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Abstract: Invasive and noninvasive features are normally applied to select developmentally com-
petent oocytes and embryos that can increase the take-home baby rates in assisted reproductive
technology. The noninvasive approach mainly applied to determine oocyte and embryo competence
has been, since the early days of IVF, the morphological evaluation of the mature cumulus-oocyte
complex at the time of pickup, first polar body, zona pellucida thickness, perivitelline space and
cytoplasm appearance. Morphological evaluation of oocyte quality is one of the options used to
predict successful fertilization, early embryo development, uterine implantation and the capacity of
an embryo to generate a healthy pregnancy to term. Thus, this paper aims to provide an analytical
revision of the current literature relating to the correlation between ovarian stimulation procedures
and oocyte/embryo quality. In detail, several aspects of oocyte quality such as morphological fea-
tures, oocyte competence and its surrounding environment will be discussed. In addition, the main
noninvasive features as well as novel approaches to biomechanical parameters of oocytes that might
be correlated with the competence of embryos to produce a healthy pregnancy and live birth will
be illustrated.

Keywords: assisted reproductive technology; noninvasive assessment; oocyte morphology and
quality; oocyte biomechanical features; healthy offspring

1. Introduction

Over the last decades, assisted reproduction technology (ART) has notably changed
and is currently responsible for the birth of about nine million children [1]. Oocyte mor-
phological assessment is an important step performed daily in routine ART procedures.
However, oocyte quality is probably one of the more important limiting factors in female fer-
tility, playing a critical role in fertilization and later during early embryo development [2,3].
Indeed, the embryo is the result of the union between the oocyte and the spermatozoon.
Certainly, IVF is an aggregate of several procedures and one of these, probably the most
critical, is ovarian stimulation (OS) [4]. However, during the ART cycle, the situation is
more complex: in vivo, each month only one oocyte will ovulate, and its maturation takes
place at the conclusion of a long period of follicle growth and selection. Clinically, the use
of an OS protocol practically abolishes the natural selection of follicles and permits the
maturation of oocytes that otherwise would never grow within a pool of follicles. This may
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be also associated with compromised oocyte and embryo competence, and could eventually
be responsible for fertilization failure, embryo aneuploidy and implantation failure [5,6].
Indeed, successful fertilization is a more intricate process, which relies not only on sperm
penetration but on several factors associated with oocyte quality. Therefore, the concern is
that following OS, probably a good number of collected oocytes are of average quality, and
thus, even with excellent laboratory conditions, they are probably designed to generate
an embryo with low implantation potential, incapable of establishing a normal pregnancy
to term [6,7].

However, during in vitro culture, the embryology laboratory is like the main actor,
and it is extremely important that its performance is strictly correlated with embryo de-
velopment and viability. The physical and chemical conditions used to culture embryos
should be kept under constant surveillance, and they need to be always close to the phys-
iological values; this is preeminent to support embryo development and guarantee its
optimal implantation potential. As reported by several authors, there are concerns that
suboptimal culture conditions might impair embryo development and compromise their
viability [5–8]. In fact, in vitro culture involves several steps that could increase embryonic
stress, including the application of different culture media, the use of plastic dishes and
consumables, different oxygen concentrations, temperature, pH and osmolality. All these
factors may play a critical role in embryo development and viability. Therefore, constant
improvement of culture techniques to minimize embryonic stress is a necessary ongoing
venture. Additionally, in relation to oocyte competence, we believe that optimal oocyte
maturation cannot be determined by only observing the presence of the polar body, but
rather depends upon several convoluted cytoplasmic mechanisms, which cannot be visible
even with the eyes of a very experienced embryologist. Those mechanisms are extremely
important to generate and store proteins, carbohydrates and lipids, and also to coordinate
the metabolic processes needed for fertilization and further embryo development. In partic-
ular, oocyte quality depends not only on nuclear maturation and the appropriate number
of healthy mitochondria but also on the environment within the ovary, during the time
of oocyte production and maturation until the ovulatory stages [8–10]. Definitely, oocyte
quality is a result of several aspects related to morphological features, genetic status and
environmental impact on embryo development, blastocyst viability and implantation [9].
In this scenario, like a huge patchwork, the embryology laboratory which tries to mimic the
physiological environment of the ovary represents only a little and small role. Therefore,
we aim to summarize the current literature relating to the correlation between ovarian
stimulation procedures and oocyte/embryo quality. Especially, the prognostic value of
morphological features of mature (MII) human oocytes on their developmental competence
will be discussed.

2. Search Methods

The main goal of this article will be to provide an analytical and commentary review
of the literature, correlating the impact of ovarian stimulation with oocyte assessment in
ART, and examining whether the stimulation protocol could have an impact on oocyte
competence, embryo viability and the ability to maintain a healthy pregnancy to term.
Relevant studies were identified in the English-language literature using PubMed search
terms related to the focus of the review, including the relevance of OS in the ART cycle
and its effect on oocyte maturation, exploring both nuclear and cytoplasmatic aspects.
In addition, it also briefly analyzes the process of folliculogenesis and the importance of
noninvasive evaluation of oocyte competence. All relevant publications until June 2023
were critically evaluated and discussed.

3. Folliculogenesis

Folliculogenesis is a complex interaction between the oocyte and surrounding somatic
cells that starts very early around the third week of gestation: when primordial germ cells
begin to grow and migrate to the gonadal ridge, where they progress into oogonia. At
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around week 20 of gestation, it has been estimated that oogonia reach a number of around
six million [11,12]. Subsequently, the primary oocytes start meiotic division and arrest at
the prophase of meiosis I, commonly called the germinal vesicle (GV) stage. They will stay
at that stage until puberty, when they will be reactivated by circulating gonadotrophins [13].
At around six months of gestation, the oocyte is nestled within the primordial follicle, which
at this stage is enclosed by a single layer of flattened granulosa cells. Later, some primordial
follicles undergo growth and differentiation, with the conversion of the granulosa cells
from flattened to cuboidal cells, to evolve into primary follicles [14,15]. Afterwards, the
oocyte continues to grow, and eventually, the primary follicle becomes a secondary follicle.
At that time, the layer of granulosa cells expands and develops gap junctions, and the
receptors for follicle-stimulating hormone (FSH) [16]. Under the action of FSH, a small
fluid-filled cavity will comprise the antrum that furnishes nutrients and mediates waste
removal for the oocyte [17]. With antrum cavity formation, the follicle progresses and forms
the tertiary follicle, and as the antrum continues to enlarge, it will form the preovulatory
follicle [18]. The group of granulosa cells in proximity to the oocyte are called cumulus
cells, while the layer of cumulus cells which are in direct contact with the oocyte are termed
the corona radiata [19]. The preovulatory surge of luteinizing hormone (LH) triggers the
GV-arrested oocyte to resume meiotic division to generate the mature cumulus oocyte
complex (COC), which encloses an oocyte arrested at MII [20,21]. It is essential that MII
oocytes contain a meiotic spindle to provide a regular chromosome alignment to avoid
aneuploidies in the future embryo [22,23]. Figure 1 shows the stages of oogenesis.
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4. Oocyte Competence in ART Cycles

Evaluation of oocyte quality can be performed using the microscope without damaging
their initial developmental potential and without interfering with subsequent embryonic
development. Morphological evaluation can be considered noninvasive and is normally
compatible with the workflow of ART treatment. Human oocytes not only provide ge-
netic material to the developing embryos but are also responsible for supplying energy
substrates, nutrients and a mitochondrial genome. An altered expression of genetic in-
formation could be caused by defects in the DNA, protein-histones, cytoskeletal system,
the DNA repair mechanism and systems that regulate gene expression and many other
metabolic processes. The ability of an oocyte to complete meiotic maturation has been
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called “meiotic competence”, while the capacity to achieve successful embryonic develop-
ment is termed “developmental competence”. Either association will contribute to “oocyte
competence” [8–10]. It is well accepted that maternal age is the most predictive feature of
oocyte competence. Unfortunately, advanced female age significantly affects pronuclear
size and intra- and extra-nuclear dynamics during fertilization, dysregulates cell polarity
during compaction, impairs morula formation and reduces blastocoel expansion [22,23].
However, some of the most evident benefits of better predictive assessment of oocyte
competence are higher live births and lower pregnancy loss rates [24]. An additional
benefit of increasing the ability to predict oocyte developmental potential would be the
further adoption of single embryo transfer, which is critical to and extremely decisive in
reducing the morbidity, complications, as well as the higher costs associated with multiple
gestations [25]. Further, it is worth mentioning that as the ability to predict oocyte com-
petence increases, OS procedures could be enhanced and amended in order to preference
the quality over quantity of oocytes collected, making patient treatment more favorable
and cost-effective globally, reducing the percentage of ovarian hyperstimulation syndrome
(OHSS) [26]. Unluckily, the occurrence of OHSS remains one of the major complications
seen in ART, which is a potentially life-threatening condition [27]. Currently, there are
usable clinical features, as well as OS protocols, that help to reduce the occurrence of
this syndrome [28]. However, over the last couple of decades, with the introduction of
vitrification, we have witnessed a remarkable advancement in embryo cryopreservation,
as a routine procedure and alternative to the slow-freezing method, owing to the superior
success rates in terms of cryo-survival and pregnancy outcomes [29]. Therefore, the appli-
cation of the freeze-all strategy can be considered as the gold standard useful in reducing
the risk of OHSS [30]. The benefit of the freeze-all feature was first introduced more than
20 years ago [31]. Over the years, several authors have analyzed the efficacy of elective
cryopreservation of all embryos as compared to a fresh embryo transfer in reducing the
risk of OHSS [32–35]. Moreover, consistent data demonstrate that the cumulative live birth,
biochemical pregnancy rate, clinical pregnancy, ongoing pregnancy and pregnancy loss
are similar between fresh transfer and frozen transfer, conferring high efficiency to the
strategy [33,34]. However, with the application of vitrification, a critical concern is how
to cryopreserve human materials in the safest way and to avert cross-contamination. The
strategies normally adopted are the open and closed procedures: the former involves direct
contact between liquid nitrogen (LN2) and the sample, while the latter avoids that contact
with LN2, which will also reduce eventual risk of contamination during the vitrification and
storage processes. In our view, and in agreement with several authors, vitrification of hu-
man oocytes and embryos should be carried out in extremely and rigorously safe regimes,
thus the closed vitrification system should be the way to go for these types of cells [36–38].
Finally, it is important to mention that especially for those patients at risk of OHSS, as well
as all the couples undergoing ART treatments, adequate psychological support should be
always offered in order to deal with various infertility pathway complications [39].

5. The Relevance of OS in ART

OS requires the use of exogenous gonadotrophins to stimulate the woman’s ovaries
to generate multiple oocytes, which are retrieved transvaginally [4]. The process aims
to overcome the selection of a single dominant follicle and to retrieve multiple oocytes
in a single stimulated cycle [4,40]. In order to improve the efficacy and efficiency of OS,
several studies have been performed to better understand the molecular action of go-
nadotrophins. FSH and LH mediate steroidogenesis, apoptotic events and maturation
of the dominant follicle through the specific G-protein-coupled receptors, FSH receptor
(FSHR) and LH/Chorionic Gonadotrophin receptor (LHCGR) [41]. Consistent with go-
nadotrophins’ functions, the expression of receptors changes dynamically throughout
folliculogenesis, especially during the increase in follicular diameter, when the expression
of LHCGR increases, while FSHR-1 decreases [42]. In particular, the FSHRs are mainly
expressed by granulosa cells of the developing ovarian follicle; instead, LHCGRs are pri-
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marily expressed by theca cells of the early antral follicle, the mural granulosa cells of the
periovulatory Graafian follicle and the luteal cells of the corpus luteum [43]. According
to the two-cell–two-gonadotrophin theory, cooperative interactions of FSH and LH have
been demonstrated in vivo. Data were derived from hypophysectomized rodents treated
with high doses of FSH that were able to boost the final stages of follicular maturation
and trigger ovulation thanks to cooperation with a residual population of the LHCGR.
This was later confirmed in LHCGR-knockout rodents that did not show progression of
folliculogenesis and induction of ovulation when treated with FSH [44,45]. It has been
clearly demonstrated that, during the gonadotrophin-dependent phase, FSH is able to act
via the heterodimer of the receptors (FSHR-LHCGR) even when the level of LH is low [43].
Gonadotrophins exert their role through life-and-death molecular signals [41,46]. Espe-
cially during the intermediate–late follicular phase, stimulation of the LHCGR drives the
dominant follicle, activating ERK1/2- and AKT-dependent proliferative and anti-apoptotic
signals triggered by the action of LH [41]. Clinical studies have demonstrated that LH
activity stimulates the growth and supports the maturation of larger (about 10–14 mm)
follicles, while simultaneously being able to selectively reduce the occurrence of small
preovulatory follicles [47]. There is clinical evidence that, following FSH priming, LH
alone is capable of effectively completing follicular maturation. Nevertheless, the optimal
amount of LH activity supplementation needed for OS is still unclear [47]. One of the main
issues encountered by embryologists is to recognize the quality of the oocytes obtained
from follicles independently of the apparent evidence of the first polar body (PBI). Indeed,
oocyte competence, as known, is not always homogeneous in a pool of oocytes retrieved
after OS [48]. During the process of growing, the follicle enlarges, and the oocyte diameter
increases to reach the dimension of about 100 µm (approximately 4-fold increase) over
a period of 8 weeks; thus, a 64-fold increase in volume occurs, resulting in enhanced
cytoplasmic activity [48]. Maternal transcripts and proteins are stored during the growth
of developing oocytes and are essential to functionally regulate a broad range of nuclear
condensates, including nuclear speckles and nucleoli [49]. As a result, it is difficult to corre-
late OS treatment with oocyte quality. For this reason, the impact of the gonadotrophins
used for OS on oocyte competence remains controversial. In a recent study, Vaiarelli and
colleagues reported that MII oocyte competence is unlinked to the gonadotrophins used for
OS [50]. More specifically, at least in advanced maternal age, the OS regimen does not seem
to affect the euploid blastocyst rate per MII oocyte. Conversely, two recent meta-analyses
seem to support the hypothesis that supplementation with recombinant human LH (r-hLH)
improves the outcome of IVF independently of oocyte yield [50–52]. In particular, LH
supplementation significantly increases the clinical pregnancy rate in women between 35
and 40 years of age [52]. This effect seems to disappear when trials performed in women
above 40 years of age are analyzed. In addition, post hoc logistic regression analysis from
a large randomized controlled trial (RCT) in patients with poor ovarian response (POR)
describes a lower incidence of total pregnancy outcome failure in women treated with
r-hFSH/r-hLH compared with those receiving only r-hFSH [53]. Taken together, the infor-
mation deriving from in vivo experimental models and clinical trials seems to reinforce
the concept that LH is crucial in supporting late phases of oocyte maturation, which in
turn improves embryo competence. During OS, exogenous LH might play a relevant role
in counteracting age-dependent decrease in oocyte quality. This effect is more evident
in women between 35 and 40 years of age [51] and apparently not related to the rate of
aneuploidies [50], suggesting the involvement of cytoplasmic-dependent mechanisms.

5.1. Mild or Moderate Ovarian Stimulation

Currently, there is not enough scientific proof to approve the hypothesis that go-
nadotrophin dosage influences oocyte competence. Indeed, clinical data failed to prove
that mild stimulation is associated with better gamete quality, even in women with low
prognosis [54]. Conversely, current data support the idea that oocyte yield is indepen-
dent of the age-related rate of aneuploidies, meaning that the higher the number of MII
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oocytes, the greater the absolute number of euploid embryos. In light of this evidence,
it has become essential to collect a necessary number of oocytes to ensure at least one
good-quality/euploid embryo. This strategy appears more effective when a conventional
protocol is applied. Moreover, in poor-responder patients, the accumulation strategy could
represent a valuable approach [54].

5.2. Full Stimulation and Risk of OHSS

OHSS is one of the main complications related to OS, due to human chorionic go-
nadotrophin (hCG) used to induce final oocyte maturation and/or endogenous hCG
produced by implanted embryos [55]. However, as described earlier, many strategies
have been used to reduce or avoid OHSS. Specifically, OS with gonadotrophin-releasing
hormone (GnRH) agonist triggering to avoid exposure to exogenous hCG, vitrification
of all oocytes and/or embryos, and single embryo transfer after thawing in a receptive
endometrium represent the main strategies to dramatically reduce the risk and to obtain an
OHSS-free clinic [56].

5.3. Long-Acting Recombinant FSH

Traditionally, OS requires daily injections of FSH from cycle day 2 to induce the growth
of multiple follicles within the ovary. However, a recombinant long-acting FSH, known
as corifollitropin alfa or FSH-CTP, allows a more patient-friendly weekly subcutaneous
administration while maintaining systemic levels of FSH necessary for multi-follicular
growth [57]. A Cochrane systematic review of six RCTs, including 3753 patients aged
18–41, concluded that there was no significant difference in clinical outcomes or adverse
events between those administered a medium dose (150–180 µg) of FSH-CTP and those
receiving daily injections of FSH [58]. The ENGAGE trial, which compared FSH-CTP
with recombinant FSH over the first seven days of OS in 1506 patients with a mean age
of 31.5 years, found that there was a significantly higher number of oocytes retrieved
(13.7 ± 8.2 vs. 12.5 ± 6.7) following the use of FSH-CTP [59]. Similarly, the ENSURE trial
also reported a significantly higher number of oocytes (13.3 ± 7.3 vs. 10.6 ± 5.9; p < 0.001)
following OS using FSH-CTP [60]. However, The TRUST and the PURSUE trials [60–62]
reported that there was no significant difference in the number of oocytes retrieved, and
these findings were supported by an individual data meta-analysis of three RCTs [63]. In
potential poor responders, significantly higher numbers of oocytes (4.8 ± 2.1 vs. 3.6 ± 2.2)
have been observed following OS with FSH-CTP [64]. Using the mouse model, it has been
recently suggested that long-acting FSH enhances follicle development and supports oocyte
maturation and embryonic developmental potential in vitro [65].

5.4. OS with Adjuvant Treatment

Following conventional OS using GnRH analogues with gonadotrophins, poor respon-
ders are characterized as having low numbers of oocytes retrieved. Since POR may be
unpredictable, the POSEIDON criteria were developed to better classify its definition [4].
To mitigate recurrent POR, various adjuvant or complementary treatments have been
combined with OS, including androgens, androgen-modulating agents, ovarian steroids,
growth hormone (GH) and the coenzyme Q10 [66]. Depending upon their mode of action,
the putative potential benefits of various adjuvant treatments include enhanced oocyte
maturation and embryo quality, though an impact upon endometrial receptivity is also
a possibility. However, the use of adjuvant therapies remains controversial due to the
variability in OS and the classification of POR in different studies and has not been pre-
viously recommended by ESHRE [67]. A network meta-analysis of 17 RCTs, including
1680 women, showed that the adjuvants that resulted in the highest numbers of oocytes
retrieved were hCG, oestradiol and GH [66]. Furthermore, in a meta-analysis of 19 RCTs,
including 2677 women, dehydroepiandrosterone (DHEA) and coenzyme Q10 were found
to significantly enhance the clinical pregnancy rate [66]. Generally, GH seems to be the
adjuvant of choice for POR since it maximizes the number of oocytes and embryos while
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significantly reducing the gonadotrophins required for OS. This may be relevant since there
is some evidence that exposure to higher levels of FSH could be detrimental to oocyte
and embryo quality and euploidy [66–69]. Recently, using the aged mouse model, in vivo
administration of GH has been shown to restore spindle assembly and reduce aneuploidy
rates within oocytes [70]. It has been suggested that GH may achieve such benefits by
stimulating intra-ovarian insulin-like growth factor-I [71] and by enhancing the action of
gonadotrophins on granulosa cells [72].

5.5. Double Stimulation (DuoStim): Is It Risky?

Tocci and co-authors, in 2022, proposed mechanisms by which the DuoStim approach
could be unsafe [73]. Based on studies performed in vitro or using animal models, the
authors argued that the second stimulation is potentially able to trigger ovarian stem cell
differentiation through a persistent action of FSH on functional FSHRs expressed in human
pre-antral ovarian cells [73]. In addition, they mentioned a list of FSH-dependent intracel-
lular oncogenic signaling pathways supposing a tumorigenic activity of gonadotrophins.
According to Casarini and colleagues [74], these hypotheses are not consistent with cur-
rently available data. More specifically, no evidence in humans demonstrates either the
presence of ovarian stem cells in the ovary or the existence of FSHRs in pre-antral ovarian
follicles. In addition, an eventual differentiation from ovarian stem cells to an oocyte em-
bedded into a primary follicle takes a duration of time that does not fit within the DuoStim
timespan. Indeed, the FSH downregulates FSHR mRNAs, which are replaced by LHCGR
transcripts, and data do not exist about their persistence. Finally, an increase in cancer risk
in IVF patients is well appreciated to be mild compared to the general population [73].

6. Oocyte Nuclear Maturation

In modern ART cycles involving ICSI, prior to injection, the oocyte needs to be treated
with a specific enzyme to eliminate the cells surrounding the oocyte, permitting the em-
bryologist to visually perform sperm injection into the MII oocyte cytoplasm. The process
begins with the oocyte’s exposure to the hyaluronidase enzyme, succeeded by mechanical
force applied using a 130–135 µm glass or plastic pipette. This allows for clearly deter-
mining the stage of oocyte nuclear maturation (GV stage, metaphase I (MI), anaphase I,
telophase I or MII)). The evaluation by light microscopy of the PBI in the perivitelline
space (PVS) is considered a marker of nuclear maturation. Oocytes with clear extrusion
of the PBI are at MII, with the chromatin aligned on the equatorial plate of the meiosis II
metaphase spindle [74,75]. An accurate oocyte maturation at MII might be confirmed by the
identification of the meiotic spindle (MS), which can usually be localized adjacent to the PBI,
and its function is essential for correct chromosome segregation, whereas its dysfunction
can induce embryo aneuploidies [76]. Several studies have investigated the importance of
the MS in human oocytes, and its presence has been correlated with fertilization rates and
pregnancy outcomes with contradictory results. Some authors reported that oocytes with
an MS showed significantly higher fertilization, pregnancy and implantation rates [77,78],
whereas others [79] did not find a significant difference. However, it needs to be considered
that the daily routine work in the embryology laboratory might affect the architecture and
the cytoskeleton of the oocyte, damaging the MS and eventually being responsible for
lower fertilization rates [80]. Generally, with OS it is predicted that about 80–85% of the
oocytes are at the MII stage, with a clear presence of the PBI, with around 5–10% at the GV
stage, and another 5–10% of the oocytes with absence of both PBI and GV are classified as
being at MI. These oocytes have gone through GV breakdown but have not fully completed
meiosis I and are still between MI and MII, where the chromosomes are aligned on the
metaphase plate in preparation for finishing the first meiotic division [81]. Figure 2 depicts
different stages of the meiosis process.
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6.1. From Birth to Puberty: Oocyte Chromatin Segregation and Resumption of Meiosis

At birth, the primordial follicle containing the oocyte is quiescent at the prophase of
the first meiotic division. The oocyte chromosomes are dispersed and transcriptionally
active to operate the basic level of activities. During follicle evolution, the oocyte sustains a
growth phase, in which the oocyte achieves full size and is ready to ovulate. This stage is
animated by intense RNA transcription; therefore, oocyte chromatin needs to be dispersed
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to permit interaction with the transcriptional machinery. Once growth is completed and
the oocyte reaches the capability to restart meiosis (meiotic competence), it will undergo
a considerable DNA condensation process; thus, chromatin compaction is transcription-
ally inactive in preparation for meiotic resumption [82]. The chemical compound cyclic
adenosine monophosphate (cAMP) plays an essential role in the regulation of meiotic arrest
before ovulation. To appreciate more what might represent biomarkers of proper oocyte
developmental competence, we should look carefully at the process of meiosis, which starts
with the replication of the genetic material during the S-phase. This is then followed by
two successive chromosome segregations, which results in a haploid chromosome consti-
tution [82,83]. The meiotic process allows the reduction of the chromosome numbers to a
haploid set and comprises the recombination of new genetic combinations in the offspring
due to an exchange of genetic material between paternal and maternal homologues. The
spindle apparatus is a cytoskeletal structure that is actively involved in the separation of
homologous chromosomes during meiosis I and sister chromatids during meiosis II to pro-
duce haploid gametes with half the number of chromosomes of the parent cell [83–85]. The
spindle fibers are formed by filaments called microtubules, which are dynamic structures
that can disassemble and reassemble, since they are made of heterodimers of alpha and beta
tubulin in association with microtubule-associated proteins (MAPS) [78,81,85]. Most im-
portantly, oocyte spindle stability and function might be altered by suboptimal conditions
in the embryology laboratory. Oocyte MS stability can be influenced by non-physiologic
pH and temperature. Thus, the human MS begins to depolymerize at a temperature of
33 ◦C [86] and continues to depolymerize as temperatures drop, and it has been reported
that only about 10 min of exposure to non-physiologic pH is sufficient to induce spindle
disassembly [85]. Those relevant studies corroborate that it is critical to carefully monitor
IVF laboratory conditions and avoid fluctuations in temperature and pH. Consequently,
MS dysfunction during specific developmental times of active chromatin segregation may
be associated with abnormal chromosome segregation and therefore directly responsible
for aneuploidies in the oocytes and later in embryo development. Unfortunately, it has
been reported that maternal age might negatively influence some essential spindle associ-
ation checkpoints, which explains the increased rate of MS alterations and aneuploidies
in embryos produced in patients in advanced maternal age [87]. A study published by
Capalbo and colleagues reported that in women over age 40, almost 80% of gametes display
abnormal spindles and chromosome misalignment, compared to only 20% in younger
patients aged 25 or under [88]. Generally, as mentioned earlier, live birth rates remain
suboptimal in women with advanced maternal age. The main cause of this poor outcome
is probably high rates of embryonic aneuploidy. Thus, preimplantation genetic testing
for aneuploidies (PGT-A) on embryos and later noninvasive prenatal testing (NIPT) or
invasive prenatal diagnostic analysis are strongly recommended in order to improve ART
outcomes [89,90].

6.2. Cytoplasmic Maturation

Oocyte nuclear maturity alone is not sufficient for determining oocyte and future
embryo quality. Oocyte competency is not only reliant on the nuclear and mitochondrial
genome but is also susceptible to cytoplasmic maturity [91]. Female gametes also carry
mitochondria, which enclose their own DNA (mt DNA), which is fully provided by the
maternal germline: a mature oocyte contains more than 150,000 copies of mt DNA [92,93].
Cytoplasmic evaluation should be taken into consideration to determine ideal conditions for
subsequent fertilization and embryo development. An MII oocyte should then consist of a
typical clear-looking cytoplasm, a clear, smooth, and non-fragmented PBI, an adequate zona
pellucida (ZP) thickness and a small PVS [6]. Regrettably, those evaluations are subjective
and might diverge according to the operator’s experience, and thus it is hard to have
a validated predictive value in assessing the molecular signature of oocyte cytoplasmic
maturation. These molecular mechanisms and signaling in the oocyte cytoplasm are
essential for the production and storage of carbohydrates, proteins, RNAs, lipids and fatty
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acids, successful organelle position and regulation of metabolic pathways required for
oocyte maturation, competence for fertilization, and subsequent embryonic developmental
capacity [6].

6.3. Polar Body Appearance

The PBI is located in the PVS and is typically smooth and without fragmentation.
The biological and physiological relevance of PBI morphology, fragmentation or dysmor-
phism is currently obscure and still a subject of big debate. PBI fragmentation should not
be addressed as an oocyte marker since the fragmentation may be associated with the
post-ovulatory period. However, it has been proposed that a degenerated PBI might be
correlated with asynchrony between nuclear and cytoplasmic maturation, probably due to
the post-maturity of the oocyte [94]. According to some authors, oocytes showing a clear
and intact PBI without any fragmentation have a raised capacity to generate blastocysts
and higher pregnancy rates [95,96]. However, studies have been conducted with the aim
of establishing the relationship between PBI morphology and ICSI outcome, but results
did not show a neat link between the two characteristics [97,98]. Further, a large PBI can
be considered as a feature of poor prognosis and relates to compromised embryo viability,
and an increased percentage of embryos with multinucleated blastomeres and, thus, might
support embryo aneuploidies [97–99]. Published studies seem to agree that most of the
aneuploidies in early-stage human embryos are carried from meiotic errors arising during
oogenesis [83,100]. Recently, it has been proposed that chemical compounds and environ-
mental pollutants, including endocrine disruptors, are depicting a considerable warning
to human reproductive health [101]. On that line, PGT-A has been encouraged with the
aspect of determining euploid embryos to be replaced in IVF cycles [102]. In particular,
PB biopsy, first introduced by Verlinsky and collaborators [103], represents an alternative
to day-3 or day-5 biopsy. An advantage of this application is the longer time available
to perform genetic testing without the need to vitrify the embryo; also, it avoids embryo
manipulation, which might be critical in those countries where embryo manipulation is not
allowed. However, the large disadvantage of the PB biopsy technique is that it can only
discriminate maternal aneuploidies and cannot identify paternal meiotic or post-zygotic
mitotic errors. Additional information on the application and results of PGT-A have been
published by others [103–107].

7. The Influence of Noninvasive Evaluation of Oocyte Quality

One of the most difficult challenges for the clinical embryologist is to select from
a cohort of embryos the single one to transfer, taking into consideration the restricted
information available, on the embryo’s viability, using standard morphological evaluation.
It is well known that a considerable proportion of morphologically defined good-quality
embryos still fail to implant and generate a pregnancy to term, even following PGT-A.
Surely, the goal of ART should be the delivery of a singleton healthy baby; thus, elective
single embryo transfer should be necessary and routinely applied to minimize the risk and
difficulties correlated with multiple gestations [108,109]. Therefore, the need to validate
and adopt a noninvasive process to determine typical features of oocytes and embryos
that emulate normal health or the ability to further develop into a healthy pregnancy
to term is demanding. A method, to be definitely noninvasive, should be not harmful
and not disruptive to the physiology of the oocyte, or its capacity to be fertilized and to
develop further to implant and result in a healthy baby. For this purpose, historically,
morphological microscopic assessment has been applied to evaluate an embryo’s viability.
The observation at light microscopy of an oocyte’s cytoplasm has been the subject of
many published trials that try to determine its association with fertilization and pregnancy
outcomes. Some studies have investigated the oocyte cytoplasm and have defined the
atypical aspect as “dark cytoplasm” [110], while others found a “dark granular appearance
of the cytoplasm” [111], “dispersed cytoplasmic granularity” [112] or “dark cytoplasm with
granulation” [113]. Thus, some authors carefully examined these cytoplasmic characteristics
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and attempted to establish whether they have an impact on pregnancy outcomes. It was
reported that dark cytoplasm was not a predictive factor; thus, it correlated neither with
the fertilization rate nor with the embryo quality [110–113], while other authors showed
that embryo quality was compromised when embryos developed from oocytes with dark
cytoplasm [114]. A trial performed by Wilding and collaborators showed that cytoplasmic
granulation was associated with higher fertilization rates compared to oocytes without
any granularity [115]. Therefore, the debate on dark and cytoplasmic granularity is still
active; however, it is worth mentioning that these evaluations are very subjective and might
have considerable discrepancies and variations between embryologists and laboratories.
Due to the progress in laboratory technologies, more objective assessments based on
morphokinetics and morphometrics have been introduced to monitor fertilization such
as PB2 extrusion, pronuclear formation and embryo development at both cleavage and
blastocyst stages [116,117]. The application of time-lapse systems could be considered
as a valuable approach to reduce the inter-variation between operators and provides
a better evaluation of fertilization, cyto-dynamics, cell division, morula and blastocyst
formation, which can be adopted as a noninvasive assessment. In addition, continuous
evaluation of embryo development allows to discriminate those abnormal phenotypes
that otherwise would be less frequently observed during standard culture, including
abnormal cleavage, reverse cleavage, multinucleation and blastocyst collapse events, just to
mention some [116–121]. Furthermore, the application of novel generations of microscopies,
such as polarized microscopy, hyperspectral microscopy and Raman microspectroscopy
(RM), will be valuable to assess not only the metabolic state of the embryo but also to
understand more about early embryo assessment and implantation potential [100]. Montag
and colleagues have revisited the use of polarized optics to assess human oocytes [122].
One of the principal advantages of this technology is that it is noninvasive imaging, it
can be performed in real time and on living cells. It can detect the intracellular organelles
of gametes and embryos, including spindle visualization [123] or the organization of ZP
around the oocyte [124,125]. RM is a combination of Raman spectroscopy and confocal
microscopy and can be used to identify interactions between light and live matter. The
photon scattering generates unique spectra that can be used to detect molecules and their
molecular bonds in living cells [126–129]. These novel technologies are in continuous
evolution and have distinguished themselves for having very low phototoxicity, making
them ideally suited for studies of development and cellular dynamics [128]. Studies
using RM were able to identify patterns of intracellular lipids and areas of high protein
content and describe significant differences in lipid and protein components, as well as
mitochondrial identification [129–131]. Such preliminary studies, however, need to be
further investigated, to examine the intra-structure function and organization of human
embryos, to obtain biomarker data on oocyte competencies and to advise on the selection
of embryos to transfer in ART.

8. Further Concerns and Conclusions

This manuscript has highlighted the complexity of human oocyte quality and early
embryo development. Taking into consideration the revision of the literature discussed
regarding the impact of morphological features and the surrounding environment on
oocyte quality and competence, some conclusions have been drawn. The integration
of biochemistry and other biomedical engineering technologies into the basic studies of
oocyte biology and physiology represents the future of noninvasive evaluation of oocyte
competence. However, these technologies are not easy to implement, but progress is
being made. It will be important to support and promote research in multiple subjects
correlated together in order to create a truly evidence-based science that will serve as a
decent biomarker of oocyte quality and embryo developmental competence, associating
with the developing technologies and platforms that are truly noninvasive and compatible
with daily clinical laboratory activities in the area of ART. OS and culture conditions in
the embryology laboratory are uniformly critical in this journey toward the production of
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viable oocytes and embryos capable of generating healthy pregnancies to term. Embryo
culture in physiological conditions and using the application of time-lapse assessment,
as well as some novel microscopy technologies, such as RM described above, may help
the embryologist team to be able to select the single embryo to be transferred and to
increase the likelihood of optimal pregnancy and reduce to the minimum the incidence of
multiple gestations.
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