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Abstract. Modelling magma transport requires robust nu-
merical schemes for chemical advection. Current numeri-
cal schemes vary in their ability to be mass conservative,
computationally efficient, and accurate. This study com-
pares four of the most commonly used numerical schemes
for advection: an upwind scheme, a weighted essentially
non-oscillatory (WENO-5) scheme, a semi-Lagrangian (SL)
scheme, and a marker-in-cell (MIC) method. The behaviour
of these schemes is assessed using the passive advection of
two different magmatic compositions. This is coupled in 2D
with the temporal evolution of a melt anomaly that generates
porosity waves. All algorithms, except the upwind scheme,
are able to predict the melt composition with reasonable ac-
curacy, but none of them is fully mass conservative. However,
the WENO-5 scheme shows the best mass conservation. In
terms of total running time and when multithreaded, the up-
wind, SL, and WENO-5 schemes show similar performance,
while the MIC scheme is the slowest due to reseeding and
removal of markers. The WENO-5 scheme has a reasonable
total run time, has the best mass conservation, is easily par-
allelisable, and is therefore best suited for this problem.

1 Introduction

Mechanisms of magma ascent and emplacement within the
lithosphere and upper asthenosphere remain largely uncon-
strained (e.g. Connolly and Podladchikov, 2007b; Katz et al.,
2022). Studies have attempted to address this problem using
techniques ranging from geophysical measurements of the
present-day lithosphere to geochemical analysis of the rock
record. However, geophysical studies are hampered by indi-

rect measurements, and natural samples in geochemical stud-
ies represent only the end-product of the melting processes
(Brown, 2013; Clemens et al., 2022; Johnson et al., 2021).
Comparatively, numerical modelling allows the investigation
of these processes at a range of scales in space and time (e.g.
Keller, 2013; Katz and Weatherley, 2012).

To numerically model such open systems, it is necessary
to be able to describe the chemical and physical processes re-
sponsible for magma ascent in a rock. At low melt fractions
and in the absence of externally applied stress, the physical
processes are based on the continuum formulation of two-
phase flow. It takes into account the concurrent mechanisms
of rock matrix compaction and buoyancy of partial melt in
an interconnected porous network (e.g. Scott and Steven-
son, 1984; McKenzie, 1984). This formulation is based on
mass and momentum conservation and an appropriate set of
constitutive relationships. In addition, conservation of energy
needs to be ensured to link mechanical to chemical processes
(e.g. Katz, 2008). Chemical processes, such as phase reac-
tions, can be considered using thermodynamics and/or ki-
netics and relate the equilibration of the melt with the host-
ing rock (e.g. Omlin et al., 2017; Bessat et al., 2022). They
contribute to the transport dynamics by changing rock prop-
erties, such as density, viscosity, porosity, and permeability
(Jha et al., 1994; Aharonov et al., 1995b; Keller and Katz,
2016). However, the amount of melt interacting with the
rock is also modulated by transport mechanisms (Kelemen
et al., 1997; Spiegelman and Kenyon, 1992; Aharonov et al.,
1995a). Therefore, the development of integrated models that
successfully describe the complex interaction between reac-
tion and transport is key to understanding melting and melt
extraction at all scales.
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Numerous numerical studies have investigated reactive
melt transport. It has been shown that melts that partially
crystallise or dissolve the host rock could be a viable mech-
anism for channelling flow and creating heterogeneities in
the mantle in the context of mid-ocean ridges (Aharonov
et al., 1997; Spiegelman et al., 2001) and sub-arc magmatism
(Bouilhol et al., 2011). Concerning lower-crust melting, this
approach has mainly been used to understand the processes
of chemical differentiation and the compositional range of
magmas in mafic systems (e.g. Jackson et al., 2005; Solano
et al., 2012; Riel et al., 2019).

One challenge of reactive melt transport modelling is the
advection of the melt composition through its ascent. This
part, which is mathematically well understood, being de-
scribed by a mass balance equation, is numerically challeng-
ing (e.g. LeVeque, 1992). This is mainly due to the fact that
most numerical models are based on a Eulerian frame of
reference, where the discretised space is fixed in space and
in time. In contrast, transport is by essence better defined
from a Lagrangian perspective, where the observer follows
the particles of fluid as they move. In addition, two-phase
flow models are at least 2D problems due to the formation
of channels (e.g. Barcilon and Lovera, 1989; Connolly and
Podladchikov, 2007b) and to the fact that mass cannot be
transported efficiently in 1D in the melt (Jordan et al., 2018).
This brings a limitation to the resolution of the models and
hence requires accurate advection schemes.

This study compares four numerical schemes applied to
the problem of the advection of magmatic composition:
an upwind scheme, a weighted essentially non-oscillatory
(WENO) scheme, a semi-Lagrangian (SL) scheme, and a
marker-in-cell (MIC) method. This selection provides a rep-
resentation of the different approaches to solving advection
problems that are commonly used in a wide range of applica-
tions. We assess the performance of each scheme in terms of
accuracy, mass conservation, and computational time. A 2D
model coupling chemical advection with a two-phase flow
solver is then used to evaluate which algorithm is best suited
for this problem.

2 Governing equations

Chemical transport in two-phase flow systems is described
by the four mass conservation equations of the system (e.g.
Aharonov et al., 1997). The first two equations describe the
conservation of the total mass of the solid and the liquid:

∂ [(1−φ)ρs]
∂t

=−∇ · [(1−φ)vsρs] , (1)

∂(φρf)

∂t
=−∇ · (φvfρf) , (2)

where f and s represent the fluid and solid phases, t is the
time (in s), φ is the fluid-filled porosity, ρ is the density of
the respective phase (kgs−3), and v is the velocity of the re-

spective phase (ms−1). The last two equations express the
conservation of each chemical component within the solid
and fluid phases:

∂
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, (4)

where Ce is the mass fraction of the chemical component
e in the respective phase, Ds

e is the solid diffusion coeffi-
cient of the chemical component e (in m2 s−1), and Df

e is
the hydrodynamic dispersion tensor of the chemical compo-
nent e in the fluid (m2 s−1). These four equations assume no
mass transfer due to reactions between the solid and the liq-
uid phases.

Simplifications

In this study, the advection of the chemical components
transported by the liquid phase is considered, and the dif-
fusion term in Eqs. (3) and (4) is neglected. Since ρs is as-
sumed to be constant and the host rock has a fixed composi-
tion, Eq. (3) is omitted.

Subtracting Eq. (2) in Eq. (4), and dividing by ρf and φ
yields

∂Cf
e

∂t
=−vf∇ ·C

f
e. (5)

Equation (5) is formally equivalent to Eq. (4) without the
dispersion term. Moreover, Eq. (4) is written in conserva-
tive form, whereas Eq. (5) is expressed in Lagrangian or
non-conservative form. Equation (5) removes the time de-
pendence on φ and is linear. It is a common form used in the
reactive transport modelling community (e.g. Carrera et al.,
2022).

An expression for vf can be derived by coupling Eqs. (1)
and (2) to the momentum conservation equations (e.g.
McKenzie, 1984; Bercovici et al., 2001). These are usually
solved before Eq. (5); a description of the system used in this
study is provided below in Sect. 5.1.

3 Numerical methods

Solving an advection equation using a linear Eulerian scheme
leads to high numerical diffusion for first-order schemes,
such as the upwind scheme (Courant et al., 1952), and to os-
cillations on sharp gradients for higher-order schemes (LeV-
eque, 2002). The latter effect is described by Godunov’s
theorem (Godunov and Bohachevsky, 1959). This theorem
states that linear Eulerian schemes with an order of accu-
racy greater than 1 cannot preserve the monotonicity of the
solution for sharp gradients, discontinuities, or shocks. This
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has led to extensive developments in the design of high-
order Eulerian non-linear schemes that can achieve high ac-
curacy without bringing oscillations. Examples of such de-
velopments are the essentially non-oscillatory (ENO) meth-
ods (Harten et al., 1987) that later led to WENO schemes
(Liu et al., 1994). These schemes are based on the idea of us-
ing a non-linear adaptive procedure to automatically choose
the locally smoothest stencil, and early examples of applica-
tions include the modelling of shocks appearing in acoustics
(e.g. Grasso and Pirozzoli, 2000) or solving the Hamilton–
Jacobi equations (e.g. Jiang and Peng, 2000).

Another approach is to use schemes closer to the La-
grangian perspective, such as the MIC (or alternatively
named marker-and-cell) method (e.g. Harlow et al., 1955;
Gerya and Yuen, 2003a). It consists of tracking individual
particles on a Lagrangian frame and reinterpolating them
when needed on a Eulerian stationary grid. This approach has
the advantage of producing little numerical diffusion, being
unconditionally stable, and has been extensively used in geo-
dynamic models (e.g. Gerya, 2019; van Keken et al., 1997;
Duretz et al., 2011).

Finally, there are intermediate methods, such as semi-
Lagrangian methods, trying to take advantages from both
Eulerian and Lagrangian schemes (Robert, 1981; McDonald,
1984). These schemes look at different particles at each time
step, considering only particles whose final trajectories cor-
respond to the position of grid nodes. This has the advan-
tage of only considering a number of particles equal to the
resolution of the Eulerian grid and is computationally effi-
cient. They are also unconditionally stable but have issues
with mass conservation (Chandrasekar, 2022). They were
first developed for atmospheric modelling (e.g. Robert, 1981;
Staniforth and Côté, 1991) and later successfully used in
the plasma modelling community (e.g. Sonnendrücker et al.,
1999).

To solve for Eq. (5) in the context of two-phase flow, we
implemented and tested four different advection schemes that
are representative of the approaches described above: an up-
wind scheme, a WENO scheme, an SL scheme, and a MIC
method.

3.1 Upwind scheme

The upwind scheme is among the simplest algorithms for
solving an advection equation on a Eulerian grid (e.g. LeV-
eque, 1992). It is explicit and first order in space and in time.
It consists of using a spatially biased stencil that depends on
the direction of the flow (Fig. 1).

Figure 1. Spatial stencil of the upwind scheme in 1D. The blue box
is the valid stencil for positive velocities and the yellow box for
negative velocities.

3.1.1 Spatial discretisation

Using a first-order spatially biased stencil, Eq. (5) can be ap-
proximated for one chemical element and in 1D as

∂Ci

∂t
+ vf,i

Cni −C
n
i−1

1x
= 0 for vf,i > 0,

∂Ci

∂t
+ vf,i

Cni+1−C
n
i

1x
= 0 for vf,i < 0, (6)

where i is a spatial index in the x direction,1x is the constant
grid spacing, and vf,i is the x component of the fluid velocity.

3.1.2 Temporal discretisation

Combined with the first-order forward Euler method, we re-
trieve the classical upwind scheme from Eq. (6):

Cn+1
i −Cni

1t
+ vf,i

Cni −C
n
i−1

1x
= 0 for vf,i > 0,

Cn+1
i −Cni

1t
+ vf,i

Cni+1−C
n
i

1x
= 0 for vf,i < 0, (7)

where 1t is the time step.
It can also be rewritten in a more compact form:

Cn+1
i = Cni −1t

[
v+f,i

(
Cni −C

n
i−1

1x

)
+ v−f,i

(
Cni+1−C

n
i

1x

)]
, (8)

where

v+f,i =max(vf,i,0),

v−f,i =min(vf,i,0).

This scheme is well-known to produce a lot of numerical dif-
fusion and is bounded by the following Courant–Friedrichs–
Lewy (CFL) condition for p dimensions:

1t

(
p∑
j=1

∣∣vfj
∣∣

1xj

)
≤ Comax = 1,

where Comax is the maximum Courant (Co) number (e.g.
Hirsch, 2007). In addition, it is not mass conservative for
non-constant vf, especially for divergent flow.
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3.2 Weighted essentially non-oscillatory scheme

Weighted essentially non-oscillatory schemes were devel-
oped by Liu et al. (1994). The reader can refer to Shu (2009)
for a comprehensive review of the development of WENO
schemes and Pawar and San (2019) for implementations us-
ing Julia.

They are high-order schemes able to resolve sharp gradi-
ents, produce little numerical diffusion, but also follow the
same CFL condition as the upwind scheme. The key idea
behind them is to use a non-linear adaptive procedure to au-
tomatically choose the locally smoothest stencil. This allows
WENO schemes to dispose of oscillations when advecting
sharp gradients.

We use a fifth-order-in-space finite-difference approach
for non-conservative problems, referenced as WENO-5 here-
after.

3.2.1 Spatial discretisation

Equation (5) can be discretised in space using the WENO-5
scheme similarly to the upwind scheme, in 1D, for one chem-
ical element and for a single grid point such as

∂Ci

∂t
+ v+f,i

CLi+ 1
2
−CL

i− 1
2

1x


+ v−f,i

CRi+ 1
2
−CR

i− 1
2

1x

= 0, (9)

where

CL
i+ 1

2
= wL0
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1
3
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7
6
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11
6
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(
−

1
6
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5
6
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3
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)
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1
3
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5
6
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1
6
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)
,
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2
= wR0
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3
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3
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.

Here, CL
i− 1

2
and CR

i+ 1
2

are omitted to avoid redundancy. They

can be obtained by shifting the index by −1 and 1, respec-
tively.

The non-linear weights w are defined as

wLk =
αk

α0+α1+α2
, αk =

dLk

(βk + ε)
2 , k = 0,1,2,

wRk =
αk

α0+α1+α2
, αk =

dRk

(βk + ε)
2 , k = 0,1,2.

Table 1. Optimal weights for WENO-5 scheme.

dk k=0 k=1 k=2

dL
k

0.1 0.6 0.3
dR
k

0.3 0.6 0.1

Figure 2. Spatial stencil of the WENO-5 scheme in 1D. CL is
used for positive velocities and CR for negative velocities. The blue
boxes are valid stencils for positive velocities, and the yellow and
orange boxes are valid for negative velocities.

The values of the optimal weights dLk and dRk are given in Ta-
ble 1. ε represents the machine epsilon, the relative approxi-
mation error due to rounding in floating-point arithmetic, and
is used to avoid division by zero.

Smoothness indicators β are equal to

β0 =
13
12
(Ci−2− 2Ci−1+Ci)

2
+

1
4
(Ci−2− 4Ci−1+ 3Ci)2,

β1 =
13
12
(Ci−1− 2Ci +Ci+1)

2
+

1
4
(Ci−1−Ci+1)

2,

β2 =
13
12
(Ci − 2Ci+1+Ci+2)

2
+

1
4
(3Ci − 4Ci+1+ 3Ci+2)

2.

The WENO-5 scheme requires, in 1D, a stencil of five points
biased towards the left for positive velocities and five points
biased towards the right for negative velocities as shown in
Fig. 2. This commonly requires two ghost points on each side
of the model to apply the boundary conditions. To extend this
scheme to 2D, two new terms can be added to Eq. (9) for the
new positive and negative component of vf. The expressions
of C at half points of the new index can be derived using the
same formulae as in 1D for the new direction.

3.2.2 Temporal discretisation

Weighted essentially non-oscillatory schemes are not stable
using the standard forward Euler time integration method
(Wang and Spiteri, 2007). The most commonly used discreti-
sation is the third-order strong stability preserving (SSP) ex-
plicit Runge–Kutta method (e.g. Jiang and Shu, 1996; Ghosh
and Baeder, 2012). Strong stability preserving schemes are
used to fully capture discontinuous solutions and are there-
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fore well-suited for solving hyperbolic partial differential
equations (Gottlieb et al., 2001).

The third-order SSP Runge–Kutta for Eq. (5) for one
chemical element can be written as

C1
i = C

n
i −1tL(C

n
i ),

C2
i =

3
4
Cni +

1
4

[
C1
i −1tL

(
C1
i

)]
,

Cn+1
i =

1
3
Cni +

2
3

[
C2
i −1tL

(
C2
i

)]
,

with L being the spatial discretisation operator:

L(Ci)= v
+

f,i

CLi+ 1
2
−CL

i− 1
2

1x

+ v−f,i
CRi+ 1

2
−CR

i− 1
2

1x

 .
With this formulation, the WENO-5 scheme is fifth order in
space and third order in time.

3.3 Semi-Lagrangian schemes

Semi-Lagrangian schemes take a different approach than
classical Eulerian methods and are related to tracer-based
advection schemes. Semi-Lagrangian schemes aim to use
the best of Lagrangian and Eulerian methods by solving the
problem for particles whose trajectories pass through a fixed
grid at the end of each time step rather than recording the full
history of individual particles. They are therefore uncondi-
tionally stable. Two steps are usually required to implement
SL schemes: trajectory tracing and interpolation back to the
grid. In this study, a backward-in-time SL scheme is used for
the trajectory tracing and the quasi-monotone scheme devel-
oped by Bermejo and Staniforth (1992) for the interpolation.

3.3.1 Trajectory tracing

The advantage of backward-in-time SL schemes is that the
interpolant is defined from the Eulerian grid. In the case of
a regular grid, this reduces the complexity of the implemen-
tation and the numerical cost of the interpolation function,
since the interpolant is defined on a regular grid. From a par-
ticle point of view, the goal is to retrieve the position of the
particle at time tn for which the position corresponds to a
grid point at time tn+1. Using Eq. (5) for one chemical ele-
ment and in 1D, the following ordinary differential equation
has to be solved:

dx
dt
= vf(x, t). (10)

Knowing x(tn+1)= xi , where i is a grid point, x(tn)= xd ,
where d is a departure point that needs to be found. In most
practical cases, the velocity field varies greatly in time and in
space between each time step, especially for porosity waves,
so it is not easy to determine xd . A common approach to
accurately determine xd is to use a linear multistep method

Figure 3. Summary of trajectory tracing for backward semi-
Lagrangian schemes. The aim is to find the value of the advected
quantity at the position xi and at the time step tn+1. The blue par-
ticle uses the velocity at n+ 1. The yellow particle shows the mid-
point method, using an approximation of the velocity at n+ 1

2 . The
value of the particle at position xd can then be interpolated at tn to
obtain the value at xi at tn+1.

such as the implicit mid-point scheme (Robert, 1981):

xi − xd

1t
= vf

(
xi + xd

2
, t
n+ 1

2

)
, (11)

where vf at time t
n+ 1

2
is obtained by taking the mean between

the velocity at n and n+ 1. The assumption behind the mid-
point rule is that the velocity remains constant at the mid-
point value during each time step. This ensures that each tra-
jectory is linear, with the mid-point being the average of the
positions of its endpoints (Fig. 3). This method is a second-
order accurate trajectory method in both space and time.

Equation (11) must be solved implicitly because xd is
present on both sides of the equation and therefore requires
iterations. It can be achieved for r iterations in this form:

xr+1
d = xi −1tvf

(
xi + x

r
d

2
, t
n+ 1

2

)
. (12)

A minimum of three iterations while using linear interpola-
tion has been shown to be sufficient in most cases (e.g. Mc-
Donald, 1984).

3.3.2 Interpolation

In most cases, xd does not correspond to a grid node (see
Fig. 3). In this case, interpolation is required to retrieve the
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value of the unknown at xd :

C(xd , t)= L
[
C(xik ), t

]
,

where L is an interpolation operator and xik represents the
nodes of the cell containing xd .

Commonly, cubic interpolants are used as they offer a
good compromise between performance and accuracy (e.g.
Chandrasekar, 2022) and require in 1D four grid points xik
per particle. Cubic B-splines are used in this study. Go-
dunov’s theorem still applies to linear SL schemes, and since
cubic interpolation is third order in space, it introduces oscil-
lations and overshoots for high gradients. To overcome this
limitation, quasi-monotone (QM) SL schemes were devel-
oped by Bermejo and Staniforth (1992). The term QM means
that the scalar field values cannot exceed the range of the
previous time step but can still develop wiggles inside that
range. Quasi-monotonicity is equivalent to the notion of be-
ing essentially non-oscillatory (Bermejo, 2001). A disadvan-
tage of this method is an increased numerical diffusion, es-
pecially for a high Co number. A maximum Co number of
1.5 is generally used (e.g. Smith, 2000).

To implement quasi-monotone semi-Lagrangian (QMSL)
schemes, let us define C− and C+ as the minimum and max-
imum scalar values of the nodes of the cell containing xd and
CH as the high-order non-monotone interpolant, here a cu-
bic spline. Then, a local clipping can be applied at the end of
each time step:

CM (xd , t)=

 C+(xd , t) if CH (xd , t) > C+(xd , t),
C−(xd , t) if CH (xd , t) < C−(xd , t),
CH (xd , t) otherwise,

(13)

where CM is the quasi-monotone interpolant. Equation (13)
can be rewritten in a more compact way:

CM (xd , t)=min
{

max
[
C− (xd , t) ,C

H (xd , t)
]
,C+(xd , t)

}
.

Formally, this formulation is equivalent to a linear com-
bination between a high-order interpolant and a first-order
(monotone) interpolant (Bermejo, 2001).

3.4 Marker-in-cell schemes

Marker-in-cell schemes share the same ambition as SL
schemes, such as being unconditionally stable, but are closer
to Lagrangian schemes. They record the complete history
of individual particles, called markers and interpolate their
values on a fixed grid. This approach has the advantage
of greatly reducing numerical diffusion and making MIC
schemes unconditionally stable. In addition to trajectory trac-
ing and interpolation, the MIC schemes require markers to be
generated within the domain of the model.

3.4.1 Initial marker generation and reseeding of
particles

The number of markers per cell required can vary depending
on the complexity of the problem, here 5 markers per cell di-
mension and effectively 25 in 2D. This is generally sufficient
to achieve good accuracy (e.g. Gerya, 2019). The initial value
in each marker can then be directly derived from the initial
conditions or obtained by linear interpolation from the initial
conditions of the Eulerian grid.

For highly divergent flows or sometimes strongly stretch-
ing flows, it is necessary to regenerate or remove markers
during the simulation. For highly divergent flows, this is be-
cause particles will accumulate in zones with negative diver-
gence values and create a gap in zones with positive diver-
gence values. For highly stretching flow, increases or gaps in
the density of the markers can be induced by preferential flow
in a particular direction. For reseeding, a non-conservative
strategy similar to Keller et al. (2013) is used. If the marker
density per cell is less than 25 % of the initial density, new
markers are generated and assigned the value of the near-
est marker. The old markers are discarded after this step.
For marker accumulation, the marker density cannot exceed
twice the initial density. If it does, a quarter of the markers
are discarded at random.

3.4.2 Trajectory tracing

The goal of trajectory tracing for MIC schemes is to deter-
mine the position of each marker at the next time step. The
same equation as Eq. (10) is solved. However, compared to
backward SL where the final position is known, the unknown
in this case is the position of the arrival point at tn+1. Also,
the common way to solve this equation for MIC schemes
is not using a linear multistep method such as the implicit
mid-point scheme but rather Runge–Kutta schemes (Gerya,
2019). Using a second-order Runge–Kutta scheme, it con-
sists of four steps. Interpolating vf at tn at the departure point
xd of the markers, finding the position of the markers at t

n+ 1
2

using vf at tn, reinterpolating the velocity at this new posi-
tion, and using this new velocity to compute the arrival point
xa of the markers at tn+1 from tn.

Since classical interpolants do not retain the physical prop-
erties of the velocity field, such as its divergence, a simple
bilinear interpolation may lead to unphysical clustering of
markers on the timescale of a numerical model. To address
this issue, Pusok et al. (2017) explored different interpolants
and showed the advantages of using the LinP interpolation
scheme (Gerya, 2019). The LinP interpolation scheme is an
empirical relationship that combines two linear interpolants
defined at the sides and at the centre of each cell. It is defined
as

vf (x, t)= AL [vf (xside, t)]+ (1−A)L [vf (xcenter, t)] ,
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with A a constant commonly equal to 2/3, L a linear inter-
polant, and xside and xcenter the position of the sides and cen-
tre of the cell containing the marker.

Using this definition, we can rewrite the four steps of the
second-order Runge–Kutta scheme in mathematical notation
with four equations:

vf (xd , tn)= AL [vf (xside, tn)]+ (1−A)L [vf (xcenter, tn)] ,

xh = xd +
1
2
1tvf (xd , tn) ,

vf (xh, tn)= AL [vf (xside, tn)]+ (1−A)L [vf (xcenter, tn)] ,
xa = xd +1tvf (xh, tn) ,

with xh the intermediate position of the marker. Solving these
four equations successively to obtain a value for xa with this
method is second order in space but only first order in time,
as only the velocity at tn is used.

3.4.3 Interpolation

After calculating the position of the markers, it is necessary
to interpolate back on the Eulerian grid and/or to update the
values of the markers from the Eulerian grid depending on
the problem being solved. The step of updating the mark-
ers is not described in detail here, as it is not used in this
study, but involves a simple interpolant when a regular grid
is used. This step is more complex for updating the advected
field on the Eulerian grid because the markers are not uni-
formly distributed for a non-trivial velocity field. Therefore,
contrary to SL schemes, interpolation is performed on an un-
structured grid as it is based on the position of the markers. In
most cases, linear interpolants are used because they prevent
oscillations, and the marker densities are high enough to pre-
vent numerical diffusion. In this study, a weighted-distance-
averaging linear interpolant is used (Gerya, 2019):

w(xm, tn+1)= 1−
1xm

1x
,

C (xi, tn+1)=

m∑
i=1
C (xm, tn+1)w (xm, tn+1)

m∑
i=1
w(xm, tn+1)

,

where xm is the position of a marker m, 1xm is the distance
between a markerm and the grid point i, and w is the weight
of a marker m. All markers found in the cells surrounding
grid point i are used for interpolation, as in Gerya and Yuen
(2003b). The relationship between the markers and the grid
in 2D is summarised in Fig. 4. One disadvantage of this inter-
polant is that it is prone to race conditions in shared memory
systems, as it involves two sums, which require the use of
atomic operations to parallelise the implementation.

Figure 4. Sketch showing the geometric relationship in 2D between
a point xi,j of the Eulerian grid and the markers xm used for the in-
terpolation on a regular grid. The value at the point xi,j is interpo-
lated from the markers xm contained inside the four neighbouring
cells. xi,j is fixed in time and in space, whereas the position of the
markers xm are time-dependent.

4 Numerical tests

To test the four advection schemes, two different numerical
tests are performed in 2D: the pure rotation of a cylinder and
the advection through a more complex velocity field mimick-
ing a convection cell. In both cases, the domain is a square of
size 1.0× 1.0 with a constant spacing of 1x =1y = 0.005
for a resolution of 201×201 nodes. The radius of the cylinder
is 241x with a mass fraction of 1.0 and is centred at coor-
dinates (0.25,0.25). The initial conditions for both tests are
shown in Fig. 5.

For the first test, the time increment is1t = 400 with ω =
π×10−5, so it takes 500 time steps to make a full revolution.
The velocity is defined as v = (−ω(y− 0.5),ω(x− 0.5)),
so the rotation is anti-clockwise, and the centre of it is at
coordinates (0.5,0.5). The Co numbers inside the cylinder
range between 0.45 and 0.8. The test is stopped after two
revolutions. For the second test, v is defined as v = (−2π ×
sin(πx)×cos(πy),2π×cos(πx)×sin(πy)). The time incre-
ment1t is fixed by constraining the Co number to be 0.7 for
a total time of 0.8 and 1016 time steps. At half of the total
time, the opposite sign of v is taken as the new value of v,
such that the analytical solution of the problem corresponds
to the initial conditions.

To compare and quantify the results of the different
schemes, the following quantities were monitored: the mass
conservation (M), the total error (Etot), the maximum value
of the final mass fraction (max(Cf)), and the minimum
elapsed computational time of one time step after 10000 runs,
with one thread and with 24 threads.

The mass conservation is defined as

M =

K∑
k=1

(
Ckf
)

K∑
k=1

(
Ck0
) , (14)
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Figure 5. Initial conditions for the two numerical tests. The yellow arrows show the velocity fields of the tests. (a) Rotation of a cylinder.
(b) Convection of a circular anomaly.

Figure 6. Results of the rotational test after two revolutions for the upwind, WENO-5, QMSL, and MIC schemes (a–d). Note that the upwind
scheme was run with 1t = 80 due to stability issues.

where k is a 2D grid point index, K is the total number of
grid points, Ckf is the final mass fraction at index k, and Ck0
is the initial mass fraction at index k.

The total error in the scheme is defined as the mean square
error:

Etot =
1
K

K∑
k=1

(
Ck0 −C

k
f

)2
.
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Figure 7. Results of the convection test after a total time of 0.8 for the upwind, WENO-5, QMSL, and MIC schemes (a–d). The velocity
field was reversed at half of the total time so that the anomaly returns to its initial position.

The results for both tests are reported in Table 2 and in Figs. 6
and 7 for the four different schemes. Both tests show the
strong numerical diffusion of the upwind scheme and its high
Etot due to its first order in time and space. The WENO-
5 scheme shows no oscillation and a good accuracy, being
fifth order in space and third in time in both tests, with a
small mass loss in the second test. The QMSL is not mass
conservative for both problems. It shows a relatively good
accuracy, being third order in space and second in time; is
monotone; but shows deformation of the original cylinder at
the end of the second test. Finally, for both tests, the MIC
scheme is mass conservative and monotone and shows the
best accuracy with almost no numerical diffusion. These sim-
ple tests highlight the properties of each scheme but use a
velocity field that is divergence-free and without sharp vari-
ations. Coupling with a two-phase flow system is therefore
necessary to assert which scheme is the more suitable in this
case.

5 Coupling chemical advection and two-phase flow

Solving Eq. (5) for concrete cases implies having an ex-
pression for vf at each time step. In this section, Eq. (5) is

coupled to a transport model based on two-phase flow for-
malism. This transport model is used to model magma as-
cent in a porous solid phase. The main mechanism of trans-
port is decompaction weakening, buoyancy, and failure and
combines the formulations of Connolly and Podladchikov
(2007a) and Vasilyev et al. (1998). It considers a compress-
ible viscoelastic matrix with incompressible solid grains and
an incompressible fluid phase, and it neglects the effect of
shear stresses on fluid flow and compaction.

5.1 Two-phase flow formulation

In the case of a laminar fluid flow, conservation of momen-
tum for the fluid can be expressed using Darcy’s law:

φ(vf− vs)=−
k(φ)

µf
(∇Pf+ ρfg), (15)

with Pf the fluid pressure (in Pa), k the permeability (m2), a
function of the filled porosity or melt fraction φ, µf the fluid
viscosity (Pas), and g the gravity vector (ms−2).

The relation between permeability and the filled porosity is
assumed to follow the Kozeny–Carman law (Carman, 1939;
Costa, 2006):

k = aφ3,
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Table 2. Results of the two numerical tests for four advection schemes. The running time for the MIC does not include the reseeding and
removal step of markers.

Rotational test Convection test Running time of one time step [ms]

Numerical schemes M Etot max(C) M Etot max(C) Single-threaded Multithreaded (24)

Upwind 1.000 14.92× 10−3 0.700 1.000 24.17× 10−3 0.454 0.545 0.122
WENO-5 1.000 1.57× 10−3 1.000 0.997 3.39× 10−3 1.008 14.882 1.767
QMSL 0.963 2.51× 10−3 1.000 1.003 7.73× 10−3 1.003 17.710 3.320
MIC 1.000 0.32× 10−3 1.000 1.000 2.39× 10−3 1.000 145.091 16.959

where a is a proportionality constant.
The effective pressure Pe is defined as the difference be-

tween lithostatic pressure and fluid pressure:

Pe = Plith−Pf, (16)

with Plith the lithostatic pressure or the vertical load (in Pa).
Substituting Eq. (16) in Eq. (15) and assuming constant rock
density, we obtain

φ(vf− vs)=
k(φ)

µf
(∇Pe+1ρg) . (17)

Considering the solid phase as a Maxwell body, we introduce
rheology as the sum of viscous and poroelastic deformation:

∇ · vs =−
Pe

ζ(φ,Pe)
−φbβφ

∂Pe

∂t
, (18)

where ζ is the volume viscosity of the rock (in Pas), b a con-
stant, and βφ the pore compressibility modulus (Pa−1). The
terms on the right-hand side represent viscous and poroelas-
tic deformation. Equation (18) is valid on the basis that shear
stress is neglected.

The volume viscosity ζ is defined as a function of φ and
Pe:

ζ =
µs

φm

[
1
R
−H (Pe)

(
1
R
− 1

)]
,

with µs the shear viscosity of the rock (in Pas),m a constant,
and R the decompaction weakening factor defined as the in-
verse of the R factor in Connolly and Podladchikov (2007a).
H(Pe) is originally defined as the Heaviside function but is
here approximated by a hyperbolic tangent function as simi-
larly done by Räss et al. (2018).

We approximate here βφ as the inverse of G, the shear
modulus of the rock (in Pa):

βφ ≈
1
G
.

This is valid for cylindrical pores, as described by Yarushina
and Podladchikov (2015).

Summing up the right-hand sides of Eqs. (1) and (2) de-
scribing mass conservation and neglecting the change in den-
sities, we obtain the total volumetric flux of material. Apply-
ing the divergence operator, we can derive

∇ · [vs+φ(vf− vs)]= 0. (19)

We can then substitute Eqs. (17) and (18) in Eq. (19) to obtain

Pe

ζ(φ,Pe)
+
φb

G

∂Pe

∂t
=∇ ·

[
k(φ)

µf
(∇Pe+1ρg)

]
. (20)

In addition, developing Eq. (1) with the assumption that φ is
much smaller than unity and substituting with Eq. (18) yields

∂φ

∂t
=−

Pe

ζ(φ,Pe)
−
φb

G

∂Pe

∂t
. (21)

Equation (20) can be seen as the mass conservation equation
of the system, relating the flux densities of the solid and fluid
phases. Equation (21) relates the evolution of porosity with
the deformation of the solid phase. Solving these two coupled
equations for Pe and φ allows the calculation of vs and vf
from Eqs. (18) and (17) at each time step, making the link
with Eq. (5).

5.2 Non-dimensionalisation and numerical approach

To mitigate numerical errors, a dimensionless scaling of the
system is applied. The scaling variables are defined in Ta-
ble 3. Using the scaling variables with Eqs. (17), (18), (20),
and (21) and rearranging, we obtain the dimensionless sys-
tem of equations:

∂p

∂tc
=

1
ϕbDe

×
(
∇ ·
[
ϕn (∇p+ 1)

]
−

ϕp

1
R
−H(p)( 1

R
− 1)

)
, (22)

∂ϕ

∂tc
=−

[
ϕp

1
R
−H(p)( 1

R
− 1)
+ϕbDe

∂p

∂tc

]
, (23)

∇ ·us =
∂ϕ

∂tc
, (24)

uf = ϕ
n−1 (∇p+ 1)+us, (25)

where ϕ, p, tc, us, and uf are the dimensionless porosity, the
dimensionless effective pressure, the dimensionless time, the
dimensionless solid velocity, and the dimensionless fluid ve-
locity, respectively. The Deborah number De is formally the
ratio of the relaxation time to the observation time (Reiner,
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Table 3. Parameters and corresponding scaling variables used in the models. Definitions of the scaling variables are from McKenzie (1984)
and Connolly and Podladchikov (1998).

Parameter Symbol Definition Value Unit

Melt viscosity µf 100 Pas
Rock shear viscosity µs 1019 Pas
Density contrast between solid and melt 1ρ 500 kgm−3

Weakening parameter R 100
Shear modulus G 3.5× 109 Pa
Background porosity φ0 10−3

Permeability constant a 10−7 m2

Background permeability k0 aφ0 m2

Exponent for bulk viscosity term m 1
Exponent for poroelastic term b 1
Gravity acceleration g 9.80665 ms−2

Characteristic porosity φ∗ φ0 10−3

Characteristic viscous compaction length L∗
√
µsk0
φ0µf 0

100 m

Characteristic effective pressure P ∗e L∗1ρg 490332.5 Pa
Characteristic fluid flux q∗f

µf 0
φ0

1ρgL∗ 4.9× 10−12 ms−1

Characteristic time t∗ L∗

q∗f
0.65 Myr

Deborah number De βφP
∗
e 1.4× 10−5

1964), and here it characterises the ratio between viscous and
elastic deformation. In the limit of small porosities, us can be
neglected and only Eqs. (22), (23), and (25) are here solved.

Equations (22) and (23) are strongly coupled and highly
stiff due to the non-linearity of the system and require an effi-
cient numerical solver. DifferentialEquations.jl (Rackauckas
and Nie, 2017), a robust ordinary differential equation (ODE)
solver package, was used. This package has the advantage
of simplicity, both in concept and in coding, and allows ar-
bitrary orders of accuracy in time to be easily tested using
different ODE solvers.

Equations (22) and (23) are first discretised in space using
finite differences on a uniform Cartesian grid in 2D and then
integrated in time using the trapezoidal rule with the second-
order backward difference formula (TR-BDF2) scheme, an
implicit scheme suitable for highly stiff problems (Bank
et al., 1985) using DifferentialEquations.jl. It uses adaptive
time-stepping and the Newton–Raphson method as a non-
linear solver, using forward automatic differentiation to com-
pute the Jacobian matrix (Revels et al., 2016). Knowing ϕ
and p, Eq. (25) is then solved to compute uf at each time
step. The boundary conditions are periodic in all directions
for all models. The system is then dimensionalised back.

5.3 Application to magmatic system

To assess the behaviour of the four advection schemes cou-
pled with a two-phase flow system, we model the ascent of a
magmatic anomaly. The spatial domain is a 2D regular grid
of 450 by 900 m, and the total physical time is 1.5 Myr. The

initial melt fraction distribution is defined using the follow-
ing 2D Gaussian function:

φ = φ0+φmax× exp
(
−
(x− x0)

2
+ (z− z0)

2

σ 2

)
,

with φ0 the background porosity defined as 0.1 %, φmax the
maximum porosity defined as 5 %, and x0 and z0 the cen-
tre of the anomaly. The standard deviation σ of the Gaus-
sian is 30 m. All physical parameters and corresponding scal-
ing variables used are reported in Table 3. The evolution of
porosity is shown in Fig. 8. All models were performed on a
single computer with an Intel Xeon Gold 6128 processor and
128 GB of RAM using Julia version 1.10.2. All models were
computed on a CPU with multithreading using 24 threads.

The melt fraction is associated with two different arbitrary
chemical compositions: a basaltic composition for the back-
ground melt fraction and an andesitic composition for the
anomaly, corresponding to a circle with a radius of 60 m. The
aim is not to model a realistic magmatic system but to inves-
tigate how the advection schemes can numerically affect the
predictions of the model. The two compositions are reported
in Table 4. No feedback between the melt compositions and
the physical properties of the melt was considered to prevent
the advection schemes from influencing the two-phase flow.
In real settings, the effect of melt composition on melt vis-
cosity and density is not negligible for these conditions. The
maximum time step allowed for the two-phase flow is con-
strained by the Co number associated with the melt velocity.
Its maximum value allowed for the upwind and the WENO-
5 schemes is 0.7, but values of 0.7 and 1.5 for the QMSL
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Figure 8. Reference evolution of the porosity in a 2D model from an initial Gaussian anomaly, which forms porosity waves. The superim-
posed vector field shows the melt velocity. Periodic boundaries are applied on all sides. The initial porosity anomaly is a Gaussian function
with a maximum value of 5 %. The background porosity is 0.1 %. The spatial resolution of the grid is 300× 600. The physical parameters
used are listed in Table 3. The melt velocity is scaled by relative magnitude.

Table 4. Melt compositions (in wt %) used in the models.

Oxide (wt %) Basalta Andesiteb

SiO2 48.32 59.87
TiO2 1.65 0.82
Al2O3 16.72 16.93
FeO(T) 10.41 5.28
MgO 5.31 3.28
CaO 10.75 5.70
Na2O 3.85 3.76
K2O 1.99 1.36
H2O 1.00 3.00

a Recalculated from Giordano and Dingwell (2003).
b Recalculated from Neuville et al. (1993).

and the MIC schemes were both used to take advantage of
the extended stability of these schemes. The results for the
evolution of the silica content in the melt are shown in Fig. 9
for the Co number of 0.7 and for the four algorithms at a
resolution of 500× 1000.

As there is no analytical solution to this particular prob-
lem, it is not possible to directly calculate the numerical er-
ror in the different advection schemes. Nevertheless, we can
compute the mass conservation of the advected quantities.
The total mass of the melt composition is conserved, as it is
re-normalised to 100 % at each time step. This is a constant-
sum constraint and is characteristic of compositional data
(Aitchison, 1982). However, it is not necessarily the case for
each individual oxide. In that light, similar to Eq. (14), we
monitor the mass conservation of each individual oxide Mox

in the melt at each time step:

Mox =

K∑
k=1

(
φkCkox

)
K∑
k=1

(
φk0C

k
ox0

) ,
where φk and φk0 are the current and initial porosity at index
k, and Ckox and Ckox0

are the current and initial composition
of the oxide of interest in the melt at index k.

The melt fraction φ is conserved through the models, as
Eqs. (22) and (23) are solved using a conservative discretisa-
tion. Therefore, Mox only monitors the effects of the advec-
tion schemes for the oxide of interest. To quantify how the
mass conservation evolves for each individual oxide and for
each advection algorithm, the same model was performed at
five different resolutions: 100× 200, 200× 400, 300× 600,
400×800, and 500×1000. The values of the mass conserva-
tion of silica content MSiO2 for each resolution are shown in
Fig. 10 for all the models. The values of the mass conserva-
tion of each oxide for all the algorithms are shown in Fig. 11.
The total running time of each model is reported in Fig. 12.

6 Results and discussion

The numerical models produced allow a better understanding
of the process of passive chemical transport in magma within
porosity waves and the impact of each advection scheme on
the magma composition over time. All models confirm two
distinct composition domains at the top of the porosity waves
at the end of the simulations (Fig. 9). It is effectively a mixing
of the compositions from the initial background porosity and
from the anomaly. This is because melt is incorporated by
the waves as they rise. This is attributed to the fact that the
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Figure 9. Evolution of the silica content in the melt for four different advection schemes: the upwind, the WENO-5, the QMSL, and the
MIC (a–d) schemes. The Gaussian anomaly of porosity is associated with an andesitic composition, whereas the background porosity has a
basaltic composition. The corresponding two-phase flow has an adaptive time step limited to a maximum value of a Courant number below
0.7 for all algorithms. The spatial resolution is 500×1000 nodes. The physical parameters used for the two-phase flow are reported in Table 3
and are identical for all models.

Figure 10. Mass conservation of silica content in the melt fraction
for four different advection schemes and five different spatial res-
olutions at the end of each simulation. The Courant number used
is 0.7 for the WENO-5 and the upwind schemes and 0.7 or 1.5 for
the QMSL and the MIC schemes. The resolutions are 100× 200,
200×400, 300×600, 400×800, and 500×1000. The physical pa-
rameters used are reported in Table 3.

velocity of the porosity waves is higher than the melt velocity
and has also been reported in previous studies (e.g. Jordan
et al., 2018).

Comparing the results of the four algorithms, it is clear
that the upwind scheme has the highest amount of numerical
diffusion, which increases chemical mixing for non-physical
reasons. The WENO-5 and QMSL exhibit similar results in

terms of numerical diffusion, while the MIC shows the low-
est amount with almost purely advective behaviour (Fig. 9).
This is consistent with the numerical tests (Figs. 6 and 7).
In terms of mass conservation, the oxide content is not con-
served in all four schemes (Figs. 10 and 11). The WENO-5
gives the best results, with a mass conservation ranging from
98.87 % to 100.51 % for the lowest resolution to 99.85 % to
100.06 % at the highest resolution for all the oxides. The MIC
performs similarly at high resolution, ranging from 99.77 %
to 100.11 % for all the oxides at the highest resolution and
with a significant increase in mass conservation from the
200× 400 resolution. An improvement in the mass conser-
vation for a Co number of 1.5 compared to the value of 0.7 is
also noticeable. The QMSL shows slightly lower mass con-
servation for a Co of 0.7, ranging from 99.52 % to 100.22 %
at the highest resolution and 97.22 % to 101.26 % at the low-
est. In contrast to the MIC, there is a significant decrease for
the mass conservation for a Co number of 1.5, ranging from
97.22 % to 102.81 % at low resolution to up to 97.77 % to
101.01 % at high resolution. The upwind scheme shows the
worst values for mass conservation, ranging from 92.14 % to
103.55 % at low resolution to values of 96.97 % to 101.37 %
at the highest resolution (Figs. 10 and 11). The better mass
conservation of the MIC for a higher Co number can be ex-
plained by less reseeding and removal of markers, as the ap-
proach used is not mass conservative. On the other hand, the
poorer performance concerning the QMSL at higher Co num-
ber can be interpreted as showing the decrease in accuracy of
the trajectory tracing with increasing time step. The differ-
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Figure 11. Mass conservation of each oxide in the melt fraction for four different advection schemes and five different spatial resolutions at
the end of each simulation. The Courant number used is 0.7 for the WENO-5 and the upwind (a, b) schemes and 0.7 or 1.5 for the QMSL
and the MIC (c–f) schemes. The resolutions are 100×200, 200×400, 300×600, 400×800, and 500×1000. The physical parameters used
are reported in Table 3.

ences in mass conservation observed in the different oxides
through all the models show that the initial conditions play a
role and that higher values in the anomaly at the beginning
of the model leads to a loss of mass (e.g. SiO2 or Al2O3),
whereas the opposite leads to an excess of mass (e.g. CaO
or K2O). Also, the greater the relative difference between the
composition of the oxide from the anomaly and the back-
ground melt fraction, the greater the mass conservation loss
or gain (e.g. H2O or FeO). However, it is observed that the
mass conservation of all the oxides appears to converge to-
wards 1 with increasing resolution for all methods.

In terms of performance, all schemes, except the MIC,
show a run time of the same order of magnitude for a Co
number of 0.7 at all resolutions. This is explained by the mul-
tithreading approach, which allows high performance, even
for more computationally expensive algorithms due to par-
allelism. The high computational cost of the MIC is mainly
attributed to the reseeding and removal of the markers due to
the highly divergent velocity field. This part was not fully
parallelised due to race conditions caused by the removal
and addition of memory at run time. Also, the MIC and
QMSL perform better for a Co number of 1.5 compared to

Geosci. Model Dev., 17, 6105–6122, 2024 https://doi.org/10.5194/gmd-17-6105-2024



H. Dominguez et al.: Modelling chemical advection during magma ascent 6119

Figure 12. Total running time of the two-phase flow system coupled
with four different advection schemes and five different resolutions.
The Courant number used is 0.7 for the WENO-5 and the upwind
schemes and both 0.7 and 1.5 for the QMSL and the MIC schemes.
The resolutions are 100× 200, 200× 400, 300× 600, 400× 800,
and 500× 1000. The physical parameters used are reported in Ta-
ble 3. All models were performed using a single computer with an
Intel Xeon Gold 6128 processor and 128 GB of RAM using Julia
version 1.10.2. All advection algorithms were computed on a CPU
with multithreading using 24 threads.

0.7 (Fig. 12). This is explained by a larger adaptive time step
used by the two-phase flow solver due to the extended stabil-
ity domain, which means that fewer time steps are required
to solve the system. All the calculations were performed on
a single CPU, and the code could be further optimised, es-
pecially for the MIC. However, this result provides an idea
of the cost of each method when parallelised and highlights
the complexity of fully parallelising a MIC algorithm while
dealing with a significant amount of reseeding and marker
removal.

The upwind scheme is considered inadequate for this prob-
lem due to its high numerical diffusion, and its lack of mass
conservation for highly divergent velocity fields. The MIC
scheme shows very good results in terms of accuracy with
the least amount of numerical diffusion and has no stability
condition. It also demonstrates better mass conservation with
a higher time step. However, it is expensive in terms of com-
putation and memory, as it needs to keep track of the mark-
ers. As the velocity field vf is strongly divergent, it requires
frequently regenerating and deleting markers, which adds
complexity to the implementation and additional numerical
cost. As a result, we consider this scheme to be too costly
for this particular problem but recognise its robust qualities
for other geodynamic problems where diffusion is not ac-
ceptable, such as thermomechanical deformation or mantle
convection (e.g. Duretz et al., 2011; Ueda et al., 2015; Trim
et al., 2020). On the other hand, the QMSL scheme shows
very good performance with its extended stability field and
good accuracy but has very poor mass conservation for a high

Co, which contradicts the purpose of this scheme. A potential
approach to improve the mass conservation would be to im-
prove the trajectory tracing step, either by using higher-order
multistep methods (e.g. Filbet and Prouveur, 2016) or by us-
ing Runge–Kutta schemes, similar to the one used for the
MIC. On the basis of these results, the WENO-5 advection
scheme appears to be the most appropriate for this problem.
Mass conservation is a critical property for studying mass
balance and mass transport problems associated with magma
transport at different scales on Earth, and this algorithm ob-
tains the best results. It also has good accuracy and reason-
able performance and is easy to extend to higher dimensions
and to parallelise.

7 Conclusions

In this study, a series of tests were carried out to determine
which advection scheme is the most suitable for modelling
the chemical transport of magma. Four of the most com-
monly used algorithms in the literature were compared: the
upwind, WENO-5, MIC, and QMSL schemes. To test them,
we combined a 2D two-phase flow model, which describes
the evolution of the melt fraction of magma over time, with
the chemical advection of its composition.

All algorithms, with the exception of the upwind scheme,
are able to predict the melt composition with reasonable ac-
curacy. However, mass conservation of each individual oxide
in the melt is not fully achieved for any of the schemes. The
MIC, while showing the least amount of numerical diffusion,
requires a very large amount of reseeding and removal of
markers due to the strongly divergent melt velocity field. This
procedure is costly and requires reallocating memory at run
time, complicating the implementation. The QMSL scheme
has the worst mass conservation of the three algorithms, es-
pecially at high Co. This could potentially be improved by
refining the trajectory tracing step to make it a more valu-
able alternative. The WENO-5 scheme shows the best results
in mass conservation, even at low resolutions, is explicit, is
easy to implement, and extends in 3D, although it is con-
strained by the CFL condition. On the basis of these results,
the WENO-5 scheme is the most suitable to use for trans-
porting magma composition during magma ascent. This is
also applicable to problems using similar formulations, such
as chemical advection in aqueous fluids, and makes WENO-
5 a suitable scheme for modelling reactive transport under
crustal or mantle conditions.

Code and data availability. The code used in this study allow-
ing reproducibility of the data is available on GitHub (https:
//github.com/neoscalc/ChemicalAdvectionPorosityWave.jl, last ac-
cess: 2 July 2024) and at a permanent DOI repository (Zenodo):
https://doi.org/10.5281/zenodo.8411354 (Dominguez, 2024a). The
code is written in the Julia programming language. Refer to the
repository’s README for additional information. The code is dis-
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tributed under the GPL-3.0 license. The data produced and used dur-
ing this study are available at a permanent DOI repository (Zenodo):
https://doi.org/10.5281/zenodo.13306073 (Dominguez, 2024b).
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