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The thalamic reticular nucleus in schizophrenia and bipolar
disorder: role of parvalbumin-expressing neuron networks and
oxidative stress
P Steullet1,6, J-H Cabungcal1,6, SA Bukhari2,6, MI Ardelt2, H Pantazopoulos2,3, F Hamati2, TE Salt4, M Cuenod1, Kim Q Do1,7 and
S Berretta2,3,5,7

Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues
for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural
connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been
tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing
parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets
(WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of
oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in
the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV
neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at
postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These
results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that
oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN
abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.
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INTRODUCTION
Growing evidence points to a disruption of neural networks
involved in emotion, cognitive and sensory processing as a key
component of the pathophysiology of schizophrenia (SZ). In
particular, imaging studies point to altered functional thalamo-
cortical connectivity in SZ and bipolar disorder (BD) patients and
high-risk subjects who later convert to psychosis.1–14 In this
context, the thalamic reticular nucleus (TRN) is of particular
interest, as it shapes the information flow between the thalamus
and the cortex.15 The TRN receives collaterals from cortico-
thalamic and thalamo-cortical neurons, and in turn exerts power-
ful inhibition on these latter neurons, thus gating thalamo-cortical
information flow. This thalamic circuitry, and the intrinsic activity
of TRN neurons, is thought to underlie several key functions of
high relevance to the pathogenesis of psychiatric disorders,
including sensory gating, regulation of arousal state, focused
attention, emotional salience, cognitive flexibility, and the
generation of cortical sleep spindles and modulation of cortical γ
oscillations.16–26 Therefore, abnormalities affecting the TRN may
affect sleep, emotion processing and cognitive performance
relying on sensory processing and attention, and have been
postulated to contribute to the genesis of
hallucinations.4,8,13,25,27–29 Importantly, sleep spindles have been

shown to be robustly disrupted in SZ, further supporting the
hypothesis that the TRN is affected in this disorder; sleep spindle
disruption was reported in a group of people with mood disorder,
including a small number affected by BD.22,23,30–33 However, direct
evidence for TRN abnormalities in SZ and BD is lacking. To our
knowledge, only two postmortem studies have been published
thus far, showing a modest decrease of nicotinergic receptor
binding and altered expression of excitatory amino acid transpor-
ters in TRN of SZ patients.34,35

A key question toward testing the hypothesis that the TRN may
be involved in the pathophysiology of SZ and BD is whether its
main neuronal populations are affected. The TRN is composed
entirely by GABAergic neurons, a large proportion of which
expresses the calcium-binding protein, parvalbumin (PV). Deficits
of GABAergic neurons, and particularly molecular abnormalities of
neurons immunoreactive for PV (PV neurons) in prefrontal cortex
and limbic regions, represent a key pathological feature of SZ and
BD.36–43 In addition, decreases of perineuronal nets (PNNs),
including those labeled with the lectin Wisteria Floribunda
agglutinin (WFA/PNNs) and predominantly ensheating PV inter-
neurons, have been reported in the amygdala, entorhinal cortex
and prefrontal cortex of SZ and BD patients.44–47 PNNs are
organized extracellular matrix structures known to regulate
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neuronal maturation, synaptic connectivity and plasticity, and to
provide protection against oxidative stress.48–52 PNN disruption in
these disorders is of note, as it may contribute to altered synaptic
connectivity and increased neuronal vulnerability to oxidative
stress.50,53,54 Data from several animal models relevant to SZ
indicate that oxidative stress is a convergent mechanism inducing
PV interneurons and WFA/PNNs impairment in the prefrontal
cortex.55 By analogy, PV neurons in the TRN are here postulated to
be vulnerable to oxidative stress.
On the basis of these considerations, we hypothesized that PV

neurons and WFA/PNNs may be altered in the TRN of subjects
with SZ and BD, and that redox dysregulation may contribute to
TRN abnormalities. Indeed, accumulating evidence supports the
idea that abnormal redox homeostasis and oxidative stress play a
role in the etiology of SZ and BD.56–61 We used a combination of
human postmortem and animal model studies to examine
whether PV neurons and PNNs in the TRN are altered in SZ and
BD and whether they are susceptible to oxidative stress. To
address the question of susceptibility to oxidative stress, we
examined the TRN in mice with a knockout of the modulatory
subunit of the glutamate cysteine ligase (GCLM KO,62,63), an animal
model of redox dysregulation caused by a weakened synthesis
of the main cellular antioxidant and redox regulator
glutathione (GSH).

MATERIALS AND METHODS
Human postmortem study
Human subjects. Tissue blocks containing the whole thalamus from a
cohort of healthy subjects (n=20), SZ (n= 15) and BD (n= 15) subjects
were obtained from the Harvard Brain Tissue Resource Center (HBTRC),
McLean Hospital (Belmont, MA, USA), and used for all histochemical and
immunocytochemical investigations (Supplementary Tables S1 and S2).
Retrospective diagnoses and inclusion criteria were conducted as
described in previous studies47,64 (see also Supplementary Information).

Tissue processing and immunocytochemistry. Tissue blocks for immuno-
histochemistry were dissected from fresh brains and post-fixed in 0.1 M

phosphate buffer (PB) containing 4% paraformaldehyde and 0.1 M Na azide
at 4 °C for 3 weeks, then cryoprotected at 4 °C for 3 weeks (30% glycerol,
30% ethylene glycol and 0.1% Na azide in 0.1 M PB). Tissue blocks were
then sectioned for stereological analysis as described in previous
studies.43,47,64 Immunohistochemistry and histological labeling for PV
neurons, WFA/PNNs and multiplex immunofluorescence (used to pheno-
type PV and WFA/PNNs) were carried out as described in our previous
study47 (see Supplementary Information for methods and antibodies and
lectin labeling specificity).

Data collection
Total numbers (Tn) and numerical densities (Nd) of WFA/PNNs and PV
neurons were assessed in the TRN using standard stereology-based
methods.43,45,47 Tn was calculated as Tn = i • Σn, where i is the section
interval and Σn= sum of neurons (or WFA/PNNs) counted; Nd was
calculated as Nd= Tn/V, where V is the volume. The volume of the TRN
(V) was calculated according to the Cavalieri principle65 as V= z • i • Σa,
where z is the thickness of the section (40 μm) and i is the section interval
(26; that is, number of serial sections between each section and the
following one within a compartment). The borders of the TRN were
identified according to specific landmarks, such as the internal capsule
laterally and the subthalamic nucleus ventromedially. The medial border
was identified at high magnification (×40) according to cytoarchitectonic
criteria, that is, the edge created by thick myelinated fiber bundles
entering the dense gray matter of the lateral thalamus. Adjacent Nissl
sections were used as reference (see Supplementary Information and
Supplementary Figure S1).

Statistical analysis
Differences between groups relative to the main outcome measures were
assessed for statistical significance using an ANCOVA stepwise linear
regression process as described in our previous studies.43,45,47 Effect sizes

were calculated according to Hedges’ g. A logarithmic transformation was
uniformly applied to all original values because the data were not normally
distributed. Covariates including pharmacological exposure and demo-
graphic variables were obtained from medical records available for each
donor (see Sullivan et al66 and listed in Supplementary Tables S1 and S2).
Covariates were tested systematically for their effects on the main
outcome measures in all group comparisons, and included in the model
if they significantly improved the model goodness-of-fit. Values relative to
the t ratio and P-value for main outcome measure differences found to be
statistically significant are reported in Supplementary Table S3. Any and all
covariates found to affect an outcome measure significantly are
also reported (see also Supplementary Information and Supplementary
Table S3).

Animal study
Experiments were performed on males GCLM KO62 and WT mice and were
approved by the Local Veterinary Office. Further details on breeding is
given in Supplementary Information.

Immunohistology. Tissue preparation, immunostaining and analyses were
similar to previous studies.67 Detailed descriptions can be found in
Supplementary Information.

Electrophysiology. The firing mode (bursting versus tonic) of sponta-
neously active TRN neurons recorded in slices was analyzed. Separate
intracellular recordings were performed using sharp glass electrodes to
preserve the intracellular redox state. Depolarization step currents were
injected into the cell while its membrane was maintained at various
potentials (from ~− 60 to ~− 90 mV). The responses to these depolariza-
tion currents were quantified. Details about slice preparation, recordings,
and analyses are provided in Supplementary Information.

RESULTS
Postmortem human studies
PV neuron colocalization with WFA/PNNs in healthy human
subjects. PV neurons were found to be densely represented in
the TRN. Our estimates show that the average Tn of PV neurons in
the human TRN is 52,901.8 (±30,695.1 s.d.), making it a
predominant neuronal population in this nucleus (58.8% of the
total TRN neuron numbers 89,903.7 ± 22,457.8—Nissl staining,
unpublished observations). WFA/PNNs are less numerous, with an
estimated average Tn of 25,078.6 (±26,768.6 s.d.). Dual fluorescent
immunolabeling was carried out to assess percentages of PV
neurons associated with WFA/PNNs. Our results show that 63.4%
of WFA/PNNs are associated with PV neurons (Supplementary
Figure 2). Conversely, only 20.5% of PV neurons are enwrapped by
WFA/PNNs.

PV neurons and WFA/PNNs decreases in SZ. In subjects with SZ, Tn
and Nd of PV neurons were markedly decreased as compared to
healthy controls (PV neurons—Tn: Po0.0001, Hedges’ g=− 2.08,
71.1% decrease; Nd: Po0.0001, Hedges’ g=− 2.09, 66.4%
decrease; Figure 1, Table 1 and Supplementary Table S3). WFA/
PNNs were also significantly decreased in SZ as compared to
healthy controls (WFA/PNNs—Tn: Po0.006, Hedges’ g=− 1.40,
81.3% decrease; Nd: Po0.003, Hedges’ g=− 1.52, 67.2% decrease;
Figure 1, Table 1 and Supplementary Table S3). Statistical models
for Tn of PV neurons included the effects of exposure to
antipsychotics during the last 6 months of life (CPZ 6 months,
P= 0.002, t ratio = 2.31); similarly, Tn and Nd of WFA/PNNs were
adjusted for antipsychotics exposure (CPZ 6 months, Tn, P= 0.007,
t ratio = 2.93; Nd, P= 0.0019, t ratio = 3.52) and for cause of death
(Tn, P= 0.012, t ratio = 2.71; Nd, P= 0.002, t ratio = 3.39). Note that
effects of antipsychotic exposure were only significant for the last
6 months of life. Importantly, the effects are positive, suggesting
that these drugs tend to bring these values toward normality. PV
neuron and WFA/PNN decreases did not significantly vary along
the rostrocaudal axis of the TRN.
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Figure 1. PV neurons and WFA/PNNs are decreased in the TRN of subjects with SZ and BD. (a) Total number and Nd of PV neurons in the TRN
of healthy subjects, SZ and BD subjects. Marked decreases were observed in each disorder with respect to healthy controls. SZ: PV neurons—
Tn: Po0.0001, Hedges’ g=− 2.08, 71.1% decrease; Nd: Po0.0001, Hedges’ g=− 2.09, 66.4% decrease; BD: PV neurons—Tn: Po0.0007,
Hedges’ g=− 1.88, 72.1% decrease; Nd: Po0.003, Hedges’ g=− 1.55, 55.9% decrease. (b) Example of a PV neuron in the TRN of a healthy
human subject. (c) Total number and Nd of WFA/PNNs in the TRN of healthy subjects, SZ and BD subjects. Significant decreases were observed
in each disorder with respect to healthy controls. SZ: WFA/PNNs—Tn: Po0.006, Hedges’ g=− 1.40, 81.3% decrease; Nd: Po0.003, Hedges’
g=− 1.52, 67.2% decrease; BD: (WFA/PNNs—Tn: Po0.04, Hedges’ g=− 0.77, 57.1% decrease; Nd: Po0.001, Hedges’ g=− 0.92, 51.9%
decrease). (d) Example of WFA/PNNs in the healthy human TRN. Note that all bar graphs show logarithmically transformed values and do not
reflect the effects of confounding variables included in ANCOVA models. ANCOVA, analysis of co-variance; BD, bipolar disorder; PNN,
perineuronal net; PV, parvalbumin; SZ, schizophrenia; TRN, thalamic reticular nucleus; WFA, Wisteria Floribunda agglutinin.

Table 1. Summary of results

Diagnosis Total number of PV neurons Total number of PNNs TRN volumes

Percent diff. g value Percent diff. g value Percent diff. g value

SZ ⇓− 71.1%a ⇓− 2.08%a ⇓− 81.3%a ⇓− 1.40%a ⇓− 18.1% ⇓− 0.75
BD ⇓− 72.1%b ⇓− 1.88%b ⇓− 57.1% ⇓− 0.77% ⇓− 21.7% ⇓− 0.83

Abbreviations: ANCOVA, analysis of co-variance; BD, bipolar disorder; PNN, perineuronal net; PV, parvalbumin; SZ, schizophrenia; TRN, thalamic reticular
nucleus; WFA, Wisteria Floribunda agglutinin. Percent differences for Tn and volume in disease groups with respect to the controls. Tn of PV neurons and WFA/
PNNs were markedly decreased in the TRN of both SZ and BD groups, with large effect sizes. Modest volume decreases, measured on Nissl-stained sections,
were not statistically significant. Bold values and arrows indicate statistically significant changes (ANCOVA analysis on log-transformed values). Percent
changes are calculated on raw values, adjusted for the effects of the covariates with significant impact in the model; g-values are calculated on log
transformed values, adjusted for the effects of the covariates with significant impact in the model. aadjusted for exposure to antipsychotics during last
6 months. badjusted for lifetime exposure to lithium.
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PV neurons and WFA/PNNs decreases in BD. In subjects with BD,
Tn and Nd of PV-IR neurons are significantly decreased in the TRN
with respect to controls (PV neurons—Tn: Po0.0007, Hedges’
g=− 1.88, 72.1% decrease; Nd: Po0.003, Hedges’ g=− 1.55,
55.9% decrease; Figure 1, Table 1 and Supplementary Table S3).
WFA/PNNs are also significantly decreased in BD as compared to
healthy controls (WFA/PNNs—Tn: Po0.04, Hedges’ g=− 0.77,
57.1% decrease; Nd: Po0.01, Hedges’ g=− 0.92, 51.9% decrease;
Figure 1, Table 1 and Supplementary Table S3). Statistical models
for PV neurons included lifetime exposure to lithium (Tn, P= 0.01, t
ratio = 2.53; Nd, P= 0.04, t ratio = 2.05). PV neuron and WFA/PNN
decreases did not significantly vary along the rostrocaudal axis of
the TRN.

TRN volume in SZ and BD. To help interpret cell count results, the
volume of the TRN was measured in Nissl-stained sections in each
case from the same cohort. Subjects with SZ showed a modest,
not statistically significant, volume decrease (P= 0.07, t ratio =
− 1.86; Hedges’ g=− 0.75; Table 1 and Supplementary Table 3S). In
subjects with BD, TRN volume decreases were also relatively
modest, but significant (P= 0.02; t ratio =− 2.35; Hedges’ g=− 0.83;
Table 1 and Supplementary Table 3S).

Experimental animal studies
Increased oxidative stress and reduced PV and WFA/PNNs in TRN of
adult GCLM KO mice. We first investigated whether a redox
dysregulation, as in GCLM KO mice, would render PV neurons and

Figure 2. Early increase in oxidative stress and PV neurons and WFA/PNN deficit in the TRN of adult GCLM KO mice. (a) Micrographs show
immunofluorescent labeling for 8-oxo-dG (green), WFA/PNN (blue) and PV neurons (red) in the TRN of P20 (Juvenile), P40 (Pubertal) and P90
(Adult) WT and GCLM KO mice. (b) The increase in 8-oxo-dG immunolabeling (in arbitrary unit, a.u.) in KO (red) was already present at P20,
increased further in P40 and even higher at P90. (c) As the animal aged, the number of PV neurons decreased in TRN of KO compared to WT
mice. (d) The number of WFA/PNN+PV neurons in the TRN of KO mice were also reduced in P40 and P90 when compared to WTmice. For each
group, n= 4–5. Scale: 100 μm. Bars in all graphs represent s.d. **Po0.01; ***Po0.001 (pair-wise Dunnett tests). KO, knock out; PNN,
perineuronal net; PV, parvalbumin; TRN, thalamic reticular nucleus; WFA, Wisteria Floribunda agglutinin; WT, wild type.

Impaired TRN in schizophrenia and bipolar disorder
P Steullet et al

2060

Molecular Psychiatry (2018), 2057 – 2065



WFA/PNNs vulnerable to oxidative stress in the TRN. The degree of
oxidative stress was demonstrated with an antibody against 8-
oxo-dG, which reveals mitochondrial DNA damage. In the TRN, we
observed a significantly higher 8-oxo-dG labeling, by about 150%,
in adult GCLM KO compared to WT mice (Figures 2a and b;
Po0.001). We found that the numbers of PV neurons and WFA/
PNN+PV neurons were significantly decreased by about 33%
(Figures 2a and c; Po0.001) and 17% (Figures 2a and d; Po0.01)
respectively in the KO compared with WT. The immunolabeling
intensities (a.u.) of PV neurons and WFA/PNNs in the TRN were
also both significantly decreased in KO compared to WT (PV:

P= 0.04; WFA/PNNs: Po0.001: not shown in the figure). These
results suggest that oxidative stress due to redox dysregulation
could lead to impaired PV neurons and WFA/PNN circuitry of TRN
in adult GCLM KO mice.

Early oxidative stress and PV/PNN impairment in the TRN of GCLM
KO mice. The second objective was to test whether the observed
elevated oxidative stress and the altered PV/PNN circuitry in the
TRN of GCLM KO mice in adulthood was already present in the
postnatal developmental period, that is, postnatal day (P) 20
(juvenile) and 40 (pubertal). In the TRN of both P20 and P40 KO

Figure 3. The burst-firing mode of TRN neurons was impaired in GCLM KO mice in vitro. (a) and (b) Spiking pattern of spontaneously active TRN
neurons was altered in GCLM KO mice. (a) Frequency of bursts. More TRN neurons did not burst in GCLM KO as compared to WTmice (P= 0.03;
Mann–Whitney U test). (b) Frequency of tonic spikes. No significant difference in the tonic mode between both genotypes. Data are based on
26 and 43 recorded neurons in 4 WT and 4 KO mice, respectively. (c) Proportion of TRN neurons exhibiting a burst versus a tonic firing when
kept at four different membrane potential levels. Note the significantly smaller number of neurons bursting at ~ –70 mV in GCLM KO as
compared to WT mice (total number of recorded neurons: 17 and 15 in WT and KO, respectively). *significantly different between genotypes
(P= 0.015; Fisher exact test, P-value corrected for multiple comparisons). The traces in the inset show a TRN neuron exhibiting a tonic (upper
trace) and a bursting (lower trace) response upon a depolarization current while its membrane potential was at − 61 and − 71 mV, respectively.
(d) The maximum number of action potentials generated within a single burst was significantly smaller in TRN neurons of KO as compared to
WT mice (P= 0.009; ANOVA). (e) When the membrane potential was kept at ~− 60 mV, the tonic response to depolarization currents was not
different between genotypes (number of neurons: 10 and 12 in WT and KO, respectively). ANOVA, analysis of variance; KO, knock out; TRN,
thalamic reticular nucleus; WT, wild type.
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mice, 8-oxo-dG immunolabeling was significantly increased (126%
and 146%, respectively), when compared to WT mice (Figure 2a).
At P20, numbers of PV neurons in KO were significantly reduced
(approximately 13%) (Figures 2a and c; P= 0.002) compared to WT
mice. Pubertal (P40) KO mice showed significantly reduced
numbers of both PV neurons (Po0.001; 13% decrease) and
WFA/PNN+PV neurons (Po0.001; 20% decrease) (Figures 2a,c,d).
Intensity of 8-oxo-dG immunolabeling significantly increased with
age in KO mice (ANOVA, F(1,28) = 8.9, P= 0.0001), while PV
neurons decreased with age in the KO (ANOVA, F(1,28) = 9.6,
P= 0.0007), compared to WT mice (ANOVA, F(1,28) = 3.2, P= 0.06)
(Figure 2b). 8-oxo-dG intensity was significantly higher in Gclm KO
at P90 when compared to both P20 (Tukey–Kramer, P= 0.005) and
P40 (P= 0.016). No significant increase of 8-oxo-dG intensity was
found between P20 and P40. Collectively, oxidative stress appears
in the TRN of KO mice early during development and worsens
from peripubertal to adulthood. This is accompanied by PV and
WFA/PNN deficits which also persist until adulthood.

Alterations of spike/bursting properties of TRN neurons in GCLM KO
mice. We then assessed whether PV and WFA/PNN abnormal-
ities, and increased oxidative stress in GCLM KO mice were
accompanied by functional alterations of TRN neurons in
adulthood. We first recorded the spontaneous activity of TRN
neurons (Supplementary Figures S2 and S3). The frequency of
spike bursts was significantly altered in GCLM KO mice, with more
neurons generating no or very few bursts, as compared to WT
mice (Figure 3a; P= 0.03). In contrast, the frequency of tonic spikes
were similar in WT and KO mice (Figure 3b). We then examined
the firing properties of TRN neurons using intracellular sharp
electrodes. The proportion of neurons displaying bursting
behavior at resting membrane potential was similar in both
genotypes: 74% (17/23) in WT and 75% (15/20) in KO mice.
Likewise, the resting membrane potential of these bursting TRN
neurons was not significantly different (mean± s.e.m.:
− 68.5 ± 2.4 mV for WT and − 67.4 ± 2.4 mV for KO) as well as the
input resistance. As expected from the inactivation curve of the
low-threshold T-calcium current responsible for burst firing in TRN
neurons, the proportion of neurons that exhibited a burst of
action potentials upon depolarizing step currents increased as the
membrane potentials became more negative (Figure 3c). How-
ever, at a membrane potential of ~− 70 mV, a vast majority of TRN
neurons still fired in a tonic mode in KO mice while most neurons
in WT mice already displayed a bursting behavior (Figure 3c;
P= 0.015). Thus, at their resting membrane potential, most TRN
neurons were excited in bursting mode in WT but in tonic mode in
KO mice. Moreover, single bursts contained significantly less
action potentials in KO as compared to WT mice (Figure 3d;
P= 0.009). By contrast the tonic firing mode observed in most
neurons upon depolarization from a membrane potential kept at
~− 60 mV did not differ between genotypes (Figure 3e). Alto-
gether, these data indicate that, at least in vitro, TRN neurons burst
less in KO compared to WT mice, while the tonic mode is
unaffected.

DISCUSSION
Our results provide direct evidence of structural and cellular
anomalies in the TRN of SZ and BD patients and compelling data
pointing to potential mechanisms and functional consequences of
such anomalies. Postmortem findings add to previous neuro-
chemical support for TRN involvement in SZ34,35 and represent the
first evidence for its role in BD. Specifically, a predominant TRN
neuronal population, that is, neurons expressing PV, in part
ensheathed by WFA/PNNs, was found to be decreased in these
disorders. Results from an animal model of redox dysregulation
due to low GSH synthesis capacity (GCLM KO mice) show that the
TRN is particularly prone to oxidative stress. In the TRN of these

mice, both PV neurons and WFA/PNNs are decreased from early
postnatal age onward and TRN neurons are less inclined to
generate bursts of action potentials. We put forth that oxidative
stress may represent a mechanism contributing to TRN neuronal
abnormalities in SZ and BD, and that these changes may be
present at early stages of these disorders and may be associated
with electrophysiological abnormalities. Indeed, oxidative stress
and altered antioxidant systems are consistently reported in
individuals suffering from these disorders, including reduced GSH
levels in some patients56,58–60,68–70 and altered in vivo redox NAD
+/NADH ratio.71

Tn and Nd of PV neurons and WFA/PNNs were markedly
decreased in the TRN of subjects with SZ and BD. In patients with
SZ, positive correlations with exposure to antipsychotics during
the last 6 months of life suggest that these drugs may protect
from, and/or counteract, decreases of PV neurons and WFA/PNNs
in the TRN. Together with the strikingly similar results in the
mouse model studies, lack of effects of all other covariates tested,
including duration of illness, age of disease onset, exposure to
other pharmacological agents tested, substance abuse, cause of
death, is consistent with the possibility that these changes are
inherent to each disorder rather than representing secondary
factors, and may occur early on, perhaps before these illnesses
become clinically manifest. Further studies will be needed to
corroborate this possibility. Large effect sizes for these decreases
were detected in both SZ and BD, suggesting that these disorders
are similarly impacted. Finally, we note that despite the over-
whelming similarities, there are small discrepancies relative to
percentages of PV neurons and WFA/PNN decreases between the
mouse model and human postmortem studies. We suggest that
these differences may plausibly reflect species-specific differences
in PV neurons association with WFA/PNNs (see for instance72,73)
and/or the far more complex multigenic pathology in patients as
compared to the mouse model.
In SZ and BD subjects, parallel decreases of TRN volume, PV

neurons and WFA/PNNs, of which 63% is associated with PV
neurons, raise the possibility of PV cell loss in the TRN. An
alternative, non-reciprocally exclusive, interpretation of these
findings is that decreased numbers of PV neurons and WFA/PNNs
reflect a decrease of PV expression below detectable levels
associated with altered WFA/PNNs molecular composition.
Together, these two anomalies could be interpreted as reflecting
neuronal immaturity.74,75 This interpretation may also be con-
sistent with a previous report of increased glutamate transporter
expression in the TRN of subjects with SZ, and suggestions that
such changes may reflect a ‘diseased neuron’ signature in
psychiatric disorders.35,76,77 Ongoing studies are designed to
distinguish between the ‘neuronal loss’ versus ‘diseased neuron’
pathological scenarios in the TRN as well as other thalamic nuclei.
However, in either case, the present results do show robust
deficits of PV-IR neurons and WFA/PNNs.
TRN neurons, among which PV cells represent the predominant

neuronal population, exert a powerful inhibitory control over
thalamo-cortical neurons. They are implicated in selected
attention26,78 and in the generation of sleep spindles. Moreover,
PNNs modulate synaptic plasticity and neuronal firing
patterns.79,80 Thus, PV neurons and WFA/PNNs deficits in the
TRN of SZ and BD patients may profoundly impact TRN functions,
contributing to disruption of sleep patterns, hallucinations,
emotional and cognitive processing, and attention. Of note, a
deficit of sleep spindles is already present in first episode,
antipsychotic-naïve SZ patients and first-degree relatives of SZ
patients,81,82 further supporting the possibility that TRN abnorm-
alities in this disorder may precede its clinical manifestations.
Although disruption of these functions has been most extensively
described in SZ, sleep disturbances, hallucinations and emotion
processing disturbances are also observed in BD, consistent with
parallel PV neurons and WFA/PNNs decreases in the TRN of both
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disorders.83–88 Speculatively, differential sleep spindles disruption
in SZ versus BD30,32,82,89 may reflect different pathophysiological
mechanisms affecting PV neurons and/or WFA/PNN in the TRN, for
example, cell loss versus ‘diseased neuron’ pathology. While
similar findings in the TRN of SZ and BD subjects reported here are
consistent with increasing evidence for overlapping neurogenetic,
clinical, pharmacological and pathological features (including
oxidative stress) in these and other psychiatric disorders,90–93

the specific pathophysiological mechanisms underlying PV and
WFA/PNN decreases may align with distinct clinical domains.
Electrophysiological studies reported here point to a mechan-

ism potentially linking findings in GCLM KO mice and human to
sleep spindles deficits. We found that TRN neurons of GCLM KO
mice are less inclined to burst, a firing mode often observed in
free behaving mice particularly during slow wave sleep.94

Speculatively, such a deficit in burst firing might diminish the
inhibitory modulation of the thalamocortical neurons and affect
sleep spindles. The mechanisms underlying the alteration in the
firing mode of TRN neurons in GCLM KO mice remain to be
elucidated. Interestingly, Cav3.3T-type calcium channels, which
contribute largely to the calcium T-currents responsible for TRN
neuron burst firing and sleep spindles,95 are encoded by a
candidate risk gene for SZ, CACNA1i.96

Our results in rodents offer important clues on one potent
pathophysiological mechanism underlying PV neurons and WFA/
PNNs deficits in the TRN. Oxidative stress is a common
pathological endpoint leading to PV neurons and WFA/PNNs
anomalies in the medial prefrontal cortex of many animal models
carrying genetic and/or environmental risks relevant to SZ.55 The
present results suggest that this could hold true for the TRN, as
this region is particularly prone to oxidative stress. In the TRN of
GCLM KO mice, oxidative stress is accompanied by a reduction of
the number of PV neurons and WFA/PNN+PV neurons. Likewise, in
an other model relevant to psychosis, acute ketamine adminis-
tration induces oxidative stress and decreases PV immunoreactiv-
ity in mouse TRN.97 In TRN of GCLM KO mice, oxidative stress
became more severe from postnatal development into adulthood.
A decrease of PV neuron numbers was already present at P20,
while a significant reduction of WFA/PNNs was observed from P40
onward. In this animal model, the number of PV neurons in the
TRN was affected earlier than those of the anterior cingulate
cortex67 and the hippocampus,63 suggesting that the TRN is
particularly susceptible to redox dysregulation and can be affected
early on during postnatal development. Such high susceptibility
may be due to the predominance of highly active PV cells within
the TRN. Indeed, fast-spiking activities of PV neurons implies
enhanced oxidative metabolism, making them particularly vulner-
able to redox imbalance.98 Thus, oxidative stress may represent an
important contributor to PV and WFA/PNN decreases in the TRN,
potentially adding to other factors such as altered excitatory/
glutamatergic transmission,26,35 altered function of T-type calcium
channels99 and reduced cholinergic modulation.34

CONCLUSIONS
This study provides a direct and compelling evidence for
anomalies in the TRN of SZ and BD. Data from mice also show
that TRN neurons are susceptible to redox dysregulation, a potent
mechanism by which this thalamic nucleus could be affected in
both diseases, already in early stages. Given the key role that the
TRN plays in gating thalamo-cortical information, altered neuronal
firing patterns and neuron decrease, and/or neurochemical
abnormalities in this nucleus, may profoundly affect thalamo-
cortical connectivity, and therefore contribute to sensory, atten-
tional, cognitive, emotional, and sleep deficits observed in these
disorders.
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