducted a fivefold cross-validation on the 246 sub-
jects with weak labels. At each cross-validation split, 80% 
(≈197/246) of the subjects are used for training the net-
work, while the remaining 20% (≈49/246) of the subjects 
are used to compute patient-wise results (i.e. for inference). 
This division occurs 5 times (as the number of folds) and 
every time a different 80%-20% split is created, meaning 
that all 246 patients are ultimately used for evaluation. At 
each cross-validation split, the 38 patients with voxel-wise 
labels were always added to the training set to increase the 
effect size of label quality in further analyses (see experi-
ments in “Use of Weak Labels”). To avoid over-optimistic 
results, we ensured that patients with multiple sessions were 
not split between training and test set. In order to make 
results comparable across experiments, we always used the 
same cross-validation split and we released this split for 
reproducibility on https://​github.​com/​conne​ctomi​cslab/​
Aneur​ysm_​Detec​tion.

3x3x3
conv

3x3x3
max_pool

TOF-MRA

9x643

643

9x323

26x323
26x163

61x163

61x83

74x83

74x163 61x163 122x163 61x163

61x323 26x323 52x323 26x323

26x643 9x643 18x643 9x643
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BatchNorm

3x3x3
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3D
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Fig. 2   Proposed variant of the 3D UNET. The input corresponds to 
a 64x64x64 voxels TOF-MRA patch. The output is a probabilistic 
patch with the same size of the input, but where each voxel corre-

sponds to the probability of either belonging to foreground (i.e., aneu-
rysm) or background. Conv convolutional, Max_pool max pooling, 
BatchNorm batch normalization
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In all experiments on the in-house dataset, we always pre-
trained our network on the whole ADAM training dataset 
(Timmins et al., 2021) and then fine-tuned it on the in-house 
training data. To validate the effectiveness of pre-training 
on ADAM, we performed ablation experiments of domain 
adaptation across the two datasets (in-house and ADAM). 
As these experiments are beyond the main focus of the man-
uscript, we added them in the Online Resources – Section F. 
When performing pre-training on the ADAM dataset, we 
applied both anatomically-informed expedients described 
below in “Use of Anatomical Information” section.

Metrics and Statistics  In line with the ADAM challenge 
(presented in “ Participation to the ADAM Challenge” sec-
tion), we used sensitivity and false positive (FP) rate as 
detection metrics. A detection was considered correct if the 
center-of-mass of the predicted aneurysm was located within 
the maximum aneurysm size of the ground truth mask. In 
addition, we computed the Free-response Receiver Operat-
ing Characteristic (FROC) curve (Chakraborty & Berbaum, 
2004). To compare different model configurations, we used 
a two-sided Wilcoxon signed-rank test of the areas under the 
FROC curves across test subjects, as similarly performed 
in (Ward et al., 1999). To compare the performances of a 
configuration with respect to aneurysm rupture risk, location 
and size we performed several Chi-squared tests (McHugh, 
2012). The statistical tests were performed using SciPy 
(v.1.4.1), setting a significance threshold α = 0.05.

Experiments

In this section, we will present the four experiments 
that we conducted: in “Use of Weak Labels” section, we 
investigate the use of weak labels in terms of difference in 
annotation time and in detection performances, when com-
paring to voxel-wise labels; in “Use of Anatomical Infor-
mation” section, we present our anatomically-informed 
approach for tackling UIA detection; in “Participation to 
the ADAM Challenge” section, we describe the participa-
tion to the ADAM challenge to investigate the generali-
zation of our model; in “Performances With Respect to 
Risk-of-rupture, Location and Size” section, we analyze 

the changes in detection performances with respect to 
aneurysm risk-of-rupture groups, location and size.

Use of Weak Labels

The goal of this experiment was to answer the following 
questions: 1) how much faster is the creation of weak labels 
with respect to the creation of voxel-wise labels? 2) what is 
the impact of using weak labels in terms of detection perfor-
mances when comparing to voxel-wise labels?

To answer the first question, we selected a subset of 14 
patients (mean aneurysm size (s.d.) = 5.2 (1.0) mm), and 
we assessed the time difference between the two annotation 
schemes (i.e. all 14 patients were annotated first with weak 
labels, and then with voxel-wise labels). These 14 patients 
were chosen randomly among the 284 TOF-MRA subjects, 
but we ensured that the mean aneurysm size was representa-
tive of the whole cohort.

To answer the second question, we used the 38 subjects 
with voxel-wise labels and for these patients we artificially 
generated corresponding weak spherical labels (‘weakened’ 
labels, details in Online Resources – Section C). Then, to 
evaluate the influence of annotation quality (weakened vs. 
voxel-wise) in terms of detection performances, we con-
ducted 3 experiments in which we used an increasing num-
ber of patients with voxel-wise labels: (i) all 38 patients 
with weakened labels (Model 1, Table 4), (ii) 19 patients 
with weakened labels and 19 with voxel-wise labels (Model 
2, Table 4), and (iii) all 38 patients with voxel-wise labels 
(Model 3, Table 4). Results related to the use of weak labels 
are presented in “Weak Labels Allow Fourfold Annotation 
Speedup Without Degrading Performances” section.

Use of Anatomical Information

Because the task of aneurysm detection is extremely spa-
tially constrained, we exploit the prior information that 
aneurysms a) must occur in vessels, and b) tend to occur in 
specific locations of the vasculature. To include this ana-
tomical knowledge, one of our radiologists pinpointed in 
the vessel atlas (described in “Aneurysm Annotation, Size, 

Table 4   Average detection results on the in-house dataset across test folds when changing the ratio of voxel-wise/weakened labels. Sensitivity 
values are reported as mean and 95% Wilson confidence interval inside parentheses

Bold values represent the best performances
Avg average, FP false positive, CI confidence interval, voxel-wise labels drawn slice by slice on the axial plane, weakened voxel-wise labels that 
are artificially converted to weak spherical labels, subs subjects

Model Configu-
ration

Anatomically-informed 
patch selection

Anatomically-informed 
sliding window

Labels of 38 added subs Avg. Sensitivity (CI) Avg. FP rate

Model 1 Yes Yes 38 weakened 95/127 = 75% (65%, 80%) 1.3
Model 2 Yes Yes 19 weakened, 19 voxel-wise 99/127 = 78% (68%, 82%) 0.9
Model 3 Yes Yes 38 voxel-wise 101/127 = 80% (72%, 85%) 1.2
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Location and Risk Groups for In-house Dataset” section) the 
location of 20 landmark points where aneurysm occurrence 
is most frequent (list in Online Resources – Table 2). These 
points were chosen according to the literature (Brown & 
Broderick, 2014) and were co-registered to the TOF-MRA 
space of each subject, as illustrated in Fig. 3.

Training  We apply an anatomically-informed selection of 
training patches to sample both negative (without aneu-
rysms) and positive (with aneurysms) samples. Specifically, 
8 positive patches per aneurysm were randomly extracted 
in a non-centered fashion. Then, we extracted 50 negative 
patches per TOF-MRA volume. Out of these, 20 were cen-
tered in correspondence with the landmark points, 20 were 
patches containing vessels (details in Online Resources – 
Section D), and 10 were extracted randomly. Overall, this 
sampling strategy allows us to extract most of the negative 
patches (i.e., all but the random ones) which are comparable 
to the positive ones in terms of average intensity. To mitigate 
class imbalance, we applied data augmentations on positive 
patches: namely, rotations (90°, 180°, 270°), flipping (hori-
zontal, vertical), contrast adjustment, gamma correction, and 
addition of gaussian noise.

Inference  The patient-wise evaluation was performed fol-
lowing the sliding window approach (details in Online 
Resources – Section E). We exploited again the prior ana-
tomical information described above by retaining only the 
patches which are both within a minimum distance from the 
landmark points and fulfill specific intensity criteria (details 
in Online Resources – Section D). The rationale behind this 
choice was to only focus on patches located in the main 
cerebral arteries, as shown in Fig. 4. Two post-processing 
steps were adopted: first, we kept a maximum of 5 candidate 
aneurysms per patient (only the 5 most probable). Second, 
we applied test-time augmentation to increase sensitivity.

Validation  To validate the effectiveness of our two ana-
tomically-informed expedients (patch sampling and slid-
ing window), we first evaluated an anatomically-agnostic 
baseline where none of the two expedients is used and 
the 38 added subjects have weakened labels (Model 4, 
Table 5). Second, we evaluated the same anatomically-
agnostic baseline (none of the two expedients used) but 
with the 38 subjects having voxel-wise labels (Model 
5, Table 5). Third, we tested one model where only the 
anatomically-informed patch sampling is carried out 
(Model 6, Table 5). Last, we computed performances 
when only the anatomically-informed sliding window is 
performed (Model 7, Table 5). Results related to the use 
of anatomical information are shown in “Anatomically-
informed Sliding Window Increases Detection Perfor-
mances” section.

Participation to the ADAM Challenge

To evaluate model performances in data coming from 
a different institution, we participated to the Aneurysm 
Detection And segMentation (ADAM) challenge (http://​
adam.​isi.​uu.​nl/) (Timmins et  al., 2021). The ADAM 
training dataset is composed of 113 TOF-MRA (93 
patients with UIAs, 20 controls). The total number of 
UIAs is 125 and the voxel-wise annotations were drawn 
in the axial plane by two radiologists. Instead, the unre-
leased test dataset is made of 141 cases (117 patients, 
26 controls) and it is solely used by the organizers to 
compute patient-wise results. To improve detection per-
formances on the ADAM test set, we pre-trained our 
network on the whole in-house dataset and then fine-
tuned it on the ADAM training dataset. Results related 
to our model submission to the ADAM challenge are 
presented in “The Proposed Model Ranked At the Top 
of the ADAM Challenge” section.

Fig. 3   left: 20 landmark points 
(in red) located in specific 
positions of the cerebral arteries 
(white segmentation) in MNI 
space. right: same landmark 
points co-registered to the 
TOF-MRA space of a 21-year-
old, female subject without 
aneurysms

Probabilistic vessel atlas TOF-MRA volume

MNI space Subject space
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Performances with Respect to Risk‑of‑rupture, Location and Size

Each aneurysm has a different prognosis and, depend-
ing on its risk-of-rupture group (defined in “Aneurysm 
Annotation, Size, Location and Risk Groups for In-house 
Dataset” section), it will be either monitored over time 
(low risk) or considered for treatment (medium risk). 
Therefore, we investigated how detection performances 
would vary with respect to the risk-of-rupture groups. In 

addition, we also explored how performances would vary 
with respect to aneurysm location and size. Although the 
latter analysis is less relevant from a clinical perspective, 
it is still interesting from a methodological point of view 
and it is also frequent in the literature. Results related 
to the detection performances with respect to aneurysm 
risk-of-rupture groups, location and size are described in 
“Detection Performances Across Rupture Risk, Location, 
and Size” section.

Fig. 4   TOF-MRA orthogonal 
views of a 62-year-old female 
subject after brain extrac-
tion: blue patches are the 
ones which are retained in the 
anatomically-informed sliding-
window approach. (top-right): 
3D schematic representation of 
sliding-window approach; out 
of all the patches in the volume 
(white patches), we only retain 
those located in the proximity 
of the main brain arteries (blue 
ones)

Table 5   Average detection results on the in-house dataset across test folds when applying none, or one of the two anatomically-informed expedi-
ents. Sensitivity values are reported as mean and 95% Wilson confidence interval inside parentheses

Bold values represent the best performances
Avg average, FP false positive, CI confidence interval, voxel-wise labels drawn slice by slice on the axial plane, weakened voxel-wise labels that 
are artificially converted to weak spherical labels, subs subjects

Model 
Configuration

Anatomically-informed 
patch selection

Anatomically-informed 
sliding window

Labels of 38 added subs Avg. Sensitivity (CI) Avg. FP rate

Model 4 No No 38 weakened 83/127 = 65% (55%, 71%) 4.6
Model 5 No No 38 voxel-wise 95/127 = 74% (63%, 78%) 4.5
Model 6 Yes No 38 voxel-wise 61/127 = 48% (38%, 55%) 4.8
Model 7 No Yes 38 voxel-wise 106/127 = 83% (75%, 88%) 0.8
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Results

Weak Labels Allow Fourfold Annotation Speedup 
Without Degrading Performances

When measuring the time needed to create weak vs. voxel-
wise annotations on the 14 subjects described in “Use of 
Weak Labels” section, we noticed a significant difference 
(two-sided Wilcoxon signed-rank test – annotation tim-
ings, W = 0, p = 0.001): creating weak annotations (aver-
age 23 s ± 6 per aneurysm) resulted to be approximately 4 
times faster than creating voxel-wise annotations (average 
93 s ± 25). A more detailed stratification of the timings with 
respect to location and size is provided in Supplementary 
Figs. 1 and 2.

Subsequently, to investigate the effect that voxel-wise 
labels can have for detection performances with respect to 
weak labels, we conducted several experiments where an 
increasing ratio of voxel-wise/weakened labels was used 
for the 38 patients described in “Use of Weak Labels” sec-
tion. Table 4 shows detection performances when the ratio 
is gradually increased.

The configuration with all voxel-wise labels (Model 3) 
had higher sensitivity with respect to the other two con-
figurations with weakened labels (Model 1 and Model 2). 
However, this difference was not significant (two-sided 
Wilcoxon signed-rank test on the areas under the FROC 
curves, W = 14.0, p = 0.054 when comparing to Model 1 and 
W = 685.5, p = 0.977 when comparing to Model 2).

Anatomically‑informed Sliding Window Increases 
Detection Performances

In Table  5, we report detection results when adopting 
zero, one, or both anatomically-informed expedients pre-
sented in “Use of Anatomical Information” section. In the 
anatomically-agnostic baseline with the 38 subjects having 
weakened labels (Model 4), the negative patch sampling 
is random and all non-zero patches of the TOF-MRA vol-
umes are retained in the sliding window approach, thus 
disregarding any anatomical constrain. Similarly, row 2 
(Model 5) shows detection results when using neither the 
anatomically-informed patch sampling nor the anatomically-
informed sliding window, but this time with the 38 subjects 
having voxel-wise labels. Row 3 (Model 6) illustrates detec-
tion performances when only the anatomically-informed 
patch sampling is applied, but the sliding window is still 
anatomically-agnostic. Instead, row 4 (Model 7) shows the 
inverse scenario (i.e. random negative patch sampling, but 
anatomically-informed sliding window). Model 7 statisti-
cally outperformed Model 5 (W = 74.5, p = 2 × 10

−6 ), thus 
indicating that the anatomically-informed sliding window is 

an effective expedient to increase detection results. In fact, 
sensitivity is increased and the average FP rate is drastically 
reduced. In addition, we compared Model 5 and Model 6 
and we saw that Model 5 significantly outperforms Model 
6 (W = 202.0, p = 8 × 10

−6 ). This finding shows that the 
anatomically-informed patch sampling is detrimental for 
detection performances when the sliding window is anatom-
ically-agnostic. Last, when comparing Model 3 and Model 
7 we found no significant difference (W = 81.5, p = 0.24 ): 
this result indicates that the anatomically-informed patch 
sampling is not detrimental when we are also applying the 
anatomically-informed sliding window.

To provide a visual interpretation of our network predic-
tions, we show in Fig. 5 one correctly identified aneurysm 
(true positive), one small, missed aneurysm (false negative) 
and one false positive prediction. Also, in Fig. 6 we report 
the FROC curves corresponding to Model 5, Model 6, and 
Model 7. This figure reflects the statistical tests: Model 7 
(green curve) outperforms the anatomically-agnostic Model 
5 (red curve) at all operating points. Similarly, Model 5 (red 
curve) significantly outperforms Model 6 (blue curve), 
confirming the effectiveness of the anatomically-informed 
sliding window and the ineffectiveness of the anatomically-
informed patch sampling.

The Proposed Model Ranked At the Top of the ADAM 
Challenge

Table 6 illustrates detection results on the ADAM test data-
set. Our algorithm ranked in 4th/18 position for detection 
and in 4th/15 position for segmentation (with highest volu-
metric similarity). Interested readers can check the methods 
proposed by other teams on the challenge website (https://​
adam.​isi.​uu.​nl/) and in the paper (Timmins et al., 2021).

Detection Performances Across Rupture Risk, 
Location, and Size

Supplementary Fig. 3 illustrates performances achieved by 
one of our top-performing models (Model 3, Table 4) strati-
fied according to the two risk groups presented in “Aneu-
rysm Annotation, Size, Location and Risk Groups for In-
house Dataset” section. For the low-risk group, our model 
reaches a mean sensitivity of 80%, while for the medium-risk 
group it reaches a mean sensitivity of 73%. The difference 
was not significant ( �2

= 0.09 , DoF = 1, p = 0.75). In Sup-
plementary Figs. 4 and 5, we also report the model sensi-
tivity stratified according to aneurysm location and size of 
the PHASES score, respectively. No significant difference 
was found across different locations ( �2= 0.64, DoF = 2, 
p = 0.72) or sizes ( �2= 0.92, DoF = 2, p = 0.15, excluding 
n = 1 huge aneurysm with s > 20 mm). Regarding aneurysm 
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size, we conducted a further stratification of performances 
since most of the aneurysms lied in the group (< 7 mm). 
Thus, we divided this group into subgroups, namely ≤ 3, 
3 < s ≤ 5, and 5 < s < 7. Detection results with this more 
granular stratification are shown in Supplementary Fig. 6. 
The model sensitivity was significantly lower for the tiny 
aneurysms (≤ 3) with respect to the other two subgroups ( �2

= 27.57, DoF = 2, p = 10−6).

Discussion

This work shows that competitive results can be obtained 
in automated aneurysm detection for TOF-MRA data 
even with rapid data annotation. To this end, we pro-
posed a fully-automated, deep learning algorithm that is 
trained using weak labels and exploits prior anatomical 
knowledge.

Fig. 5   Qualitative analysis of predictions and errors. The heatmap 
generated by the network ranges from 0 (low probability, yellow 
color) to 1 (high probability, red color) (a) True positive prediction 
in the anterior communicating artery. b  False negative (i.e., missed 

aneurysm) in the internal carotid artery. The ground truth label mask 
is shown in blue. c False positive prediction in the internal carotid 
artery

Fig. 6   Mean Free-response 
Receiver Operating Charac-
teristic (FROC) curves across  
the five test folds of the 
cross-validation. Shaded areas 
represent the 95% Wilson 
confidence interval. The three  
models correspond to Model 
5, Model 6, and Model 
7. Anatomically-agnostic 
model: none of the two 
anatomically-informed expe-
dients are used. Anat:  
Anatomically-Informed

Nb. allowed FP per patient

Se
ns

iti
vi

ty

Mean FROC curves

Model 5: anatomically-agnostic + 38 voxelwise
Model 6: only anat. patch sampling + 38 voxelwise
Model 7: only anat. sliding wind. + 38 voxelwise
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Despite being less accurate, weak labels are drastically 
faster to create for medical experts reducing fourfold the 
annotation time. Although the configuration with all voxel-
wise labels (Model 3, Table 4) had higher sensitivity, we 
found no statistical difference when comparing with the 
configurations with some (Model 2) or all weakened labels 
(Model 1). This finding indicates that weak labels are suffi-
cient to obtain satisfactory detection results on our in- house 
dataset. If reasoning in terms of larger datasets (e.g., thou-
sands of patients), the weak annotation proposed in this work 
is a scalable solution which can significantly alleviate the 
annotation bottleneck in medical ML applications.

In addition to the use of weak labels, our model leverages 
the underlying anatomy of the brain vasculature (i.e., we 
“anatomically-informed” our network) in order to simulate 
the radiologists’ exploration of the TOF-MRA scans. First, 
most of the negative patches (i.e. patches without aneu-
rysms) extracted during training either contained a vessel or 
were located in correspondence with the aneurysm landmark 
points. Second, we limited the sliding window approach only 
to regions of the brain that are plausible for aneurysm occur-
rence. These constraints reflect the radiologists’ behavior in 
the sense that only regions containing vessels, or at higher 
risk for aneurysms are scanned, while the rest of the brain 
is neglected. The experiments in “Anatomically-informed 
Sliding Window Increases Detection Performances” section 
showed that the anatomically-informed sliding window is an 
effective expedient since it increases sensitivity, while reduc-
ing the average FP rate. Instead, the anatomically-informed 
patch sampling proved to be negligible when combined 
with the anatomically-informed sliding-window (Model 
3 vs. Model 7), or even detrimental when the sliding win-
dow was anatomically-agnostic (Model 5 vs. Model 6). We 
hypothesize that applying only the anatomically-informed 
patch sampling leads to a domain shift issue: specifically, 
the model is trained using intensity-matched patches, but 
then is tested with any patch in the brain (because there is 

no anatomically-informed sliding window). We think this 
difference between training and test domain is what causes 
the decrease in performances in the comparison Model 5 
vs. Model 6.

Nevertheless, the anatomically-informed sliding window 
expedient suggests that injecting prior anatomical knowl-
edge in the pipeline can improve detection performances. 
We believe this general principle is also applicable to other 
pathologies with sparse spatial extent.

The state-of-the-art for automated brain aneurysm detec-
tion in TOF-MRA has been rapidly advancing in the last 
five years, especially due to the advent of deep learning 
algorithms. However, further multi-site validation is needed 
before safely applying these algorithms during routine clini-
cal practice. Although (Joo et al., 2020; Ueda et al., 2019) 
did publish results obtained from multiple institutions, 
none of them released their dataset publicly which makes 
comparisons between algorithms unfeasible. The compari-
sons between methods are further hindered by the use of 
non-standardized evaluation metrics (e.g. FROC/lesion-
wise sensitivity/subject-wise specificity) or by the fact that 
not all related studies include both patients (subjects with 
aneurysms) and controls (subjects without aneurysms). By 
openly releasing our dataset, we aim to bridge the data avail-
ability gap and foster reproducibility in the medical imaging 
community. The combination of our in-house dataset and 
the ADAM dataset will allow researchers to assess the real-
istic robustness of proposed algorithms on heterogeneous 
data generated from different scanners, acquisition protocols 
and study population. In addition, it could help increasing 
detection performances which are still too far from being 
clinically useful, considering that even the team with highest 
sensitivity on the ADAM test set (team xlim) only reaches 
a value of 70% (i.e., 30% of aneurysms still not detected), 
with 4 FPs per case.

In a separate analysis, we also computed the sensitiv-
ity of our model with respect to the PHASES score risk of 
rupture, location, and size. No significant differences were 
found across the three groups indicating that our model is 
robust to different aneurysm types. However, when strati-
fying the aneurysm sizes into finer subgroups, we noticed 
that sensitivity for extremely tiny aneurysms (≤ 3 mm) was 
significantly lower, which confirms a known trend (Timmins 
et al., 2021).

Our work has several limitations. First, even combining 
our in-house dataset with the ADAM dataset, the number 
of subjects is still limited when compared to some related 
TOF-MRA (Joo et al., 2020; Ueda et al., 2019) or Computed 
Tomography Angiography (Park et al., 2019; Shi et al., 
2020; Yang et al., 2020) studies. Second, we acknowledge 
that the number of patients for whom we compared the dif-
ferent annotations schemes (i.e., weak vs. voxel-wise) is 
limited (N = 38); it is possible that statistically significant 

Table 6   Detection results on the ADAM dataset. Our team (in bold) 
ranked in 4th position in the open leaderboard out of 18 participating 
groups

Sens sensitivity, FP false positive

Detection

Ranking Team Sens Avg. FP rate

1 abc 68% 0.40
2 xlim 70% 4.03
3 mibaumgartner 67% 0.13
4 unil-chuv3 68% 2.50
5 joker 63% 0.16
…
18 ibbm 2% 0.01
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performance differences could be found with a larger sample 
size. Third, we have to further increase detection perfor-
mances if we plan to deploy our model as a second reader 
for radiologists, especially to detect tiny aneurysms which 
are more frequently overlooked (Keedy, 2006).

In future works, we aim at enlarging the TOF-MRA dataset 
and experiment new variants of the 3D encoding–decoding 
UNET. For instance, we might consider a multi-scale approach 
with patches of larger (or smaller) scales. Alternatively, we are 
considering combining our anatomically-driven approach with 
the novel nnUnet model (Isensee et al., 2021) which has proven 
to be effective not only for aneurysm detection (it was adopted 
by 2 of the top-performing teams in the ADAM challenge), 
but also for several other segmentation tasks. We believe this 
combination holds potential to boost detection performances. 
Also, the ablation study performed in the Online Resources 
– Section F showed that pre-training on the ADAM dataset did 
not increase detections results. Therefore, future works should 
investigate a different transfer learning approach to better lev-
erage knowledge acquired from the ADAM dataset. Last, we 
plan to conduct further error analyses to identify common pat-
terns for both false positive and false negative cases.

In conclusion, our study presented an anatomically-
informed 3D UNET that tackles brain aneurysm detection 
across different sites. The combination of time-saving weak 
labels and anatomical prior knowledge allowed us to build 
a robust deep learning model. We believe our approach and 
dataset (both openly available) can foster the development of 
clinically applicable automated systems for the task at hand.
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Abstract. Natural Language Processing (NLP) on electronic health
records (EHRs) can be used to monitor the evolution of pathologies over
time to facilitate diagnosis and improve decision-making. In this study,
we designed an NLP pipeline to classify Magnetic Resonance Imaging
(MRI) radiology reports of patients with high-grade gliomas. Specifically,
we aimed to distinguish reports indicating changes in tumors between one
examination and the follow-up examination (treatment response/tumor
progression versus stability). A total of 164 patients with 361 associated
reports were retrieved from routine imaging, and reports were labeled by
one radiologist. First, we assessed which embedding is more suitable when
working with limited data, in French, from a specific domain. To do so, we
compared a classic embedding techniques, TF-IDF, to a neural embedding
technique, Doc2Vec, after hyperparameter optimization for both. A ran-
dom forest classifier was used to classify the reports into stable (unchanged
tumor) or unstable (changed tumor). Second, we applied the post-hoc
LIME explainability tool to understand the decisions taken by the model.
Overall, classification results obtained in repeated 5-fold cross-validation
with TF-IDF reached around 89% AUC and were significantly better than
those achieved with Doc2Vec (Wilcoxon signed-rank test, P = 0.009).
The explainability toolkit run on TF-IDF revealed some interesting pat-
terns: first, words indicating change such as progression were rightfully
frequent for reports classified as unstable; similarly, words indicating no
change such as not were frequent for reports classified as stable. Lastly,
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the toolkit discovered misleading words such as T2 which are clearly not
directly relevant for the task. All the code used for this study is made
available.

Keywords: Natural Language Processing (NLP) · Term Frequency -
Inverse Document Frequency (TF-IDF) · Doc2Vec · Diagnostic
surveillance · LIME model explainability

1 Introduction

In the last decade, Machine Learning (ML) has reshaped research in radiology.
ML models yield state-of-the-art results for numerous medical imaging tasks such
as segmentation, anomaly detection, registration, and disease classification [1].
In addition to images, ML models have also been increasingly applied to radi-
ology reports and more generally to data coming from Radiology Information
Systems (RIS) [2]. However, even though radiology reports contain valuable,
high-level insights from trained physicians, they also come with some associated
drawbacks; in particular, most reports are stored as unstructured, free-text doc-
uments. Consequently, they exhibit a strong degree of ambiguity, uncertainty
and lack of conciseness [3].

Natural Language Processing (NLP) is a branch of ML that helps comput-
ers understand, interpret, and manipulate human language [4]. In the case of
radiology reports, NLP has the goal of extracting clinically relevant information
from unstructured texts. As recently illustrated in one extensive review [5], one
frequent application of NLP for radiology reports is diagnostic surveillance. Its
objective is to monitor the evolution of a pathology in order to extrapolate useful
knowledge and improve decision-making. In line with this trend, our work focuses
on oncology patients with high-grade gliomas that are scanned longitudinally for
frequent follow-up.

According to [5], the majority (86%) of studies published up until 2019
focused on medical reports written in English, while only 1% of the reviewed
studies utilized French reports. This language gap is understandable given that a
substantial portion of NLP tools was developed using English texts. Nonetheless,
in medical NLP, researchers need to adapt their models to the language of the
radiology reports. This entails custom precautions and expedients to take since
languages are often syntactically and/or semantically different from English. In
this work, we investigate NLP methods for radiology reports written in French.

In addition, [5] concluded that although a growing number of Deep Learn-
ing (DL) NLP methods has been applied in recent years, “conventional ML
approaches are still prevalent”. To assess which technique is more suitable for
our dataset, we compare two traditional embedding strategies, namely Term
Frequency-Inverse Document Frequency (TF-IDF) [6] and Doc2Vec [7].

The task that we address is binary document classification. Specifically, we
aim to identify the main conclusion of the medical reports deciding among the
following groups: tumor stability vs. tumor instability. Details about these classes
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are provided in Sect. 2.2. The potential applications of our report classifier are
twofold: first, it could help referring physicians to focus the attention on the
main conclusion of the report, thus accelerating subsequent decisions. Second,
the predicted classes could be used as weak labels for a downstream machine
learning task (e.g. automated cohort creation). In addition, most clinically rele-
vant images in RIS are associated with a radiology report, and thus offer poten-
tial access to several hundred thousands of weakly labelled images in medium to
large hospitals.

In this work we also conduct an interpretability analysis of the model’s deci-
sions [8,9], based on the post-hoc interpretation technique LIME [10]. Its main
objective is to identify the most important words that influenced the final predic-
tion, by creating a surrogate linear model that performs local input perturbation
(details in Sect. 2.4).

In summary, this study presents a classifier for French radiology reports in the
context of diagnostic surveillance, while comparing two embedding techniques
and providing a visual interpretation of the model’s decisions.

1.1 Related Works

Here, we present the works most similar to ours. In [11], the authors compared
several embedding techniques and five different classifiers for detecting the radiol-
ogist’s intent in oncologic evaluations. Similarly, [12] investigated a DL model to
identify oncologic outcomes from radiology reports. The authors in [13] utilized
a combination of ML and rule-based approaches to highlight important changes
and identify significant observations that characterize radiology reports. [14]
devised a model that extracts radiological measurements and the correspond-
ing core descriptors (e.g. temporality, anatomical entity, ...) from Magnetic Res-
onance (MR), Computed Tomography (CT) and mammography reports. The
work of [15] describes an NLP pipeline that identifies patients with (pre)cancer
of the cervix and anus from histopathologic reports. Last, [16] detected throm-
boembolic diseases and incidental findings from angiography and venography
reports.

Among all these works, only [16] used French reports, while the others
worked with English documents. Moreover, only [12] addressed the issue of model
explainability which we believe is paramount for the ML community, especially
in the medical domain.

2 Materials and Methods

2.1 Dataset

We retrospectively included 164 subjects that underwent longitudinal MR glioma
follow-up in the university hospital of Lausanne (CHUV) between 2005 and 2019.
71% of the patients in the cohort had Glioblastoma Multiforme (GBM), while
the remaining 29% had either an oligoastrocytoma or an oligodendroglioma. At
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every session, a series of MR scans were performed including structural, per-
fusion and functional imaging. For the sake of this study, we only focused on
the native T1-weighted (T1w) scan, the T2-weighted (T2w) scan and the T1w-
gad (post gadolinium injection, a contrast agent). For 25 patients, we collected
images and reports across multiple sessions (on average, 9 sessions per subject).
For the remaining 139 patients, we only retrieved images and reports from 1 ran-
dom session. This latter sampling strategy was adopted to increase the chance
of having cases of tumor progression and tumor response, since multiple sessions
of the same subject mostly showed tumor stability and thus led to a very imbal-
anced data set. Overall, we ended up with a dataset of 361 radiology reports
to use for the NLP pipeline. Every report was written (dictated) during routine
clinical practice by a junior radiologist after exploring all sequences of interest.
Then, a senior radiologist reviewed each case amending the final report when
necessary. The extracted reports have varying length ranging from 114 to 533
words (average 255, standard deviation 68). The MR acquisition parameters for
the cohort are provided in Table 1. The protocol of this study was approved by
the regional ethics committee; written informed consent was waived.

Table 1. MR acquisition parameters of scans used for the study population.

# sessions ≡ # reports Vendor Scanner Field strength [T]

174 Siemens Healthcare Skyra 3.0

73 Philips Intera 3.0

46 Siemens Healthcare Prisma 3.0

32 Siemens Healthcare Symphony 1.5

21 Siemens Healthcare TrioTim 3.0

10 Siemens Healthcare Aera 1.5

5 Siemens Healthcare Verio 3.0

2.2 Report Tagging

In order to build a supervised document classifier, one radiologist (4 years of
experience in neuroimaging) tagged the reports with labels of interest. For each
report, the annotator was instructed to perform two separate tasks: first, she had
to assign 3 classes to the reports; one class that indicated the global conclusion
of the report, one class to indicate the evolution of the enhanced part of the
lesion (T1w conclusion) and the last one to indicate the evolution of the lesion
on T2-weighted sequences (T2w conclusion). For each of these three groups, the
annotator could choose between the following labels:

– Stable: assigned when the tumor did not change significantly with respect
to the previous comparative exam.
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– Progression: assigned when the tumor worsened with respect to the previous
comparative exam. This class included cases where the enhanced part of the
tumor increased in size or when the T2 signal anomalies surrounding the
tumor increased in extension.

– Response: assigned when the tumor responded positively to the treatment
(either chemotherapy or radiotherapy).

– Unknown: used when the annotator was not able to assign any of the three
classes above.

The second task of the annotator was to highlight the most recent compara-
tive date in the reports. Since the reports are not structured, this helped linking
the current report being tagged with the most meaningful previous one. For sim-
plicity, in this work we only focused on the global conclusion of the reports, and
not on the T1 and T2 conclusions. Also, we removed all cases that were tagged
as unknown (21 reports) and we merged progression and response into one
unique class which we denote as unstable. By doing this, we narrowed the task
to a binary classification problem where the model tries to distinguish between
stable and unstable reports. After these modifications, we ended up with 191
stable reports and 149 unstable reports.

To facilitate the annotation process, we utilized the open-source software
Dataturks1. This provided a graphic interface to the annotator which allowed
her to tag, skip, highlight, and review the reports in a user-friendly way. More-
over, it automatically generated machine-readable labels once the annotation
process was over. One exemplary report is illustrated in Fig. 1, together with the
corresponding annotations.

2.3 Text Preprocessing and Embedding

Several preprocessing steps were carried out to reduce the vocabulary size. First,
we removed all proper nouns such as physicians’ and patients’ names. This was
performed using a pre-trained French Part-Of-Speech tagger from the Spacy
library (version 3.0.6) [19]. Second, all the words in the reports were converted
to lowercase. This operation is typical when there are no words that indicate a
specific meaning when expressed with capital letters. Third, we removed punc-
tuation and the most common French stop words, namely [‘de’, ‘la’, ‘en’, ‘et’,
‘du’, ‘d’, ‘le’, ‘l’, ‘un’, ‘une’, ‘les’, ‘des’, ‘ces’, ‘á’, ‘au’, ‘aux’]. Among these, we
ensured to keep the French negation ‘pas’ (not) since it is very frequent in the
reports, and reverses the meaning of the sentence. Fourth, all reports were tok-
enized using the wordpunct class of the Natural Language Toolkit framework
(version 3.6.1) [20]. As last step, since all the reports contain the three sections
‘indications’, ‘description’ and ‘conclusion’, we removed all content before the
‘indication’ section, which is either useless (e.g. department phone number) or
sensitive (e.g. patient identifier).

1 OpenSource Data Annotation tool - http://github.com/DataTurks/DataTurks.
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Fig. 1. Dataturks annotation interface. The annotator can select the classes in the left
box and highlight the text of interest. Sensitive information has been blacked out for
privacy.

A key step in any NLP pipeline is text embedding. This corresponds to the
conversion of tokenized text into numerical vectors. Historically, many embed-
ding techniques have been proposed in literature. In this work, we compare two
of the most widespread, namely TF-IDF [6] and Doc2Vec [7]. While the former
is a standard term-weighting embedding scheme (traditional ML) that preserves
the length of the tokenized documents, the latter is a DL-based technique that
creates dense vectors which encode word order and context. TF-IDF was per-
formed at the word level with the sklearn package (version 0.24.1) [21], whereas
Doc2Vec was performed using the gensim library (version 4.0.1) [22].

2.4 Experiments

All experiments were run in a 5-fold, nested, stratified cross validation (CV).
The internal CV was used to tune the hyperparameters of the pipeline with a
custom Grid Search algorithm. Instead, the external CV was used to compute
results on hold-out test samples. For TF-IDF, two hyperparameters were tuned:
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first, the types of retained N-grams were searched in the range [3,5]. Second,
the percentage of vocabulary size to use was varied between 100% (all words are
used) and 90% (the 10% rarest words are removed). The other parameters were
fixed: the minimum document frequency was set to 2 and the maximum docu-
ment frequency was set to 0.9 (indicating 90% of the documents). For Doc2Vec,
the algorithm type (PV-DM or PV-DBOW) and the vector dimensionality [10]
were tuned with the validation set. The context window was set to 5 words. Five
“noise” negative words were drawn. Words with a total frequency lower than
2 were ignored. The model was trained for 100 epochs. Since stop words are
not necessarily useless for Doc2Vec, we also tried to run the Doc2Vec pipeline
preserving them.

The stratification of the CV guaranteed that both training and test sets con-
tained approximately the same percentage of reports indicating tumor stability
and tumor instability. To avoid overoptimistic predictions, we also ensured that
the reports from multiple sessions of the same subject were not present some in
the train set and some in the test set. Furthermore, to reduce the bias introduced
by the random choice of patients at each CV split, the whole nested CV was
repeated 10 times, each time performing the splitting anew, and results were
averaged.

For all experiments, we adopted the Random Forest algorithm [23] to classify
the embedded documents, using once again the sklearn package. As hyperparam-
eters, we set a fixed number of 501 trees and we tuned the maximum retained
features in the internal CV, choosing between 0.8 (only 80% of the features are
used) and 1.0 (all features are used).

To compare the two pipelines (Doc2Vec vs. TF-IDF embedding), we com-
puted all standard classification metrics, namely accuracy, sensitivity, specificity,
positive predictive value, negative predictive value and F1-score. Moreover, we
also plotted the Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves. The reports indicating tumor stability were considered as negative
samples, whereas those indicating a change in the tumor were considered as pos-
itive samples. The classification metrics and the curves were averaged across the
10 runs. To statistically compare the classification results, a Wilcoxon signed-
rank test was performed [24]. For simplicity, the test only accounted for the area
under the ROC curve (AUC) across the 10 runs. A significance threshold level
α = 0.05 was set for comparing P values.

The explainability analysis was performed with the LIME toolkit on the TF-
IDF pipeline only since it resulted in higher performances (see Table 2). We set
the best hyperparameters obtained across the random runs and we ran LIME
over all test reports. For each report, the toolkit performs a post-hoc interpre-
tation following a two-step approach: first, it randomly generates neighborhood
data in the vicinity of the example being explained; then, it “learns locally
weighted linear models on this neighborhood data to explain each of the classes
in an interpretable way”. The user can choose how many features (words) are
shown in the explanation. For this work, we set a maximum of 6 features per doc-
ument. These weighted features represent the linear model which approximates
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the behaviour of the random forest classifier in the vicinity of the explained test
example.

All the Python 3.6 code developed for this study is available on github2.

3 Results

3.1 Classification Performances

The nested CV with the Doc2Vec embedding took 50 min per run, while the
one with TF-IDF took 2 h. The most frequent hyperparameters chosen in the
internal CV for Doc2Vec across the 10 random runs were a vector size of 10 and
the PV-DV version of the algorithm. Instead, for TF-IDF, n-grams in the range
(1, 3) were the most frequent, and the optimal percentage of vocabulary size
was 90%. For the Random Forest classifier, the configuration with 80% of the
features was most frequent.

We report in Table 2 the classification results of the two pipelines (TF-IDF
vs. Doc2Vec), averaged over the 10 runs. Similarly, Figs. 2 and 3 illustrate the
average ROC and PR curves. When comparing the two pipelines across the 10
random runs with the Wilcoxon signed-rank test, the AUC values of TF-IDF
were significantly higher than those of Doc2Vec (P = 0.009). Last, classification
results of the Doc2Vec pipeline run preserving the stop words led to higher
results (average AUC = .85± .03). However, these were still significantly lower
than the TF-IDF pipeline.

Table 2. Classification results across the 10 random runs. Values are presented as
mean ± standard deviation. Bold values indicate the highest performances. Acc =
accuracy; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV
= negative predictive value; F1 = F1-score; AUC = area under the ROC curve; AUPR
= area under the PR curve.

Embedding Acc % Sens % Spec % PPV % NPV % F1 % AUC AUPR

TF-IDF 88±1 91±1 75±0 95±0 60±2 93±0 .89±.01 .97±.00

Doc2Vec 86±2 94±3 38±10 89±1 57±10 92±1 .83±.05 .96±.01

3.2 Error Analysis and Model Interpretation

To further understand the decisions taken by the random forest algorithm, we
applied the LIME post-hoc interpretability toolkit. Specifically, we investigated
both the explanations created for the correctly classified reports and for the false
positive and false negative reports. Table 3 shows the most frequent words used
by the linear classifier created by LIME. We notice that most of the words intu-
itively make sense for the True Positive and True Negative samples. For instance,
words like ‘progression’, ‘augmentation’ and ‘diminution’ that all indicate some

2 https://github.com/connectomicslab/Glioma NLP.
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Fig. 2. Receiver operating characteristic (ROC) curves of the two pipelines (TF-IDF
vs. Doc2Vec) averaged across the 10 runs.

sort of change are recurrent for predicting TP samples and outweigh the corre-
sponding words indicating tumor stability such as ‘sans’ (without) or ‘récidive’
(recurrence). A similar trend can be observed for TN samples where words like
‘pas’ (not), ‘stabilité’ (stability) and ‘inchangé’ (unchanged) outweigh words
indicating instability like ‘apparition’ (appearance). However, the error analysis
also highlighted some recurrent mistakes, such as the importance given to the
words ‘t2 ’ and ‘axial ’ in the FN samples or ‘2007 ’ in the FP which ultimately
deteriorate the predictions. To have a qualitative idea of the output of the LIME
toolkit, we show in Figs. 4 and 5 one TP and one FN example, respectively.

4 Discussion

In this work, we explored the potential of NLP for the task of diagnostic surveil-
lance in patients with high-grade gliomas. As pointed out in [5], and subse-
quently shown in other works [25,26], traditional ML embedding techniques
can lead to comparable results with respect to DL techniques when properly
tuned. Moreover, they are still frequent when the dataset size is limited such
as in medical imaging applications. Our work confirms this trend since, given
the same classifier, the TF-IDF pipeline statistically outperformed the Doc2Vec
one. The explainability analysis highlighted interesting trends. For the correctly
classified reports, it confirmed that the model is focusing on relevant words.
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Fig. 3. Precision-Recall (PR) curves of the two pipelines (TF-IDF vs. Doc2Vec) aver-
aged across the 10 runs.

When investigating reports indicating instability, most of the recurrent terms
indeed indicate a status of change such as ‘diminution’, ‘progression’ or ‘plus’
(more). Similarly, the recurrent words for the reports indicating tumor stability
reflect a status of no-change (e.g. ‘pas’ (French negation)). Regarding the errors
of the model, the LIME toolkit also uncovered some misleading words which
obfuscate the final predictions. For instance, the words ‘appareil ’ (MR scanner),
‘t2 ’, ‘axial ’ or ‘transverse’ are recurrent in the explanations of FP and FN even
though they are related to the acquisition process rather the status of the tumor.

The following limitations must be acknowledged. First, the annotations were
performed by one single radiologist which is not the optimal scenario for ambigu-
ous NLP tasks. Second, the dataset size is still limited with respect to similar
studies [11,12,14].

In future works we are planning to enlarge the dataset and add a second
annotator to assess inter-rate variability (and ideally intra-rater variability as
well). Also, we would like to investigate which part of the report is the most
important with respect to the final prediction. For instance, we would like to
evaluate classification performances when using only description and conclu-
sion of the reports, or even just the conclusion. In addition, we are planning to
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Table 3. Six most frequent features (words) used by the linear model generated by
LIME to predict the class of the reports, sorted in descending order. For instance,
the word ‘progression’ is the most frequent word indicating instability used by the
linear classifier for the TP test documents, whereas ‘pas’ (French negation) is the most
frequent word indicating stability used for the TN test documents. TP = True Positive
(i.e. reports indicating tumor instability and predicted as such); TN = True Negative;
FP = False Positive; FN = False Negative.

Stable Unstable Stable Unstable

TP

sans
récidive
pas
signe

anomalie
ou

progression
augmentation

oedème
plus

diminution
spectroscopie

FP

sans
depuis
appareil
réalisé

inchangé
pondération

progression
axial

diminution
plus

oedème
2007

TN

pas
récidive
sans

stabilité
transverse
inchangé

apparition
augmentation

axial
spectroscopie

plus
postérieure

FN

récidive
pas
sans

transverse
t2

stabilité

apparition
spectroscopie
augmentation
diminution

axial
dans

experiment different classifiers, or French pre-trained embedding models devel-
oped with larger corpora. Next, we will investigate what happens when shifting
from a binary problem (stable vs. unstable) to a more granular task. Last, we
will leverage the information extracted by the explainability toolkit to further
preprocess the documents, for instance removing terms related to the acquisition
protocol.

In conclusion, this work presented an NLP pipeline for the classification
of radiology reports for patients with high-grade gliomas. The top-performing
model (TF-IDF + Random Forest) attained satisfactory performances (AUC =
.89) that lays a good foundation for generating weak labels, and the post-hoc
explainability toolkit that we used holds promise for the development of a robust
and transparent ML analysis.
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Fig. 4. LIME toolkit explanations for a TP report. Words such as ‘diminution’ and
‘augmentation’ correctly outweigh words indicating stability like ‘pas’ (French nega-
tion) or ‘sans’ (without). Sensitive information has been blacked out for privacy.

Fig. 5. LIME toolkit explanations for a FN report. Words such as ‘sans’ and ‘trans-
verse’ incorrectly outweigh the key word indicating instability in this report which is
‘apparition’ (appearance). Sensitive information has been blacked out for privacy.



Diagnostic Surveillance of High-Grade Gliomas 435

References

1. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev.
Biomed. Eng. 19, 221–248 (2017)

2. Lakhani, P., et al.: Machine learning in radiology: applications beyond image inter-
pretation. J. Am. Coll. Radiol. 15(2), 350–359 (2018)

3. Schwartz, L.H., et al.: Improving communication of diagnostic radiology findings
through structured reporting. Radiology 260(1), 174–181 (2011)

4. Chowdhury, G.G.: Natural language processing. Annu. Rev. Inf. Sci. Technol.
37(1), 51–89 (2003)

5. Casey, A., et al.: A Systematic Review of Natural Language Processing Applied to
Radiology Reports. arXiv preprint arXiv:2102.09553 (2021)

6. Sammut, C., Webb, G.I. (eds.): Encyclopedia of Machine Learning. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-30164-8

7. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. PMLR (2014)

8. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

9. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

10. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2016)

11. Chen, P.-H., et al.: Integrating natural language processing and machine learning
algorithms to categorize oncologic response in radiology reports. J. Digit. Imaging
31(2), 178–184 (2018)

12. Kehl, K.L., et al.: Assessment of deep natural language processing in ascertaining
oncologic outcomes from radiology reports. JAMA Oncol. 5(10), 1421–1429 (2019)

13. Hassanpour, S., Bay, G., Langlotz, C.P.: Characterization of change and signifi-
cance for clinical findings in radiology reports through natural language processing.
J. Digit. Imaging 30(3), 314–322 (2017)

14. Bozkurt, S., et al.: Automated detection of measurements and their descriptors in
radiology reports using a hybrid natural language processing algorithm. J. Digit.
Imaging 32(4), 544–553 (2019)

15. Oliveira, C.R., et al.: Natural language processing for surveillance of cervical and
anal cancer and precancer: algorithm development and split-validation study. JMIR
Med. Inform. 8(11), e20826 (2020)

16. Pham, A.-D., et al.: Natural language processing of radiology reports for the detec-
tion of thromboembolic diseases and clinically relevant incidental findings. BMC
Bioinform. 15(1), 1–10 (2014)

17. Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. arXiv
preprint arXiv:cmp-lg/9602004 (1996)

18. Gwet, K.L.: Handbook of Inter-Rater Reliability: The Definitive Guide to Measur-
ing the Extent of Agreement Among Raters. Advanced Analytics, LLC (2014)

19. Honnibal, M., Montani, I., et al.: spaCy: industrial-strength natural language pro-
cessing in Python. Zenodo (2020). https://doi.org/10.5281/zenodo.1212303

20. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media, Inc., Sebastopol (2009)

21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)



436 T. Di Noto et al.

22. Rehurek, R., Sojka, P.: Gensim-python framework for vector space modelling.
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic
3.2 (2011)

23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
24. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson,

N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives
in Statistics), pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/
978-1-4612-4380-9 16

25. Dessi, D., et al.: TF-IDF vs word embeddings for morbidity identification in clinical
notes: an initial study. arXiv preprint arXiv:2105.09632 (2021)
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reports: application to glioma change detection1
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Abstract — Creating large annotated datasets represents 
a major bottleneck for the development of deep learning 
models in radiology. To overcome this, we propose a 
combined use of weak labels (imprecise, but fast-to-create 
annotations) and Transfer Learning (TL). Specifically, we 
explore inductive TL, where source and target domains are 
identical, but tasks are different due to a label shift: our 
target labels are created manually by three radiologists, 
whereas the source weak labels are generated 
automatically from textual radiology reports. We frame 
knowledge transfer as hyperparameter optimization, thus 
avoiding heuristic choices that are frequent in related 
works. We investigate the relationship between model size 
and TL, comparing a low-capacity VGG with a higher-
capacity SEResNeXt. The task that we address is change 
detection in follow-up glioma imaging: we extracted 1693 
T2-weighted magnetic resonance imaging difference maps 
from 183 patients, and classified them into stable or 
unstable according to tumor evolution. Weak labeling 
allowed us to increase dataset size more than 3-fold, and 
improve VGG classification results from 75% to 82% Area 
Under the ROC Curve (AUC) (p=0.04). Mixed training from 
scratch led to higher performance than fine-tuning or 
feature extraction. To assess generalizability, we also ran 
inference on an open dataset (BraTS-2015: 15 patients, 51 
difference maps), reaching up to 76% AUC. Overall, results 
suggest that medical imaging problems may benefit from 
smaller models and different TL strategies with respect to 
computer vision problems, and that report-generated weak 
labels are effective in improving model performances. 
Code, in-house dataset and BraTS labels are released. 

 

Index Terms — Change Detection, Deep Learning, High-
grade Glioma, Transfer Learning, Weak Labels 

I. INTRODUCTION 

hange detection aims at spotting the parts of an image that 

change over time. In recent years, this task has attracted 

increasing attention for medical imaging applications such as 

multiple sclerosis [1], chest x-ray [2], retinal fundus images [3] 

and glioma [4]–[6], as well as  in other areas such as remote 

sensing and video processing [7]. Change detection is 

particularly relevant for evolving diseases monitored 

longitudinally, such as gliomas, the most frequent primary brain 

tumors occurring in the adult population. Their most aggressive 
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form (high-grade glioma) has a low survival (median ≤ 2 

years) and requires prompt and dedicated treatment [8]. 

Magnetic Resonance Imaging (MRI) is the gold standard 

modality to monitor the evolution of gliomas since it allows the 

acquisition of diverse sequences, which provide 

complementary information to clinicians [9], and potentially 

avoids the need for serial biopsies [10]. Glioma change 

detection is a clinically-relevant, meticulous and non-trivial 

task for radiologists whose goal is to visually detect relevant 

tumor-related changes in order to detect early progressions or 

responses, and tailor treatment. Throughout the rest of the 

paper, we denote the longitudinal monitoring of gliomas via 

MRI as “glioma change detection”. 

In this work, we address glioma change detection via a Deep 

Learning (DL) pipeline that leverages weak labels and transfer 

learning. In the following paragraphs, we explain why these two 

expedients are useful in medical imaging, and how they can be 

exploited to increase performances.  

The need for large amounts of manual annotations is 

arguably the major bottleneck for the development of 

supervised DL models in medical imaging. Not only is the 

creation of manual labels tedious for medical experts, but it is 

also extremely time-consuming [11]; combined with the 

increasing workload of radiologists [12], the creation of manual 

labels is expected to become more and more expensive in the 

coming years. This has prompted interest and advances in more 

sample-efficient learning methods. In this respect, weak labels 

are an interesting alternative to manual labels: they correspond 

to noisy, limited, or imprecise labels that are adopted to guide 

the learning process [13]–[15]. One under-explored approach 

for generating weak labels in medical imaging is the use of 

radiology reports. Most of the time, reports are stored as 

unstructured free-text and exhibit a strong degree of ambiguity 

and lack of conciseness [16]. However, recent advances in 

Natural Language Processing (NLP) enable the extraction of 

clinically-relevant labels [17], [18], [27], [28], [19]–[26] from 

radiology reports. Although these weak labels are inherently 

imperfect, they are drastically faster to obtain with respect to 

manual labels, and are also more scalable since they potentially 

allow to leverage tens of thousands of retrospective exams that 

would otherwise remain unused in hospital PACS (Picture 
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Archiving and Communication Systems). 

Transfer Learning (TL) is the branch of machine learning 

where knowledge acquired from a specific task or domain 

(source) is exploited to solve a downstream, related task (target) 

[29]. Since datasets used by most research groups in medical 

imaging are typically small [30] (especially compared to 

datasets in Computer Vision (CV)), TL holds great potential to 

overcome data scarcity in the field. Adopting the notation from 

[31], we can formally define a domain 𝐷 and a task 𝑇 as 𝐷 =
{𝑋, 𝑃(𝑥)} and 𝑇 = {𝑌, 𝐹(∙)}, where 𝑋 is the feature space, 𝑃(𝑥) 
is the corresponding marginal probability distribution, 𝑌 is the 

label space, and 𝑓(∙) is the objective predictive function. 

Moreover, we use the notations 𝐷𝑠, 𝐷𝑡 , 𝑇𝑠, and 𝑇𝑡 to indicate 

source domain, target domain, source task and target task, 

respectively. Most papers dealing with medical TL focused on 

the choice of the source domain 𝐷𝑠, trying to understand which 

is the best 𝐷𝑠 from which we should transfer knowledge. For 

instance, several works investigated the use of natural images 

(e.g. the ImageNet dataset [32]) for pre-training [33]–[36]. 

Conversely, more recent works showed that the use of natural 

images could lead to negligible performance improvements 

[37], and rather suggested that using a medical domain as 

source is preferable [38]–[40]. Differently from these previous 

studies, in our work we explore the TL scenario where source 

and target domain are identical (𝐷𝑠 = 𝐷𝑡), but the tasks are 

different (𝑇𝑠 ≠ 𝑇𝑡) because of distinct label spaces (𝑌𝑠 ≠ 𝑌𝑡). In 

other words, we aim to understand to what extent it is possible 

to transfer knowledge from a source domain which has a 

different label distribution from the target domain, a scenario 

called inductive TL [31]. More specifically, we address the task 

of glioma change detection with difference maps as input 

samples (𝐷𝑠 = 𝐷𝑡 , details in section II-D), with 𝑌𝑠 consisting of 

the above-mentioned weak labels generated automatically from 

radiology reports, and 𝑌𝑡 consisting of manual labels created by 

human experts, again from radiology reports.  

Once domains (𝐷𝑠, 𝐷𝑡) and tasks (𝑇𝑠, 𝑇𝑡) have been defined, 

TL can be further subdivided into three main types [41]: 

• Fine-tuning: the DL model is pre-trained on the 

source domain and then all its weights are fine-tuned 

on the target domain. 

• Feature Extraction: the DL model is pre-trained on 

the source domain and then only some of its weights 

(typically the last linear layers) are fine-tuned on the 

target domain. Instead, the convolutional backbone 

layers are usually “frozen” (i.e. not trained again). 

• Mixed Training2: the DL model is trained only once 

on a mixed dataset composed of source domain and 

the training portion of the target domain. 

Similarly to the discussion about the choice of the source 

domain, there is also a lack of consensus regarding which type 

of TL is the most effective (e.g. is fine-tuning better than feature 

extraction?), with most of the works trying several 

combinations empirically [41]. In this paper, we develop an 

automated pipeline which treats the TL type as just another 

 
2 Although strictly speaking there is no transfer of knowledge for this subgroup, 

we loosely include Mixed Training among the TL types. 

hyperparameter to optimize. Because the optimal value of other 

hyperparameters (such as the learning rate) depends on the TL 

type, our approach avoids the arbitrary choice of a TL type 

which can be potentially suboptimal. 

Beside the choice of the source domain and the TL type to 

adopt, it is also unclear how much model size influences 

classification results during TL. For instance, [37] found that 

large networks that yield state-of-the-art results for ImageNet 

are not necessarily the top performing networks for medical 

datasets. Moreover, the authors in [37] also showed that in the 

small data regime (i.e. few thousands of samples or below) 

large ImageNet models benefit more from TL with respect to 

smaller networks. This behavior is frequent in CV where larger 

networks tend to maintain a performance edge over smaller 

networks even in the low-data regime [42]. Subsequent work 

[43] instead found that using extremely large architectures 

(380M parameters) and massive pre-training datasets (300M 

images) from the natural images domain can actually improve 

results on target medical domains. In the same line as these 

studies, we compare a low-capacity model to a higher-capacity 

model (details in section II-E) to investigate the impact of 

model size, but in the scenario of inductive TL. 

In summary, the goal of this paper is to tackle glioma change 

detection within an inductive TL scenario (𝐷𝑠 = 𝐷𝑡, 𝑌𝑠 ≠ 𝑌𝑡). 
The main contributions of our work are the following: (i) we 

propose a TL approach that leverages inexpensive and fast-to-

create weak labels generated from radiology reports; (ii) we 

automate the choice of TL type, treating it as another 

hyperparameter to optimize, and thus avoiding manual 

empirical trials; (iii) we assess the impact of model size on TL 

for medical imaging and (iv) we release new expert labels for 

the longitudinal subjects of the public BraTS 2015 dataset [44]–

[46], as well as our in-house 1693 longitudinal difference 

images for glioma, the largest such dataset currently available. 

A. Related works 

Previous works have addressed the task of glioma change 

detection. For instance, [4] used difference maps after contrast 

midway mapping to monitor tumor growth with FLuid 

Attenuated Inversion Recovery (FLAIR) images. Instead, [5] 

monitored low-grade glioma growth via a dedicated 

segmentation pipeline, again on FLAIR images. Last, [6] tried 

to distinguish radiation-induced pseudo progression from real 

tumor progression using 3D shape features and a support vector 

machine. 

Several works have explored the potential of NLP for 

classifying radiology reports [17], [18], [27], [28], [19]–[26]. 

However, only a few studies later investigated the application 

of their trained report classifier for a downstream imaging task 

[28], [47]–[49]. The authors in [47] showed that their report 

classifier could be used to triage head MRI scans and identify 

relevant abnormalities. Instead, authors in [48] used labels 

generated from reports of FDG-PET/CT to detect and estimate 

the location of abnormalities in whole-body scans. The work 

[49] described an NLP model that is used to generate weak 



 

image-level labels which are later integrated into a semi-

supervised framework for mass detection in mammography 

images. Last, the authors in [28] trained an NLP classifier to 

create weak labels from pathology reports and later used these 

weak labels to train a DL model on colon Whole Slide Images. 

Similarly to [28], [47]–[49], we investigate whether the report 

classifier built in [17] can be useful to generate weak labels 

which are then used for the downstream imaging task of glioma 

change detection. 

Regarding the automation of TL, most works have focused 

on measuring transferability between domains and tasks: for 

instance [50] define transferability as the difference in 

performance between models trained on source and target tasks, 

and use this information to improve several downstream tasks 

using logistic regression models. Similarly, [51] proposed a 

computational approach to discover transferability between 26 

CV tasks, yielding optimal combinations of deep learning 

features for each target task. In terms of domain choice, the 

authors in [52] propose an information theoretic framework 

which permits to rank convolutional neural networks trained on 

different source domains and understand which is the most 

suitable for knowledge transfer. Alternatively, [53] proposed an 

adversarial multi-armed bandit that automatically decides 

which (if any) are the features of the source network that are 

useful for the target network. Our work differs from the above 

since the automation of our TL pipeline is focused on the type 

of TL (fine-tuning, feature extraction, or mixed training) rather 

than the selection of the most relevant source domain or task. 

Finally, previous works have already explored the influence 

of model size on TL [37], [38], [43]. However, these works 

focused on the transductive TL scenario [31] where 𝐷𝑠 ≠ 𝐷𝑡 , 
whereas we found no work that assessed the impact of model 

size for the inductive TL scenario (𝐷𝑠 = 𝐷𝑡 , 𝑌𝑠 ≠ 𝑌𝑡). 

II. MATERIALS AND METHODS 

A. In-house Dataset 

We retrieved 2100 MR scans belonging to 183 retrospective 

patients with high-grade gliomas who were scanned between 

2004 and 2019 at the Lausanne University Hospital (average 

number of scans per subject 5, standard deviation 4.5). At every 

session, a series of MR scans including structural, perfusion and 

functional imaging were performed. For simplicity, in this work 

we only focused on the T2-weighted (T2w) scans. The MR 

acquisition parameters for the cohort are provided in Table I. 

Scans that were too close to surgery (within 4 weeks) were 

excluded since they contained exaggerated intensity changes 

and brain deformations around the resection cavity, due to 

edema. We deem these changes irrelevant since they are not 

related to the tumor itself. In addition, we extracted the 

radiology reports associated with each session. These were 

written (or dictated) in French during routine clinical practice 

by a junior radiologist after exploring all sequences of interest. 

Then, a senior radiologist reviewed each case amending the 

report when necessary. The extracted reports have varying 

length ranging from 121 to 751 words (average 325, standard 

deviation 84). The protocol of this study was approved by the 

regional ethics committee; written informed consent was 

waived. We release an anonymized version of our in-house 

dataset on Zenodo (DOI: 10.5281/zenodo.7214605) under the 

permissive CC BY 4.0 license [54]. 

B. BraTS Dataset 

To assess the generalization of our pipeline to an external 

dataset, we ran inference on the longitudinal subjects of the 

Multimodal Brain Tumor Segmentation (BraTS) 2015 multi-

institutional dataset. We selected the 2015 edition because it is 

the only one that contains patients with multiple scans (i.e. 

longitudinal patients). Out of the 20 available longitudinal 

patients, we discarded 5 because they only contained two scans, 

namely the one before tumor resection and the one right after. 

For the remaining 15 subjects, we used 59 MR scans (average 

of ~4 scans per subject), again only focusing on T2w scans. 

From these 59 scans, we generated 51 difference maps (creation 

process described in section II-D) which were tagged by one 

radiologist with over 18 years of experience (P.H.), using the 

labels presented in section II-C. We openly release these labels 

(https://github.com/connectomicslab/Glioma_Change_Detecti

on_T2w/blob/master/extra_files/df_dates_and_t2_labels_brats

_tcia_2015.csv) for other researchers. 

C. Report Tagging 

From the 183 glioma patients of the in-house dataset, we 

created two sub-datasets: a Human-Annotated Dataset and a 

Weakly-Annotated Dataset.  

Human Annotated Dataset (HAD) - For this sub-dataset, 

three radiologists tagged the MR radiology reports with labels 

of interest.  For each report, the annotators were instructed to 

assign 3 classes: one class that indicated the global conclusion 

of the report (global conclusion), one to indicate the evolution 

of the enhanced part of the tumor (T1w conclusion) and the last 

class to indicate the evolution of the tumor on T2-weighted 

sequences (T2w conclusion). For each of these classes, the 

annotator could choose between the following labels: 

• stable: assigned when the tumor did not change 

significantly with respect to the previous comparative 

exam 

• progression: assigned when the tumor worsened with 

respect to the previous comparative exam. This class 

included cases where the enhanced part of the tumor 

increased in size or when the T2 signal anomalies 

surrounding the tumor increased in extension 

• response: assigned when the tumor responded 

positively to the treatment (either chemotherapy or 

radiotherapy) 

• unknown: assigned if the annotator was not able to 

assign any of the three classes when reading the report 



 

 

381 reports (belonging to 169 distinct patients) were 

manually annotated by our three experts. 

 Out of these 381, 39 reports (belonging to 39 distinct 

patients) were tagged by a senior radiologist with over 18 years 

of experience in neuroimaging (P.H), while 342 reports 

(belonging to 162 patients) were tagged by two radiologists 

both with 4 years of experience (C.A, E.G.T). Cohen's kappa 

coefficient between the two readers for the T2w conclusion was 

k=0.80 which is considered a “substantial agreement” [55]. The 

41/342 reports for which the two annotators disagreed were 

discarded. Also, we discarded 90 reports for which the T2w 

conclusion was different from the global conclusion. The 

rationale behind this choice was to exclude misleading cases for 

which the report was ambiguous (e.g. T2w conclusion = 

progression, global conclusion = stable), discordant (e.g. T2w 

conclusion = progression, global conclusion = response), or 

cases for which signs of progression were visible only on T1w 

scans (e.g. T1w conclusion = progression, T2w conclusion = 

stable). Last, we also excluded the 17 reports for which the T2w 

conclusion was tagged as unknown. This left a total of 91 

patients, 378 scans, and 233 difference maps (see Figure 1). 

Weakly Annotated Dataset (WAD) - For this sub-dataset, 

reports were tagged with the classifier proposed in our previous 

work [17]. Briefly, this consists of an NLP pipeline in which we 

preprocess (e.g. removed proper nouns, stopwords, 

punctuation), embed (with Doc2Vec [56]) and then classify 

(Random Forest with 501 trees) the radiology reports precisely 

into the classes mentioned above (i.e. stable, progression and 

response). We denote the labels generated from the report 

classifier as weak because the classifier will commit errors, and 

because, differently from human readers, it cannot abstain when 

the reports are unclear (i.e. there is no unknown label). 

Both for HAD and WAD we merged progression and 

response into one unique class which we denote as unstable. 

By doing this, we narrowed the task to a binary classification 

problem where we try to distinguish between stable and 

unstable reports.  

 

 

This scenario corresponds to a worklist prioritization in 

radiology departments, where we would want to prioritize 

examinations that are unstable and require more attention. After 

these modifications, HAD contained 233 reports (159 stable, 74 

unstable), whereas WAD contained either 795 (333 stable, 462 

unstable) or 361 (165 stable, 196 unstable) reports, depending 

on the probabilistic output of the random forest 

(hyperparameter fraction_of_WAD, details in section II-F). A 

detailed overview of the dataset is provided in Figure 1. 

D. Image-based change detection 

While our former study [17] focused on report-based glioma 

change detection, this work deals with image-based glioma 

# scans Vendor Model Field 

Strength [T] 

Median 

TR [ms] 

Median TE 

[ms] 

Median Voxel 

Spacing [𝑚𝑚3] 

800 Philips Intera 3.0 3000 80 0.45x0.45x4.0 

445 Siemens Healthineers Skyra 3.0 5000 77 0.45x0.45x3.3 

304 Siemens Healthineers TrioTim 3.0 4700 84 0.45x0.45x3.9 

254 Siemens Healthineers Symphony 1.5 4370 103 0.45x0.45x6.5 

127 Siemens Healthineers Verio 3.0 5000 85 0.45x0.45x3.3 

85 Siemens Healthineers Aera 1.5 6220 84 0.6x0.6x3.3 

77 Siemens Healthineers Prisma 3.0 4881 77 0.45x0.45x3.3 

2 Siemens Healthineers Espree 1.5 6000 93 0.53x0.53x7.2 

2 Philips Ingenia 1.5 3448 80 0.34x0.34x3.6 

1 Siemens Healthineers Vida 3.0 5320 77 0.45x0.45x3.3 

1 Philips Achieva 1.5 3659 50 0.39x0.39x4.55 

1 Philips Panorama HFO 1.0 5300 100 0.33x0.33x5.3 

1 GE HealthCare Discovery MR750 3.0 7955 100 0.47x0.47x4.0 

TABLE I 

MR ACQUISITION PARAMETERS OF THE 2100 T2w SCANS BELONGING TO THE IN-HOUSE GLIOMA PATIENTS USED FOR THE STUDY. 

   

 

Fig. 1.  Dataset overview. Each report corresponds to one T2w 

difference map since they both link two time points (i.e. two MR scans). 

The branches WAD > 0.75 and WAD > 0.95 depend on the 

hyperparameter fraction_of_WAD described in section II-F. Difference 

maps in WAD come both from new patients (distinct from HAD patients) 

and HAD patients since not all reports from HAD have been tagged 

manually. Green rectangles indicate the final sets of 

patients/scans/difference maps used for the downstream analyses. 



 

change detection. We know that every radiology report links 

two time points, namely the current scan and a previous scan 

which is used as baseline for comparison and longitudinal 

monitoring. Thus, for each report, we generated a 

corresponding T2w absolute difference map as illustrated in 

Figure 2. The rationale behind these difference maps is that 

parts of the tumor that either progress or respond to treatment 

(unstable) should appear as hyper-intense (examples (a) and (c) 

in Figure 2); instead, if the tumor is stable across the two time-

points, the difference map will likely be hypo-intense overall 

(examples (b) and (d)). To generate the difference maps, we 

first applied N4 bias field correction with ANTs [57] both to the 

previous and to the current T2w volumes. Second, we registered 

the previous scan to the current scan, again with ANTs. Third, 

we skull-stripped both volumes (previous warped and current) 

with HD-BET [58]. Fourth, we applied z-score normalization 

on both volumes. Last, we computed the absolute voxel-wise 

difference of the normalized volumes.  

 

E. Classification Networks 

The image-based change detection is treated as a binary 

classification problem: as for the reports, we try to classify the 

difference maps into stable and unstable in order to prioritize 

more urgent patients. We used two Convolutional Neural 

Networks (CNNs) for the classification of the T2w difference 

maps: a custom 3D-VGG [59] (henceforth called VGG) and a 

3D-ResNeXt [60] with Squeeze-and-Excitation [61] 

(henceforth called SEResNeXt). The VGG was written in 

PyTorch and contains 4 convolutional blocks followed by 4 

fully-connected blocks. We used the ReLU activation function 

for all layers, except for the last layer which is followed by a 

sigmoid function. Batch normalization [62] was added in the 

VGG to prevent overfitting.  The SEResNeXt was implemented 

with the MONAI framework [63]. For both CNNs, we used the 

cross-entropy loss function and the ADAM optimizer [64] to 

guide the learning process. During training, we applied online 

data augmentations, namely flip, addition of Gaussian noise, 

zoom (from 0.7 to 1.3, 1 being the original volume size) and 

elastic deformation, each with probability of 20%. The total 

number of trainable parameters in our networks is ~7.5 M for 

the VGG and ~19.4 M for SEResNeXt. Training and 

evaluation were performed with PyTorch 1.11.0 and a GeForce 

RTX 3090 GPU. 

F. Experiments and Hyperparameter Tuning 

Creation of weak labels with report classifier - For this 

work, we adapted the report classifier [17] and trained it to 

classify the T2w conclusion (in [17] it was trained to classify 

the global conclusion). We ran a nested 5-fold cross-validation 

on the 233 HAD reports, selected the best hyperparameters, and 

finally performed inference with the best model on all WAD 

reports to obtain the weak labels later used for the image-based 

change detection. 

Image-based glioma change detection - Because of 

computational constraints, we decided to fix some 

hyperparameters, and tune others. Among the fixed (not tuned) 

hyperparameters we chose a batch size of 4, and 60 training 

epochs with early stopping. Depending on the experiments 

detailed below, other hyperparameters were tuned using the 

Optuna framework [65] with default arguments (Tree-

structured Parzen Estimator as sampler, and Median pruner), 

and maximizing the Area Under the Receiver Operating 

Characteristic Curve (AUC) of a dedicated validation set 

composed of 25% of the training subjects (details in section II-

G).  

To understand which TL type is the most appropriate to 

improve classification performances and how model capacity 

can influence TL results, we performed two experiments (called 

Baseline and TL) with the two DL models described above 

(VGG and SEResNeXt): in the Baseline experiment,  we 

conducted a 5-fold cross-validation only on HAD (details in 

section II-G), and WAD was intentionally not used (i.e. no TL). 

Evaluation was performed on the test subjects of each cross-

validation fold and then results were aggregated. The only two 

hyperparameters that were tuned for the Baseline experiment 

were learning_rate and weight_decay. The former was chosen 

from {1 × 10−4, 1 × 10−5, 1 × 10−6}, whereas the latter was 

chosen from {0, 0.01}. Since only two hyperparameters were 

tuned, both for the VGG-Baseline experiment and the 

SEResNeXt-Baseline experiment we ran all the six 

hyperparameter combinations. In the Transfer Learning (TL) 

experiment, we still performed a 5-fold cross-validation on 

HAD, but this time we also exploited the WAD difference 

maps. In addition to learning_rate and weight_decay (which are 

tuned identically to the Baseline), here we also searched for the 

best transfer learning configuration. Specifically, we tuned 3 

Fig. 2.  Creation of T2w difference maps. After registration and 
normalization of the previous and current T2w volumes, the maps are 
computed via voxel-wise absolute difference. (a) 58-year-old male 
patient with a progressing (i.e. unstable) gliosarcoma. (b) 59-year-old 
male patient with a stable astrocytoma. (c) 60-year-old male patient with 
seemingly stable glioblastoma, but with enlarging cystic lesion (zoom 
inset in cyan color). (d) 60-year-old male patient with a (less evident) 
stable oligodendroglioma. 



 

additional hyperparameters: mixed_training, 

feature_extraction and fraction_of _WAD. 

• mixed_training can either be True or False: if True, we 

use for training a mixed shuffled dataset that is 

composed of WAD difference maps and the difference 

maps of the training HAD patients (scenario 3, section 

1); if instead mixed_training is False, we either 

o perform feature extraction if 

feature_extraction is True (scenario 2, 

section 1), or 

o fine-tuning if feature_extraction is False 

(scenario 1, section 1) 

• fraction_of_WAD indicates which portion of WAD to 

use. We added this hyperparameter because not all 

weakly-labeled data is necessarily useful. In other 

words, by tuning fraction_of_WAD we wanted to 

understand whether some reports (and hence some 

difference maps) are more informative than others. 

The tunable values that we chose for fraction_of_WAD 

were {𝑊𝐴𝐷 > 0.75,𝑊𝐴𝐷 > 0.95} where 0.75 and 

0.95 are the output probabilities (soft labels) of the 

report classifier from [17]. For instance, when using 

𝑊𝐴𝐷 > 0.95 we only use a small portion of WAD, 

namely only the reports for which the report classifier 

is highly confident (output probability > 0.95). 

Instead, when using 𝑊𝐴𝐷 > 0.75 we also include 

reports for which the NLP classifier is less confident3. 

 

Figure 3 illustrates one branch of the tree containing all 

possible hyperparameter combinations for the TL experiment. 

Since running all combinations would have been 

computationally impractical, we only ran each TL experiment 

(VGG-TL and SEResNeXt-TL) for 4 days.  

To summarize, we ran 4 experiments: VGG-Baseline, VGG-

TL, SEResNeXt-Baseline, and SEResNeXt-TL. The 

comparisons between Baseline and TL aimed to assess the 

effectiveness of the weak labels in WAD. Results related to the 

impact of weak labels and TL are reported in section III-A. 

Instead, comparisons between the two CNNs (e.g. VGG-

Baseline vs. SEResNeXt-Baseline) aimed to understand the 

influence that model capacity can have on TL strategies for our 

task. Results related to the impact of model size are reported in 

section III-B. The most frequent hyperparameter combinations 

are then reported in section III-C, and finally in section III-D 

we report inference results of our 4 models (VGG-Baseline, 

VGG-TL, SEResNeXt-Baseline, SEResNeXt-TL) on the 

longitudinal patients of the external BraTS 2015 dataset. For 

each model, we ran inference with the five trained model of the 

cross-validation, and then performed majority voting of the five 

predictions. 

G. Cross-Validation and evaluation 

Cross-Validation - For the Baseline experiments, we 

performed a 5-fold cross-validation on HAD. At each cross-

validation split, 80% (72/91 subjects, 166 difference maps) of 

the subjects are used to train the CNN (either VGG or 

SEResNeXt), while the remaining 20% (19/91 subjects; 67 

 
3 In the beginning, we tried using all WAD, but this consistently led to lower 

performances (results not shown). 

difference maps) of the subjects are used to compute test results. 

Within each cross-validation fold, we also used 25% (18/72 

subjects, 49 difference maps) of the training subjects as 

validation set for tuning the hyperparameters. To avoid over-

optimistic results, the cross-validation splits were always 

performed at the subject-level to prevent multiple difference 

maps of the same subjects being assigned some to the training 

and some to the test (or validation) set. For the TL experiments, 

we performed the same 5-fold cross-validation on HAD, but 

then adapted the learning strategy according to the 

hyperparameters chosen during hypertuning: if  mixed_training 

was True, then WAD subjects were added to the training 

subjects of HAD, while if mixed_training was False, the model 

was first pre-trained on WAD and then fully (fine-tuning) or 

partially (feature extraction) fine-tuned on the training subjects 

of HAD. We ensured that the same splits were performed on 

HAD both for the Baseline and TL experiments, so that an 

exact comparison could be carried out. Also, for the HAD 

patients with overlapping scans (some manually annotated and 

some automatically annotated), we made sure to never assign 

some scans to training and some to test (or validation) set. 

Metrics - The task that we address is binary classification of 

the T2w difference maps which are labeled either as stable or 

unstable. We report in the Results section accuracy, sensitivity 

(recall), specificity, F1 score, AUC, and Area Under the 

Fig. 3.  Tree of hyperparameter combinations for the transfer 
learning experiments. Dashed lines indicate branches that are not 
shown because of limited figure space. Green ellipses are the leaves 
of the hyperparameter tree. If mixed_training is True, we end up in 
scenario 3 of section 1; if mixed_training is False and 
feature_extraction is True we perform feature extraction (scenario 2, 
section 1); if is False and feature_extraction is False, we perform fine-
tuning (scenario 1, section 1). 
 



 

Precision-Recall curve (AUPR). We consider the class 

unstable as “positive”, and the class stable as “negative”.  

Statistics - To statistically compare the four different models 

presented in section III-F, we ran permutations tests using the 

difference in AUCs as test statistic, as similarly performed in 

[66]. We set a significance threshold 𝛼 = 0.05 and we ran 

10,000 permutations for each test. 

Code availability - All the code used for this paper is 

available at 

https://github.com/connectomicslab/Glioma_Change_Detectio

n_T2w, together with corresponding configuration files to 

reproduce the experiments. 

III. RESULTS 

In cross-validation, the report classifier reached an accuracy 

of 93%, a sensitivity of 91% and a specificity of 94% on the 

233 HAD reports. When running inference on WAD, 795 

reports were associated with a class probability > 0.75, while 

361 were associated with a class probability > 0.95. 

The upper part of Table II shows test classification results of 

the VGG and the SEResNeXt for the task of image-based 

glioma change detection on the in-house dataset. The Baseline 

experiments are those where only HAD is used, while in the TL 

experiments we also leverage WAD. To visually summarize 

classification results, we also report in Figures 4 and 5 the 

Receiver Operating Characteristic (ROC) and the Precision-

Recall (PR) curves, respectively. 

A. Weak labels and TL improve classification results for 
VGG 

We found a significant difference in AUC between the 

models VGG-Baseline and VGG-TL (p=0.05). This finding 

indicates the superiority of the TL pipeline with respect to the 

Baseline, which is visually confirmed in Figures 4 and 5 where 

the VGG-TL consistently outperforms VGG-Baseline. 

Conversely, the permutation test indicated that the 

SEResNeXt-Baseline and SEResNeXt-TL had no significant 

difference (p=0.18), even though SEResNeXt-TL showed 

higher AUC and AUPR, and the corresponding PR curve 

(yellow, Figure 5) outperforms the one from SEResNeXt-

Baseline (black, Figure 5) for most operating points. Overall, 

the two experiments show that only the VGG model benefits 

significantly from TL with the weakly-labeled dataset WAD. 

B. Model size is negligible for the task at hand 

To assess the impact of model size, we compared the VGG-

Baseline vs. the SEResNeXt-Baseline model and found no 

significant difference between the two (p=0.17). Then, we also 

compared the VGG-TL to the SEResNeXt-TL model and again 

we found no significant difference (p=0.39). These experiments 

indicate that, for the task at hand, model size does not influence 

classification results, even though the SEResNeXt has ~2.5X 

more trainable parameters than the VGG (19.4M vs. 7.5M) and 

is slower to train (e.g. 1 epoch of the Baseline experiment takes 

120 seconds for SEResNeXt vs. 90 seconds for VGG). Overall, 

these results suggest that the VGG is preferable for the task at 

hand because it is simpler and more computationally efficient. 

C. Most frequent hyperparameters 

Here, we report the most frequent hyperparameters that were 

chosen by the Optuna optimizer across the 5 training folds. For 

the VGG-Baseline experiment, the most frequent learning_rate 

was 1 × 10−4 (3 folds out of 5) and the most recurrent 

weight_decay was 0.01, while for the SEResNeXt-Baseline the 

most frequent learning_rate was 1 × 10−5 (3/5 folds) and the 

most frequent weight_decay was 0. More interestingly, we 

found a peculiar pattern in the hyperparameters of the TL 

pipeline: both for the VGG-TL (5/5 folds) and for the 

SEResNeXt-TL (4/5 folds), the hyperparameter mixed_training 

was always True. This means that training from scratch with a 

mixed dataset (WAD + training HAD) consistently leads to 

higher performances with respect to either fine-tuning or 

feature extraction. Regarding the hyperparameter 

fraction_of_WAD, the most frequent value for the VGG-TL 

experiment was 𝑊𝐴𝐷 > 0.95 (3/5 folds), whereas the most 

recurrent value for SEResNeXt-TL was 𝑊𝐴𝐷 > 0.75 (4/5 

folds). 

D. Inference on BraTS 

Out of the 51 difference maps that we extracted from BraTS 

2015, 12/51 (23%) were tagged as stable, while 39/51 (76%) 

were tagged as unstable, by our senior radiologist. The lower 

Dataset N MODEL ACC SENS SPEC F1 AUC AUPR # PARAMS 

In-house 233 

VGG-Baseline 70 55 77 54 .74 .55 
7.5M 

VGG-TL 79 80 79 71 .82 .72 

SEResNeXt-Baseline 76 50 88 57 .79 .63 
19.4M 

SEResNeXt-TL 77 78 76 68 .83 .73 

BraTS 

2015 
51 

VGG-Baseline (inference) 75 82 50 83 .66 .90 
7.5M 

VGG-TL (inference) 76 92 25 86 .59 .89 

SEResNeXt-Baseline (inference) 73 69 83 79 .76 .93 
19.4M 

SEResNeXt-TL (inference) 78 95 25 87 .60 .60 

TABLE II 

CLASSIFICATION TEST RESULTS. UPPER PART: IN-HOUSE DATASET . LOWER PART: BRATS-2015 DATASET . BOLD VALUES INDICATE 

THE HIGHEST PERFORMANCES. N=NUMBER OF DIFFERENCE MAPS; BASELINE = PIPELINE WHERE ONLY HAD DATA IS USED. TL = 

TRANSFER LEARNING: PIPELINE WHERE BOTH HAD AND WAD ARE USED. ACC=ACCURACY; SENS=SENSITIVITY; SPEC=SPECIFICITY; 

F1=F1 SCORE; AUC=AREA UNDER THE ROC CURVE; AUPR=AREA UNDER THE PRECISION-RECALL CURVE; PARAMS=NUMBER OF 

PARAMETERS IN THE MODEL. 



 

part of Table II illustrates inference results of the trained models 

after majority voting among the five splits of the cross-

validation. Although the SEResNeXt-Baseline model showed 

the highest AUC, it did not significantly outperform the 

SEResNeXt-TL (p=0.46), or the VGG-Baseline (p=0.39). 

IV. DISCUSSION 

This work investigated the effectiveness of inductive TL for 

the task of image-based glioma change detection. To this end, 

we compared an automated TL pipeline that leverages weakly 

annotated data with a baseline that uses only human-annotated 

data. The experiments were run with two CNNs (VGG and 

SEResNeXt) to assess the impact that model size can have on 

classification performances and finally the pipeline was 

validated on the external BraTS dataset to assess model 

generalizability. 

Despite being less accurate, weak labels extracted from 

radiology reports hold great potential for mitigating the manual 

annotation bottleneck in medical imaging. The main advantage 

of NLP-generated weak labels is that report classifiers are 

normally fast to train (e.g. the one presented in [17] takes ~10 

minutes). Therefore, labeling hundreds (or even thousands) of 

new subjects becomes extremely fast and inexpensive. In this 

work, the weak annotation process allowed us to obtain a more 

than 3-fold increase in sample size (233 difference maps for 

HAD vs. 795 for the TL pipeline with 𝑊𝐴𝐷 > 0.75) at very 

little added cost. Results in section III-A showed that the 

automatically-labeled dataset WAD helps improving 

classification results, although the difference in performance 

between Baseline and TL was only significant for the VGG 

model. This result differs from [37] since in the small data 

regime we found the smaller network (VGG) to benefit more 

from TL with respect to the larger SEResNeXt. Nonetheless, as 

similarly reported in [48], we expect performances of both 

models to increase even further as more weakly-labeled 

samples are added. 

When studying the impact of model size in classification 

performances (section III-B), we found no significant 

difference between VGG and SEResNeXt neither for the 

Baseline nor for the TL experiment. Therefore, for our 

application, we conclude that the VGG model is preferable 

because it is simpler and faster to train. A similar result was 

found in [67] where a VGG19 model outperformed much 

deeper networks in a TL pipeline for COVID-19 detection. 

Both our results and the ones in [67] indicate that the high-

capacity networks and transfer learning strategies typically used 

for computer vision tasks in the high-data regime are not 

necessarily optimal for medical imaging tasks, where models 

often operate in the low-data regime. Given that deep learning 

scaling studies typically show log-linear or power laws relating 

loss to dataset size [68], [69], including for transfer learning 

[70], it is possible that the  higher-capacity SEResNeXt model 

in our study would be superior if much more data were 

available, but this is not visible with our small dataset as we are 

far from the performance asymptote. 

Another contribution of this work is the automation of the TL 

pipeline. Instead of searching for the best TL type manually, we 

framed the TL experiments as a hyperparameter optimization 

problem. We believe that our pipeline can be adopted by similar 

works that aim to automate TL for image classification. 

Surprisingly, we found that mixed training TL led to the highest 

classification performances. From a computational and 

environmental point of view, this finding is alarming because it 

indicates that the longest-running, least resource-efficient TL 

pipeline could be preferable with respect to feature extracting 

or fine-tuning. 

As last contribution, we also evaluated our four models on the 

external BraTS dataset in order to assess model generalizability. 

Although the sample size is limited (51 difference maps) and 

no significant differences were found with the permutation 

tests, results on the lower part of Table II seem to indicate that 

the two Baseline models (VGG and SEResNeXt) can better 

cope with class imbalance (higher specificity and AUC). 

Our work has several limitations. First, we narrowed the 

classification problem to a binary scenario stable vs. unstable 

tumor, mainly because we do not have enough cases of tumor 

response in our cohort. This is a simplification because 

progression and response are distinct clinical indicators. In 

future works, we are planning to extract new patients and adapt 

the classification towards a 3-class problem (stable, 

progression, response). As shown in [71], this will require 

careful analyses since results might change significantly when 

the labels of the task become more granular. The second 

limitation of this study is that we only focused on T2w MRI 

volumes, even though a multi-modal assessment of glioma 

Fig. 4. Receiver Operating Characteristic Curve (ROC) curves 
aggregated over the five test folds of HAD. AUC = Area Under the 
ROC Curve. TL = Transfer Learning. 

Fig. 5. Precision-Recall (PR) curves aggregated over the five test 
folds of HAD. AUPR = Area Under the PR curve. TL = Transfer 
Learning. 

 



 

evolution would be more accurate [10]. Third, the reports from 

the HAD for which the two annotators disagreed were 

discarded, while in the future we plan to use them after a 

consensus between the readers has been reached. Additionally, 

we only evaluated one approach for fine-tuning, whereas other 

strategies, including freezing different layers for different 

number of epochs [36], remain to be explored. 

V. CONCLUSION 

This study presented a TL pipeline that uses weakly-labeled 

data generated from radiology reports to improve classification 

performances for the task of glioma change detection. We 

found that a custom VGG model benefits more from transfer 

learning (and has similar performances) with respect to a more 

complex ResNet-like model. We hope this finding raises 

awareness regarding the potentially misleading translation 

between computer vision and medical imaging applications, 

and that our automated pipeline can be replicated for similar TL 

tasks in the field. 
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