
vol. 153, no. 5 the american naturalist may 1999

Notes and Comments
An Improved Procedure for Testing the Effects of Key Innovations

on Rate of Speciation
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The effect of key innovations (e.g., phytophagy in insects,
Mitter et al. 1988; viviparity in fishes, Slowinski and Guyer
1993) on speciation rates has been a major focus of ev-
olutionary biology in recent years (Sanderson and Don-
oghue 1996). Much of the apparent variability in species
number might be consistent with simple stochastic models
of phylogenesis, since all degrees of species diversity are
equally likely under a null model of random speciation
and extinction (Farris 1976; Slowinski and Guyer 1993;
but see Losos and Adler 1995). Therefore, invoking a key
innovation to explain the diversity of one single group
possessing the innovation against a sister group not pos-
sessing it is not tenable. However, if several to many sister
groups are considered, tests of positive association between
the possession of the trait and species number can be
designed (Slowinski and Guyer 1993).

The first to follow this path were Mitter et al. (1988),
who found a significant positive association between phy-
tophagy and number of insect species. To test the asso-
ciation, they used a sign test. Slowinski and Guyer (1993)
suggested an improved, less conservative method, based
on a null model of random extinction and speciation.
Under this model, the probability (P value or pi) of ob-
serving disparity as large or larger in species number be-
tween each group possessing the innovation and its sister
group is first calculated. The different P values obtained
are then combined using Fisher’s widely advocated pro-
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cedure to combine probabilities (Fisher 1970; Manly 1985;
Sokal and Rohlf 1995). Under the model of random spe-
ciation and extinction, the distribution of Slowinski and
Guyer P values follows a uniform distribution. Applying
Fisher’s procedure to these P values will therefore test the
null hypothesis that the distribution of sister-group sizes
follows a model of random speciation and extinction. The
alternative hypothesis Slowinski and Guyer wish to test is
that there are more species in groups possessing the in-
novation. Here I argue that the null hypothesis to be tested
needs to include all cases where the distribution of P values
is symmetrical about .5, of which the uniform distribution
is only a special case. I suggest three randomization tests
for this modified null hypothesis and estimate their re-
spective power. One of the tests emerges as the most pow-
erful and is applied to a body of key innovation data
obtained from the literature.

Presentation of the Tests

I first summarize the principle of Fisher’s procedure (FP):
to combine results from independent tests of the same
hypothesis, Fisher (1970) suggested use of the property
that a sum of a number of values of x2 is itself a x2 with
appropriate degrees of freedom. The P values for each of
the n tests can be transformed into a x2 with 2 df using
the relation . If the null hypothesis is true2x 5 22 ln (p )2 i

for all n tests, the n pi are independent samples from a
uniform distribution between 0 and 1, and the sum

of these n values is approximately dis-2X 5 22 O ln (p )i
tributed as a x2 with 2n df. The null hypothesis is rejected
at the a level when the probability associated with the
calculated X 2 is !100a%. This procedure implies the pi to
be drawn from a uniform distribution when the null hy-
pothesis is true.

When testing for the effect of a supposed key innova-
tion, one wants to know whether there are more species
in groups possessing the key innovation. The null hy-
pothesis can be formulated as H0g: “the presence of a key
innovation has no effect on group size.” This means that
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Figure 1: Alternative probability density functions (pdf ) of the b distributions. a, (uniform distribution). b, (arcsin(x), U-p 5 q 5 1 p 5 q 5 .5
shaped). c, (bell-shaped). d, , (L-shaped). e, , (J-shaped). f, , (U-shaped). g, , (U-p 5 q 5 5 p 5 .5 q 5 1 p 5 1 q 5 .5 p 5 .2 q 5 .6 p 5 .4 q 5 .2
shaped). h, , .p 5 2 q 5 20

the joint distribution of (X, Y ), where X represents the
number of species in groups with the key innovation and
Y represents the number of species in groups without it,
is the same as the joint distribution of (Y, X). Therefore,
it implies that the null distribution of the P values as
defined by Slowinski and Guyer is symmetrical about .5.
Note that the null hypothesis tested at the level of each
sister group is different (as pointed out by Slowinski and
Guyer [1993], tests on individual groups should not be
applied, but to obtain the P value of the group, it is nec-
essary to specify under which null hypothesis this P value
is obtained) and can be formulated as H0f : “The number
of species in the two sister groups is compatible with the
random model of speciation and extinction.” Here I show
that, when the actual distribution of P values is U-shaped,
using Fisher’s procedure to test H0g gives an unduly large
Type I error, while, when it is bell-shaped, the procedure

is highly conservative. I suggest overcoming this problem
by using a randomization test. Its algorithm allows us to
test whether the observed pi are drawn from a symmetrical
distribution with a mean of .5, be it uniform, U-shaped,
or bell-shaped. Letting G be a statistic used to rank the
vectors of pi: step 1, calculate GObs on the observed set of
pi; step 2, subtract .5 from the observed pi to give cpi ; step
3, assign a sign at random to the cpi using a Bernoulli
distribution with mean .5 (shuffling signs among the cpi

is not appropriate here since if all cpi are !0, only one
vector state exists); step 4, add .5 to the randomly signed
cpi to obtain a distribution of random P values conditional
on the observed array of P values; step 5, let Gj be the
statistic used to rank the jth vector of randomized P values,
and test whether Gj is less than or equal to GObs, the statistic
calculated on the observed data set; step 6, repeat steps
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Figure 2: Experimental Type I error of Fisher’s procedure (FP), and of the three tests proposed here—arithmetic (PA), geometric (PG), and harmonic
(PH)—when the underlying distributions of P values are symmetrical about .5 ( ). Empty squares, FP; filled squares, FP on the complementp 5 q
to one of the P values; triangles, PA; circles, PG; lozenges, PH. The horizontal line represents the nominal level fixed at 5%.

2–5 a large number (n) of times (e.g., 5,000). An unbiased
estimate of the sought probability is

1 1O 1G ≥Gj ObsP 5
n 1 1

(Dwass 1957; Hope 1968).
Three statistics arise naturally to rank the vectors of P

values: the arithmetic mean of the P values, ,O p /npnp i

where np is the number of sister groups; their geometric
mean,

npÎP p ;np i

and their harmonic mean, . The test based onnp/ O (1/p )np i

the geometric mean is a “distribution-free” equivalent to
FP since a sum of logarithms is equivalent to a logarithm
of products. Tests based on the arithmetic, geometric, and
harmonic means will be called, respectively, PA, PG, and
PH in the following.

The power of these different tests can be analyzed by
generating data from known alternative hypotheses H1.
Since we want to generate P values from distributions that
can be U-, L-, J-, or bell-shaped or flat (the uniform
distribution), the appropriate distribution to use for this
purpose is the b distribution (fig. 1), whose probability
density function is given by

1
(p21) (q21)p(x) 5 x (1 2 x) , (0 ≤ x ≤ 1),

b(p, q)

where

1

(p21) (q21)b(p, q) 5 x (1 2 x) dxE
0

(Johnson and Kotz 1970). Figure 1 shows the different
shapes that this distribution can take, depending on the
parameters p and q. When , the b distributionp 5 q 5 1
simplifies to the uniform distribution (fig. 1a). When

, the distribution is symmetrical about .5, with a Up 5 q
shape when (fig. 1b) and a bell shape whenp 5 q ! 1

(fig. 1c). Note that data generated from thesep 5 q 1 1
symmetrical b distributions should be nonsignificant, since
the mean of the distribution is .5. Nonsymmetrical b dis-
tributions are generated by setting . If both p andp ( q
q are !1, the distribution is bimodal (fig. 1f and g), while
if at least one is 11, the distribution is unimodal (fig. 1d,
e, and h). When and , the distribution is L-p ! 1 q ≥ 1
shaped (fig. 1d), while it is J-shaped when the reverse is
true (fig. 1e). In all cases, the mean of the distribution is

.p/(p 1 q)
The statistical power of the different tests was assessed



Table 1: Power of Fisher’s procedure (FP) and the three tests presented (PA, PG, and PH) as a function of the two parameters of the b distribution, p and q, estimated over 1,000

replicates

Bimodal b distributions Unimodal b distributions

p 5 .8 p 5 .7 p 5 .6 p 5 .5 p 5 .7 p 5 .6 p 5 .5 p 5 .6 p 5 .5 p 5 .5 p 5 .3 p 5 1 p 5 2 p 5 20 p 5 2 p 5 4 p 5 40

q 5 .9 q 5 .9 q 5 .9 q 5 .9 q 5 .8 q 5 .8 q 5 .8 q 5 .7 q 5 .7 q 5 .6 q 5 .4 q 5 4 q 5 8 q 5 80 q 5 3 q 5 6 q 5 60

:n 5 30

FP:

H1 .258 .534 .778 .961 .385 .681 .913 .552 .857 .715 .977 1.000 1.000 1.000 .028 .000 .000

H1 .049 .014 .006 .004 .072 .033 .009 .127 .045 .215 .496 .000 .000 .000 .000 .000 .000

PG:

H1 .142 .319 .548 .825 .162 .361 .659 .173 .428 .200 .312 1.000 1.000 1.000 .844 .971 1.000

H1 .014 .001 .000 .000 .015 .001 .001 .009 .001 .009 .002 .000 .000 .000 .000 .000 .000

PA:

H1 .140 .294 .511 .773 .153 .325 .608 .149 .392 .175 .264 1.000 1.000 1.000 .832 .970 1.000

PH:

H1 .142 .282 .457 .720 .142 .311 .569 .164 .372 .190 .250 1.000 1.000 1.000 .819 .968 1.000

:n 5 100

FP:

H1 ) .904 ) ) .728 ) ) ) ) .987 1.000

H1 ) .005 ) ) .074 ) ) ) ) .344 .765

PG:

H1 ) .667 ) ) .319 ) ) ) ) .414 .697

H1 ) .000 ) ) .004 ) ) ) ) .002 .000

Mean .471 .438 .4 .357 .467 .429 .385 .462 .417 .455 .429 .2 .2 .2 .4 .4 .4

Note: PA, test based on arithmetic means; PG, test based on geometric means; PH, test based on harmonic means.
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Table 2: Tests of positive association between number of species and key innovation

Clade Key innovation n FP PG

Estimated parameters of
b distributions and SEs

Referencep SE q SE

Insects Phytophagy 13 .000 .003 .53 .05 3.04 .42 Mitter et al. 1988
Arthropods Ovipositor, amnion,

and complex
chorion

14 .000 .004 .58 .05 8.65 1.10 Zeh et al. 1989

Insects Carnivorous
parasitism

15 .790 .948 .52 .07 .33 .03 Wiegman et al. 1993

Fish Viviparity 10 .268 .310 .60 .11 .94 .22 Slowinski and Guyer
1993

Fish Viviparity 10 .045 .177 .41 .07 .75 .17 Slowinski and Guyer
1993

Birds Dichromatism 31 .064 .092 .78 .03 1.18 .06 Barraclough et al. 1995
Angiosperms Floral nectar spurs 6 .000 .017 .90 .26 24.65 1.70 Hodges and Arnold

1995
Angiosperms Branch length 39 .001 .084 .44 .01 .61 .02 Barraclough et al. 1996
Angiosperms Branch length 56 .000 .020 .46 .01 .68 .02 Savolainen and Goudet

1998
Monocotyledons Branch length 27 .005 .510 .35 .02 .40 .03 Savolainen and Goudet

1998
Angiosperms Branch length 39 .007 .301 .59 .03 .85 .06 Savolainen and Goudet

1998

by generating 1000 replicates of a number of P values
drawn from b distributions, and it is reported in the fol-
lowing as the proportion of replicates rejecting the null
hypotheses at the nominal level.a 5 .05

Results and Discussion

To check whether the different tests suggested are suitable
for testing the null hypothesis H0g that the distribution of
pi is symmetrical about .5 against the alternative hypothesis
H11 that it is skewed to the right (implying a mean P value
!.5), it is first necessary to show that when the null hy-
pothesis is true, no more than 100a% of the replicates
give significant results at the 100a% level. The results are
depicted in figure 2, in which the X-axis represents in-
creasing values of .p 5 q

While Type I errors for PA, PG, and PH are close to
the nominal 5% in all cases, the Type I errors for FP change
from 5% when the distribution of P values is uniform to
100% when and to !5% when is 11.p 5 q 5 .1 p 5 q
Furthermore, when the tests are carried out against the
alternative hypothesis H12 (that there is an excess of P
values 1.5), Type I errors for PA, PG, and PH are again
close to the nominal 5% as expected (data not shown),
while for FP they are too high when the distribution of P
values is U-shaped and too low when it is bell-shaped.
Using FP, therefore, we would conclude from the same
data set that when the distribution is U-shaped, the mean

P value is both significantly less than and more than .5
(unduly large Type I error), while we would never conclude
to a significant result if the distribution is bell-shaped (too
conservative, since the experimental Type I error should
be close to the nominal level a).

Table 1 shows the results of power analysis when the
underlying b distribution is asymmetrical and either bi-
modal or unimodal. Again FP is too powerful when the
distribution of P values is bimodal (e.g., when andp 5 .3

, 977 replicates out of 1,000 gave a significant resultq 5 .4
when H0g was tested against H11, and 496 replicates gave
a significant result when tested against H12), while it fails
to reject the null hypothesis when the distribution is bell-
shaped with the mean equal to .4. However, the random-
ization tests appropriately reject the null hypothesis
(among them, PG is nearly always the most powerful; table
1). Power increases as the mean of the distribution of the
P values gets farther from .5 and as the modes get nar-
rower. It also increases as the number of P values used
gets larger (bottom half of table 1), as expected.

Eleven published data sets on key innovations were an-
alyzed using both FP and PG. Additionally, estimates of
the b distribution parameters p and q best fitting the ob-
served P values were obtained by the procedure NLS (non-
linear least squares) of the statistical computer package S-
Plus (Statistical Sciences 1995). The results are presented
in table 2. Out of the 11 data sets, seven yield estimates
of the two b-distribution parameters !1 (thus, a U-shaped
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distribution of P values), while the remaining four are L-
shaped. In four of these seven U-shaped data sets, FP gives
an overall significant positive association between number
of species and key innovation, while PG does not. In many
of these data sets, therefore, increased species richness can-
not be shown to result from a key innovation. In the four
remaining L-shaped data sets, both FP and PG give sig-
nificant or marginally significant results, as expected.

Why are there so many U-shaped distributions? There
is likely no simple answer to this question. For the effect
of gene sequence evolution on rates of speciation in flow-
ering plants, Savolainen and Goudet (1998) suggested
three possible explanations. One has to do with the in-
tensity of the species sampling, the second with the tax-
onomy employed, and the third with the accuracy of the
phylogeny.

The tests presented here are by no means to be con-
sidered as the state of the art in testing symmetry. The
statistical literature on this topic is a highly active and
debated area (e.g., Antille et al. 1982; Dykstra et al. 1995;
Bhattacharya 1997). It remains that PG is able to maintain
the nominal level over a large class of symmetric distri-
butions and seems quite powerful against asymmetric
alternatives.

I have emphasized in this note why FP is inadequate to
test for the effect of key innovation on species richness
and showed that testing symmetry is the appropriate way
to verify or refute this hypothesis. Many other applications
spring to mind. For example, population geneticists often
score many loci to test whether there is an excess or a
deficiency of heterozygotes. Exact tests for random asso-
ciation of alleles at each locus exist (e.g., Rousset and
Raymond 1995). When combining the results of these tests
across loci, two questions arise. The first one is concerned
with the probability that all the loci are compatible with
the null model of random mating. In this situation, ap-
plying FP is appropriate. The second pertinent question
is whether the combined data give any evidence for a
significant heterozygote deficiency. In this situation, FP
would be inappropriate, and testing the symmetry of the
P values distribution about .5 is adequate. It is therefore
crucial, when combining probabilities, that investigators
state their null hypothesis extremely carefully.
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