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Abstract: Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n be independent centered stationary Gaussian processes with unit

variance and almost surely continuous sample paths. For given positive constants u, T , define the set of

conjunctions C[0,T ],u := {t ∈ [0, T ] : min1≤i≤nXi(t) ≥ u}. Motivated by some applications in brain mapping

and digital communication systems, we obtain exact asymptotic expansion of P
{
C[0,T ],u 6= φ

}
, as u → ∞.

Moreover, we establish the Berman sojourn limit theorem for the random process {min1≤i≤nXi(t), t ≥ 0}

and derive the tail asymptotics of the supremum of each order statistics process.
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1. Introduction & Main Result

Let Xi(t) model the value of an image i at location t ∈ Rd, 1 ≤ i ≤ n. For a given positive threshold u and a

given scan set T ⊂ Rd, the set of conjunctions CT ,u is defined by

CT ,u := {t ∈ T : min
1≤i≤n

Xi(t) ≥ u}

see the seminal contribution [22]. As mentioned in the aforementioned paper, of interest is the calculation of

the probability that the set of conjunctions CT ,u is not empty, i.e.,

pT ,u := P {CT ,u 6= φ} = P
{

sup
t∈T

min
1≤i≤n

Xi(t) ≥ u
}
.

Typically, in applications such as the analysis of functional magnetic resonance imaging (fMRI) data, Xi’s are

assumed to be real-valued Gaussian random fields. Approximations of pT ,u are discussed for smooth Gaussian

random fields in [22, 5, 10]; results for non-Gaussian random fields can be found in [6].

In this paper, we shall consider the case d = 1, T := [0, T ], with T > 0, and that Xi’s are independent centered
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stationary Gaussian processes with unit variance and correlation functions ri(·), 1 ≤ i ≤ n that satisfy

ri(t) = 1− Ci |t|αi + o(|t|αi), t→ 0, ri(t) < 1, ∀t ∈ (0, T ](1)

for some positive constants αi ∈ (0, 2] and Ci, 1 ≤ i ≤ n. Further, we assume that Xi’s have almost surely

continuous sample paths. Since the calculation of pT ,u is not possible in general, we shall investigate below

the exact asymptotic behavior of pT ,u as u→∞. Although {min1≤i≤nXi(t), t ≥ 0} is not a Gaussian process

when n ≥ 2, as shown in [22], it happens that it is possible to adapt techniques used in the theory of Gaussian

processes and random fields to this class of processes. Motivated by a recent paper of Albin and Choi [3] and

the extremal theory for stationary Gaussian processes developed mainly by Berman and Albin (see [8, 9, 2, 4]),

we shall derive an asymptotic expansion for pT ,u as u→∞, by following the ideas of [3].

For the formulation of our main result we need to introduce some notation. Let {Bαi(t), t ≥ 0}, 1 ≤ i ≤ n

be mutually independent standard fractional Brownian motions with Hurst indexes αi/2 ∈ (0, 1], 1 ≤ i ≤ n,

respectively, i.e., Bαi is a centered Gaussian process with continuous sample paths and covariance function

Cov(Bαi(t), Bαi(s)) =
1

2

(
tαi + sαi − |t− s|αi

)
, t, s > 0, 1 ≤ i ≤ n.

Next define

Z(t) := min
1≤i≤n

((√
2Bαi(C

1/αi
i t)− Citαi

)
1(αi = αmin) + Ei

)
, t ≥ 0, αmin := min

1≤i≤n
αi,(2)

where 1(·) denotes the indicator function, and Ei’s are mutually independent unit exponential random vari-

ables being further independent of Bαi ’s. Finally, let Hα1,...,αn(C1, . . . , Cn) ∈ (0,∞) denote generalized

Pickands constant, determined by

Hα1,...,αn(C1, . . . , Cn) = lim
a↓0

1

a
P
{

max
k≥1
Z(ak) ≤ 0

}
.(3)

The following theorem constitutes our principle result.

Theorem 1.1. Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n be mutually independent centered stationary Gaussian processes

with unit variance and correlation functions satisfying (1). Then, for any T > 0

P

{
sup
t∈[0,T ]

min
1≤i≤n

Xi(t) > u

}
= Hα1,...,αn(C1, . . . , Cn) Tu

2
αmin

exp(−nu2/2)

(2π)n/2un
(1 + o(1)), u→∞,(4)

where Hα1,...,αn(C1, . . . , Cn) ∈ (0,∞) is defined in (3).

The organization of the paper. Section 2 presents brief discussions and shows the validity of the Berman

sojourn limit theorem for the random process {min1≤i≤nXi(t), t ≥ 0}. Additionally, utilizing the fact that

minimum is a particular case of the order statistics, in Theorem 2.2 we get a counterpart of Theorem 1.1 for
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order statistics processes. The case of non-standard stationary Gaussian processes is treated in Theorem 2.3.

Section 3 contains all the proofs.

2. Discussions & Extensions

In his seminal contribution [15] J. Pickands III established the exact asymptotic tail behavior of the supremum

of the stationary Gaussian process {X1(t), t ∈ [0, T ]} under the condition (1), using a double-sum method.

The first crucial step to that result is the celebrated Pickands lemma which states that, for any positive

constant S

P

 sup

t∈[0,u
− 2
α1 S]

X1(t) > u

 = Hα1

[
0, C

1
α1
1 S

]
Ψ(u)(1 + o(1)), u→∞,

where Ψ(·) is the survival function of an N(0, 1) random variable and

Hα1
[0, S] = E

{
exp

(
sup
t∈[0,S]

(√
2Bα1

(t)− tα1

))}
∈ (0,∞).

Recall that Ψ(u) = exp(−u2/2)/
√

2πu2(1 + o(1)) as u→∞.

An application of Pickands lemma, together with the double-sum method, yields (see, e.g., [15, 16, 17])

P

{
sup
t∈[0,T ]

X1(t) > u

}
= TC

1
α1
1 Hα1

u
2
α1 Ψ(u)(1 + o(1)), u→∞,(5)

where Hα1
∈ (0,∞) is the Pickands constant, defined by

Hα1
= lim
S→∞

1

S
Hα1

[0, S].

We refer to the recent contribution [13], where alternative representations of Pickands constant are derived;

see also [12, 14] and the references therein for properties and generalizations of Pickands constant.

The constant Hα1,...,αn(C1, . . . , Cn), appearing in (3), is more complicated than Hα1 . A simple lower bound

for Hα1,...,αn(C1, . . . , Cn) can be found as follows:

Hα1,...,αn(C1, . . . , Cn) ≥ max
1≤i≤n:αi=αmin

lim
a↓0

1

a
P
{

max
k≥1

(√
2Bαi(C

1/αi
i ak)− Ci(ak)αi

)
+ Ei ≤ 0

}
≥ max

1≤i≤n:αi=αmin

C
1/αi
i lim

a↓0

1

C
1/αi
i a

P
{

max
k≥1

(
√

2Bαi(C
1/αi
i ak)− (C

1/αi
i ak)αi) + Ei ≤ 0

}
≥ max

1≤i≤n:αi=αmin

C
1/αmin

i Hαmin
> 0,(6)

where in the last step we used the alternative expression of the Pickands constant given in [3].

Theorem 1.1 can also be proved using the double-sum method, extending thus the Pickands lemma and

Pickands theorem to include the non-Gaussian process {min1≤i≤nXi(t), t ≥ 0}; due to heavy technical details

the proof will be displayed in a forthcoming article.
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Finally, we remark that in view of the recent contributions [21, 20] it is possible to derive the exact asymptotics

of pT ,u considering Xi(t), t ∈ Rd stationary isotropic Gaussian random fields.

We continue below with four results, the first one establishes a Berman sojourn limit theorem, the second one

deals with order statistics processes of Xi’s, the third one focuses on a time-changed model, and the last one

concerns a generalization of Theorem 1.1 to non-standard stationary Gaussian Xi’s.

2.1. A Berman sojourn limit theorem. Let, for t ≥ 0,

Lt(u) =

∫ t

0

1( min
1≤i≤n

Xi(s) > u) ds(7)

be the sojourn time of the process {min1≤i≤nXi(t), t ≥ 0} above a level u > 0 on the time interval [0, t]. The

next result is the Berman sojourn limit theorem for the process {min1≤i≤nXi(t), t ≥ 0}.

Theorem 2.1. Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n be independent centered stationary Gaussian processes with unit

variance and correlation functions that satisfy (1), and let Lt(u) be defined as in (7) for any positive constants

t, u. Then we have, for all t > 0 small enough, that

lim
u→∞

∫ ∞
x

P
{
u

2
αmin Lt(u) > y

}
u

2
αmin E {Lt(u)}

dy = B(x)

holds at all continuity points x > 0 of B(x) = P
{∫∞

0
1(Z(s) > 0) ds > x

}
.

2.2. Asymptotics of supremum of order statistics processes. Let {Xi:n(t), t ≥ 0}, 1 ≤ i ≤ n be the

order statistics processes of {Xi(t), t ≥ 0}, 1 ≤ i ≤ n, i.e., we define

X1:n(t) := max
1≤i≤n

Xi(t) ≥ X2:n(t) ≥ . . . ≥ Xn:n(t) = min
1≤i≤n

Xi(t), t ≥ 0.

Our next result concerns the exact tail asymptotics of the supremum of the order statistics processes. We

refer, e.g., to [19] for motivation of study the exit probabilities of the order statistics processes in electrical

engineering.

For clearness of the presentation, we assume further that α1 = . . . = αn =: α and C1 = . . . = Cn = 1.

Furthermore, define

Hα,j = lim
a↓0

1

a
P
{

max
k≥1
Zj(ak) ≤ 0

}
, 1 ≤ j ≤ n,

where

Zj(t) := min
1≤i≤j

(√
2B(i)

α (t)− tα + Ei

)
, t ≥ 0,

with Ei’s being independent unit exponential random variables which are further independent of mutually

independent fractional Brownian motions B
(i)
α ’s.
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Theorem 2.2. Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n be independent centered stationary Gaussian processes with unit

variance and correlation functions that satisfy (1) with α1 = . . . = αn =: α and C1 = . . . = Cn = 1. Then,

for any T > 0

P

{
sup
t∈[0,T ]

Xj:n(t) > u

}
= Hα,j T

n!

(n− j)!j!
u

2
α (Ψ(u))j(1 + o(1)), 1 ≤ j ≤ n

as u→∞.

2.3. Conjunction of time-changed processes. The technique of Albin and Choi [3] which we applied

in the proof of Theorem 1.1, can be utilized also for some other interesting extensions. To illustrate it,

we investigate the tail asymptotics of supremum of process YΘ(t) = min1≤i≤nX
∗
i (t), t ≥ 0 on a finite-time

interval, say [0, T ], where X∗i (t) = Xi(Θit), 1 ≤ i ≤ n are time-changed centered stationary Gaussian processes

with Θi’s non-degenerate non-negative bounded random variables being independent of Xi’s; see [7, 11] for

recent results on the extremes of time-changed Gaussian processes. Indeed, it follows easily that the result of

Lemma 3.1 (see Section 3) holds with limit process

ZΘ(t) = min
1≤i≤n

((√
2Bαi(C

1/αi
i Θit)− Ci(Θit)

αi
)
1(αi = αmin) + Ei

)
, t ≥ 0,

where Bαi ’s and Ei’s are given as before which are further independent of Θi’s. Thus, we have by a similar

proof as Theorem 1.1 that

P

{
sup
t∈[0,T ]

YΘ(t) > u

}
= H∗α1,...,αn(C1, . . . , Cn) Tu

2
αmin (Ψ(u))n(1 + o(1)), u→∞,

where

H∗α1,...,αn(C1, . . . , Cn) = lim
a↓0

1

a
P
{

max
k≥1
ZΘ(ak) ≤ 0

}
∈ (0,∞).

2.4. Non-standard stationary Gaussian processes. Let X̃i(t) = Xi(t)/bi, t ≥ 0 for some bi > 0, 1 ≤ i ≤ n

with Xi’s being given as in Theorem 1.1. Clearly, X̃i’s are again centered stationary Gaussian processes. We

have the following result considering the supremum of min1≤i≤n X̃i(t), t ∈ [0, T ].

Theorem 2.3. Under the assumptions of Theorem 1.1, we have, for any T > 0,

P

{
sup
t∈[0,T ]

min
1≤i≤n

X̃i(t) > u

}
= H̃α1,...,αn(C1, . . . , Cn) Tu

2
αmin

n∏
i=1

Ψ(biu)(1 + o(1)), u→∞,(8)

where

H̃α1,...,αn(C1, . . . , Cn) = lim
a↓0

1

a
P
{

max
k≥1
Z̃(ak) ≤ 0

}
,

with

Z̃(t) := min
1≤i≤n

((√
2b−1
i Bαi(C

1/αi
i t)− Citαi

)
1(αi = αmin) + b−2

i Ei

)
, t ≥ 0,
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and Bαi ’s and Ei’s being given as in Section 1.

3. Proofs

The idea of the proof of Theorem 1.1 is based on the technique developed by Albin and Choi [3]. We begin

with several lemmas for the minimum process Y (t) := Xn:n(t) = min1≤i≤nXi(t), which altogether will be

used to show the proof of Theorem 1.1. Then we present the proofs of Theorem 2.1 and Theorem 2.2.

Hereafter we shall use the notation and the assumptions of Introduction and Section 2. For notational

simplicity we shall set below

q(u) = u−2/αmin , u > 0

and shall use the standard notation b·c for the the ceiling function, i.e., bxc is the largest integer that is

smaller than x ∈ R.

Lemma 3.1. For any grid of points 0 ≤ t0 < t1 < · · · < td < ∞, d ∈ N, we have the joint convergence in

distribution (
nu(Y (q(u)t1)− u), . . . , nu(Y (q(u)td)− u)

)∣∣∣(Y (0) > u)
d→ n

(
Z(t1), . . . ,Z(td)

)
as u→∞, where the process Z is defined as in (2).

Proof of Lemma 3.1: First note that Y (0) has distribution function G(·) in the Gumbel max-domain of

attraction with positive scaling function w(u) = nu i.e.,

lim
u→∞

1−G(u+ x/w(u))

1−G(u)
= exp(−x), x ∈ R.

See [14, 18] for more details on the Gumbel max-domain of attraction. Moreover, it follows from Lemma 2 in

[3] that, for any 1 ≤ i ≤ n, the following joint convergence in distribution(
Xiu(t1), . . . , Xiu(td)

)∣∣∣∣(Xi(0) > u)
d→
(√

2Bαi(C
1/αi
i t1)− Citαi1 + Ei, . . . ,

√
2Bαi(C

1/αi
i td)− Citαid + Ei

)
holds as u→∞, where Xiu(t) = u(Xi(u

−2/αit)−u), t ≥ 0, u > 0. Then the claim follows by the independence

of Xi’s, Bαi ’s and Ei’s. �

Lemma 3.2. For any a > 0 we have

lim
N→∞

lim
u→∞

1

NP {Y (0) > u}
P
{

max
k∈{0,...,N}

Y (aq(u)k) > u

}
= P

{∞⋂
l=1

{Z(al) ≤ 0}

}
.

Proof of Lemma 3.2: In view of Lemma 3.1, the proof follows with the same arguments as that of Lemma

3 in [3]. �
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Lemma 3.3. Let α := αmin/4. We have

lim
a↓0

lim sup
u→∞

q(u)

P {Y (0) > u}
P

{
sup
t∈[0,T ]

Y (t) > u+
aα

u
, max
k∈{0,...,bT/(aq(u))c}

Y (aq(u)k) ≤ u

}
= 0.

Proof of Lemma 3.3: The proof follows by similar arguments as that of Lemma 4 in [3]. Since the proof

of Lemma 4 in [3] only requires the stationarity and the continuity of the process involved, we obtain, for all

large u and small a > 0, that

P

{
sup
t∈[0,T ]

Y (t) > u+
aα

u
, max
k∈{0,...,bTa/q(u)c}

Y (aq(u)k) ≤ u

}

≤ 2T

aq(u)

∞∑
j=1

2jP
{
Y (aq(u)2−j) > uj , Y (0) ≤ uj−1

}
,

where uj := u + aα(1 − 2−jα)/u > u for any j ≥ 1. Further, for all u large and a > 0 small and any

1 ≤ i ≤ n, j ≥ 1, the following inequality

ri(aq(u)2−j)Xi(aq(u)2−j)−Xi(0) ≥ aα(2α − 1)2−jα−1/u =: cju

is implied by the event {Xi(aq(u)2−j) > uj , Xi(0) ≤ uj−1}. Thus, in view of the fact that ri(aq(u)2−j)Xi(aq(u)2−j)−

Xi(0) is independent of Xi(aq(u)2−j), we conclude that

P

{
sup
t∈[0,T ]

Y (t) > u+
aα

u
, max
k∈{0,...,bTa/q(u)c}

Y (aq(u)k) ≤ u

}

≤ 2T

aq(u)

∞∑
j=1

2jP

{
X1(aq(u)2−j) > uj , . . . , Xn(aq(u)2−j) > uj ,

n⋃
i=1

{Xi(0) ≤ uj−1}

}

≤ 2T

aq(u)

∞∑
j=1

2jP

{
X1(aq(u)2−j) > uj , . . . , Xn(aq(u)2−j) > uj ,

n⋃
i=1

{ri(aq(u)2−j)Xi(aq(u)2−j)−Xi(0) ≥ cju}

}

≤ 2T

aq(u)

∞∑
j=1

2j(Ψ(u))nP

{
n⋃
i=1

{ri(aq(u)2−j)Xi(aq(u)2−j)−Xi(0) ≥ cju}

}

≤ 2T

aq(u)

∞∑
j=1

2j(Ψ(u))n
n∑
i=1

Ψ

(
cju√

1− ri(aq(u)2−j)2

)
for all u large and a > 0 small, hence the claim follows. �

Proof of Theorem 1.1: The proof follows by a similar idea as used in the proof of Theorem 1 in [3]. First

note that, for any k > 0

P {Y (0) > u, Y (aq(u)k) > u} =

n∏
i=1

P {Xi(0) > u,Xi(aq(u)k) > u} ≤
n∏
i=1

P {Xi(0) +Xi(aq(u)k) > 2u} .

Therefore, similar arguments as in the proof of Lemma 1 therein imply

lim
u→∞

q(u)

P {Y (0) > u}
P

{
sup

k∈{0,...,bT/(aq(u))c}
Y (aq(u)k) > u

}
=

T

a
P

{∞⋂
l=1

{Z(al) ≤ 0}

}
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for any a > 0. Moreover, the finiteness of the generalized Pickands constant Hα1,...,αn(C1, . . . , Cn) and

the asymptotic equation (4) can be established as in [3], using the results of Lemmas 3.1-3.3. In fact,

Hα1,...,αn(C1, . . . , Cn) > 0 follows directly from (6). This completes the proof. �

Proof of Theorem 2.1: The claim follows by checking the Assumptions 3.I and 3.II in Theorem 3.1 in [8].

Assumption 3.I can be established with the aid of Lemma 3.1, where we have (with the notation as in [8])

w(u) = nu, v(u) = u2/αmin and Z(t) = Z(t). Furthermore, it follows that

lim
d→∞

lim sup
u→∞

v(u)

∫ t

d/v(u)

P {Y (s) > u|Y (0) > u} ds ≤ lim
d→∞

lim sup
u→∞

v(u)

∫ t

d/v(u)

P {Xi(s) > u|Xi(0) > u} ds,

where Xi is some of Xi’s such that αi = αmin. Therefore, Assumption 3.II can be verified as in Section 7

therein, and thus the proof is complete. �

Proof of Theorem 2.2: Initially we establish the proof for the case j = 1. Introduce a new random process

Z defined by

Z(t) = Xi(t− (i− 1)T ), t ∈ [(i− 1)T, iT ), 1 ≤ i ≤ n.

For any u ≥ 0 we have

P

{
sup
t∈[0,T ]

X1:n(t) > u

}
= P

{
sup

t∈[0,nT ]

Z(t) > u

}
.

By the Bonferroni inequality and Pickands theorem (see Eq. (5))

P

{
sup

t∈[0,nT ]

Z(t) > u

}
≤

n∑
i=1

P

{
sup
t∈[0,T ]

Xi(t) > u

}
= TnHαu

2
αΨ(u)(1 + o(1)), u→∞(9)

and further

P

{
sup

t∈[0,nT ]

Z(t) > u

}
≥

n∑
i=1

P

{
sup
t∈[0,T ]

Xi(t) > u

}
− Σ1(u),(10)

with

Σ1(u) =
∑

1≤i<j≤n

P

{
sup
t∈[0,T ]

Xi(t) > u

}
P

{
sup
t∈[0,T ]

Xj(t) > u

}
.

Moreover, in view of (5)

Σ1(u) = o
(
u

2
αΨ(u)

)
, u→∞.(11)

Consequently, the claim for the case j = 1 follows from (9)-(11). Next, we give only the proof of the case

j = n− 1 since the other cases follow by similar arguments. For notational simplicity denote

Ai(t, u) = {X1(t) > u, . . . ,Xi−1(t) > u,Xi(t) ≤ u,Xi+1(t) > u, . . . ,Xn(t) > u}, 1 ≤ i ≤ n,

B(t, u) = {X1(t) > u,X2(t) > u, . . . ,Xn(t) > u}.
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For any u > 0 we have

P

{
sup
t∈[0,T ]

Xn−1:n(t) > u

}
≤ P

{
∃t∈[0,T ] ∪ni=1 Ai(t, u) ∪B(t, u)

}
≤ P

{
∃t∈[0,T ]B(t, u)

}
+

n∑
i=1

P
{
∃t∈[0,T ]Ai(t, u)

}
≤ P

{
sup
t∈[0,T ]

min
1≤i≤n

Xi(t) > u

}
+

n∑
i=1

P

{
sup
t∈[0,T ]

min
1≤j≤n,j 6=i

Xj(t) > u

}
.(12)

Further, for any u > 0

P

{
sup
t∈[0,T ]

Xn−1:n(t) > u

}
≥ P

{
∃t∈[0,T ] ∪ni=1 Ai(t, u)

}
= P

{
∪ni=1{∃t∈[0,T ]Ai(t, u)}

}
≥

n∑
i=1

P

{
sup
t∈[0,T ]

min
1≤j≤n,j 6=i

Xj(t) > u

}
P

{
sup
t∈[0,T ]

Xi(t) ≤ u

}
− Σ2(u),(13)

where

Σ2(u) =
∑

1≤i<j≤n

P
{
∃t∈[0,T ]Ai(t, u),∃s∈[0,T ]Aj(s, u)

}
.

By the independence of X ′is, we conclude that

Σ2(u) ≤ n2
n∏
i=1

P

{
sup
t∈[0,T ]

Xi(t) > u

}
.(14)

Consequently, the claim follows from (12)-(14) and an application of Theorem 1.1. �

Proof of Theorem 2.3: Denote Ỹ (t) = min1≤i≤n X̃i(t), t ≥ 0, and let w(u) =
∑n
i=1 b

2
iu. As in the proof of

Lemma 3.1 for any grid of points 0 ≤ t0 < t1 < · · · < td <∞(
w(u)(Ỹ (q(u)t1)− u), . . . , w(u)(Ỹ (q(u)td)− u)

)∣∣∣(Ỹ (0) > u)
d→

n∑
i=1

b2i

(
Z̃(t1), . . . , Z̃(td)

)
holds as u→∞. Results analogous to Lemma 3.2 and Lemma 3.3 for Ỹ can be derived with similar arguments

as in the case of Y . Consequently, the proof is established by repeating the arguments in the proof of Theorem

1.1. �
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