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Objective: Early prognostication in comatose patients after cardiac arrest (CA) is difficult but essential to
inform relatives and optimize treatment. Here we investigate the predictive value of heart-rate variability
captured by multiscale entropy (MSE) for long-term outcomes in comatose patients during the first 24
hours after CA.
Methods: In this retrospective analysis of prospective multi-centric cohort, we analyzed MSE of the heart
rate in 79 comatose patients after CA while undergoing targeted temperature management and sedation
during the first day of coma. From the MSE, two complexity indices were derived by summing values over
short and long time scales (Cls and CI;). We splitted the data in training and test datasets for analysing the
predictive value for patient outcomes (defined as best cerebral performance category within 3 months) of
Cl; and CI,.
Results: Across the whole dataset, CI; provided the best sensitivity, specificity, and accuracy (88%, 75%,
and 82%, respectively). Positive and negative predictive power were 81% and 84%.

Conclusions: Characterizing the complexity of the ECG in patients after CA provides an accurate predic-
tion of both favorable and unfavorable outcomes.
Significance: The analysis of heartrate variability by means of MSE provides accurate outcome prediction
on the first day of coma.

© 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cardiac arrest (CA) represents a major global health problem
(Grdsner and Bossaert, 2013). The *“chain-of-survival,” includ-
ing early recognition and bystander cardiopulmonary resuscita-
tion, early defibrillation, advanced life support, and standardized
post-resuscitation care, hasincreased the number of survivors
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after cardiac arrest, the majority of whom remain comatose due
to hypoxic-ischemic brain injury (Perkins et al., 2015). The use of
targeted temperature management (TTM), with a target tempera-
ture between 33 °C and 36 °C during 12-24 hours for comatose
patients after CA, is recommended to improve chances of survival
and neurological outcomes, and to reduce global ischemia and
reperfusion injury processes (Bernard et al., 2002).

Early prognostication of patients after CA is essential to guide
clinical care to, for instance, avoid inappropriate withdrawal of
life-sustaining treatment in patients with a chance to recover. In cur-
rent clinical practice, prognostication is based on repeated clinical
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and para-clinical examination (comprising electroencephalography,
evoked potentials, and serum markers) over the first days of coma
and especially after the end of TTM, which can affect prognostication
accuracy (Cronberg et al., 2020). Even with all these tools and brain
imaging combined, prognosis remains uncertain for the majority of
these patients (Bongiovanni et al.,, 2020; Moseby-Knappe et al.,
2020). Heart rate variability (HRV) has emerged as potential new
prognostic marker for predicting patients’ outcome after CA
(Carney et al., 2005; Chen et al., 2009; Dougherty and Burr, 1992;
Lombardi and Mortara, 1998; Tiainen et al., 2009).

HRV is a non-invasive method to assess the activity of the auto-
nomic nervous system (ANS) (Berntson et al., 1997; Riganello,
2016) and central autonomic network (CAN) based on analysis in
time, frequency, or non-linear domain of the Electrocardiography
(ECG) tachogram (ie, the series of time-intervals between consecu-
tive heart-beats). The CAN is an integrative model described by
Benarroch (Benarroch, 2007) where the neural and heart functions
are involved and functionally linked in affective, cognitive, and
autonomic regulation. HRV reflects the activity of physiological
factors modulating the heart rhythm (Shaffer and Ginsberg,
2017) and its adaptation to changing conditions (Carney and
Freedland, 2009; Garan, 2009). As in healthy conditions, the heart
rate time series have a complex spatial and temporal structure, the
analysis based on metrics derived from information theory suits
the non-linearity of the tachogram at multiple time scales well
(Costa et al., 2005, (Costa et al., 2006)).

Previous studies on HRV in patients with cardiovascular dis-
eases and patients after CA have suggested that high predictability
of the tachogram sequence is typically linked to poor outcome
prognosis (Costa et al., 2006, 2005; Ho et al., 2011; Silva et al,,
2016). Most studies so far have been conducted during a later
phase after CA (after the end of TTM). A recent study was per-
formed during TTM (Endoh et al., 2019), however it was monocen-
tric, performed on a subset of patients with initial GSC motor score
of 1, and used a very short outcome assessment (2 weeks after CA).
Moreover, the study required ECG duration of 8 hours and consid-
ered 20 different HRV-related measures.

Here we investigate on the first day of coma the prognostic value
of multiscale entropy (MSE), a complexity index of HRV, for predict-
ing favorable and unfavorable outcomes (FO/UO) in patients after
CA during TTM. Following previous reports linking the complexity
index to the severity of clinical condition in comatose patients
(Endoh et al., 2019), we hypothesize lower values of CI in patients
with UO. The availability of accurate early prediction of favorable
outcome alleviate the stress of lengthy waiting periods for families
and -in combination with other prognostic markers- provides jus-
tification for continuation of treatment. Compared to previous stud-
ies conducted during TTM (Endoh et al., 2019), our approach is
based on a considerably shorter ECG signal recording time (15 min-
utes, instead of 8 hours) and considers a more reliable clinical end-
point, i.e. the best Cerebral Performance Categories (CPC) within
3 months after CA which characterizes a range of neurological
and cognitive disabilities. In addition, we compare the predictive
value of MSE with other available predictors results including the
values of time to return of spontaneous circulation (ROSC), the
results of the reactivity tests and those based on bilateral median
nerve somatosensory evoked potentials (SSEP) evaluation.

2. Methods
2.1. Patients and outcome definition
Seventy-nine consecutive patients (21 female, age 68 + 9; 58

male, age 60 + 15) from a prospectively acquired multicentric reg-
ister who were admitted to the intensive care units of the Lausanne
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University Hospital (36), Bern University Hospital (39), Sion Regio-
nal Hospital (3), and Fribourg Regional Hospital (1) following Car-
diac Arrest (CA) between January and June 2016 were included (see
Supplemental Material for a complete patient descriptions). In the
first 24 hours after CA, the patients were sedated by continuous
infusion and bolus injections of sedative agents; all except 4 under-
went targeted temperature treatment at 33 °C (n = 15) or 36 °C
(n = 60).

The neurological conditions were assessed by pupillary, oculo-
cephalic and corneal reflexes, motor reactivity, and background
reactivity based on bedside electroencephalographic (EEG) record-
ings (Tsetsou et al., 2015). Withdrawal of life sustaining therapy
was performed in accordance with the European Society of Inten-
sive Medicine guidelines (Nolan et al., 2015) after multimodal
examinations including bilateral median nerve somatosensory
evoked potentials (SSEP) evaluation in some patients.

The clinical outcome was defined based on the best CPC (Booth
et al.,, 2004) assessed during hospitalization and at 3 months with a
semistructured phone call. A favorable outcome corresponded with
CPC scores of 1 or 2, or if the neurological assessment during hos-
pitalization was considered equivalent to such a score. An unfavor-
able outcome corresponded to an assessment within 3 months that
was, at best, equivalent to a CPC of 3, 4, or 5.

2.2. ECG acquisition and entropy computation

Fifteen minutes of electrocardiographic activity were recorded
during TTM by means of electrodes applied on the chest at a sam-
ple rate of 1024 Hz. The tachogram (the series of consecutive inter-
vals between heartbeats) was extracted from the
electrocardiogram through a custom MATLAB script (https://
ch.mathworks.com/matlabcentral/fileexchange/72-peakdetect-
m/content/peakdetect.m) and visually inspected for possible
missed heartbeats. Interpolation was used to correct eventual ecto-
pic beats (Choi and Shin, 2018). The MSE (Costa et al., 2005) anal-
ysis was performed to quantify the complexity of the non-linearity
and non-stationary properties of the signal over different time
scales 1. The method involves the construction of coarse-grained
interbeat-interval time series and the quantification of the degree
of irregularity of each of these (Fig. 1). Interbeat intervals (‘RR’)
refer here to the number of data points separating two ‘R’ peaks
of the ‘QRS’ complex in the ECG. Different time series were then
constructed by averaging the interbeat-interval /tachogram’s data
points within non-overlapping windows of increasing length t
(1-10). Finally, the Sample Entropy (SampEn)(Richman et al,
2004) was applied for each coarse-grained construct. The purpose
of SampEn is to identify patterns in a time series and quantify their
degree of predictability or regularity. The SampEn measure shows
consistency over broad ranges of data length (N). The dimensional
phase space m and the tolerance for accepting matches of two pat-
terns r were set to m = 2 and r = 0.2. For the analysis we used the
Kubios HRV Advanced Analysis software version 3.1 (Tarvainen
et al,, 2014).

The complexity index of the MSE is calculated as the area under
the SampEn time scale curve and provides insights into the inte-
grated complexity of a system over a range of time scales of inter-
est. The summations of quantitative SampEn values over time
scales 1 to 5 and over time scales 6 to 10 represent the complexity
indices calculated in short (Cls) and long time scales (CI,), respec-
tively. They are related to the parasympathetic and sympathetic
nervous systems, respectively (Costa et al., 2005; Silva et al., 2016).

2.3. Statistical analysis

Complexity indices of patients with both FO and UO were com-
pared based on the Mann-Whitney exact test. Effect size was calcu-
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Fig. 1. Multiscale Entropy Schematic. a) From the ECG, the peak R of the ECG complex is indentified. The tachogram represents the series of RR intervals expressed in ms (x;,
X2,X3. ..). b) Coarse-graining procedure: From the original time series (a), new times series are constructed by averaging the data points. ¢) Sample Entropy calculation: For
each time-series, the entropy is based on the ratio ¢™*!/ ¢ ™. In a sequence of length N, considering a value of tolerance r, ¢ ™ is the probability that two sequences are similar

m+1

for m points, and ¢

is the probability that two sequences are similar for m + 1 points. Maximum regularity corresponds to $™'/ ¢ ™ = 1 and a Sample Entropy of 0. For

values of this ratio less than 1, the entropy increases. Complexity Index: summations of the quantitative values of the Sample Entropy of N coarse-grained scales. ECG:
Electrocardiography; RR: number of data points separating two ‘R’ peaks of the ‘QRS’ complex in the ECG; Cl;: Complexity index in short time scales; Cl;: Complexity index in

long time scales. ¢ ™ : probability that two sequences will match for m samples.

lated as the absolute value of Z/,/(N) where Z is the Z-statistic of
the statistical test, and N is the total number of subjects. The effect
size results were considered as follows: r < 0.1, not significant; 0.
1 <r<0.3,low; 0.3 <r<0.5 medium; r > 0.5, high. The prediction
accuracy for patient outcomes was analysed based on the Receiver
Operating Characteristic (ROC) curve (Mandrekar, 2010). For deter-
mining a threshold of MSE values we split the data in training and
test datasets with random assignment. The complexity index
threshold for predicting patient outcome was based on the highest
accuracy of the training dataset and then used for evaluating the
prediction results in the test dataset.

In addition, we computed the prediction accuracy of available
clinical scores as binary variables based on the presence or absence
of the SSEP and the presence or absence of evidence of a reactive
EEG. Based on the values of time to return of spontaneous circula-
tion (ROSC), we derived a ROC curve and evaluated the predictive
performance of patient outcome similarly to the analysis per-
formed on the complexity indices.
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3. Results

Forty-three of the 79 patients had a favorable outcome (54.4%).
The difference between patients with FO and UO was significantl
for both CIs (Mann-Whitney exact test: z = -3.514, p < 0.0001,
r = 0.40) and Cl; (Mann-Whitney exact test: z = -5.325,
p < 0.0001, r = 0.60).

Based on the whole dataset, both indices showed prognostic
value with an area under the ROC curve of 0.85, 95% CI [0.75-
0.94] for CI; and 0.73, 95% CI1[0.62-0.84] for Cl. (Fig. 2). The highest
accuracy in the training dataset (N = 40) was obtained with a
threshold of CI, = 4.93. Based on this value, we obtained an accu-
racy of 78%, corresponding to 18 correctly predicted FOs (out of
20 total) and 13 correctly predicted UOs (out of 20 total) (Fig. 3, left
column). Using the same threshold in a separate test group
(N = 39), prediction results generalized well with an accuracy of
87%, corresponding to 20 correctly predicted FOs (out of 23 total)
and 14 correctly predicted UOs (out of 16) (Fig. 3, right column).
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Fig. 2. Receiver Operating Characteristic (ROC) curve. The ROC curve represents the
plot of sensitivity (abscissa) vs 1-specificity (ordinate). The diagonal (grey line)
represent the random classification and divide the space into good classification
results (above the diagonal) and bad results (below the diagonal). In the figure the
ROC curve for CI; (continuous line) and for Cl (dashed line). Cl;: Complexity index
in short time scales; Cl;: Complexity index in long time scales.
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Fig. 3. CI; and prediction results for favorable and unfavorable outcomes in the
training and test datasets (left and right columns respectively). The dashed line is
the CI; value that provides the highest accuracy in the training dataset. FO:
Favorable outcome; UO: Unfavorable outcome; Cls: Complexity index in short time
scales; Cl;: Complexity index in long time scales.

Table 1 summarizes the prediction results based on the training
and test dataset where we refer to TP and TN the correctly pre-
dicted patients with favourable and unfavourable outcome respec-
tively. In this context we refer to sensitivity as the ratio of correctly
predicted patients with favourable outcome, and specificity as the
ration of correctly predicted patients with unfavourable outcome
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(although please note that in many studies th UO is considered
‘positive’).

Additionally, we considered the prediction based on each of the
available clinical scores (Table 1). The best prediction results were
based on reactivity, available for n = 57 patients, with an accuracy
of 88%; 29 of 33 patient FOs and 21 of 24 patient UOs were cor-
rectly predicted. The SSEP was only available for n = 31 patients.
When binaring the results of the SSEP as present or absent we
obtained correct prognostication in 77% of patients, indicating that
both the presence and absence of SSEP are indicative of chances of
having favourable and unfavourable outcome respectively. The
prediction performance based on the time to ROSC was computed
based on the same ROC analysis of the complexity indices by con-
sidering first the best ROSC threshold value in the training dataset.
The highest accuracy was obtained for a ROSC threshold value of
20 minutes. Overall across training and test datasets, we obtained
correct outcome prediction in 34 patients with favourable outcome
and 23 patients with unfavourable outcome, i.e. an accuracy of 72%
(Table 1).

4. Discussion

We investigated the HRV in comatose patients during the first
24 hours after cardiac arrest by quantifying the unpredictability
of the heart rate over time. From 15-minute ECG recordings, we
calculated the CI in two different aggregations of coarse-grained
time scales: the Cl; (ie, the sum of SampEn for time scales 1 to 5)
and CI; (ie, the sum of SampEn for time scales 6 to 10) related,
respectively, to the parasympathetic and sympathetic nervous sys-
tems (Costa et al., 2005; Silva et al., 2016). Both CIs and CI; were
significantly different between FO patients and UO patients and
allowed for discrimination between them. By chosing an appropri-
ate threshold value of CI;, we reached an 82% accuracy with a sen-
sitivity and specificity of 88% and 75%, respectively (Table 1).

The HRV-based prediction is comparable to those based on EEG
background reactivity (Table 1), though the comparison is partially
confounded by the different number of patients for which the
scores are available. The HRV-based prediction presents the advan-
tage of being quantitative (and thus more objective) and does not
require special equipment. Other methods for prediction of recov-
ery (clinical examination, pupillometry, EEG, and imaging) produce
similar accuracy, depending on timing of examination (Sandroni
et al., 2020; Wagner et al., 2020), but frequently take place later
in the course.

Although 24 hours after coma onset is too early for taking the
decision of withdrawal of life support, especially based on one
diagnostic test only, early HRV is reasonably accurate to predict a
good recovery, which is in contrast to most other studies, which
focus on unfavorable outcome. Similar to EEG reactivity, in
the clinical situation where the family is uncertain of the patient’s
wish to continue invasive life support for an unpredictable progno-
sis, this piece of information can help clinicians and family to agree
on a shared decision regarding therapeutic goals. Further, studies
on neurological prognostication are often biased since comatose
survivors of cardiac arrest dying form cardiac causes early in their
course are usually classified in the unfavorable outcome group,
even if they would have had a late awakening. Early HRV might
help improving accuracy of multimodal prognostication by adding
information of a potential good neurological recovery.

Our results are consistent with previous evidence of lower val-
ues of HRV in comatose patients with UO compared to those with
the FO when the HRV was evaluated on 30-minute ECG recordings
after return to normal temperature upon suspension of the TTM
(Hopfe et al., 2009). In another recent study (Endoh et al., 2019),
non-linear analysis of the HRV was performed on continuous 8-
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Table 1
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Summary of outcome predictions. Prediction results for FO based on the CI;, the SSEP, the EEG reactivity, and the ROSC. The EEG reactivity and CI; provide the highest prediction
scores. TP/FP/FN/TN, true positive/false positive/false negative/true negative; PPV, positive predictive value; NPV, negative predictive value. Here ‘positive’ and ‘negative’ refers to
favourable/unfavourable outcome. Sensitivity and specificity are defined as TP/(TP + FN) and TN/(TN + FP) respecitively.

Predictor TP/FP/FN/TN PPV NPV Sensitivity Specificity Accuracy
Complexity Index 38/9/5/27 0.81 0.84 0.88 0.75 0.82
SSEP 19/7/0/5 0.73 1 1 0.42 0.77
EEG reactivity 29/4/3/21 0.88 0.88 0.91 0.84 0.88
ROSC 34/13/9/23 0.72 0.72 0.79 0.64 0.72

hour ECG recordings in comatose patients after cardiac arrest trea-
ted with TTM. Several non-linear characteristics, including the
MSE, showed significant differences between patients with favor-
able and unfavorable outcomes as defined at fourteen days after
injury. Outcome prediction was based on a combination of detrend
fluctuation analysis (ie, a quantification of the scaling properties of
the tachogram) and a very low frequency metric (related to the
power spectrum of the RR sequence up to 0.04 Hz) of the HRV
and provided sensitivity and specificity of 61% and 100%, respec-
tively, for the prediction of unfavorable poor outcome.

Our study reports for the first time, accurate prediction of both
favorable and unfavorable outcomes using a single measurement
and based on short-lasting ECG recording during the first day after
cardiac arrest. Our results demonstrate higher predictive perfor-
mance than those based on previously reported metrics (Endoh
et al., 2019; (Hopfe et al., 2009) with the advantage of a signifi-
cantly shorter ECG recording time (15 minutes vs 8 hours).

4.1. The neural underpinning of heart rate variability

The fluctuations observed in the HRV result from a complex
bidirectional interaction between the brain-nervous system and
the heart (Riganello, 2016). Loss in variability indicates a less flex-
ible and rapid modulation in response to environmental changes
due to neurological and non-neurological disease, generally involv-
ing the ANS. The brain-heart two-way interaction is conceptual-
ized with the central autonomic network (CAN), an integrative
model describing the neural and heart functions involved and
functionally linked in affective, cognitive, and autonomic regula-
tion (Riganello, 2016; Riganello et al.,, 2019; Thayer and Lane,
2009). In the CAN model, the ANS mediates the homeostatic regu-
lation through the sympathetic and parasympathetic branches. The
CAN includes the brainstem (periaqueductal grey matter, nucleus
ambiguous, and ventromedial medulla), the limbic system (amyg-
dala and hypothalamus), the prefrontal cortex (anterior cingulate,
insula, and orbitofrontal and ventromedial cortices), the cerebel-
lum, and other regions (dorsolateral prefrontal cortex, mediodorsal
thalamus, hippocampus, caudate, septal nucleus, and middle tem-
poral gyrus) that seem to be unique to the human brain
(Benarroch, 2007; Lane et al., 2009). One can postulate that the
presence of HRV is associated with the functional integrity of the
components of the CAN, and thus a marker of less extensive struc-
tural hypoxic damages.

4.2. HRV in other pathologies

Decreasing variability of the heart rate is a marker and predictor
of morbidity and mortality in several pathologies (Bianchi AM
et all., 2010); (Norris et al., 2008), (Norris et al., 2006) and in crit-
ically injured patients (King et al., 2009; Ryan et al., 2011). In
sedated patients with severe Disorders of Consciousness (ie,
patients with Unresponsive Wakefulness Syndrome or in Mini-
mally Conscious State) CI; = was informative of the severity of
patients’ clinical condition. (Riganello et al., 2018). Following a
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similar trend to what we found in comatose patients, Unresponsive
Wakefulness Syndrome patients had mostly values of Cl; below 4.9.

The HRV represents a powerful tool for exploring neurocardiac
dysfunction in patients with cardiac and autonomic disorders,
showing how non-linear dynamics, abnormal variability of the
heart rate, and spectral changes in the low-frequency band can
identify patients at high risk of sudden cardiac death (Huikuri
and Stein, 2013). Low values of HRV have been shown to be predic-
tive of increased mortality in post-myocardial infarction patients
and heart failure patients and can predict long-term postoperative
mortality (Laitio et al., 2007; Sessa et al., 2018). Altered cardiac
autonomic activity, especially lower parasympathetic activity,
was associated with the risk of developing Coronary Heart Disease
(Liao et al., 1997) and the area under the MSE curve for time scales
6 to 20 can help to stratify the risk for the prognoses of patients
with Cardiac Heart Failure (Ho et al.,, 2011).

5. Limitations

This study was performed on prospectively recorded datasets of
patients but retrospectively analysed. The dataset was selected to
eliminate the risk of analysing patients who died from “self-
fulfilling prophecy” based on perceived unfavorable outcome after
premature withdrawal of life support by the treatment team or by
request of the families upon advanced care directives. Only
patients who had withdrawal according to current guidelines were
included. This induces a bias toward FO that can be seen in the rel-
atively high percentage of patients with FO.

Multimodal assessment of prognostic markers is recommended
for this patient population, though we still do not know the best
weights of the different assessments or the best timing. The role
of these promising HRV indices in this early clinical setting is
unknown, and they might be improved by adding a late assess-
ment, evaluating trends, and combining them with existing meth-
ods. Another problem with applicability is that cardiac arrest
patients sometimes depend on an artificial pacemaker, and based
on the mode, this may render HRV numbers useless.

6. Conclusions

Analysis of the HRV in terms of MSE is a non-invasive and inex-
pensive method based on ECG recording, an easy-to-acquire signal
with an excellent signal-to-noise ratio compared to other
approaches used in clinical neurophysiology (Comanducci et al.,
2020). The potential for accurate prediction of long-term patient
outcomes on the first day of coma encourages validation in a larger
cohort to enable future clinical use. Our results show it is possible
to derive accurate predictions of patient outcomes in sedated
patients during TTM. This is consistent with previous reports in
the same population type when analyzing the EEG during rest
(Kustermann et al., 2020, (Kustermann et al., 2019)) or sensory
stimuli presentation (Tzovara et al., 2016, (Alnes et al., 2021)). It
adds to the increasing evidence that the first 24 hours of coma
are the most informative for outcome prediction (Hofmeijer
et al., 2015).
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From the clinical point of view, UO can be predicted with a high
degree of certainty in about 1/3 of comatose survivors of cardiac
arrest, which leaves a large group of patients for whom outcomes
cannot be predicted. Thus, prediction of FO based on HRV in the
early course of treatment after CA would be a great advantage.

Similar to previous EEG studies, the HRV may be influenced by
patient sedation level. Sedation likely reduces HRV complexity as
suggested by previous reports in patient under anaesthesia
(Naraghi et al., 2015). Understanding the extent to which sedation
reduces the HRV and its complexity and how this depends on the
severity of the clinical condition would require the inclusion of
patients during the first day of coma without sedation and TTM.
This is unfeasible due to current clinical guidelines. Nevertheless,
the fact that sedation is administered during the first day of coma,
when clinical prognostication is very uncertain, shows it is unlikely
that HRV-based prediction is due to different sedative regimes or
therapeutic decisions in patients, regardless of favorable or unfa-
vorable outcome.
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