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Abstract 
 
Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the 
underlying molecular processes. A key advantage of microscopy is that by visualizing 
biological processes it can provide direct insights. Nevertheless, live-cell imaging can be 
technically challenging and prone to artefacts. For a successful experiment, many careful 
decisions are required at all steps from hardware selection to downstream image 
analysis. Facing these questions can be particularly intimidating due to the requirement 
for expertise in multiple disciplines, ranging from optics, biophysics, and programming to 
cell biology. In this review, we aim to summarize the key points that need to be considered 
when setting up and analysing a live-cell imaging experiment. While we put a particular 
focus on yeast, many of the concepts discussed are applicable also to other organisms. 
In addition, we discuss reporting and data sharing strategies that we think are critical to 
improve reproducibility in the field. 
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1. Introduction 
Ever since the days of Antonie van Leeuwenhoek and Robert Hooke, progress in cell 
biology has been tightly interwoven with technical advances in microscopy approaches. 
This technical progress is not limited to the microscope optics, but also includes the ever-
growing list of available fluorophores and fluorescent proteins, as well as hard- and 
software for image acquisition and downstream analysis. 
The rise of microfluidics to grow cells in a stable environment, together with the explosion 
of computational power enabling automated cell segmentation and tracking, now allows  
live-cell imaging over multiple hours or even days. These live-cell imaging set-ups provide 
a powerful tool to study dynamic cellular processes on a single cell level. Besides giving 
a direct read-out of cellular physiology and behavior, fluorescence microscopy can be 
used to simultaneously obtain insight into molecular processes. Fluorescence microscopy 
can not only be used to visualize spatiotemporal localization of subcellular structures and 
proteins, but can also provide quantitative insights, for example on the amounts of 
fluorescent molecules. However, there are many steps on the way to obtaining 
quantitative live cell imaging data, including many pitfalls that may introduce artefacts. 
Unfortunately, consensus for best practice and standardized approaches for live-cell 
imaging experiments and data analysis are hardly available. This makes quantitative 
comparison of data obtained by different research groups often difficult, and also 
constitutes a significant barrier for scientists - especially those new to the field - to use 
the full potential of their data. 
Many aspects of live cell imaging have initially been pioneered using unicellular model 
organisms such as budding or fission yeast. They are easy to cultivate, grow fast, and 
their immobility and simple geometry enables automated cell segmentation and long-term 
tracking. Due to their small diameter of a few micrometers, single wide-field images 
focused on the center of the cell are often sufficient to capture the relevant information 
required for a certain biological question, alleviating the need for complex 3D imaging and 
segmentation. Finally, the powerful genetic tools available make fluorescent tagging of 
proteins a fast and straightforward process. 
Here, we review the aspects we consider important to successfully perform and analyze 
quantitative live-cell-imaging experiments. Following our own expertise, we look at the 
field with an emphasis on budding yeast, but most of the concepts discussed can be 
directly transferred to imaging of other organisms. We aim to provide a holistic overview 
ranging from hardware setups and experimental design to image post-processing, data 
analysis and reporting (Figure 1). We hope that this guide will be useful to experienced 
microscopists and scientists new to live-cell imaging alike.  

2. Microscopy Hardware 
The development of fluorescent proteins has opened up a whole new area in the 
microscopy field by allowing to follow in real time the behavior of endogenously tagged 
proteins. Epi-fluorescence microscopy is often the technique of choice to monitor the 
behavior of single living cells (Fig. 2). Other imaging modalities such as scanning or 
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spinning disk confocal microscopy can offer a better spatial resolution, but generally incur 
more photo-damage to the sample1. In addition, image acquisition by epi-fluorescence 
microscopy is typically faster by illuminating the whole field of view at once. Technical 
developments in the last decades have largely contributed to transforming fluorescence 
microscopy into a fully quantitative technique. The stability of light sources combined with 
hardware auto-focusing systems make it relatively straightforward to perform time-lapse 
measurements that last multiple hours or even several days2–10. In this section, we will 
highlight the latest technical development for various components of imaging systems 
which should be kept in mind when setting up a new microscope or upgrading older 
equipment.  
2.1. Automation 
In order to automate the acquisition process, a fully motorized microscope is required. 
Multiple software from microscope vendors can be used, however open-source programs 
supporting the major brands of microscope and accessories and offering simple graphical 
user interfaces (GUI) complemented by extensive scripting possibilities offer a convincing 
alternative11–14. The motorized components allow automatic switching of the illumination 
settings in order to record different fluorescent probes from the same field of view. In 
addition, a motorized XY stage and a Z-drive allow parallel imaging of multiple positions 
during a single (time-lapse) experiment. If fast Z-stack acquisitions are necessary, a piezo 
stage should be added to the system. 
In quantitative live single cell experiments, an important parameter to consider is the 
number of cells measured. A larger number of measured cells will allow to draw stronger 
conclusions based on an increased statistically significance. The ability to visit multiple 
positions within the sample is therefore crucial. 
2.2. Light source 
LED-based fluorescence excitation sources have become the standard for epi-
fluorescence microscopy15. Compared to older mercury or metal halide lamps they offer 
numerous advantages: First of all, they have very long lifetimes and their intensities 
display limited decrease over time. They also have excellent day-to-day stability. Another 
key advantage of LED based illumination sources is that they can be switched on and off 
electronically within tens of microseconds without the need for mechanical shutters. This 
enables tight synchronization between illumination and image acquisition to limit 
photobleaching (see phototoxicity section). The first LED-based systems offered only a 
limited number of fluorescent channels. Current state-of-the-art light sources provide 
typically more than 6 different colors, which is usually sufficient to excite the full range of 
fluorophores used in live-cell imaging experiments.  
 
2.3. Optical filters 
Epi-fluorescence microscopy relies on the use of three different optical filters: the exciter, 
the beam splitter or dichroic mirror and the emitter (Figure 2A). The combination of these 
three filters allows for specific detection of the fluorophore of interest. For example, BFP, 
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GFP, RFP and iRFP or CFP, YFP, RFP and iRFP can be used without much bleed-
through between individual fluorophores. Due to the broad spectra of fluorescent proteins, 
it becomes challenging to combine more than four different probes in the same sample. 
However, by combining very specific filter sets, a recent study has imaged six fluorescent 
proteins in the same cell2. 
LED-based light sources emit in a specific wavelength range. The emitted light still needs 
to be cleaned up in order to avoid that the tail of the excitation light perturbs the detection 
of the weaker fluorescent signal. These excitation filters are typically placed in the LED 
housing rather than in the microscope itself. 
Two different combinations of filters can be used: single band or multi-band (Figure 2B, 
C and D). A single band filter set offers a more specific detection of the fluorophore of 
interest and can provide more signal since the excitation and emission bandpass filters 
are usually broader (Figure 2B). However, the drawback of using individual filter sets for 
each fluorophore is that the imaging of multiple dyes in the sample requires rotation of 
the filter turret of the microscope. This mechanical change is relatively slow and can have 
a significant impact on the throughput of an experiment. 
By pairing a multi-band dichroic mirror with a multi-band emitter, multiple channels can 
be recorded by simply changing the active LED (Figure 2D). This is the fastest 
measurement strategy because no moving parts are changed. However, some crosstalk 
between the different channels can occur. A compromise can be achieved by using a 
multi-band dichroic in combination with single band emission filters placed in a filter wheel 
(Figure 2C). The use of single band filters allows a more specific detection of each 
fluorophore compared to a multi-band emitter. The rotation of the filter wheel slightly slows 
down the acquisition but it is faster than the movement of the turret of the microscope. 
2.4. Objective 
In order to maximize the sensitivity of a microscopy set-up, it is important to select 
objectives with a high numerical aperture (NA). The NA represents the angle of collection 
of the fluorescence light emitted by the sample and determines the ideal spatial resolution 
of the image. 
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For example, for a wavelength (λ) of 500 nm and an objective with an NA of 1.4, the 
theoretical spatial resolution (D) corresponds to 178 nm16. Oil immersion objectives with 
high magnification possess the highest NA and thus the best sensitivity and resolution. 
However, a trade-off between resolution and size of the field of view has to be considered; 
for example, the field of view imaged with a 100X objective will be more than six times 
smaller than the one obtained with a 40X objective. In many experiments where spatial 
accuracy in xy dimensions and also along the z-axis is not critical, it might be 
advantageous to use a 60X or a 40X objective in order to image a larger portion of the 
sample and thus collect measurements from more single cells. Similarly, lower 
magnification objectives typically have a larger depth of field16, which can be an 
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advantage some applications (see ‘Quantification and Interpretation’), and yield a higher 
signal-to-noise ratio at a given NA and light dose17. 
When choosing a suitable objective, also wave-length-dependent aberrations have to be 
considered: Specifically, wave-length-dependent differences of the focal points along the 
z-axis lead to axial chromatic aberration, and wave-length-dependent differences in the 
magnification lead to lateral chromatic aberration16. Apochromat objectives offer 
improved performance compared to achromat or single lens-based objectives and can 
correct the focal point mismatch of axial chromatic aberration. Moreover, image 
processing algorithms to correct axial and lateral chromatic aberration should be used for 
fluorescent microscopy studies that require precise positional quantification of multicolor 
markers, such as for example protein co-localization studies18,19. Additional off-axis 
aberrations such as coma, astigmatism, field curvature and distortion are typically 
corrected by the objective manufacturer. 
In addition to choosing a well-suited objective, it is important to match the camera to the 
resolution of the optical system. Using a 100X objective, the spatial resolution of 178 nm 
will correspond to 17.8 µm in the projected image on the detector. Based on the Nyquist 
criterion, sampling with at least than two times the resolution is required16,20. Thus, in our 
example the pixel size of the camera should be close to 9 µm. However, oversampling 
the image with much smaller pixels will not bring additional resolution while it can 
decrease the sensitivity of the detection. 
2.5. Camera 
A new generation of cameras with sCMOS technology has emerged in the last decade 
and has become the reference for epi-fluorescence imaging, replacing the common CCD 
cameras. The latest models of sCMOS cameras with back-illuminated sensors can 
overcome 90% quantum efficiency. However, at very low photon counts EM-CCD 
cameras still offer better signal-to-noise ratio. One main advantage of the sCMOS chips 
is that they often have multiple millions of pixels offering up to a four times larger imaging 
area than traditional CCD cameras. The increased field of view provides the opportunity 
to image more cells simultaneously. However, in order to accommodate even larger 
sensors, microscope vendors will have to increase the field of view of the apparatus 
beyond the typical 22 mm in order to avoid clipping of images or flatness of field issues 
(see image correction section).  
2.6. Advanced Microscopy 
Various imaging modalities can be implemented on a microscopy set-up with the 
integration of specific hardware elements. For transmission images, polarizers and prisms 
before the condenser and after the objective can generate differential interference 
contrast (DIC) images with enhanced contrast21. For Phase contrast microscopy, special 
objectives with an integrated phase plate are required. In addition to the improved 
contrast, this imaging modality can be adapted to provide quantitative images allowing to 
determine cellular dry mass22–24. 
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Numerous imaging modalities have been developed for fluorescence imaging. For 
instance, based on Förster Resonant Energy Transfer (FRET25) protein-protein 
interaction or the activity of biosensors can be monitored26,27. To detect subtle changes 
in fluorescence emission generated by the FRET process, it is advantageous to equip the 
microscope with an emission filter wheel to acquire the images with specific combinations 
of filters (for instance, excitation of the GFP and detection in the RFP channel)28. For an 
improved sensitivity in FRET measurements, fluorescence lifetime imaging microscopy 
can be implemented. However it requires typically a more complex set-up including a 
pulsed laser and time-resolved detection system29,30.   
Photo-bleaching or photo-conversion techniques such as FRAP (Fluorescence Recovery 
After Photobleaching) require a bright laser and scanning mirrors to bleach or photo-
activate a specific region of the sample31,32. These techniques can reveal the fast 
exchange of proteins between cellular compartments or aggregates33,34. Laser excitation 
set-ups can also be used for TIRF (Total Internal Reflection Fluorescence) imaging by 
directing the laser beam at the side of a high NA objective. Total internal reflection at the 
glass-medium interface then generates an evanescent wave in the sample which excites 
only the molecules in close proximity of the coverslip35,36. Local excitation can also be 
useful for opto-genetic experiments, where protein-protein interactions or gene 
expression can be triggered by shining light on the sample37,38. Note that for some opto-
genetic systems, the light stimulus can be provided by LEDs placed on the transmission 
arm of the microscope, but this does not allow for spatial modulation of the activation39. 
More sophisticated microscopy set-ups such as scanning or spinning disk confocals can 
be necessary to improve the image resolution relative to standard epi-fluorescence40,41. 
Alternatively, imaging techniques such as light-sheet or lattice light-sheet microscopy, 
using an excitation beam perpendicular to the detection axis, can provide high-resolution 
3D images of live samples while minimizing photo-damage42–45. In order to break the 
resolution limit imposed by the diffraction of light, various super-resolution techniques 
have emerged. Structured Illumination Microscopy (SIM) or Airyscan confocal systems 
can provide an improvement of two to three-fold in resolution46,47. To further improve 
spatial resolution and obtain single molecule precision, localization microscopy uses 
multiple cycles of photoactivation and deactivation to reconstruct the position of individual 
fluorophores in the sample48,49,36. 
2.7. Stability 
Motorization of microscopy set-ups allows recording of high-dimensional time-lapse 
movies, imaging multiple XYZ positions over multiple time points, and combining several 
imaging channels, including epifluorescence and transmission images. In order to 
robustly quantify the evolution of cells as a function of time, the overall stability of the 
system is essential. The repeatability of the XY stage has to be highly precise. In addition, 
autofocusing systems provide considerable help in maintaining the sample in the focal 
plane of the microscope. A hardware autofocus measures the position of the sample 
using the reflection of infrared light at the glass-air (air objectives) or glass-water (oil 
objectives) interface. This technology is fast and accurate and is the recommended option 
for imaging of microbial cells, which require a sub-micron precision in focal plane 
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determination. Alternatively, image-based autofocus can be used, which requires the 
acquisition of a Z-stack of images to identify the optimal focal plane. Image-based 
focusing avoids the need for additional hardware, and potentially captures additional out-
of-focus information. However, this process slows down the acquisition considerably, is 
not always reliable, and can incur photo-damage to the sample. 
An environmental control chamber can also contribute to the overall stability of the 
microscope set up by minimizing temperature changes that can lead to focus drifts. In 
addition, the chamber provides a control of the temperature, humidity and CO2 if 
necessary, which allows maintaining the cells in optimal growth conditions. 
In order to obtain reproducible results from day to day, the microscope setup requires 
proper calibration. Ideally, this routine verification is performed before every experiment. 
The calibration will ensure the appropriate and homogeneous illumination of the field of 
view for both transmission and fluorescence modalities. For transmission images, the 
Koehler alignment of the condenser matters most. For fluorescence illumination, the light 
is typically brought by a liquid light guide into the system, making the calibration more 
demanding but providing more stability over time. Using standard fluorescent calibration 
slides, the light guide can be precisely aligned, and the field flatness can be measured by 
taking a picture of a uniformly fluorescent sample. 
Bullet points 
• Maximizing the number of single-cell measurements can be achieved by using a lower 

magnification objective and a camera with a large sensor. 
• A trade-off between the number of fields of view acquired and the temporal resolution of the 

experiment has to be found. An optimized fluorescence filter configuration can decrease the 
amount of time spent at each XY position. 

• The stability of the experiment during multi-hour time-lapse experiments can be maintained 
using an environmental control chamber and autofocusing systems. 

3. Setting up the experiment 
3.1. Cultivating cells under the microscope 
In addition to the microscope hardware, live-cell imaging requires means to maintain cells 
in a controlled environment suited for cell growth. Short-term imaging of live yeast cells 
can be achieved by simply transferring liquid culture on a microscopy slide, which can be 
coated to immobilize the cells50. Long-term imaging, however, requires continuous supply 
of growth media and a method to keep cells in a fixed position. One cheap and easily 
accessible option is to place diluted yeast cells between microscopy coverslips and agar 
patches of solid yeast media51. This approach mimics growth on typical agar plates and 
enables quasi-2D growth of yeast colonies for several hours. However, after a few hours, 
drying of the agar typically causes drifts which makes it hard to maintain cells centered 
and in focus, and expansion of the colony into the third dimension can cause additional 
problems. 
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Microfluidics cultivation devices52, either custom built or commercially available, 
circumvent these problems. Cells are typically trapped in quasi-2D channels between 
high quality glass and a flexible gas-permeable polymer such as PDMS and provided with 
a constant flow of fresh media. This way, cells can be maintained in focus and in a steady-
state growth condition for many hours and multiple generations53. In addition to enabling 
longer imaging in steady state conditions, microfluidic devices can also be used to change 
media conditions during the experiment in a precise manner by using several controllable 
media inlets, for example to monitor the dynamics of activation of signal transduction 
cascades54–56. Controlled mixing of media upstream of the cell chamber allows for even 
more complicated protocols, such as dynamic concentration ramps or spatial gradients  
57–60. 
A typical experiment would be started with single isolated cells spread across the 
microfluidic chamber, and the experiment would come to a natural end once the chamber 
is filled with cells. This limits the observable time-frame to not much more than 10 
divisions. However, using dedicated devices that selectively maintain some cells while 
flushing away others, individual cells can be imaged throughout their entire replicative 
lifespan7,10,61–64. 
Besides such specialized designs for specific questions, other parameters need to be 
considered when choosing the correct microfluidics setup: The height of the chamber 
needs to be adjusted depending on the cell diameter (e.g. different designs for haploid or 
diploid cells), simultaneous imaging of multiple strains in one experiment can be achieved 
through parallel chambers, and the ideal flow rate might vary depending on the 
experiment. For example, low flow rates might be beneficial if a costly reagent needs to 
be supplemented to the media. On the other hand, higher flow rates might be better suited 
for certain small molecules, which are otherwise lost through diffusion into the PDMS of 
the microfluidics device65  
After live-cell time-lapse experiments have been performed, an important quality control 
is to verify that conditions in the chamber and imaging settings do not interfere with cell 
growth. As will be discussed also in the context of phototoxicity, this can be readily 
assessed by estimating population doubling times from growing colonies and comparison 
to that of liquid cultures growing exponentially in the same media. Strong growth rate 
variability between individual colonies may be an indicator for heterogeneous media flow. 
3.2. Image acquisition settings 
When the cultivation system is ready, the image acquisition needs to be set up. Ideally, 
image acquisition parameters should remain valid for a whole set of related experiments 
(for instance, including mutants that might display weaker or higher signals). Thus, small 
pilot studies to determine the optimal choice of imaging acquisition parameters are often 
a sensible time investment to avoid downstream problems. Considerations regarding the 
choice of objectives and type of filters have been described in the hardware section 
above. Another important consideration is the trade-off between imaging frequency and 
the number of positions recorded. The number of positions recorded in one sample and/or 
the number of samples that can be imaged in parallel will strongly depend on the 
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dynamics of the biological process monitored. Very rapid processes can only be 
measured in a single field of view, while slower acquisition at the 3 to 15 min time scale 
allows recording tens of positions, thereby increasing the number of cells observed and 
the statistical power of the experiment. A physical limitation to the amount of positions 
imaged in parallel can arise due to the immersion oil, which may not follow large 
displacements of the sample, especially at fast stage speed. For very slow biological 
processes, the automated tracking of the cells in the downstream image processing may 
set an upper limit to the imaging interval.    
The optimal exposure settings (brightness of LED and duration of exposure) must balance 
(at a minimum) the following four points: First, image saturation must be avoided. 
Fortunately, this has become easier with recent cameras that offer 16 bits of resolution. 
Second, the exposure time should be optimized to increase the signal-to-noise ratio. At 
short exposure time, the fluorescent signal may hardly overcome the endogenous 
autofluorescence of the sample. Third, the combination of exposure time, imaging 
frequency and duration should minimize photobleaching66. If the imaging frequency is too 
high or the exposure time too long, the decrease of the fluorescence signal might be 
dominant, so that a quantitative assessment of the process is no longer possible, 
especially towards the end of the acquisition. Fourth, phototoxicity should be avoided to 
guarantee the validity of the biological observation. 
 
3.3. Phototoxicity  
The terms phototoxicity or photomorbidity refer to light-induced damage of the cell. While 
imaging is in principle a “non-invasive” technique, exposing cells to light can be harmful. 
Phototoxicity is induced by several mechanisms, which are dependent on the wavelength 
of the light exposure. High-energy (i.e. low wavelength) light below ~340 nm can directly 
break chemical bonds, especially those in pyrimidines of DNA, and thereby lead to DNA 
lesions and mutations. Longer wavelength light can lead to ROS generation and heat 
dissipation, which in turn damages proteins and membranes67–69. Phototoxicity is mostly 
caused by the excitation light directly acting on cellular components, independently of a 
heterologous fluorophore such as GFP. But fluorescent proteins can also contribute to 
ROS formation when excited electrons react with dissolved oxygen instead of emitting 
photons. This usually goes hand in hand with photobleaching. Some fluorophores are 
more prone to producing and releasing ROS, the most extreme case being KillerRed70. 
Cells have extensive mechanisms for detoxifying ROS and clearing other photo-induced 
damage, but as the repair system approaches saturation, cell function becomes affected. 
One key objective for live-cell imaging experiments is therefore to keep light-induced 
damage to a minimum. Importantly, the tolerance to light is dependent on the nutrient 
supply, and environmental stresses can amplify phototoxic stress17. Severe phototoxicity 
is evident if cells stop growing and dividing, or change their morphology. But subtle 
changes in physiology will occur already at lower light doses and in shorter times17,70. 
Therefore, for quantitative analysis of cellular processes, sensitive read-outs to exclude 
photomorbitity under all assay conditions are needed. Carefully monitoring the growth 
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rates of many cells or colonies is a sensitive readout to determine the maximal light 
tolerated without obvious physiological effect17. Comparing cells exposed to excitation for 
fluorescence channels with those only imaged by brightfield or growing in liquid culture, 
allows quantifying phototoxic effects within one experiment. Another important control is 
comparing experiments with different time intervals between imaging. This can reveal 
quantitative differences in physiology due to phototoxic stress and will also show if any 
drifts in the signal are caused by photobleaching. 
Another method to monitor phototoxicity is using stress responsive proteins that change 
their amount or localization. To quantify light stress in the green range, Msn2 has been 
successfully used as a reporter in budding yeast72. However, Msn2 does not respond to 
blue light (Figure 3) even at light doses where growth completely stops. Reporters such 
as fluorescently labelled proteins such as Rad53 or Yap1 can be monitored to detect DNA 
damage or to monitor oxidative stress caused by excessive ROS73,74. 
If phototoxicity is detected, how can it be avoided? Longer wavelength light is less 
damaging than shorter wavelengths, even when the same total energy is applied, since 
individual photons can transfer less energy to the biomolecules they collide with. The 
choice of fluorophores is therefore particularly relevant when imaging low-abundant 
proteins that require more excitation light (see FPbase for a comprehensive list of 
available fluorophores75). For a given wavelength, the key parameter that determines 
phototoxicity is the total energy applied per exposure17, i.e. the integral of light intensity 
over exposure time. In practice, however, many instruments do not control the exposure 
time precisely, such that a delay in turning off the light source often leads to longer light 
exposure than intended by the experimentalist66,76. As a consequence, choosing lower 
light intensity at longer set exposure time often causes less damage66. To overcome these 
delays in hardware control, commercial systems are now offered with TTLs (Transistor–
transistor logic) controlling the hardware. These TTL-based controls are more precise in 
setting the “on-time” of the lamp/shutter to exactly the defined exposure time. Also other 
hardware components can make a major contribution to reducing phototoxicity. For 
example, a higher sensitivity camera, and optimal emission filters allow shortening 
exposure times. To compare the actual light exposure that cells experience with different 
hardware configurations and settings, a microscope slide power sensor and other 
specialized hardware can be used17,77. 

Bullet points 
 
• Microfluidic devices enable long-term imaging over multiple generations by providing steady 

media supply and keeping cells in focus. Ideal choice of device depends on experimental 
needs. 

• Microfluidics enable precise media switches and complex stimulation patterns. 
• The timing of image acquisition needs to match the dynamics of the biology. 
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• Choice of fluorophore, hardware, and exposure settings is a balance between signal-to-
noise and dynamic range on the one hand, and photobleaching and phototoxicity on the 
other hand. 

• Environmental stress and nutrient supply can amplify photodamage, therefore phototoxicity 
needs to be excluded for every fluorescent protein construct under every assay condition. 

• Phototoxicity can affect physiology long before cells stop growing. Growth measurements 
should be performed as quality control. 

 

4. Image Processing 
After an experiment has been successfully performed, the obtained raw imaging data 
have to be analyzed. The goal of the image analysis process is to transform the 
microscopy images into quantitative single cell measurements. In order to fulfill this task, 
three consecutive steps have to take place. First the images must be segmented to 
identify individual cells. Then the features of the cells are quantified. Finally, the identified 
cells (or features) are tracked from one frame to the next.  
 
4.1. Image segmentation 
During segmentation, the microscopy image is converted into a mask which indicates for 
each pixel if it belongs to the background or if it is inside a cell. In addition, for each cellular 
pixel, segmentation should also determine to which cell it belongs. While the human eye 
is highly trained to recognize various objects, this task is not trivial to automate78. The 
source image(s) for the recognition of the cells will depend on the sample and the details 
needed. The analysis of fluorescent images which have a dark background and where 
objects display a strong signal is relatively straightforward. However, because the number 
of fluorescent channels available in a microscope is limited, segmentation based on 
transmission images, while more challenging, is often preferred. Nonetheless, additional 
fluorescent images can be combined with transmission images to identify subcellular 
structures that cannot be recognized in the transmission image. 
In recent years, a number of image analysis pipelines have been developed and are 
available to segment images (Table 1). If these available tools cannot fulfill the more 
specific requirements of an experiment, then ImageJ, Python or Matlab have been 
traditionally used to develop tailored image analysis solutions thanks to the large number 
of predefined functions for computer vision available. 
4.2. Algorithmic segmentation 
A large fraction of image analysis methods are based on a specific algorithm or a 
combination of them78,79. For instance, to detect bright well-separated fluorescent nuclei 
over a dark background, a simple thresholding method can be used. Depending on the 
contrast of the image, the identification of the best threshold can be challenging80. If the 
fluorescent objects are in close contact, watershed algorithms can prove useful to 
separate merged segmentation masks, although they tend to generate over-segmented 
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objects79,81. For transmission images, edge detection methods can be used to identify 
sharp changes in intensity indicating the cell periphery82,83. This detection unfortunately 
does not result in continuous borders for objects. Thus, more complex algorithms have 
been implemented using active contours, which grow or shrink an object such that the 
contour deforms according to the intensity in the image84–86, or graph cuts, which use the 
intensity profile from the interior to the exterior of the object to define its borders87,88. 
Active contours or graph cut algorithms typically require an initial guess or seed for each 
object. These seeds can be obtained by a first segmentation performed by intensity 
thresholding or edge detection. 
In all cases, a set of pre-processing and post-processing steps are required. During pre-
processing, the source image can be filtered to remove noise and other aberrations in the 
data. The post-processing will for instance make use of watershedding algorithms81,89 and 
morphological operations to smooth the shapes of the identified objects90. 
Due to their homogenous shapes, it is relatively straightforward to generate an algorithmic 
pipeline dedicated to the segmentation of budding86,91–94 or fission yeast cells95,96. 
However, using traditional approaches, few analysis pipelines offer enough flexibility to 
achieve accurate segmentation of images from a wide diversity of cell types88,97. 
4.3. Machine learning 
The development of machine learning has provided new opportunities to analyze 
microscopy images98–101. Diverse tasks such as automated classification of phenotypes 
or cellular structures102–104, artificial labeling105 or image restoration and 
enhancement106,107 have profited from these advances. Neural networks have also been 
successfully applied to segmentation tasks108–111. An important part of the work consists 
in training the network with a set of images where cells have been precisely segmented. 
The quality of the ground truth data used for training will ultimately determine the precision 
of the segmentation. 
In a recent successful application of deep learning to the segmentation of budding yeast 
cells imaged with phase contrast, more than 8’000 manually segmented cells were used 
to train a U-Net-based112 convolutional neural network113. This dataset also included 
images from various mutant strains displaying aberrant morphologies to provide a larger 
diversity of cell shapes and sizes. Another approach that partially by-passes the tedious 
annotation of single cells has been devised by the Hersen lab114. A Z-stack of bright-field 
images is acquired and the change in intensity along the Z-axis is used as a signature to 
define various regions of the sample (background, cell border, cell interior, etc…). 
Because each image contains millions of pixels, it is sufficient to train the machine 
learning algorithm on one image with roughly 2000 pixels of each category to obtain an 
efficient classification of cell types. This modular approach has been successfully used to 
identify various cell types.  
4.4. Feature measurements 
Once the cells are segmented, numerous features can be quantified for each cell. This 
includes geometrical features such as the area, the small or long axes, eccentricity or 
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solidity as well as intensity features in each imaging channel (see also the dedicated 
‘quantification’ section)97,115,116. Beyond these basic measurements, a wide range of 
statistical and texture measurements can be performed and used to characterize an 
object100. Machine learning with support vector machines or random forest can be used 
to determine the cell type, the cell-cycle stage, or the developmental status based on the 
various features obtained to classify cells in different categories103. 
4.5. Tracking 
Once every frame of a time-lapse move has been segmented and objects quantified, the 
tracking process has to connect each cell from one frame to the next. When working with 
yeast, this process is simplified by the fact that yeast cells are non-motile. Therefore, a 
simple assignment based on the centroid of each cell or overlapping cell areas between 
frames can be sufficient86,117. This selection can be further refined by also using 
information about cellular characteristics such as cell size or fluorescence intensity that 
should not vary sharply from one time point to the next. These additional parameters can 
decrease the error when connecting cells in close proximity118. 
The challenge in the tracking of yeast cells comes from their fast division time. Tracking 
the lineage of cells can become very complicated after only a few divisions. In order to 
facilitate the tracking and focus on the cells that are important to monitor, it can be 
advantageous to perform the tracking backward in time and initiate the algorithm with the 
last frame of the time-lapse93. Microfluidic chambers can also help to restrict division to 
the focal plane of the microscope53,93. An alternative strategy to simplify drastically the 
tracking over long time-lapse is to trap the mother cells in a microfluidic chamber and to 
wash away the daughter cells7,119 (see also the ‘microfluidics’ section). For many 
applications, manual verification of segmentation and tracking data is still needed. 
Dedicated software with intuitive GUI and automated error propagation can support this 
process62,120. 
Bullet points 
• Many platforms are available for the segmentation of yeast cells (Table 1). Their 

performances have been compared by the Hersen lab86. It can be helpful to evaluate their 
robustness for a particular dataset to find the optimal approach. 

• Investing the time in training a neural network for image segmentation can result in robust 
cell segmentation even in complex samples. Starting from an already pre-trained network 
can greatly decrease the time required for this step. 

• Tracking is relatively straightforward with non-motile cells, but lineage tracing is challenging 
due to the small size of buds and crowded colonies. 

5. Image Correction 
Once cells have been segmented and the required pedigree and cell cycle information 
has been obtained, the cellular fluorescent signal can be quantified. A key requirement 
for quantitative analysis is that the recorded intensities of the signal of interest are within 
the linear regime of the detection. Since intensities can vary between conditions and due 
to cell-to-cell variability, it is often advisable to anticipate higher signal intensities when 
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initially choosing the experimental settings, to avoid saturation. An additional element to 
consider is how uniform the illumination of the sample is. If there is a noticeable difference 
between the center and the corner of the images, an image (flatness of field) correction 
step should be applied. An important first step of quantification is then to separate from 
the total signal measured the part that can be attributed to sources other than the signal 
to be quantified. This ‘nonspecific signal’ can be broadly classified into two categories. 
The first category, which we will refer to as ‘background fluorescence’, includes all signal 
not related to the presence of the cell. Besides electronic noise, such background can be 
caused by fluorescence associated with the media or microfluidics device, as well as 
additional light sources in the microscopy room. The second category includes all cellular 
fluorescence occurring independent of the fluorophore of interest, such as 
autofluorescence, as well as, in the case of multi-channel imaging, bleed-through from 
other fluorophores. 
5.1. Flatness of field 
Ideally, all pixels in the image should receive the same excitation light and be detected 
with the same efficiency. However, due to limitations of the optical system, objects in the 
center typically appear brighter than those in the periphery of the image. This uneven 
illumination called vignetting or shading can in part be caused by poor alignment of the 
optical components and can thus be improved by centering the excitation light or the 
detector121. However, often the vignetting effect is caused by the intrinsic properties of 
optical components, and the larger the field of view, the more important the problem will 
become. Therefore, this shading will be more apparent when using large sCMOS 
sensors. 
Uneven illumination and detection cause obvious problems for absolute quantification 
from fluorescence images, and can also impair object segmentation. However, correction 
of this artifact is relatively straightforward. One method consists in measuring a reference 
image from a uniformly fluorescent sample21,122. Alternative approaches extract the shape 
of the field flatness from one or multiple sample images121,123–125. In both cases, the 
sample images can then be divided by the normalized reference image, to obtain flattened 
images, which can be properly segmented and quantified. 
5.2. Background fluorescence 
Since background fluorescence may vary between positions and over time, e.g. due to 
inhomogeneities in the microfluidic setup, photobleaching of the background, or changes 
in the external light sources, a local and dynamic subtraction of the background is 
advantageous. In many cases, a good approach is to use the cell segmentation masks to 
define a ‘non-cell’ region for any given frame, and then subtract from cellular pixel 
intensities the median signal in this non-cell region to obtain a background-corrected 
image. 
5.3. Autofluorescence 
While background correction can be achieved without additional control experiments, 
appropriate correction for cellular autofluorescence requires more effort. However, 
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because autofluorescence can vary strongly between media conditions126, strain 
background127, and even from cell to cell, it often limits the quantitative resolution of the 
experiment, and therefore its contribution has to be carefully taken into account. One 
important first step is the choice of fluorophore and filters, to maximize the signal-to-noise 
ratio by minimizing autofluorescence.17 The website FPbase is a great resource to 
compare the various properties of different fluorescent proteins75. Typically, in constant 
environments budding yeast autofluorescence is low and rather stable in the spectral 
range of yellow fluorescent proteins128, which makes for example eYFP, mCitrine, or 
mVenus good choices for the endogenous tagging of proteins. 
Despite an optimal choice of fluorophores, autofluorescence can be a significant 
contribution to the overall signal, especially when studying weaker expressed proteins. 
To correct for the average autofluorescence, control experiments with strains that do not 
carry the fluorescent protein of interest should then be performed129,130. If the control and 
fluorescent strains can easily be distinguished, additional comparability can be achieved 
by measuring a mixed cell population simultaneously. Control cells can then be 
segmented and tracked, and after background correction a mean pixel intensity can be 
calculated and subtracted from the signal of the fluorescent cells. 
In addition to a correction of the fluorescent signal by the average autofluorescence, the 
control experiments - along with downstream analysis - can provide important insights 
into the cell-to-cell variability of autofluorescence, as well as potential biases due to 
changes of autofluorescence with for example cell cycle state, cell size, or genetic and 
environmental perturbations8,126. If careful examination of signal strength and 
autofluorescence reveals it as necessary, more complex analysis of the autofluorescence 
control experiment can be performed to correct for such effects. For example, the cells in 
the control experiment could be binned according to their size, to then calculate a size-
dependent autofluorescence intensity8. 
Finally, to estimate the error due to experiment-to-experiment variability and to assess 
whether autofluorescence and background subtraction were successful in light of a given 
type of analysis, it is advisable to perform one (or multiple) additional control experiments 
with non-fluorescent strains that can be mock-analyzed similar to the strain of interest. 
5.4. Multicolor imaging 
For multichannel imaging of several different fluorophores, an approach analogous to that 
described for autofluorescence correction can be used to account for potential bleed-
through from the other channels (despite optimal filter choice). Here, in addition to a non-
fluorescent control, control experiments using strains with single fluorophores, or strains 
that each lack one of the multiple fluorophores, can be imaged and quantified to determine 
the contribution of the other fluorescent proteins to the signal in the channel of interest 
2,131. This can be absolutely critical in situations where the strength of the signal in one 
channel is much higher than that in other channels, e.g. due to higher protein expression. 
In this case, even ‘weak’ bleed-through from the brightest channel can lead to a strong 
contribution to the overall signal in the other channels132. Inspiration for rigorous 
correction of bleed-through can also be drawn from the field of flow cytometry, where 
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such compensation for multicolor measurements has been standardized two decades 
ago133.  
5.5. Deconvolution 
For applications that require precise measurements of spatial positions or object volumes, 
in particular 3D (x,y,z) imaging134,135, deconvolution can be used to reconstruct the true 
point-like source of fluorescent signal based on either a theoretical or a measured point 
spread function136–138. The point spread function of a given optical setup can be measured 
by using fluorescent beads137. However, deconvolution algorithms are computationally 
expensive and can introduce reconstruction artefacts139. Commercial and open-source 
deconvolution algorithms have been developed and reviewed in detail136,140,141,139. 
Bullet points 
• To improve quantification accuracy, field flatness should be rectified. 
• Background signal can be corrected by subtracting signal in ‘non-cell’ areas. 
• Autofluorescence can be a major contributor to the signal and change with cell size, cell 

cycle, and environment. Non-fluorescent control strains can be used to correct for 
autofluorescence. 

• Multicolor measurements can require careful compensation measurements 

 

6. Quantification and Interpretation 
6.1. Quantifying fluorescent signals 
After background and autofluorescence have been corrected for, a meaningful parameter 
to quantify the cellular signal has to be chosen. In many cases, the biological phenomena 
studied go along with drastic changes in the signal intensity, and the exact choice of the 
analyzed parameter does not substantially affect the quantification of this ‘binary-like’ 
signal. However, for any analysis of smaller, more graded responses, careful 
consideration has to be given to the metric used to avoid artefacts due to confounding 
variables such as cell size, cell geometry or signal localization. In addition, accurate 
reporting is essential to allow correct interpretation and reproducibility. 
One of the most direct readouts of the fluorescent signal is the average pixel intensity 
(after background and autofluorescence correction). However, as described below, 
depending on the microscopy setup, the meaning of pixel intensity can vary, which makes 
interpretation - especially across studies - difficult. Ideally, the quantification should 
therefore correspond as closely as possible to a meaningful physical variable, such as 
fluorophore amount or concentration. 
To obtain absolute measurements of fluorophore amounts, calibration measurements are 
required that quantify the fluorescence intensity corresponding to a single fluorophore. 
While possible, for example through quantitative immunoblots128,142, such calibration is 
complex and needs to be done specifically for each fluorophore, microscopy setting and 
biological condition. However, even in the absence of calibration to obtain absolute 
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amounts, it can be beneficial to convert raw pixel intensities to concentration or amounts, 
albeit using arbitrary units. This way, relative changes between cells or conditions can be 
interpreted more easily. 
6.2. Confocal microscopy 
The depth of a typical confocal imaging plane is small compared to the height of most 
(eukaryotic) cells. Therefore, the local pixel intensity obtained from single confocal images 
closely corresponds to the local average fluorophore concentration in the confocal 
volume. To estimate cellular concentration, it is therefore necessary to average pixel 
intensity over representative z-stacks equally covering all parts of the cell. Overall 
fluorophore amount can then be obtained by multiplying average concentration with cell 
volume, ideally also estimated from 3D imaging. 
6.3. Epifluorescence microscopy 
In contrast to confocal microscopy, signals obtained with epifluorescence microscopy also 
include significant contributions of fluorophores above and below the focal plane. Thus, 
depending on the objective used and the height of the cell imaged, pixel intensity may 
correspond more closely to the amount of fluorophore at a given xy position (but summed 
over all z-planes) rather than local concentrations. Specifically, single epifluorescence 
images of budding yeast, focused on the center of the cell and obtained with standard 
microscope settings, collect most of the fluorescence emitted, which allows estimation of 
total fluorophore amount as the summed intensity in the cell area8,143. The experimental 
error associated with out-of-focus light outside the cell segmentation boundaries can be 
further reduced by using objectives with lower NA and/or magnification144, which typically 
have a bigger depth of field. From the estimate of fluorophore amount, an average cellular 
concentration can then be obtained by dividing by the cell volume. 
6.4. Subcellular localization and co-localization 
In addition to quantification of average cellular concentrations, fluorescence microscopy 
is often used to study subcellular localization. Fluorescent protein markers can also be 
used to highlight a specific organelle (e.g. histones for the nucleus, transmembrane 
proteins for the cellular periphery, septins and myosin for the bud neck, etc.). While the 
best image analysis strategy will depend on the exact question, many aspects discussed 
above will still be relevant for the quantification of subcellular signal: for example, local 
autofluorescence can vary depending on cellular compartment and biological context and 
the spatial dimension of the signal localization has to be considered to determine how 
pixel intensity is linked to local concentration. 
Finally, apparent co-localization of fluorescence signals is often used to infer (direct or 
indirect) physical interactions. While we refer to dedicated reviews for the details of co-
localization analysis145, we want to emphasize the importance of appropriate (negative) 
controls, and rigorous analysis and interpretation. 
Bullet points 
• Interpretable quantifications such as ‘concentration’ or ‘amount’ are preferable. 
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• Relationship with measured pixel intensity depends on microscopy setup, cell size, and cell 
geometry. 

7. Single cell analysis 
7.1. Temporal alignment and data normalization 
Once fluorescent data has been corrected for background and quantified as described 
above, the actual analysis and data interpretation can begin. Typically, a fluorescence 
live-cell imaging experiment yields time-resolved intensity data along with other 
measurements such as cell volume for dozens to hundreds of individual cells. From this 
single cell data, the experimentalist often wants to derive “typical” or “average” cellular 
behaviour146,147. To determine an ‘average’ behavior, some sort of average has to be 
calculated from the individual single cell traces. However, for experiments involving 
asynchronous cell populations, this is complicated by the fact that the single cell traces 
start and end at different time points during the experiment. In addition, biological 
processes such as the cell cycle are typically heterogeneous in duration, resulting in cell 
cycle traces of different temporal lengths. Thus, to calculate an average, some sort of 
alignment may be needed. In principle, two different approaches can be used: i) Single 
cell traces can be aligned at one characteristic time point, for example the time of an 
external perturbation or the beginning of a cell cycle phase, which can be determined 
from the time-lapse data148–150. This approach maintains time information and is therefore 
useful to study dynamics. However, due to the cellular heterogeneity, ‘synchrony’ is lost 
gradually with the temporal distance to the alignment point, which can lead to averaging 
artefacts. ii) Alternatively, a start and end point can be determined for each trace, and 
time can be scaled to allow averaging of multiple traces with different duration from start 
to end point151–153. Obviously, the scaling of time will distort the dynamic information. 
However, such an approach might be a useful tool to extract common features of how the 
signal changes during a biological process. 
Not in all cases a meaningful average can be found. Instead, the relevant parameters of 
interest may need to be extracted on a single cell level, and distributions rather than 
simple means may then have to be interpreted to describe the biological phenomenon154. 
To illustrate this, consider a scenario where the fluorescent signal linearly decreases from 
time point A to time point B, but the duration between A and B varies between cells. Since 
the slope of the decrease will be different in each cell, the average of the traces aligned 
at A will hide the fact that the decrease is linear. In contrast, scaling the duration between 
A and B will accurately describe the linearity, but the actual dynamic information is lost. 
Only calculating the slopes for each cell individually will reveal the distribution of the 
underlying dynamics (Figure 4). 
Similar to the need for temporal alignment and scaling, the normalization of the signal 
intensity may be necessary to extract the information of interest. For example, if the signal 
intensity varies dramatically between cells and the relevant information is a relative 
change in the signal, normalization - for example on the mean value of each cell - may 
be useful to calculate fold-changes. In contrast, if the absolute strength of the signal 
matters, normalization will lead to a loss of important information. 
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In summary, temporal alignment and data normalization are useful and often necessary 
tools to extract interpretable information from single cell data. However, they always go 
along with a loss of information and a strong potential for artefacts. Thus, careful 
consideration should be given to how a specific averaging strategy translates to the 
underlying biology, and which strategy is therefore best suited. 
7.2. Data interpretation 
Like any biological experiment, live cell imaging experiments need to be carefully 
designed to ensure that the generated data can lead to biologically meaningful and 
statistically sound quantitative results. However, there are several aspects that are 
particularly relevant for quantitative live cell imaging155,156. Firstly, it is important to clarify 
what can be considered a replicate, i.e. what defines the “n” of a statistical analysis of the 
data157. One can easily generate a large number of observations (“n”) by analyzing many 
cells from one experiment. This high number of observations can lead to false confidence 
(“low p-values”) when comparing two different treatments or two different mutants that 
were not imaged within one set-up (explained very nicely in detail in 158. The problem with 
this analysis is that single cells from one experiment are not necessarily independent and 
uncorrelated. For example, if there was a drift in the temperature of the incubator, all cells 
in one experiment may collectively grow more slowly than genetically identical cells grow 
a day later. Thus, it is important to perform multiple independent replicates, and to 
understand and control for the sources of variability in single cell live-cell imaging data. 
Variability and “noise” in live cell imaging can be generated through at least three 
conceptually different sources: 1. True biological heterogeneity159 or cofounding 
biological parameters such as replicative age160), 2. Purely technical noise in the signal 
generated by the hardware or during image quantification, and 3. Technical noise that 
leads to biological responses. Biological and technical noise can be hard to distinguish, 
especially cases 1 and 3. For example, consider two colonies next to each other that 
exhibit different growth rates. This could be due to a complex inheritance phenomenon, 
or simply due to uneven flow in the cultivation device. Once an interesting observation is 
made, the key point is to carefully phrase alternative hypotheses155, and then to think 
carefully about how to set up appropriate controls, how to define and report replicates, 
and which statistical tests are appropriate for the data at hand. 
Another potential pitfall of live cell imaging is that only a small fraction of the population 
is sampled; during the multiple steps needed to set up the experiment, almost inevitably 
a subset of the whole population at several steps of the experiment is “chosen”. This can 
lead to biases, which significantly impact the conclusions drawn from the experiment155. 
Biases can be already generated through the hardware, for example if only cells of a 
given size are retained in the cultivation device. In the next step, the experimentalist 
typically chooses which fields of view to image over time. And finally, data analysis usually 
involves at least some manual intervention when choosing which cells to analyze. 
Additionally, complex phenotypes are often manually scored. Biases inherent to manual 
phenotype scoring can be circumvented by machine learning approaches. However, in 
this case biases can come from the defined parameters or from the training sets. In 
summary, it is important to identify possible sources of biases, and plan controls 
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accordingly. For a more comprehensive overview of possible biases and how to control 
for them, we refer the reader to two very good dedicated reviews155,156.  
Bullet points 
• Aligning or normalizing can be useful to determine “typical” behaviour of cells but can 

discard information and generate artefacts. 
• Extracting features from individual cell traces and analyzing their distributions can capture 

more information than averaging. 
• Single cells from one experiment are not necessarily independent “replicates”, therefore 

multiple experiments should be performed and reported transparently. 
• Biological heterogeneity and technical noise are not always easy to distinguish, so careful 

controls probing the hypothesis are needed. 
• Sampling biases can be introduced on multiple levels, including the available hardware, the 

choice of fields of view, the choice of which cells to analyze, and how to score phenotypes.  

 

8. Reporting and Preserving Imaging Data 
To preserve (published) microscopy datasets, they should be findable, accessible, 
interoperable and reusable (FAIR)161. For images to be findable and accessible, they 
need to be stored in a publicly accessible place under a permanent address162. For 
images to be interoperable and reusable, they need to be linked to the biological 
experiment and to the metadata of the imaging set-up. Furthermore, to recapitulate the 
key findings of a publication, the data processing pipelines should ideally be available.  
8.1. Data reporting 
An essential part of reporting and publishing is to ensure reproducibility by describing an 
experiment as precisely as possible. For classical bench work, reporting protocols with 
precise descriptions of e.g. chemicals, centrifugation steps or genetic strain engineering, 
is well established. By contrast, in many publications the details provided about the 
microscopy setup and imaging conditions are often sparse, in part because commonly 
accepted reporting standards for quantitative imaging are still lacking163–165. 
Nevertheless, the minimal imaging metadata required to reproduce the experiments for 
any quantitative analysis should contain the physical details about the filters used for each 
channel, the light source, the objective, microscope and detector166 
An image channel is defined by a specific combination of filters and light source, and is 
often just reported by a generic image name such as ‘GFP’. However, this information is 
not sufficient, and instead the minimal set of information for each channel should include: 
1. the wavelength (ranges) for the excitation, beam splitter and emission filters; 2. the 
center wavelength as well as the power of the excitation light (transmission and 
fluorescence); 3. the exposure time and imaging frequency 4. the objective used with 
magnification, numerical aperture (NA) and immersion type and fluid; 5. the detector 
model with the pixel size, dynamic range (bit depth, i.e. 16 bits), binning (i.e. 1x1) and 
gain (for CCD type of sensors) as well as the temperature and type of sensor cooling; 
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and 6. the microscope setup itself167. An online check list tool can be found in 167. In 
addition to detailed reporting in the Methods section of any publication, this information 
should be stored in the raw image container (i.e. tiff) either directly or as additional 
(machine-readable) file. This will keep this crucial information connected to in the 
dataset168, which is helpful especially when uploading to a repository as described below. 
8.2. Sharing raw images 
Raw data is key to any (re-)analysis of an experiment and should be shared along with a 
publication169,170. Therefore, more and more funding agencies and publishers require 
filling a data management plan (DMP) or data availability statement to ensure raw data 
access and preservation after publication171. While in many “big data”- fields, such as 
genomics and proteomics, uploading data to public repositories is standard practice, this 
has been lagging behind in the imaging field. Storing and sharing imaging data it is not 
trivial172 because typical multi-channel, multi-position, time-lapse microscopy 
experiments often consist of ten to hundred thousand images, and can come in different 
file formats173. To handle these large data sets, dedicated online repositories are needed. 
Several such repositories are now established (Table 2)174. Importantly, the deposited 
imaging data is only useful, if it is attached to precise metadata, detailing not only the 
biological experiment, but also the technical set-up as described above. 
8.3. Sharing code and image processing pipelines 
To be able to reproduce an image-based analysis, not only the raw (image) data should 
be accessible but also the code used for the analysis175. Often an analysis consists of 
several steps using different software tools to process the raw images, such as 
deconvolution, segmentation, tracking, and quantification176. These steps can be done 
manually or in an automated way using scripts177,178. 
Manual interactions by clicking through different software tools are sometimes useful, but 
are hard to document and reproduce by others. Therefore, open-source tools that can be 
interfaced by scripts116,179,180, or integrated in larger pipelines are preferable97,178. Ideally, 
these scripts should include all steps or instructions necessary to extract the information 
from the images to reproduce figures and tables181,182. To facilitate sharing and re-use of 
scripts, it is good practice to follow established coding and style guidelines of the 
programming language used, and to provide instructions on what needs to be run in which 
order. 
8.4. Towards interactive data - enabling fast validation and re-use 
While publishing data and associated analysis openly according to the FAIR principles 
should become the standard, a key question is still how to promote the re-use of published 
data for novel biological questions183. Even if the data is well documented and organized, 
it may not be reused due to the fact that the entry level is often still too high (for example, 
because the analysis requires an expensive license, special hardware, or is written in an 
unfamiliar programming language). One solution to lower the entry level is to make the 
data or its analysis, respectively, interactive. This can be achieved with computational 
notebooks which allow to execute code snippets and visualize its result in one document 
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instantaneously184 or in workflows178. Computational notebooks are available for most 
popular scripting or programming languages185. One advantage is that they can directly 
be executed from public code repositories such as GitHub through services such as 
Binder without the need for dedicated hardware. This allows anyone to freely run and 
interact with a certain analysis directly online. However, while this typically works well for 
code and small datasets, working with large imaging datasets is still a challenge in terms 
of bandwidth and due to the fact that the data is often hosted in different repositories. 
Promising work is ongoing to address this remaining challenge186 to link (meta-) 
information from electronic laboratory notebooks and laboratory information systems 
(ELN-LIMS) and data with code repositories to make complex analysis pipelines truly 
accessible and interactive from anywhere.  
Bullet points 
• Ensure reproducibility by reporting details on the optical filters, the light source, the 

objective, microscope and detector. Report physical parameters using SI units rather than 
just brand names. 

• Attach precise metadata of the microscopy setup to your image files. Most modern image 
acquisition softwares allow entering these details prior to an experiment 

• Publish data FAIR. Use open well-established data formats, and wherever possible, open 
accessible analysis software. 

• Try to separate code from data repositories and make them available as an interactive 
workflow wherever possible 

 

9. Conclusion 
Since the discovery of fluorescent proteins, live cell imaging has become a powerful and 
popular technology driving research in many live science fields ranging from molecular 
and cell biology to systems biology and biophysics. A successful live cell imaging 
experiment requires many steps from setting up the hardware, to acquiring images, data 
analysis and reporting. Each of these steps comes with challenges and potential pitfalls. 
Still, consensus best-practice procedures for each of these steps do not exist to date. In 
fact, general consensus may even be hard to find due to the many different applications 
and biological questions at hand. Rather than providing direct guidelines on best 
practices, we therefore aimed in this review to make the readers aware of the many 
parameters that need consideration when setting up an imaging pipeline. Most 
importantly, whatever tools and parameters are chosen - starting with the hardware setup 
all the way through data analysis -, they need to be reported transparently. Only then can 
live cell imaging experiments be recapitulated and reproduced by others, all the way from 
idea to image to insight. 
 
While some of the recommendations we made here are relatively straightforward to 
implement, others - especially with regards to data sharing and accessibility - will require 
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a significant effort by the community to establish as standard. In light of this, we readily 
admit to not having always lived up to our own standards.  
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10. Methods 
For figure 3: A prototrophic budding yeast strain expressing Msn2-GFP (haploid W303 
strain, mating type a, msn2-yEGFP-His3, whi5-mCherry-KanMX, ADE, TRP, LEU, URA) 
was grown in two lanes (L1 and L2) of a microfluidic plate (CellAsic Onix2, Merck) at 30°C 
(Cage incubator H201, Oko-lab) with constant flow of Synthetic minimal medium (Smin) 
+ 1% Glucose. Smin consists of 1,7g/l YNB powder (US Biological), 5 g/l ammonium 
sulphate (Merck) and 1% d-glucose (Sigma-Aldrich) was added. From the onset of 
microfluidic flow, cells were imaged under an epifluorescence microscope (Ti-2, Nikon). 
The condenser turret TI2-C-TC-E was used with an LWD lens (Nikon, NA 0.52). Koehler 
illumination was calibrated before the experiment. 14 hours of time-lapse images were 
taken every 5 minutes in 11 x-y-positions for both L1 and L2. For each spatial and time 
position, phase contrast (PH3 ring, Nikon) and fluorescent (GFP, 475 nm excitation) 
images were taken. To induce photo-stress, L1 was imaged with an excess of blue light 
(390 nm, 400 ms, 20% intensity) and L2 with yellow light (575 nm, 2 s, 30% intensity). 
These intensities and exposure times of stress light were selected to induce similar levels 
of photo-stress between L1 and L2. In preliminary experiments, the relation between light 
quantities and cell death was studied. Cell death rates at the end of the experiment were 
used as a read-out for levels of photo-stress.  
The excitation illumination was based on LEDs (Lumencor Spectra X). For blue light 
stress, the Quad-Filter set 89402 (Chroma, excitation 391-32/479-33/554-24/638-31) was 
used with the blue-violet LED (390 nm). For the yellow light, filter set 89403 (Chroma, 
excitation 436-28/506-21/578-24/730-40) was used with the yellow LED (575 nm). For 
the GFP channel the same filter set was used with the blue-cyan LED (475 nm). Using a 
40x oil phase contrast objective (Plan Apo, NA 1.0, Nikon) with Type F immersion oil 
(n=1.518, Nikon), cells were imaged with 16 bits using a Photometrics Prime 95B CMOS 
camera (11x11 µm pixel size; 13.2x13.2 mm sensor area; no binning (1x1); 50,000:1 
dynamic range). 
The microscope was controlled, and data acquired with the proprietary NIS-Elements 
(Nikon) software. In NIS-Elements the images were converted to single files in TIFF 
format. In the same step, images were scaled to 8-bit. This enables subsequent analysis 
in MATLAB (The MathWorks, Inc.) based on an automated segmentation and 
fluorescence signal extraction tool93,187.To define cell death, we first subtracted the 
extracellular medium background from all data. Then, cells were counted as dead when 
the signal of the whole cell (normalized by area) was more than twice as bright (arbitrary 
units) as the mean of 10 unstressed dividing cells. In contrast, Msn2 signal peaks were 
defined by a ≥5-fold increase of nuclear fluorescence signal. The nucleus was identified 
by applying a two-dimensional Gaussian fit around the brightest fluorescence pixels. 
Budding was used as an indicator for cell cycle entry154. 
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12. Tables 
Table 1. List of image analysis pipelines 

Name Segmentation 
Method 

Source 
Image 

Cell 
type 

Specificity Reference 

CellProfiler Thresholding, Edge 
detection 

BF or FL MC General segmentation and image quantification platform 97 

Cell-ID Thresholding BF BY Budding yeast quantification and tracking program written in C 91  

YeastQuant Thresholding BF or FL BY Budding yeast quantification and tracking platform combining a 
FileMaker database for documentation and Matlab program 

92  

PhyloCell Thresholding and 
watershed 

BF BY Matlab GUI for visualisation of the segmentation and phylogeny 94  

PombeX Contour BF and 
FL 

FY Combines fluorescent image of nuclei and a brightfield image to 
segment fission yeast 

95  

CellX Graph cuts BF or FL MC, 
BY, 
FY 

Segmentation platform based on border detection applicable to a 
wide range of specimen 

88  

CellStar Active contour BF BY Segmentation and tracking of budding yeast 86  

Pomegranate  Thresholding BF and 
FL 

FY 2D segmentation of fission yeast and 3D reconstruction 96   

DISCO Support vector 
machine  

BF BY Segment yeast cells in microfluidic traps 188  

Conv-nets Neural network PH or 
FL 

MC, 
Bact 

Segmentation of phase images for bacteria and mammalian cells 108  

SuperSegger Threshold, 
Watershed and 
neural network 

PH Bact Segmentation of rod-shaped bacteria 109  
 

StarDist Neural network FL MC Identification of Star polygons in images 110 

Zcells Support vector 
machine  

BF Ec, 
BY, 
MC 

Segmentation based on a stack of BF images 114  

CellBow Neural network BF or FL BY, 
FY, 
MC 

Network trained on in and out of focus images to detect cells in 
different layers 

189 

YeaZ Neural network PH or 
BF 

BY Segmentation and tracking of budding yeast including shape 
mutants 

113 
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Cellpose  Neural network BF or FL MC, 
BY, 
FY, Ec 

Generalist segmentation platform trained on a diverse array of 
images 

111  

Cell-ACDC Neural network BF or FL BY, 
(MC, 
FY, 
Ec) 

Framework with GUI for image analysis including segmentation 
(based on YeaZ or Cellpose), tracking, pedigree and cell cycle 
annotations. Cell cycle annotations optimized for BY, segmentation 
and tracking compatible with other organisms. 

120  

TracX - BF, PH 
or FL 

BY, 
FY 

Generalist tracking software compatible with any segmentation 
algorithm that provides a segmentation mask; image modality and 
cell type independent with automated lineage reconstruction. 
Supports work-flows, scripting and provides a GUI for manual error 
correction (segmentation, tracking and lineage).  

118  

 
Image source: BF: Brightfield, PH: Phase contrast, FL: Fluorescence 
Cell Type: MC: Mammalian cells, BY: Budding yeast, FY: Fission yeast, Bact: Bacteria, Ec: E.coli 
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Table 2. List of repositories 

Name Data type 

(code, 
images, 
figures) 

DOI Storage 
limit 

Description Reference 

Image 
Data 
Resource 

images YES Up to 
1000 
GB; 
Above 
requires 
planning. 

IDR is a public repository of reference 
image datasets from published 
scientific studies. IDR enables access, 
search and analysis of these highly 
annotated datasets. 

https://idr.openmicroscopy.org 186 

Bio 
Image 
Archive 

Images, text YES 10 GB+ 
limit: n.a. 

BIA stores and distributes biological 
images that are useful to life sciences 
researchers. 

https://www.ebi.ac.uk/biostudies/BioImages/studies,190 

Systems 
Science 
of 
Biological 
Dynamics 
repository 

Images, 
various file 
types 

Yes n.a. 
submit 
via email 
contact 

SSBD is an open data archive that 
stores and publishes bioimaging and 
biological quantitative datasets that are 
associated with published or to be 
published studies. 

https://ssbd.riken.jp/repository/, 191 

  

The Cell 
Image 
Library 

Images, 
various file 
types 

Yes n.a. 
submit 
via email 
contact. 

CIL accumulates images of all cell types 
from all organisms, including 
intracellular structures and movies or 
animations demonstrating functions. 

http://www.cellimagelibrary.org/pages/contribute 

  

Figshare Data of 
various file 
types 

Yes Up to 
5GB 

Figshare a home for papers, FAIR data 
and non-traditional research outputs 
that is easy to use and ready now. 

https://figshare.com 

  

Zenodoo Data of 
various file 
types 

Yes 50GB, 
Above 
requires 
concact 

Zenodoo is built and developed by 
researchers, to ensure that everyone 
can join in Open Science and allows to 
share data. 

https://zenodo.org 

  

Bio 
Image 

AI models, 
applications, 
datasets 

Yes See 
Zenodoo 

BioImage.IO -- a collaborative effort to 
bring AI models to the bioimaging 
community. Data is hosted on Zenodoo. 

https://bioimage.io 

  

 
An up-to-date list of research data repositories beyond this table https://www.re3data.org/. 
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13. Figures captions 
 
Figure 1. Illustration of the many steps needed to successfully address a biological 
question using live-cell microscopy. 

 
Figure 2. A. Scheme of an epi-fluorescence microscopy set-up. The LED light source is 
coupled into the microscope using a liquid light guide. The excitation light is filtered by the 
excitation filter (ex) reflected by the dichroic mirror (dc) and sent into the objective. The 
fluorescent light generated by the sample is collected by the objective and passes through 
the dichroic mirror and an emission filter before reaching the detector. B,C,D. Different 
filter configurations to detect GFP (right) and RFP (left). In B, the filters and dichroic are 
placed in separate filter cubes and the switching of the reflector turret allows to change 
the detection channel. In C and D, the excitation light is selected and filtered directly by 
the LED housing. In C, a multiband dichroic mirror is used and the excitation filters placed 
on a separate emission wheel positioned in front of the detector filter the emitted light. In 
D, both dichroic and emission filters are multiband optics and the channel selection comes 
solely from the change of the excitation light. 

 
Figure 3. Response to phototoxicity is wavelength dependent. A strain expressing Msn2-
GFP was grown in a microfluidic plate with constant flow of glucose minimal medium. 
Cells were photo-stressed at levels that induce cell death after ~10 hours, and imaged 
every 5 minutes. Upper lanes show the GFP fluorescent image, each lower lane 
corresponding phase contrast images. A. Cells show no Msn2-GFP signal under blue 
(390 nm) light stress but cell death/stress-induced autofluorescence occurs after ~10 
hours. Red arrows: cell death. B. Cells stressed with yellow (575 nm) light show nuclear 
Msn2-GFP signal (examples indicated with orange arrows). The signal oscillates, thus 
only a fraction of cells shows signal at a single time-point. C. Most cells stressed with 
yellow light show nuclear Msn2-GFP at least once over the time course, while cells 
stressed with blue light do not. 

 
Figure 4. The effect of scaling and aligning. This toy example illustrates fluorescent signal 
from four cells (four colors) that experience a perturbation at t=5. All cells respond by a 
linear decrease of the fluorescent signal. However, the cells respond with different delays 
and different slopes of the decrease. A. If the raw data is averaged, the linearity of the 
response is lost. B. The cells were aligned by their time of response and scaled by the 
initial steady state value. When these traces are averaged, the linearity is captured for 
the initial part of the curve, but is then lost. The information on the distribution (error bars) 
is distorted. C. Often it makes sense to extract features such as the slope directly from 
the single-cell data, and then report on the distribution of these features.  
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