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1. INTRODUCTION

The starting-point of our investigations is the following question: Under
which conditions is a probability measure (on the real line e.g.) uniquely
determined (up to a shift) already by the absolute value of its Fourier
transform? In other words: When is it possible to retrieve the phase (up to
a constant) from the absolute value of the Fourier transform? This
problem has its origin in crystallography and there exists a vast literature
on it (there was even a Nobel prize given for this subject), see e.g., Carnal
and Fel'dman(4,5) and the references cited there. Let u be the law of a ran-
dom variable X (on the real line) and p(u) (u E(R) its Fourier transform.
Then | p ( u ) | 2 = p(u) . p ( u ) can be interpreted as the Fourier transform of
the symmetrization u*u. (where u denotes the adjoint measure, i.e., the law
of the random variable —X). So this question can be reformulated in
purely probabilistic terms: Under which conditions is a probability
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For nilpotent quantum groups [as introduced by Franz et al.(7)], we show that
(in sharp contrast to the classical case) the symmetrization u*u of a probability
distribution u and the first moments of u together determine uniquely the
original distribution u.
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measure u uniquely determined by its symmetrization u*u and the first
moment of u? If one formulates the question like this, it makes sense not
only on vector spaces, but also on more general convolution structures.
Carnal and Fel'dman(4,5) treated this problem on Abelian groups, but (up
to now) no investigations in the noncommutative case seem to exist.

In this note, we will consider the problem on nilpotent quantum
groups and nilpotent braided groups [as introduced by Franz et al. (7)]:
Given the symmetrization u * u and the first moments of the probability
measure u on G, when is it possible to retrieve the original distribution
u from these data? The somewhat surprising answer will be that in this
framework, the afore-mentioned retrieval is always possible (provided that
the quantum or braided group is "sufficiently" noncommutative, e.g., if q is
not a root of unity). By definition distributions on quantum groups have
all moments and are uniquely determined by them. So it will suffice to
show that the moments of the symmetrization and the first moments of u
together allow to calculate all moments of u recursively. Observe that one
can not expect to be able to remove the condition of knowledge of the first
moments of u, since already on the classical real line, in the best possible
case u can be determined by its symmetrization only up to a shift. The
situation on nilpotent quantum groups and nilpotent braided groups is in
sharp contrast to the classical case of simply connected nilpotent Lie
groups, where the moments can not be retrieved, see Section 2.

Probability theory on quantum groups and braided groups, in partic-
ular increment processes, has previously been studied, e.g. Accardi et al.,(1)

Majid,(12) and Schurmann(13)].

2. CLASSICAL SIMPLY CONNECTED NILPOTENT LIE GROUPS

A simply connected nilpotent Lie group is a Lie group G with Lie
algebra G such that exp: G -> G is a diffeomorphism and that the descending
central series is finite, i.e., there is some r E N such that

G is then called step r-nilpotent. So G may be interpreted as Rd equipped
with a Lie bracket [.,.]: Rdx Rd->Rd which is bilinear, skew-symmetric,
and satisfies the Jacobi identity

where
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The most prominent examples are the so-called Heisenberg groups HWd,
given by R2d+1 and the Lie bracket

Then on the "first layer" V1, the group multiplication always reduces to
euclidian addition +. But on the real line, a straightforward calculation of
the third and the fourth moment of the symmetrization shows that the
afore-mentioned moment retrieval is not possible. On the line:
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Consider an adapted vector space decomposition of G = G [ see Guivarc'h
et al.(8)], i.e.,

such that

At this point, it would be interesting to characterize classes of probability
measures for which the phase retrieval is nevertheless possible on nilpotent
(and even more general) Lie groups.

3. QUANTUM GROUPS AND BRAIDED GROUPS

First, we briefly recall some definitions concerning quantum groups
and braided groups, see also Majid(12) and references therein.

A quantum group is a Hopf algebra, i.e., an associative unital algebra
(B, m, 1) with two homomorphisms D: B->BXB,E: B -> C, and an anti-
homomorphism S: B -> B that satisfy



These maps are called coproduct, counit, and antipode, respectively. Here
the tensor product B X B is considered as an algebra with the multiplication
defined by m X ( ( a X b ) X ( c X d ) ) = ac X bd, i.e., mX = ( m X m ) o ( i d X
t X id), where t:BXB -> BXB is the flip automorphism, t ( a X b ) = b X a .
Placing ourselves in a braided category and substituting t by the braiding c
we are naturally led to braided Hopf algebras or braided groups. These
axioms remain unchanged, but now m, 1, D, E, and S have to satisfy certain
compatibility conditions with respect to the braiding c. The comultiplication
A has to be an algebra homomorphism from B to B X B, i.e., the algebra
structure in the tensor product is defined by mc= (mXm)o( idX cXid),
or m c ( ( a X b ) X ( c X d ) ) = a c ( b X c ) d . And the antipode is no longer an
anti-homomorphism, but satisfies Som = m o c o ( S X S ) .

On Fourier transforms in the theory of quantum and braided groups
see Kempf and Majid,(9) and Koornwinder.(10)

In the spirit of noncommutative geometry and quantum probability
one treats these algebras as analogues of the coordinate ring of some non-
commutative or quantum space, and the coproduct takes the roles of a
group structure of the underlying space. Random variables are replaced
by (*-)homomorphisms j:B->A into an (involutive) associative unital
algebra A (called quantum probability space) with a normalized positive
functional p, and their distribution is the functional pj = p o j.

On quantum groups and braided groups the antipode plays the role of
the inverse, so that the symmetrization of a functional p: B -> C is defined
by
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We will not impose positivity or consider *-structures here, if a func-
tional is already characterized by its first moments and its symmetrization
without the positivity condition, then this remains true, if we restrict to
positive functionals.

Example 1. The braided line Rq. Let q E C\{0}, q not a root of
unity. As an algebra Rd is isomorphic to the ring of polynomials in one
variable R [ x ] . The braiding used here is defined by c(xn X xm) = qnmxmxn.
On the generator the coproduct, counit, and antipode are defined by

where we used x = x X 1, x'=1 X x. From this one computes D ( x n ) =
Ev=0

n [n
v]qxv(x')n-v and S(xn) = ( -1 ) n q n ( n - 1 ) / 2 x n . Recall that the q-num-

bers qn, the q-factorial qn!and the q-binomial coefficients [n
v]q are defined

as qn=Ev=0
n-1qv = (qn-l)/(q-l),qn! = IIn

v=1qv,[
n

v]q = q n ! / (q v !q n - v ! ) .



3.2. The Phase Problem on Nilpotent Quantum Groups or Nilpotent
Braided Groups

Looking at the classical case and at the braided line, we see that it is
sufficient for retrieving a certain moment p ( x n ) if S(xn) = —xn, (if we sup-
pose that all other moments are already known). In the classical case this
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A probabilistic interpretation of the q-convolution of measures on the
real line defined by (u * v)(f) = ( u X v ) ( D f ) for appropriate functions/has
been given by Feinsilver.(6) We recall his nice result:

Proposition 1. Let Y=E0
i Zj, where Zj are independent, exponen-

tially distributed, with respective means qj.
The q-convolution of X1 and X2, independent random variables,

corresponds to the random variable Y1X1 + Y2X2, where Y1, Y2 are inde-
pendent copies of Y, independent of the X's as well.

3.1. The Phase Problem on the Braided Line

We consider first the braided line, because it turns out to be typical,
but at the same time simpler since it has only one generator.

Proposition 2. Let q E C{0}, q not a root of unity. A normalized
functional p on Rq is uniquely determined by its symmetrization p*p and
its first moment p ( x ) .

Proof. We have D ( x n ) = E v = 0
n [ n

v ] q x v ( x ' ) n - v , and S ( x n ) = ( - 1 ) n x
qn ( n - 1 ) / 2xn , and thus

If q is not a root of unity this gives a recurrence relation that allows to
calculate all moments of p except the first from those of the symmetrization
p*p,



for all l E I, where B<l = span{1, al' ; l ' < l } , B<l = span{1, al'; l ' ^ l } .
Bases that satisfy these conditions will be called adapted.

Remark 1. If we require only condition (3.1), then we have the
notion of nilpotency introduced by Franz et al.(7) It was motivated by the
fact that the Hopf algebra of polynomials on a connected, simply connected
nilpotent Lie group can be characterized in this way. But in that case we
have S(x1

k1...xn
kn) = (-1)k1+...+knx1

k1...xn
kn, so condition (3.2) is also

satisfied.
On noncommutative nilpotent quantum groups and nilpotent braided

groups there exist bases that satisfy (3.1), but not (3.2). Take for example
the free algebra C < x , y > with two primitive generators, then the basis of
monomials {1, x, y, x2, y2, xy, yx, x3,...} (take any order such that a<b
if the total degree of a is less than that of b) satisfies (3.1), but not (3.2),
since S(xy) = yx and S(yx) = xy. But we have S2 = id, so we can choose
a basis that diagonalizes S for each of the subspaces with total degree n,
and the union of these bases, {1, x, y, x2, y2, xy + yx, xy — yx, x3,...},
satisfies both (3.1) and (3.2). We do not know if their exist quantum
groups or braided groups that are nilpotent, but not S-nilpotent.

Theorem 1. Let B be an S-nilpotent quantum group or S-nilpotent
braided group, with the adapted basis { a l ; l E I] and let H C I. Suppose
furthermore that the coefficient Sl,l of S ( a l ) in the expansion S ( a l ) =
Ek<lSl,kak is not equal to -1 for all l E I\H. Then a normalized func-
tional p: B -> C is uniquely determined by its symmetrization p*p and its
moments on {ak;k E H}.

is true for even moments, thus symmetrical measures can be retrieved, if
they are uniquely determined by their moments, [see Carnal and Dozzi,(3)

Prop. 2.2]. On the braided line this is true for all powers of the generator
x except the first, thus all moments except the first can be retrieved (Prop. 2).
In general, on a class of quantum groups or braided groups called strongly
nilpotent or S-nilpotent, it is sufficient, if the coefficient of xn in the expan-
sion of S(xn) is not equal to — 1.

To formulate this rigorously, we need the following definition.

Definition 1. A quantum group or braided group B is called S-nilpo-
tent or strongly nilpotent, if there exists a basis {1, al; l E I}, indexed by a
well-ordered set I, such that
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For example on R the basis could be chosen as {x"; n E N), and the
set of moments that have to be known to recover the measure is H =
{2n + 1; n EN}. On the braided line we have only H = {1}.

3.3. On the Braided Plane

The braided plane C2
q

|0 [see e.g., Majid(11)] is the braided Hopf
algebra with two generators x, y and defining relations
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and thus, since sl,l = — 1,

Proof. We can give an explicit procedure to calculate the moments
of p. Let l be the smallest index in I for which we do not yet know p(a l).
Then

The braided plane C2
q

|0 is S-nilpotent, and an adapted basis if given by
{xnym; n,m E N}, where I = { ( n , m ) ; n,m E N} is taken with the order
defined by ( n 1 , m 1 ) < ( n 2 , m2) if and only if n1 < n2 and m 1<m 2 .

To see that this basis is really adapted, one proves by induction

Proposition 3. Let q E C\{0}, q not a root of unity. A normalized
functional p on the braided plane C2

q
|0 is uniquely determined by its first

moments p ( x ) , p ( y ) , and its symmetrization p*p.



and the coproduct and antipode by Da = a + a', Dc = c + c', and S(a) = -a,
S(c) = —c, (extend the coproduct as an algebra homomorphism and the
antipode by S o m = m o c o ( S X S ) ) .

The relation to the classical Heisenberg-Weyl algebra and the oscilla-
tor algebra becomes clear, if a third generator defined by b = ac — qca is
introduced (the defining relations imply that b is central).

We shall now derive some properties of the coproduct and the
antipode of HWq, in order to show that HWq is S-nilpotent, and to deter-
mine which moments are necessary to characterize a functional on HWq by
its symmetrization.

This algebra is graded with deg(a) = (1, 0), deg(c) = (0, 1), since the
relations (3.4) are homogeneous. Let HWq

(n,m) be the subspace of elements
of degree (n, m). The braiding of two homogeneous elements is given by

and thus there exists a basis of homogenous elements that diagonalizes S.
This basis, if ordered by the degree, is obviously adapted, and HWq is thus
S-nilpotent.

Proof. This follows immediately from Theorem 1 with Eq. (3.3), if we
take H = {(0, 1), (1,0)}. S
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where q E C\{0}, q not a root of unity. We define the braiding by

3.4. On the Braided Heisenberg-Weyl Group

Our last example will be braided Heisenberg-Weyl group HWq [cf.
Franz et al.(7)]. For other quantum or braided analogues of the Heisenberg-
Weyl groups see Baskerville and Majid(2) and the references cited there.

The braided Heisenberg-Weyl group HWq is, as an algebra, generated
by two generators a, c with the cubic relations

This, together with the definition of the coproduct on the generators,
implies that Eq. (3.1) holds for any basis of homogeneous elements ordered
by their degree.

Equation (3.2) can also be satisfied, because



Proposition 4. Let q E C\{0}, q not a root of unity. Then a normalized
functional p on HWq is uniquely determined by the moments p ( a ) , p ( c ) ,
p(aca) , p (cac) , p(aacc — q2ccaa), p(acac — qcaca], and its symmetrization
p*p.

Proof. After the preceeding discussion we know that there exists
an adapted basis of eigenvectors of 5, so that, by Theorem 1, all that
remains to be done is to determine the eigenspace E_1 of the eigenvalue — 1.
By Eq. (3.6) the only possible eigenvalues of S| I I W ( n , m ) q are
± q [ n ( n - 1 ) + m ( m - 1 ) - N M ] / 2 . bUT N(N-1)+M(M-1)-NM=0 for ALL (n,m)

except (0,0), (1,0), (0, 1), (2, 1), (1 ,2) , (2,2), so that E-1 CHW q
(0,0) +

HW q(1,0) + HWq
(0,1) +HW q

( 1 , 2 ) +HW ( 2 , 2 )
q=:A. A simple cal-

culation (note E_1 = (id — S ) ( A ) , since S is involutive on A) gives
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Equation (3.6) can be shown by complete induction. It is true for
HWq

(0,0) = C1, since S2(1) = 1. Let now u E HWq
(n,m) ,then with Eq. (3.5)

and this proves the proposition.
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