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1 Abstract1

Motivation: The presence of present-day human contaminating DNA fragments is one of the chal-2

lenges defining ancient DNA (aDNA) research. This is especially relevant to the ancient human DNA3

field where it is difficult to distinguish endogenous molecules from human contaminants due to their4

genetic similarity. Recently, with the advent of high-throughput sequencing and new aDNA protocols,5

hundreds of ancient human genomes have become available. Contamination in those genomes has6

been measured with computational methods often developed specifically for these empirical studies.7

Consequently, some of these methods have not been implemented and tested while few are aimed at8

low-depth data, a common feature in aDNA datasets.9

Results: We develop a new X-chromosome-based maximum likelihood method for estimating present-10

day human contamination in low-depth sequencing data. We implement our method for general use,11

assess its performance under conditions typical of ancient human DNA research, and compare it to12

previous nuclear data-based methods through extensive simulations. For low-depth data, we show that13

existing methods can produce unusable estimates or substantially underestimate contamination. In14

contrast, our method provides accurate estimates for a depth of coverage as low as 0.5× on the X-15

chromosome when contamination is below 25%. Moreover, our method still yields meaningful estimates16

in very challenging situations, i.e., when the contaminant and the target come from closely related17

populations or with increased error rates. With a running time below five minutes, our method is18

applicable to large scale aDNA genomic studies.19

Availability and implementation: The method is implemented in C++ and R and is freely20

available in https://github.com/sapfo/contaminationX.21

Contact: morenomayar@gmail.com annasapfo.malaspinas@unil.ch.22
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2 Introduction23

Having plagued the field since its inception (Zischler et al., 1995), contamination is one of the defin-24

ing features of ancient DNA (aDNA). While DNA extracted from present-day specimens is mostly25

endogenous, aDNA extracts are a mixture of low levels of damaged and fragmented endogenous DNA26

often dwarfed by higher amounts of contaminant DNA (Orlando et al., 2015). In recent years, high-27

throughput sequencing technologies have substantually contributed to advancing the field by randomly28

retrieving DNA fragments present in the extract, i.e., including the shorter, damaged endogenous ones.29

Nevertheless, the problem of contamination has persisted, and affects all laboratories (Wall and Kim,30

2007; Champlot et al., 2010; Llamas et al., 2017; Der Sarkissian et al., 2015; Pääbo et al., 2004; Willer-31

slev and Cooper, 2005; Sampietro et al., 2006; Gilbert et al., 2005).32

33

Contaminant DNA is expected to have either an environmental (e.g. soil microbes) or a human origin34

e.g. people involved in excavation, extraction or sample handling (Sampietro et al., 2006; Llamas et al.,35

2017). As aDNA sequencing data is routinely mapped to a reference genome that is closely related to36

the study organism (Schubert et al., 2012), identifying environmental contamination by means of se-37

quence identity is relatively straightforward. However, for human samples, human contamination can38

be particularly pernicious as endogenous and exogenous DNA molecules are highly similar. Moreover,39

this type of contamination is problematic as it could lead to spurious evolutionary inferences (Wall and40

Kim, 2007; Racimo et al., 2016). Consequently, a number of methods for quantifying contamination41

in aDNA data have emerged during the last decade. Existing methods rely on either haploid chro-42

mosomes (e.g., the mitochondrial DNA (mtDNA) (Fu et al., 2013; Green et al., 2008; Renaud et al.,43

2015) and the X-chromosome in males (Rasmussen et al., 2011)) or diploid autosomes (Racimo et al.,44

2016).45

46

MtDNA-based methods47

Mitochondrial DNA is often present in multiple almost identical copies in a given cell and is consid-48

erably shorter than the nuclear genome. As such, mtDNA has been historically easier to target and49

sequence compared to the nuclear genome (Higuchi et al., 1984; Krings et al., 1997) . Hence, the first50

computational methods to measure contamination were tailored to this short molecule for which a high51

depth of coverage is often achieved. In general, methods based on haploid genomic segments (e.g.,52

mtDNA) rely on the expectation that there is a single DNA sequence type per cell. Thus, multiple53

alleles at a given site would be the result of either contamination, post-mortem damage, sequencing or54

mapping error.55

56

Currently, there are three common mitochondrial DNA-based methods that require a high coverage57

mtDNA consensus sequence. Green et al. (Green et al., 2008), estimated mtDNA contamination in58

a Neanderthal sample by counting the number of reads that did not support the mtDNA consensus59

(assumed to be the endogenous sequence) at sites where the consensus differed from a worldwide panel60

of mtDNAs (‘fixed derived sites’). Later, Fu et al. (Fu et al., 2013) introduced a method focused on61

modelling the observed reads as a mixture of the mtDNAs in a panel containing the endogenous se-62

quence while co-estimating an error parameter. Importantly, these methods did not take into account63

the complexity of inferring the endogenous ‘consensus’ mtDNA sequence. Thus, a subsequent method64

(Schmutzi) sought to jointly infer the endogenous mitogenome while estimating present-day human65

contamination via the incorporation of the intrinsic characteristics of endogenous aDNA fragments66

into the model (Renaud et al., 2015).67

68

Autosomes-based methods69

Sequencing high depth ancient nuclear genomes remains challenging. Therefore, mtDNA-based con-70
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tamination estimates have been used as a proxy for overall contamination (Allentoft et al., 2015). Yet,71

different mitochondrial-to-nuclear DNA ratios in the endogenous source and the human contaminant(s)72

may lead to inaccurate conclusions (Furtwängler et al., 2018). While the source of this difference has73

yet to be identified, accurate methods based on nuclear data are needed to estimate the level of human74

contamination which may have an impact on downstream analyses (Renaud et al., 2016). Indeed,75

most studies rely on nuclear data to answer key biological questions. A recent method (DICE) aims76

at estimating present-day human contamination for nuclear data (Racimo et al., 2016). It does so77

by co-estimating contamination, sequencing error, and demography based on autosomal data. This78

method generally requires an intermediate depth of coverage (at least 3×) and produces more accurate79

results when the sample and the contaminant are genetically distant (e.g. different species or highly80

differentiated populations).81

82

X-chromosome-based methods and a novel approach83

In 2011, Rasmussen et al. (Rasmussen et al., 2011) estimated the contamination level in whole genome84

sequencing data from a male Aboriginal Australian based on the X-chromosome using a maximum85

likelihood method. Similar to mtDNA-based methods, this method relies on the fact that the X-86

chromosome is hemizygous in males. The mathematical details of the method used in that study87

were described in the supplementary information. However, while this method could in principle also88

perform well for low depth data, its performance was not assessed in detail.89

90

In this work, we propose a new maximum likelihood method (implemented in C++ and R) relying91

on ‘relatively long’ haploid chromosomes potentially sequenced at low depth of coverage (such as92

the X-chromosome in male humans). We present the mathematical details of our method, perform93

extensive simulations and analyze real data to compare it to existing nuclear-based methods. To do94

so, we also implement the method by (Rasmussen et al., 2011) (see Sections 3.3 and 6 for a discussion95

on the fundamental differences between methods). We measure the performance of the methods by96

quantifying the accuracy of the contamination estimates and assess the effect of a) varying levels of97

contamination, b) varying depth of coverage, c) the ancestry of the endogenous and the contaminant98

populations and d) additional error in the endogenous data. We show that our method performs99

particularly well for low-depth data compared to other methods. It can accurately estimate present-100

day human contamination for male samples that are likely to be candidates for further evolutionary101

analysis (i.e. when contamination is <25%) when the X-chromosome depth of coverage is as low as102

0.5×. Moreover, our implementation is fast and scalable.103

3 Methods104

We assume we have collected high-throughput whole genome sequence (WGS) data from a sample105

that contains DNA from two different sources; DNA belonging to one individual of interest (the ‘en-106

dogenous’ DNA or ‘endogenous individual’), and DNA from contaminating individuals. We want to107

estimate the fraction c of DNA that belongs to the contaminant individuals versus the individual of108

interest. We assume that the individual of interest and the contaminants belong to the same species109

but they can belong to different populations. We denote the contaminating population by Popc. Given110

the high-throughput nature of the data, each site along the genome can be covered by multiple se-111

quencing reads or alleles. The data has been mapped to a reference genome which includes a haploid112

chromosome (e.g., the X-chromosome for human males). Across all chromosomes, a fraction c of the113

reads belong to the contaminants while the rest (1− c) belong to the endogenous individual.114

115

For haploid chromosome(s), we expect that the individual of interest will carry only one allele at each116

site, and we rely on this idea to estimate c, the contamination fraction. As discussed above, observing117
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multiple alleles at a given site can be due to either sequencing error, post-mortem DNA degradation,118

mapping errors or contamination.119

3.1 Assumptions and notation120

We rely on the availability of population genetic data (allele frequencies) from a ‘reference panel’ from121

a number of populations including Popc. We assume that (1) the panel includes data at L polymor-122

phic sites; (2) there are four possible bases (A, C, G and T ) at every site but only two are naturally123

segregating across populations (we have bi-allelic sites) (3) we know the population allele frequencies124

of Popc perfectly; (4) the endogenous individual carries either naturally segregating alleles with equal125

probability (see discussion); (5) there are no mapping errors, hence multiple alleles will only be due126

to error (sequencing or post-mortem damage) or contamination; (6) all observed sequencing reads are127

independent draws from a large pool of DNA sequences.128

129

At every site i, we denote αi1, αi2, αi3 and αi4 the potential alleles that we can observe, with αik ∈130

{A,C,G, T}, k ∈ {1, 2, 3, 4} and i ∈ {1, ..., L}. To simplify the presentation, we will assume that at131

all sites αi1 and αi2 occur naturally in the population (bi-allelic sites), while αi3 and αi4 can be ob-132

served because of sequencing error or damage. For each site included in the reference panel, there is133

a single true allele carried by the individual of interest (the endogenous allele), where there could be134

also contaminant alleles. We call these the ‘endogenous allele’ αiE and the ‘contaminant allele(s)’ αiC .135

The frequencies of the segregating alleles across sites in the contaminating population (Popc) will be136

denoted by the matrix F = { ~f1, ..., ~fL}, where ~f i = (f i1, f
i
2) are the frequencies of the alleles αi1 and137

αi2 in that population at site i.138

139

We further assume that errors affect all bases equally and that they occur independently across reads140

and across bases within a read. The probability of having an error from base a ∈ {A, C, G, T} to base141

b ∈ {A, C, G, T} is given by the matrix Γ = {γab}. While this can be easily generalized, in our current142

implementation, we will set γab = ε/3 if a 6= b and therefore γaa = (1 − ε) ∀ a, b ∈ {A, C, G, T}. In143

other words we assume that all types of mutations are equally likely. See Section 3.4 for details on the144

estimation of Γ.145

146

Finally, we summarise the data with the total counts of αi1, αi2, αi3 and αi4 alleles at every site and we147

label those counts ni1, ni2, ni3 and ni4 with niT = ni1 + ni2 + ni3 + ni4. We extend this notation to also148

keep track of multiple alleles, so for instance ni2,3,4 is the number of αi2, αi3 or αi4 alleles.149

3.2 Model description - a likelihood approach150

Let us now assume that Xi
1, Xi

2, Xi
3 and Xi

4 are random variables keeping track of the number of αi1,151

αi2, αi3 and αi4 alleles that can be observed in the data at site i. We also write Xi
2,3,4, for instance, for152

the number of non-αi1 alleles. We can then denote X = { ~X1, ..., ~XL} the random variable summarizing153

the high-throughput observed data across polymorphic sites, with ~Xi = {Xi
1, X

i
2, X

i
3, X

i
4}.154

155

We will first compute the probability of the counts of a given allele at site i given the allele frequencies156

F in the contaminating population, the contamination rate c and the error matrix Γ, which we then157

use for computing the likelihood of the full data (see below, Equation 41). We start by conditioning158

on the endogenous allele. We have that:159
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p(Xi
1 = ni1|c, F,Γ) = p(αiE = αi1)p(Xi

1 = ni1|c, F,Γ, αiE = αi1)

+ p(αiE = αi2)p(Xi
1 = ni1|c, F,Γ, αiE = αi2) (1)

=
1

2
p(Xi

1 = ni1|c, F,Γ, αiE = αi1)

+
1

2
p(Xi

1 = ni1|c, F,Γ, αiE = αi2) (2)

since there is a single true endogenous allele at each site and we have assumed that the endogenous160

individual a priori carries either allele with equal probability. If the pool of sequencing reads we draw161

from is large enough, which is likely to be the case with high-throughput data, we have that each draw162

is identically distributed for a given endogenous allele. Hence, given an endogenous allele, the alleles163

we draw at each site follow a binomial distribution. Relabeling:164

pi1 := p(Xi
1 = 1|c, F,Γ, αiE = αi1) (3)

pi2,3,4 := p(Xi
2,3,4 = 1|c, F,Γ, αiE = αi1) (4)

qi2 := p(Xi
2 = 1|c, F,Γ, αiE = αi2) (5)

qi1,3,4 := p(Xi
1,3,4 = 1|c, F,Γ, αiE = αi2), (6)

The probability of seeing ni1 α
i
1 alleles in the data assuming the endogenous allele is αi1 and that we165

have a total of niT sequenced reads at that site is given by:166

p(Xi
1 = ni1|c, F,Γ, αiE = αi1) =

(
niT
ni1

)
(pi1)n

i
1 (pi2,3,4)n

i
2,3,4 . (7)

Similarly, if the endogenous is αi2, we have that:167

p(Xi
2 = ni2|c, F,Γ, αiE = αi2) =

(
niT
ni2

)
(qi2)n

i
2 (qi1,3,4)n

i
1,3,4 . (8)

We can now compute the probability of Xi
1 = 1, that is the probability of observing one αi1 allele in168

the sequencing data. We will momentarily drop the index i to simplify the presentation. Let us first169

assume that the true endogenous allele is α1 (i.e., we first compute p1). By conditioning on the source170

of the observed allele being either the endogenous (‘endo’) or a contaminant (‘cont’) individual, we171

have that:172

p(X1 = 1|c, F,Γ, αE = α1) = p(cont)p(X1 = 1|c, F,Γ, cont, αE = α1)

+ p(endo)p(X1 = 1|c, F,Γ, endo, αE = α1) (9)

= c p(X1 = 1|c, F,Γ, cont)

+ (1− c) p(X1 = 1|c, F,Γ, endo, αE = α1) (10)

In the contaminant case, we then condition on either of the naturally segregating alleles:173

p(X1 = 1|c, F,Γ, cont) = p(αC = α1)p(X1 = 1|c, F,Γ, cont, αC = α1)

+ p(αC = α2)p(X1 = 1|c, F,Γ, cont, αC = α2) (11)

= f1γ11 + f2γ21. (12)
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While for an endogenous draw we have:174

p(X1 = 1|c, F,Γ, endo, αE = α1) = γ11. (13)

By substituting the equations above into equation (10) we have that:175

p1 = c
(
f1γ11 + f2γ21

)
+ (1− c)

(
γ11

)
. (14)

There are indeed two ways to draw an α1 allele. First, we could draw a read from a contaminating176

individual. This individual belongs to population Popc and there is therefore a probability f1 that it177

carries that allele, and f2 that it carries the alternative allele α2. If it carries α1, we would need no178

error to occur (γ11). While if the contaminant carries α2, it would need to mutate to α1 (γ21). Second,179

we could draw a read from the endogenous individual. Since we have assumed that the endogenous180

individual carries an α1 allele, it should remain α1, i.e., no error (γ11). We can similarly obtain all181

other three equations for the probability of observing an α2, α3 or α4 allele:182

p2 = c
(
f1γ12 + f2γ22

)
+ (1− c)

(
γ12

)
(15)

p3 = c
(
f1γ13 + f2γ23

)
+ (1− c)

(
γ13

)
(16)

p4 = c
(
f1γ14 + f2γ24

)
+ (1− c)

(
γ14

)
. (17)

The equivalent expression for observing non-α1 alleles is simply183

p(X2,3,4 = 1) = p(X2 = 1) + p(X3 = 1) + p(X4 = 1) = 1− p(X1 = 1) (18)

since it is not possible to draw simultaneously two alleles. We then have that:184

p2,3,4 = p(X2,3,4 = 1|c, F,Γ, αE = α1) = c
(
f1(γ12 + γ13 + γ14) + f2(γ22 + γ23 + γ24

)
+ (1− c)

(
γ12 + γ13 + γ14

)
. (19)

Conditioning on the endogenous allele being α2 and following a similar logic, we have for the qk185

equations:186

q1 = c
(
f1γ11 + f2γ21

)
+ (1− c)

(
γ21

)
(20)

q2 = c
(
f1γ12 + f2γ22

)
+ (1− c)

(
γ22

)
(21)

q3 = c
(
f1γ13 + f2γ23

)
+ (1− c)

(
γ23

)
(22)

q4 = c
(
f1γ14 + f2γ24

)
+ (1− c)

(
γ24

)
(23)

q1,3,4 = c
(
f1(γ11 + γ13 + γ14) + f2(γ21 + γ23 + γ24)

)
+ (1− c)

(
γ21 + γ23 + γ24

)
. (24)

The first part of the qk equations, corresponding to the contaminant read case, is identical to the187

first part of the pk equations 14, 15, 16, and 17. For the second part, which corresponds to the188

endogenous read case, we can simply invert indices 1 and 2 to recover the second part of the pk189

equations. We can simplify all equations further since in our implementation we have γaa = (1 − ε)190

and γab = ε/3 ∀ a, b ∈ {A, C, G, T} with a 6= b. Adding now the i index, we have for the pik:191
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pi1 = c
(
f i1 (1− 4 ε

3
) +

4 ε

3
− 1
)

+ 1− ε (25)

pi2 = c
(
f i1 (

4 ε

3
− 1) + 1− 4 ε

3

)
+
ε

3
(26)

pi3 =
ε

3
(27)

pi4 =
ε

3
(28)

pi2,3,4 = c
(
f i1 (

4 ε

3
− 1) + 1− 4 ε

3

)
+ ε. (29)

Note that we can further simplify those expressions by using f i2 = 1− f i1:192

pi1 = cf i2 (
4 ε

3
− 1) + 1− ε (30)

pi2 = cf i2 (1− 4 ε

3
) +

ε

3
(31)

pi3 =
ε

3
(32)

pi4 =
ε

3
(33)

pi2,3,4 = cf i2 (1− 4 ε

3
) + ε. (34)

And for the qik:193

qi1 = cf i1 (1− 4 ε

3
) +

ε

3
(35)

qi2 = cf i1 (
4 ε

3
− 1) + 1− ε (36)

qi3 =
ε

3
(37)

qi4 =
ε

3
(38)

qi1,3,4 = cf i1 (1− 4 ε

3
) + ε. (39)

Likelihood function - ‘Two-consensus’194

We will filter the data so that a read only covers one polymorphic site. In other words, since the reads195

are assumed to be independent from each other, each site is also independent. Assuming the error196

rates are known (see below), the likelihood function for the parameter c can be written as:197

`(c) = p(X|c,Γ, F )

=
L∏
i=1

p( ~Xi|c,Γ, F ) =
L∏
i=1

2∑
r=1

p( ~Xi|c,Γ, F, αiE = αir)p(α
i
E = αir) (40)

=
L∏
i=1

(1

2

(
niT
ni1

)
(pi1)n

i
1 (pi2,3,4)n

i
2,3,4 +

1

2

(
niT
ni2

)
(qi2)n

i
2 (qi1,3,4)n

i
1,3,4

)
. (41)

We can then find the value c (ĉmle) that maximizes `(c) (i.e. the maximum likelihood estimate, mle).198

3.3 Previous related approach - ‘One-consensus’199

The method we propose above is related to one that was described in the supplementary material of200

(Rasmussen et al., 2011). The key difference, beside the consideration that a contaminant allele may201
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also have errors, is that Rasmussen et al. assumed that at each polymorphic site, the most prevalent202

allele in the sequencing data was the true endogenous allele. Without loss of generality, we can call203

this allele α1. In other words, we assume that at every site p(αE = α1) = 1 and p(αE = α2) = 0.204

Denoting Y i1 the number of consensus α1 alleles and Y i2,3,4 the number of non-consensus alleles, we205

have that:206

p(Y1 = 1|c, F,Γ) = c
(
f1γ11 + f2γ21

)
+ (1− c)γ11 (42)

Similarly, for Y2,3,4, we have that:

p(Y2,3,4 = 1|c, F,Γ) = c(f1(γ12 + γ13 + γ14) + f2(γ22 + γ23 + γ24))

+ (1− c)(γ12 + γ13 + γ14) (43)

Finally, denoting φi1 = p(Y i1 = 1|c, F,Γ) and φi2,3,4 = p(Y i2,3,4 = 1|c, F,Γ), and expressing the errors207

rates in terms of ε, we have as above:208

φi1 = c
(
f i1(1− 4

3
ε) +

4

3
ε− 1

)
+ 1− ε (44)

φi2,3,4 = c
(
f i1(

4

3
ε− 1) + 1− 4

3
ε
)

+ ε (45)

While the likelihood function becomes:209

`(c) = p(Y |c,Γ, F )

=

L∏
i=1

(
niT
ni1

)
(φi1)n

i
1 (φi2,3,4)n

i
2,3,4 (46)

since p(αE = α2) = 0. We call this approach the ‘One-consensus’ method since the ‘consensus’ allele210

is assumed to be the truth; accordingly, we will call our new approach the ‘Two-consensus’ method211

since we integrate over both segregating alleles and assume that either can be the true endogenous212

(consensus) allele at a particular site.213

3.4 Estimating error rates214

To infer the contamination rate c, we first obtain a point estimate of ε by considering the flanking215

regions of the polymorphic sites following (Rasmussen et al., 2011). Specifically, we assume that the216

sites neighboring a polymorphic site i in the reference panel are fixed across all populations - including217

population Popc and are given by the most prevalent allele at each of those sites. Without loss of218

generality we can assume α1 = αC = αE for all flanking sites. We label the flanking sites ij where,219

e.g., i−2 is the second site to the left of site i (i0 is site i). We assume that non-α1 alleles at those220

neighboring sites are solely due to error. In other words when j 6= 0, we have that f
ij
2 = 0, and hence221

p
ij
1 = 1− ε and p

ij
2,3,4 = cε+ (1− c)ε = ε (Equations (30) and (34)). We consider the counts of non-α1222

alleles at s sites left and right of the polymorphic sites. Having assumed that (i) reads are independent223

of each other, (ii) bases within a read are independent from each other, we have:224

`(ε) = p
((∑

i

s∑
j=−s,j 6=0

X
ij
1

)
= νs1 |ε

)
=

(
νsT
νs1

)
(1− ε)ν

s
1 εν

s
T−ν

s
1

where νs1 =
∑
i

∑s
j=−s,j 6=0 n

ij
1 , νsT =

∑
i

∑s
j=−s,j 6=0 n

ij
T . To infer the contamination rate, we then225

substitute the error rate in Equation 41 by the maximum likelihood estimate of the error rate obtained226

at the flanking regions across polymorphic sites, which is simply: ε̂mle =
νs
1

νs
T

. Note that by default we227

set s = 4, i.e., we consider four sites left and right of the polymorphic site to compute the error rate.228
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3.5 Standard error229

To compute the standard error for the inferred parameter, we consider a block jackknife approach that230

we apply to the likelihood approach. Specifically we split the haploid chromosome into M blocks, each231

corresponding to one of the L sites (we have M ≤ L). For each m = 1...M we leave one block m out232

and compute ĉmmle over the remaining data. We estimate the standard error for the estimate using the233

following relationship:234

σc =

√√√√M − 1

M

M∑
m=1

(ĉmmle − ĉmle)2.

Under some regularity conditions, the 95% confidence interval for our contamination rate is then235

ĉ± 2σc.236

3.6 Implementation237

Our method is implemented as two separate steps. First, the counts of bases are tabulated for a238

sample provided by the user as a bam file of mapped reads. This is done within the software ANGSD239

(Korneliussen et al., 2014) which allows to filter the data efficiently and is implemented in c++. The240

contamination estimates are obtained in the second step based on the output from step one along with241

a file containing information about the reference population (polymorphism data from a reference242

panel). This step is implemented in R. The documentation along with a description and explanation243

of options and output are found on the following website: https://github.com/sapfo/contaminationX.244

The human reference population allele frequency panels used in this study are available there as well.245

4 Performance assessment246

To evaluate our method’s performance in practice, we carried out simulations with parameters typical247

of human aDNA experiments. Although we focused on humans, the method is expected to be equally248

applicable to other species for which polymorphism data are available. In particular, we assessed the249

effect on the estimates of 1. the contamination fraction, 2. the depth of coverage, 3. the genetic dis-250

tance between the sample and the contaminant, 4. the genetic distance between the contaminant and251

the reference panel assumed to be the contaminating population, and 5. the error rate. In addition,252

we compared our method to two existing methods based on nuclear data; namely, our implementation253

of the ‘One-consensus’ method by Rasmussen et al. (2011) and DICE by Racimo et al. (2016). In all254

cases, we simulated sequencing data by sampling and ‘mixing’ mapped reads from publicly available255

genomes in known proportions while controlling for the depth of coverage (DoC).256

257

4.1 General simulation framework and settings258

For all experiments described below we used our method with the following settings: -d 3, -e 20 (i.e.,259

filtering for sites with a minimum DoC of 3 and a maximum of 20) and maxsites=1000 (resampling at260

most 1,000 blocks for the block jackknife procedure). To compare methods and parameter values, we261

computed the root mean square error (RMSE ), the bias and the range for a set of k contamination262

estimates from simulated data Ĉ = {ĉ1, ĉ2,· · · , ĉk} and an expected contamination fraction cexp (where263

applicable) as follows:264

1. RMSE =

√∑k
i=1(ĉi−cexp)2

k265

2. Bias =
∑k

i=1 ĉi
k − cexp266
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3. Range = max(Ĉ)−min(Ĉ)267

For all experiments where we estimated RMSE, Bias and Range, we simulated 100 replicates for268

each parameter combination.269

4.2 Test genomes and reference panels270

We considered Illumina whole genome sequencing data from a subset of the present-day individuals271

reported in (Meyer et al., 2012). We included data from six male individuals ranging in DoC between272

19.9× and 26.7×: a Yoruba (HGDP00927), a Karitiana (HGDP00998), a Han (HGDP00778), a Papuan273

(HGDP00542), a Sardinian (HGDP00665), and a French (HGDP00521). All data were pre-processed,274

mapped and filtered following (Malaspinas et al., 2014).275

276

We considered ten populations from the HapMap project as potential proxies for Popc. Those pop-277

ulations represent broad scale worldwide variation (Altshuler et al., 2010). We filtered each panel by278

removing: 1) all sites located in the pseudoautosomal region of the human X chromosome (parameters279

-b 5000000 -c 154900000 discard the first 5Mb and last ∼370Kb of the human X chromosome, following280

Ensembl GRCh37 release 95); 2) all sites with a minor allele frequency lower than 0.05 (-m 0.05); 3)281

all variable sites located less than 10 bp away from another variable site. The number of remaining282

sites after filtering each panel is shown in Table 1.283

Population Number of sites Number of sites (filtered)* Number of individuals

HapMap ASW 38,703 31,324 90

HapMap CEU 73,562 58,190 180

HapMap CHB 67,307 51,494 90

HapMap GIH 34,158 26,098 100

HapMap JPT 64,290 49,715 91

HapMap LWK 39,992 31,119 100

HapMap MEX 34,360 23,190 90

HapMap MKK 37,935 29,612 180

HapMap TSI 33,928 25,097 100

HapMap YRI 89,604 72,546 180

Table 1: Reference allele frequency panels used for estimating contamination. *Number of sin-

gle nucleotide polymorphism (SNPs) included for each population after applying the filtering described

in the text. Data were downloaded from http://hapmap.ncbi.nlm.nih.gov/downloads/frequencies/2010-

08 phaseII+III/allele freqs chrX CEU r28 nr.b36 fwd.txt.gz

4.3 One- vs Two-consensus methods and reasonable parameter range for c284

We first explored the contamination fractions for which our method yields informative estimates. To285

do so, we sampled 1× data from a Yoruba individual and ‘contaminated’ these with data from a286

French individual at increasing contamination rates {0.01, 0.05, 0.1, ..., 0.45, 0.50}. Note that by287

design, our method cannot distinguish between ‘symmetric’ contamination fractions, e.g., 0.2 from288

0.8. For this exploratory analysis, we simulated five replicates for each contamination rate and used289

the HapMap CEU reference panel as a proxy for the allele frequencies in the contaminant population.290

For each simulation, we estimated the contamination fraction using the ‘One-consensus’ (Rasmussen291

et al., 2011) and the ‘Two-consensus’ methods.292

293

The results are shown on Figure 1a. We observed that the estimated contamination rates matched the294

simulated rates qualitatively for both methods as long as the contamination fraction was below 0.25295
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(see below for a discussion relative to the bias). In addition, the ‘Two-consensus’ method provided296

more accurate results especially when contamination was high. Given both methods failed at estimat-297

ing very large contamination fractions accurately, we simulate data with contamination rates between298

0.01 and 0.25 for subsequent analyses.299

300
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Figure 1: Parameter range for c and effect of the DoC for the One- and Two-consensus methods. We

simulated data as described in Sections 4.3 and 4.4 to explore the contamination fractions and DoC for which

our method yields informative estimates: we ‘contaminated’ a Yoruba with a French individual with increasing

contamination fractions while controlling for the DoC. a,b. contamination estimates for each replicate (points)

and corresponding 95% confidence intervals (vertical bars). The dashed lines indicate the expected values and

the red lines a linear regression. c. RMSE for each DoC, combining the results across simulated contamination

fractions in b. d. Bias for each DoC and contamination fraction combination. e. Range for each DoC and

contamination fraction combination. Results for the ‘One-consensus’ and ‘Two-consensus’ methods are shown

in blue and purple, respectively across all panels.301

4.4 One- vs Two-consensus methods and depth of coverage302

We carried out a similar simulation experiment to determine the broad effect of the DoC on the303

estimates of the ‘One-consensus’ and the ‘Two-consensus’ methods. In this case, we sampled304
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sequencing data at varying DoC {0.25×, 0.5×, 0.75×, 1×, 5×} with increasing contamination rates305

{0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.25}. Results are summarized in Figure 1b,c,d,e.306

307

We found that both methods yielded estimates close to the truth, especially when the contamination308

fraction was within the simulation range [0.01, 0.25] and the DoC was ≥0.5× (Figure 1b). As309

expected, the range of the estimates increased with lower DoC and higher contamination fractions310

(Figure 1e). The RMSE also decreased with higher DoC, while we observed that this decrease slowed311

down between 0.75× and 1×.312

313

We observed that both methods slightly overestimated contamination for true contamination fractions314

<0.1 and underestimated it for values >0.1. Importantly, the downward bias for large contamination315

fractions and the RMSE (specially between 0.5× and 5×) were substantially lower for the ‘Two-316

consensus’ method compared to the ‘One-consensus‘ one. This difference in bias is intuitive and follows317

from the mathematical details of each of the methods (see also discussion). Thus, since the ‘Two-318

consensus’ approach performed equally well for higher DoC and outperformed the previous method319

with lower DoC, we see no advantage in using the ‘One-consensus’ method and focus hereafter on320

characterizing the ‘Two-consensus’.321

4.5 Comparison with DICE322

We compared the performance of our method to DICE, an autosomal data-based method for323

co-estimating contamination, sequencing error, and demography (Racimo et al., 2016). We carried out324

simulations as detailed above and we ‘contaminated’ an ancient Native American genome (Anzick1)325

(Rasmussen et al., 2014) with data from a present-day French individual. In this case, we used an326

ancient individual to favor DICE, which jointly estimates the error rate and contamination fraction.327

We ran DICE with the two-population model using the 1000 Genomes Project Phase III CEU allele328

frequencies as a proxy for the frequencies of the putative contaminant and the YRI frequencies to329

represent the ‘anchor’ population. We let the MCMC algorithm run for 100,000 steps and discarded330

as burn-in the first 10,000 steps. We used the coda R package to obtain 95% posterior credibility331

intervals. For our method we used the parameters detailed in Section 4.1. We summarise the results332

for this comparison in Figure 2.333

334

In agreement with the simulations based on present-day data in the previous section, we observed that335

our method yielded accurate estimates for a DoC as low as 0.5× and for true contamination fractions336

below 0.25. In contrast, in most cases, we observed that DICE did not converge to a value close to337

the simulated contamination fraction for a DoC ≤ 1 but instead vastly overestimated contamination.338

Whereas DICE started to yield useful estimates at 5×, our method provided more accurate estimates339

than DICE for all simulated cases. These results suggest that for low depth data (≤ 5×) the ‘Two-340

consensus’ method should be used to estimate contamination.341
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Figure 2: Simulation results comparing our method to DICE. We simulated data as described in Section 4.5 and

estimated contamination across five replicates using our method (purple) and DICE (green). We ‘contaminated’

the Anzick1 ancient Native American genome with a French individual at increasing contamination fractions

while controlling for the DoC. Vertical bars correspond to 95% confidence intervals for the Two-consensus

method and to 95% credible intervals for DICE. The dashed line indicates the expected values. Note that the

simulated DoC corresponds to the autosomal DoC for DICE and the X-chromosome DoC for our method.342

4.6 Lowest bound on depth of coverage for the Two-consensus method343

To get a sense of the minimal amount of data necessary to obtain accurate estimates with our method,344

we carried out simulations for a more fine-grained range of DoC {0.1×, 0.2×, 0.3×, 0.4×, 0.5×, 0.6×,345

0.7×, 0.8×, 0.9× and 1×}. Results are summarised in Figure 3. In agreement with results presented346

in Section 4.4, we observed that across simulations, the estimates closely matched the truth from 0.2×347

onward (see linear regression). Similarly, the RMSE sharply decreased at 0.2× while it qualitatively348

saturated from 0.5× onward. In other words, our estimates are already meaningful for a DoC as low349

as 0.2×, and become quite accurate for a DoC ≥0.5×. Based on these results, when the reference350

panel used for estimation is a close representative of the contaminant population (see also Section351

4.8), we recommend to use our method to determine if a sample or library is highly contaminated352

(contamination >25%), or to estimate the contamination fraction when contamination is between 0353

and 25%.354
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Figure 3: Minimum required depth of coverage (DoC). We simulated data as described in Section 4.4, but we

considered an additional range of low DoC {0.01×, 0.02×, ..., 1×}. a. contamination estimates for each replicate

(points) and corresponding 95% confidence intervals (vertical bars). Dashed lines indicate the expected values

and red lines show a linear regression. b: RMSE for each DoC, combining the results across contamination

fractions from a. c. Number of overlapping sites between the simulated data and the contaminant population

panel (HapMap CEU in this case) after applying the filters detailed in Section 4.1.355
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4.7 The effect of the genetic distance between the endogenous and the356

contaminant individuals357

While we do not consider the ancestry of the endogenous individual in our model, intuitively, estimat-358

ing the contamination fraction should be easier when the endogenous and contaminant individuals359

are more distantly related. To get further insights into this intuition, we sampled sequencing data360

from five individuals (a Yoruba, a Karitiana, a Han, a Papuan and a Sardinian) and contaminated361

them with data from a French individual. We used the same depth of coverage and contamination362

fraction settings described in Section 4.4 and used the HapMap CEU reference panel to estimate the363

contamination fraction. We explored the relationship of the contamination estimates and the ‘allele364

sharing distance’ between the X-chromosome consensus sequences from the five individuals and the365

French contaminant. We defined the allele sharing distance as the number of differences between the366

French and each individual’s consensus, divided by the number of non-missing sites for each pair.367

368

Results are shown in Figure 4. We obtained a very similar picture across simulated endogenous369

individuals. Indeed, the RMSE, the bias and the range of the estimates vary as a function of the DoC370

with qualitativly little effect from the genetic distance between the contaminant and the endogenous371

individual. As such, our method seemingly performs equally well regardless of the ancestry of the372

endogenous individual, even for cases where contaminant and endogenous are closely related (e.g. a373

Sardinian individual contaminated with a French individual).374

4.8 The effect of the genetic distance between the simulated contaminant375

and the reference panel used for inferring contamination376

For this experiment, we sampled data from a Sardinian individual and contaminated it with data377

from a French individual. We applied the same depth of coverage and contamination fraction settings378

from the above experiments and used ten different reference populations from the HapMap project as379

proxies for Popc: ASW, CEU, CHB, GIH, JPT, LWK, MEX, MKK, TSI and YRI, to estimate the380

contamination fraction. To get an indicative value for the distance between the reference HapMap381

panel and the contaminant, we estimated the genetic distance between the X-chromosome consensus382

sequence from the contaminant French individual and each reference population. We defined this383

distance as DXFrench−Popc =
∑L

i=1 ψi

L where L is the total number of sites included in the reference384

population Popc (assumed to be the contaminant) and ψi is the frequency of the allele carried by the385

contaminant individual X (French in this case), at locus i. Note that we only considered the sites386

that are included in all reference panels to compute this distance. Results are shown in Figure 5.387

388

We found that misspecifying the contaminant population led to an underestimation of the contami-389

nation fraction (Figure 5a). In fact, as indicated by the strong correlation between the RMSE and390

the genetic distance DXFrench−Popc , worse ‘guesses’ of the contaminant ancestry resulted in worse es-391

timates. This correlation was similar across all tested DoC but 0.25×. We observed a downward bias392

for larger simulated contamination fractions that increased with DX−Popc . Although the overall effect393

could be deemed relatively small (e.g., RMSE<0.05 with the HapMap YRI panel), if the contaminat-394

ing population is not known, we recommend comparing results obtained through different reference395

populations. Note that one could also use this observation to make a qualitative statement about the396

ancestry of the contaminant individual assuming several reference populations are available (see, for397

example, (Rasmussen et al., 2015)).398
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Figure 4: The effect of the genetic distance between the endogenous and the contaminant individuals. We

considered five individuals (Yoruba, Karitiana, Han, Papuan, Sardinian) and ‘contaminated’ them with a

French individual (Section 4.7). We simulated data with increasing contamination fractions while controlling

for the DoC. a. contamination estimates for each replicate (points) and corresponding 95% confidence intervals

(vertical bars). Dashed lines indicate the expected values and red lines show a linear regression. The allele

sharing distance between each sample and the contaminant is indicated in parentheses. b. RMSE for each

DoC as a function of the allele sharing distance between the five samples and the contaminant, combining

the results across contamination fractions in a. We show the Pearson correlation coefficient for each DoC. c.

Bias for each DoC, sample and contamination fraction combination. d. Range for each DoC, sample and

contamination fraction combination.
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Figure 5: The effect of the distance between the reference population (Popc) and the contaminant. We

simulated data as described in Section 4.7. We considered the ten reference populations described in Table 1

and ‘contaminated’ a Sardininan with a French individual. We simulated data with increasing contamination

fractions while controlling for the DoC. a. contamination estimates for each replicate (points) and corresponding

95% confidence intervals (vertical bars). Dashed lines indicate the expected values and red lines show a linear

regression. The genetic distance between the reference panel (DX−Popc) is indicated in parentheses. b. RMSE

for each DoC as a function of DX−Popc , combining the results across contamination fractions in a. We show

the Pearson correlation coefficient for each DoC. c. Bias for each DoC, sample and contamination fraction

combination. d: Range for each DoC, sample and contamination fraction combination.
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4.9 The effect of differential error rates in the endogenous and contaminant399

individuals400

We assessed the effect of varying the error rates in the endogenous sequencing data by simulating401

data as detailed above. However, in this case, we added errors to the Yoruba reads at a constant rate402

ε ∈ {0.005, 0.01, 0.02, 0.05, 0.1} by using a transition matrix Γ = γab analogous to the one used for error403

rate estimation. Results are summarized in Figure 6. Qualitatively, although there is a significant404

positive correlation between the RMSE and the error (Figure 6b), the overall effect is small, except405

for the extreme cases of 5% and 10% added error, where we observe a systematic overestimation of406

contamination. Yet, we note that current second generation sequencing platforms such as the Illumina407

HiSeq, have substantially lower error rates, e.g., sequencing error rates in the modern human genome408

dataset from (Meyer et al., 2012) have been estimated to be between 0.03 and 0.05% (Malaspinas409

et al., 2014). The apparent innocuousness of additional small amounts of error, is likely due to the410

fact that error affects all sites (variable and neighboring) uniformly in our model, but also that the411

error rate is smaller than the explored range of contamination rate (except for 5% and 10% added error).412

413

We note that the observed error structure for aDNA is different from our simulations. In particular414

the error is not independent of the position across reads. For example, C to T and G to A misincor-415

porations tend to accumulate towards the reads’ termini (Briggs et al., 2007). However, we expect416

damage-derived error to be uniform across polymorphic sites, in the sense that segregating and neigh-417

boring sites are equally likely to be damaged. Therefore, we do not expect aDNA damage to inflate418

contamination estimates differently from how uniform error does. We note, however, that if variable419

sites are more error-prone than neighboring sites due to sequence-intrinsic features, contamination may420

be overestimated. In Section 4.5, we showed that contamination estimates for simulations involving421

real aDNA data are qualitatively similar to those obtained for simulations with present-day data.422

5 Running time423

We explored the running time of our method implementation using a machine with 24 2.8 GHz Intel424

Xeon cores. The data parsing step for 5× X-chromosome datasets was always below 3 minutes.425

Following data parsing, the raw contamination estimate is obtained nearly instantaneously. Thus,426

the step that requires the largest amount of time is the calculation of the standard error. Since we427

use a jackknife approach this will have a running time of O2 in the number of sites. Therefore, the428

actual running time will depend on the depth of coverage and the number of polymorphic sites in the429

reference panel. Using the parameters detailed in Section 4.1, we estimated the contamination fraction430

in the ∼14× Anzick1 genome (Rasmussen et al., 2014) with a joint running time of approximately431

three minutes for the parsing and estimation steps.432
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Figure 6: The effect of differential error rates in the endogenous individual. We simulated data as described in

Section 4.4 and added error increasingly to the Yoruba individual. a. contamination estimates for each replicate

(points) and corresponding 95% confidence intervals (vertical bars). Dashed lines indicate the expected values

and red lines show a linear regression. Added error rates are indicated to the right of each panel. b. RMSE

for each DoC as a function of the added error. We show the Pearson correlation coefficient for each DoC. c.

Bias for each DoC, added error and contamination fraction combination. d. Range for each DoC, added error

and contamination fraction combination.
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6 Discussion433

We present here a new method for efficiently estimating contamination in low depth high-throughput434

sequencing data based on information from haploid chromosomes. To assess whether our method can435

be used in challenging situations typical of aDNA research, we tested it through realistic simulations436

and assess its performance. Note that our simulations involved a single contaminating individual —a437

realistic assumption in our view. Yet, our method can in principle handle multiple contaminants438

from Popc, which we anticipate would improve our method’s performance as the simulations would439

match the implemented model more closely. Our simulations suggest that our method can correctly440

flag highly contaminated samples from male individuals that are unlikely to be useful in evolutionary441

analyses (c ≥25%), and outputs an accurate contamination estimate for male samples with lower442

amounts of contamination (c <25%).443

444

Based on the results above, we show that provided one can approximatively guess the contaminant445

reference population, our estimates will be meaningful even when DoC is as low as 0.2× and essentially446

unbiased when contamination is below 15%. We also show that our method is easily scalable since the447

running time is below five minutes for a depth of coverage as high as 10X (on the X-chromosome).448

Based on these features, we regard our method as an adequate and practical tool for screening449

large numbers of aDNA male samples and related libraries to get a sense of candidates for follow-up450

analyses. Indeed, aDNA studies have transitioned to the genomic era with single studies sometimes451

including whole genomes (Damgaard et al., 2018) or genome-wide SNP data (Olalde et al., 2018) from452

hundreds of individuals. However, most ancient samples carry low proportions of endogenous DNA453

and the resulting depth of coverage for a given shotgun experiment is often quite low for laboratories454

working with a finite budget. Thus, prioritizing resources on promising samples is often a key aspect455

of human aDNA research.456

457

We have shown that typical sequencing error rates and the genetic distance between the endogenous458

and contaminant individuals do not affect the accuracy of our estimates. However, we found that459

misspecifying the contaminant population leads to underestimation (Bias <0.1). In particular, while460

the method is still able to detect contamination, this issue is more pronounced when contamination is461

>10%. In practice, our method flags contaminated samples with estimates >10% and we recommend462

that the user takes a conservative approach: explore several potential contaminant populations and463

report the highest estimate. Note that a high error rate could in principle impact the accuracy, but464

our simulations suggest this would lead to an overestimation of contamination, i.e., our method would465

be conservative in this case.466

467

Finally, we show that our method outperforms the previously published nuclear genome data-based468

methods ‘One-consensus’ (Rasmussen et al., 2011) and DICE (Racimo et al., 2016). It outperforms469

them in particular for low depth data (<5×) and when contamination is above 10%. The main470

difference between the One- and Two-consensus is that for the latter we do not assume that the471

true endogenous allele is the observed consensus at each site. This assumption is particularly wrong472

for low depth data, even when filtering for sites with at least 3 reads. Since we show the ‘Two-473

consensus’ method is more accurate across the parameter space we explored, our new method is474

a better choice. In contrast, DICE offers additional functionality by co-estimating contamination,475

error rates and demography using autosomal data. Thus, while DICE is not useful for screening (or476

estimating contamination for) low depth samples, an appropriate protocol would comprise an initial477

screening using the ‘Two-consensus’ method, followed by further deeper sequencing. If the resulting478

DoC is >5× DICE could be used to co-estimate contamination and the demography.479
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Danish National Research Foundation (DNRF94). ASM and JVMM were funded by grants from486

the Swiss National Science foundation and the European Research Council (Starting Grant 679330).487

TSK was funded by a grant from the Carlsberg Foundation. GR was supported by a Marie-Curie488

Intra-European fellowship (752657).489

References490
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