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A B S T R A C T   

Purpose: Joint bright- and black-blood MRI techniques provide improved scar localization and contrast. Black- 
blood contrast is obtained after the visual selection of an optimal inversion time (TI) which often results in 
uncertainties, inter- and intra-observer variability and increased workload. In this work, we propose an artificial 
intelligence-based algorithm to enable fully automated TI selection and simplify myocardial scar imaging. 
Methods: The proposed algorithm first localizes the left ventricle using a U-Net architecture. The localized left 
cavity centroid is extracted and a squared region of interest (“focus box”) is created around the resulting pixel. 
The focus box is then propagated on each image and the sum of the pixel intensity inside is computed. The 
smallest sum corresponds to the image with the lowest intensity signal within the blood pool and healthy 
myocardium, which will provide an ideal scar-to-blood contrast. The image’s corresponding TI is considered 
optimal. The U-Net was trained to segment the epicardium in 177 patients with binary cross-entropy loss. The 
algorithm was validated retrospectively in 152 patients, and the agreement between the algorithm and two 
magnetic resonance (MR) operators’ prediction of TI values was calculated using the Fleiss’ kappa coefficient. 
Thirty focus box sizes, ranging from 2.3mm2 to 20.3cm2, were tested. Processing times were measured. 
Results: The U-Net’s Dice score was 93.0 ± 0.1%. The proposed algorithm extracted TI values in 2.7 ± 0.1 s per 
patient (vs. 16.0 ± 8.5 s for the operator). An agreement between the algorithm’s prediction and the MR op
erators’ prediction was found in 137/152 patients (κ = 0.89), for an optimal focus box of size 2.3cm2. 
Conclusion: The proposed fully-automated algorithm has potential of reducing uncertainties, variability, and 
workload inherent to manual approaches with promise for future clinical implementation for joint bright- and 
black-blood MRI.   

1. Introduction 

Bright-blood (BR) late gadolinium enhancement (LGE) imaging is the 
cornerstone technique for the assessment of regional scar formation and 
myocardial injury [1,2]. The presence, extent, and distribution of LGE 
are key features to assess the etiological diagnosis in acute coronary 
syndromes, chronic structural heart disease, or ventricular arrhythmias 
or to appreciate the prognosis in patients with structural heart disease 
[3]. The strength of the method lies in its ability to provide high contrast 

between healthy and injured myocardium, thanks to an inversion re
covery mechanism that blackens the surrounding healthy tissue [4]. 

Despite the excellent above-mentioned property, bright pixels from 
the blood pool often induce a limited contrast between myocardial le
sions and the blood pool present in the adjacent chambers, making 
subendocardial scars challenging to detect. This lack of contrast can be 
critical as the size, localization, and transmurality of the scar within the 
cardiac anatomy are key factors guiding the patients’ treatments [5]. To 
circumvent this problem, black-blood (BL)-LGE imaging has been 

* Corresponding author at: Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000 Bordeaux, France. 
E-mail address: aurelien.bustin@ihu-liryc.fr (A. Bustin).  

Contents lists available at ScienceDirect 

Magnetic Resonance Imaging 

journal homepage: www.elsevier.com/locate/mri 

https://doi.org/10.1016/j.mri.2024.03.035 
Received 4 September 2023; Received in revised form 14 March 2024; Accepted 21 March 2024   

mailto:aurelien.bustin@ihu-liryc.fr
www.sciencedirect.com/science/journal/0730725X
https://www.elsevier.com/locate/mri
https://doi.org/10.1016/j.mri.2024.03.035
https://doi.org/10.1016/j.mri.2024.03.035
https://doi.org/10.1016/j.mri.2024.03.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mri.2024.03.035&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Magnetic Resonance Imaging 109 (2024) 256–263

257

developed for improved scar detection, promoting the appearance of 
new studies in high-quality vessel wall visualization and myocardial scar 
imaging [6,7]. These technologies were followed by the development of 
joint BR- and BL-LGE techniques, which simultaneously provide 
improved scar contrast (from BL-LGE images) and detailed cardiac 
anatomy information (from BR-LGE images) [5,8]. 

In clinical practice, the manual selection of an inversion time (TI) 
parameter by magnetic resonance (MR) operators is required for both 
conventional BR-LGE imaging and BL-LGE imaging. This TI parameter 
represents the delay between the preparation pulse and the data 
acquisition, and its accurate selection is crucial for achieving optimal 
contrast between scar tissue and blood or healthy myocardium on the 
BL-LGE images. However, the manual and expert-dependent TI selection 
process is associated with several drawbacks, including TI uncertainties, 
inter- and intra-observer variability, increased workload for MR opera
tors, and complexity of the examination [9]. These limitations have 
hindered the widespread adoption of joint BR- and BL-LGE imaging in 
clinical routine. 

Recent advancements in artificial intelligence (AI) are promising in 
automating TI selection for conventional BR-LGE imaging [10,11]. 
However, no algorithm has fully automated this process in joint BR- and 
BL-LGE imaging. Therefore, achieving operator-free TI selection would 
represent a significant step towards enhancing the robustness, repro
ducibility, simplicity, and fully automation of myocardial scar imaging. 

The primary objectives of this study were twofold: first, to enable MR 
operator-free joint BR- and BL-LGE imaging by leveraging AI to fully 
automate TI selection process; and second, to rigorously validate the 
performance of this method in patients with structural heart disease. 

2. Material and methods 

2.1. Image acquisition 

Acquisitions were performed on a 1.5 T system (Siemens, MAGNE
TOM Aera, Erlangen, Germany) using an 18-element body coil and a 32- 
element spine coil. Short-axis 2D interleaved joint BR- and BL-LGE im
ages were collected using the recently proposed Scar-specific imaging 
with Preserved myOcardial visualizaTion (SPOT) sequence [5]. SPOT is 
a single-shot LGE sequence combining inversion recovery and T1-rho 
preparation pulses to jointly collect BL-LGE (odd heartbeats) and BR- 
LGE (even heartbeats) images. Whole-heart images were acquired 
under breath-holds 15 min post intravenous injection of 0.1 mmol/kg 
gadoterate meglumine (Dotarem®, Guerbet). Four single-shot images 
were collected per slice position and were averaged to reach a higher 
signal-to-noise ratio [1,12,13]. Acquisition parameters are provided in 
Table 1. A dedicated free-breathing SPOT scout sequence was played out 
prior to the whole-heart acquisition to find the TI providing a nulling of 
both healthy myocardium and blood signals. This sequence collected 14 
mid-ventricular BL-LGE images with increasing TIs (ranging from 60 ms 
to 190 ms with a 10 ms increment) in the odd heartbeats and 14 BR-LGE 
images in the even heartbeats in a scan time of 28 heartbeats (Fig. 1A). 
An example of BL-LGE TI-scout images collected in two patients with 
myocardial infarction is provided in Supporting information Fig. S1. 

2.2. Fully automated TI selection 

The algorithm emulates the conventional process of TI selection by 
automatically identifying, from a prior TI-scout sequence, the image 
with the darkest blood and healthy myocardium signals. To achieve this, 
the algorithm has to i) localize the left ventricle (LV) within the image 
series, and then ii) perform an analysis of pixel intensities to identify the 
image with the optimal contrast. The proposed algorithm was organised 
in three steps detailed hereafter (Fig. 1B). 

Step 1: LV localization. A U-Net architecture (Fig. 2) [14] was 
implemented to segment the epicardium on the first BR-LGE image 
collected from the TI-scout sequence. The U-Net was designed with four 

multi-scale encoder/decoder parts, with concatenation layers connect
ing features from the encoder and the decoder. 

Step 2: Focus box propagation. Once the centroid of the segmen
tation is extracted on the first BR-LGE image collected, a squared region 
of interest is created around the resulting pixel (“focus box”). Then, the 
focus box is propagated, with the same coordinates, on each BL-LGE 
image collected with different TIs. 

Step 3: Signal analysis. The sum of pixel intensities within these 
focus boxes was computed for each TI image. The smallest sum corre
sponded to the TI image with the darkest blood signal, and the corre
sponding TI was then selected, considered optimal for enhanced scar 
visualization. 

2.3. Inline integration 

The proposed algorithm was implemented inline on a 1.5 T MRI 
scanner using the Gadgetron framework [15]. The predicted TI value 
and a plot showing how the signal evolves with different TI values are 
sent back to the MR console for direct feedback to the MR operator. 
Supplementary Video 2 highlights the inline use of the proposed tool. 
The codes used to train the segmentation model as well as the Gadgetron 
gadget are made available at this repository: https://github. 
com/***/Automated-TI-scout. 

2.4. Experiments 

The study was approved by the Biomedical Research Ethics Com
mittee and all participants provided informed consent for participation. 

2.4.1. Imaging data 
The feasibility and preliminary clinical performance of the proposed 

framework were assessed retrospectively in 329 patients with known or 
suspected heart disease. The dataset was split into:  

i) A first set of 177 SPOT datasets (16 whole-heart short-axis SPOT 
slices per patient, 2177 images) to train, validate and test the 

Table 1 
Acquisition parameters for the 2D TI-scout and 2D SPOT sequences.  

Sequence TI-SCOUT SPOT 

Readout 2D bSSFP 
Preparation pulse Inversion recovery and T1-rho 
Magnetic field (Tesla) 1.5 
Repetition time (ms) 2.9 
Echo time (ms) 1.2 
Flip angle (degrees) 60 
Field of view (mm) 380 × 315 
Acquired resolution (mm) 2.0 × 1.5 × 6.0 
Reconstructed resolution (mm) 1.5 × 1.5 × 6.0 
Phase oversampling (%) 0 
Slice oversampling No 
Asymmetric echo Yes 
Acquisition window (ms) 160 
T1-rho duration (ms) 27 
T1-rho frequency (Hz) 500 
Scan acceleration GRAPPA x2 
Trigger pulse (RR interval) 2 
Bandwidth (Hz/pixel) 849 
Free-breathing Yes 
Coverage Mid-ventricular Whole-heart 
Number of slices (median [Q1-Q3]) 1 14 [14–16] 
Motion compensation No Yes 
Inversion time range (ms) 60 – 190 n/a 
Inversion time increment (ms) 10 n/a 
Images per scout 14 n/a 

Abbreviations: bSSFP, balanced steady-state free-precession; GRAPPA, gener
alized autocalibrating partially parallel acquisitions; GRE, gradient echo; n/a, 
not applicable; RR, time between two R waves. 
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Fig. 1. Framework. A) TI-scout sequence B) Automatic epicardium segmentation on the first BR-LGE image obtained from the TI-scout. This segmentation was then 
used to create a focus box within the blood pool and was propagated on each BL-LGE image obtained from the TI-scout. The optimal TI corresponds to the minimum 
sum of pixel intensities. Abbreviations: TI, inversion time; BR, bright-blood; BL, black-blood; LGE, late gadolinium enhancement. 

Fig. 2. Framework of the 2D U-Net architecture used to segment the epicardium. It is composed by two remain parts, a contracting path and an expanding path. The 
contracting path captures context information and reduces the spatial dimension of the input. The expanding path restores the spatial resolution and generates a 
segmentation map of the same size as the input image. The skip connections help to recover spatial details that may be lost during down sampling process. 
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proposed U-Net architecture for epicardium segmentation on BR- 
LGE images (25% female, 75% male, age 62 ± 13 years).  

ii) A second set of 152 TI-scout datasets (14 mid-ventricular short-axis 
per patient, 2128 images), unseen during training, to validate the 
automated TI-scout selection framework (23% female, 77% male, 
age 59 ± 13 years). 

2.4.2. U-Net training and LV segmentation validation 
As mentioned earlier, the training and testing were performed on the 

first dataset (177 patients). Whole-heart epicardium labels were 
manually drawn for each patient by a cardiovascular magnetic reso
nance (MR) expert using the imaging software cvi42 (Circle Cardio
vascular Imaging Calgary, Canada). The model’s both input and output 
consisted of matrices with dimensions 160× 160× 1 (where the last 
number reflects the input channels). The number of images was 
increased with data augmentation (turning upside-down, left-right flips 
and 90◦, 180◦, 270◦ rotations) for a total of 13,760 images. The data was 
randomly divided into a training (70%, 123 patients, 9536 images), a 
validation (20%, 35 patients, 2776 images), and a test (10%, 19 patients, 
1448 images) set, making sure images from a same patient were in the 
same set. Training was performed on a Dell PowerEdge R740 Server 
(Intel Xeon Gold 6154 3GHz, 18 cores, Python 3.9, Tensorflow 2.6), with 
the following hyperparameters: learning rate = 10− 3, batch size = 32, 
epochs = 200, binary cross-entropy loss, Adam optimizer. The Dice 
similarity coefficient [16] was used to evaluate the segmentation quality 
in the test set. The average Euclidean distance between manually- 
derived and model-derived LV centroids were reported. 

2.4.3. Validation of predicted TIs 
The second dataset (152 patients) was used to validate the auto

mated TI selection framework. TI-scout images were visualized by two 
MR operators using cvi42 and reference TI values were recorded for each 
patient. A subsequent consensus value was provided in case of 
discrepancy. In addition to this, a consensus ±10 ms was also given, as 
for most cases the TI images surrounding the one selected (at TIconsensus – 
10 ms and TIconsensus + 10 ms) provided a contrast difference visually 
undiscernible (as showcased in Supporting Information Fig. S1). 

To test intra-observer reproducibility, the first MR operator provided 
an additional set of TI values in a separate session. On the other hand, 
the degree of confidence in the proposed algorithm was evaluated by 
conducting an extra TI selection by the second MR operator with now 
prior knowledge on the algorithm’s TI prediction. 

Intra- and inter-observer variability, consensus-algorithm and 
consensus±10 ms-algorithm agreements in TI selection were assessed 
using the Fleiss’ kappa coefficient κ. Kappa values below 0.4, between 
0.4 and 0.75, and above 0.75 were considered to represent poor, fair to 
moderate, and excellent agreement, respectively, according to the 
Fleiss’ classification. Mean absolute TI differences and percentages of 
matched TI values were calculated. 

To assess the impact of the focus box size on the predicted TI, thirty 
different sizes ranging from 2.3mm2 (1 × 1 pixel) to 20.3cm2 (30 × 30 
pixels) were tested on the whole dataset. The size that yielded the 
highest agreement value with the experts’ consensus ±10 ms reading 
was selected for use in the subsequent experiments. Processing times 
were measured for one MR operator. 

3. Results 

3.1. LV segmentation quality 

The U-Net model provided a Dice score of 93.0 ± 0.1% for the seg
mentation of the epicardium in the test dataset (19 patients). The 
average Euclidean distance between the manually-derived and model- 
derived LV centroids was 1.9 ± 1.6 mm (ranging from 0.0 mm to 
14.6 mm, Fig. 3A and Supporting Information Fig. S3). Examples of 
automated epicardium segmentation on BR-LGE images with the 

corresponding LV centroids and focus boxes are shown in Fig. 4 for eight 
patients with ischemic heart disease. 

3.2. Predicted TI results 

The proposed algorithm extracted the TI value in an average of 2.7 
± 0.1 s per TI-scout, which was distinctly shorter than the average 16.0 
± 8.5 s needed for the visual extraction by the experts. Examples of 
automated LV segmentation, signal evolution within the focus boxes, 
and TI prediction are presented on Fig. 5 for three patients with ischemic 
heart disease. 

Fleiss’ kappa coefficient for experts, the consensus, and the algo
rithm in TI prediction agreements are presented in Table 2. There were 
fair to moderate intra- and overall inter-observers agreements in TI vi
sual selection by the experts in the 152 patients (κ = 0.64 and κ = 0.62, 
respectively). A fair agreement (κ = 0.45) was also obtained between the 
experts’ consensus and the algorithm’s predicted TI. However, an 
excellent agreement (κ = 0.89) was obtained between the algorithm’s 
prediction and the consensus ±10 ms (TI agreement in 137/152 TI- 
scouts). This coefficient was reached with an optimized focus box size 
of 2.3cm2 (10 × 10 pixels) (Fig. 3B). The agreement was always excel
lent (κ > 0.75) for focus box sizes ranging from 0.20cm2 (3 × 3 pixels) to 
20.25cm2 (30 × 30 pixels). 

The mean absolute differences in TI selection for inter-, intra- 
observer, consensus-algorithm and consensus±10 ms-algorithm vari
ability were 5.0 ± 7.1 ms, 3.9 ± 6.2 ms, 6.2 ± 7.3 ms and 1.2 ± 4.0 ms, 
respectively (Fig. 6A, Supporting Information Fig. S4). The percentages 
of matched TI values for inter-observer, intra-observer, consensus- 
algorithm and consensus±10 ms-algorithm variability were 61.2%, 
67.8%, 50.0% and 90.1%, respectively (Fig. 6B). 

The second reading by the expert now having prior knowledge on the 
predicted TI modified its selection in 50% of the TI-scouts, reaching an 
excellent agreement (κ = 0.89) with the algorithm’s prediction. 

4. Discussion 

Accurate detection and quantification of myocardial injury using 
joint BR- and BL-LGE imaging has critical diagnostic and prognostic 
value in a wide range of patients presenting with heart diseases. Until 
now, no strategy has been proposed to fully automate contrast selection 
and enable TI extraction for this imaging technique, resulting in an 
operator-dependent task. Our proposed method enables an operator-free 
selection of TI for joint BR- and BL-LGE imaging. 

4.1. TI prediction 

Our results showed that the inter- and intra-expert agreement for 
manual TI selection was only fair to moderate. These results support the 
idea that manual selection of the optimal TI induces inter- and intra- 
expert variability and that a more reproducible selection is necessary. 
An incorrect selection of the TI can lead to suboptimal scar contrast, 
potentially influencing clinical decision. In such instances, it becomes 
necessary to repeat the LGE sequences with the accurate TI, significantly 
extending the protocol duration. The automated selection of the optimal 
TI demonstrated its potential by providing an excellent agreement with 
the consensus ±10 ms, in a faster fashion than manual TI selection. 

4.2. Segmentation accuracy 

The decision to perform an epicardium segmentation, rather than an 
endocardium segmentation, was based on empirical findings. Specif
ically, the epicardium mask prediction yielded a slightly better Dice 
score (detailed analysis not provided here). Additionally, during the 
extra validation phase, where we evaluated the accuracy of the cen
troids, four outliers with significantly higher Euclidian distances than 
the rest were observed. Despite the presence of these outliers, it is 
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important to highlight that the focus box consistently remained within 
the blood pool, ensuring a correct extraction of the optimal TI. 

4.3. Algorithm failures 

The fifteen patients with incorrect TI prediction presented a suc
cessful epicardium segmentation. For ten out of these patients, it was 

Fig. 3. A) Comparison between the centroids obtained from the ground truth segmentation (yellow cross) and from the proposed automated segmentation of the 
epicardium (red cross) for four representative SPOT BR-LGE images. B) Fleiss’ kappa coefficient to assess the agreement between the consensus ±10 ms and the 
algorithm’s TI prediction, as a function of the focus box dimensions. Abbreviations: SPOT, Scar-specific imaging with Preserved myOcardial visualizaTion; BR, bright- 
blood; LGE, late gadolinium enhancement. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Epicardial segmentation results (red) on SPOT BR-LGE images collected on eight different patients. The resulting focus boxes (green) and centroids (cyan) are 
also shown. Abbreviations: SPOT, Scar-specific imaging with Preserved myOcardial visualizaTion; BR, bright-blood; LGE, late gadolinium enhancement. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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observed that the predicted TI had a 20 ms difference (i.e., two TI images 
difference) with the experts’ consensus. The algorithm’s TI selection was 
based on a precise calculation of the pixel intensities, while the experts’ 
consensus was based on a visual selection, resulting in a less accurate 
analysis. In the five remaining patients, it was discovered that the focus 
box contained pixels from necrosed papillary muscles. Consequently, 
this unintended inclusion led to a biased prediction in the TI estimation. 
To address this issue effectively, a potential solution would involve 
conducting a more comprehensive histogram-based analysis, following 
the methodology proposed by Maillot et al. [17]. 

4.4. Focus box optimization 

As the TI-scout sequence was performed in free-breathing [5], res
piratory motion could be observed between the different TI images. The 

main challenge therefore became defining an optimal focus box size that 
consistently encompassed pixels exclusively from the left ventricle, 
ensuring accurate TI analysis. 

For this study, a squared shape focus box was selected, but further 
studies could explore the most optimal shape, such as a circular 
configuration, to enhance accuracy. Image registration could also be 
used to improve the accuracy. Hence, the focus box could have a bigger 
shape, as the images would be aligned, and take into account more pixels 
for the sum calculation. 

4.5. Defining the algorithm’s accuracy 

Achieving optimal scar-to-blood and scar-to-healthy myocardium 
contrast requires the determination of an optimal TI. Consequently, the 
proposed algorithm was developed to select a single TI. Nonetheless, 

Fig. 5. Examples of inversion time (TI) predictions by the proposed fully automated algorithm, in three patients with ischemic heart disease. It is obtained by first 
creating a focus box centred on the predicted epicardium segmentation. This region of interest is then propagated on all BL-LGE images. The TI corresponding to the 
smallest pixel intensity sum inside the focus box is considered optimal. Abbreviations: PSIR, Phase-sensitive inversion recovery; SPOT, Scar-specific imaging with 
preserved myocardial visualization. 

Table 2 
Agreement table (computed using the Fleiss’ kappa coefficient) between the MR operators (Expert 1, Expert 2) and the TI prediction, and between the experts’ 
consensus and the TI prediction on a set of 152 TI-scout datasets. The agreements ranged from fair to moderate, to excellent. The highest agreement with the algorithm, 
obtained by the experts’ consensus ±10 ms (κ = 0.89), is highlighted. Manual expert selections are annotated as Expert X.Y for Expert X session Y. ⊥Intra-expert; 
⋄Inter-expert.   

Expert 
1.1 

Expert 
1.2 

Expert 
2.1 

Expert 2.2 (with knowledge of 
prediction) 

Experts’ 
consensus 

Experts’ consensus ±
10 ms 

Algorithm 

Expert 1.1 1.00 0.64⊥ 0.57⋄ 0.53 0.72 0.91 0.55 
Expert 1.2  1.00 0.67⋄ 0.50 0.65 0.94 0.48 
Expert 2.1   1.00 0.47 0.85 0.99 0.46 
Expert 2.2 (with knowledge of 

prediction)    1.00 0.45 1.00 0.89 

Experts’ consensus     1.00 1.00 0.45 
Experts’ consensus ± 10 ms      1.00 0.89 
Algorithm       1.00 

Note: κ Strength: 0.0 ≤ κ ≤ 0.4 Poor; 0.4 < κ ≤ 0.75 Fair to moderate; 0.75 < κ ≤ 1.0 Excellent.  
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during the evaluation, it was noted that in certain TI-scouts, three to four 
TI images displayed a sufficiently black-blood signal, leading to 
acceptable contrast at the scar interface. The percentage difference of 
matched TI values between consensus-algorithm and consensus±10 ms- 
algorithm illustrates this statement. This observation highlights the 
challenge in quantifying the algorithm’s accuracy, as defining what 
constitutes an acceptable contrast proves complex. Empirical findings 
showed that a difference of 10 ms with the expert’s TI selection would 
not impact the corresponding TI image quality, hence the quantification 
of the injured myocardium and therefore the clinical decision. 

Our results show that besides being fully automated, the proposed 
method brings several advantages compared to more conventional TI 
selection. Processing time was measured as being up to ten times faster 
than the time needed for manual selection. The workload was also 
reduced, and the variability in TI selection has been removed. 

The optimal TI selection was tackled by comparing the intensity of 
the pixels located within a region of interest for each TI image and 
selecting the image and corresponding TI for which the sum was the 
lowest. Other techniques could have been chosen for this matter, for 
example by calculating the number of pixels whose values would be 
lower than a defined threshold [17]. 

The design of the proposed fully automated algorithm allows easy 
extension to other joint BR- and BL-LGE techniques. Indeed, the T1-rho 
pulse [12,18] has been chosen among many other preparation pulses 
that could have also been employed to generate black-blood images (e. 
g., T2 prep [19] and MTC [20]). 

5. Conclusion 

An algorithm allowing fully automated contrast selection for joint 
BR- and BL-LGE imaging was proposed. Accurate predictions of optimal 
TI values were obtained in a fast and fully automated fashion. The un
certainties, operator-dependency, and workload inherent to more con
ventional TI selection were reduced, while the inter- and intra-observer 
variability effects were removed. These promising results warrant larger 
and multi-center clinical validations. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mri.2024.03.035. 
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