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Abstract

A major challenge in assessing the impacts of climate change on hydrological processes

lies in dealing with large degrees of uncertainty in the future climate projections. Part of

the uncertainty is owed to the intrinsic randomness of climate phenomena, which is con-

sidered irreducible. Additionally, modelling the response of hydrological processes to the

changing climate requires the use of a chain of numerical models, each of which contrib-

utes some degree of uncertainty to the final outputs. As a result, hydrological projec-

tions, despite the progressive increase in the accuracy of the models along the chain, still

display high levels of uncertainty, especially at small temporal and spatial scales. In this

work, we present a framework to quantify and partition the uncertainty of hydrological

processes emerging from climate models and internal variability, across a broad range of

scales. Using the example of two mountainous catchments in Switzerland, we produced

high-resolution ensembles of climate and hydrological data using a two-dimensional

weather generator (AWE-GEN- 2d) and a distributed hydrological model (TOPKAPI-

ETH). We quantified the uncertainty in hydrological projections towards the end of the

century through the estimation of the values of signal-to-noise ratios (STNR). We found

small STNR absolute values (<1) in the projection of annual streamflow for most sub-

catchments in both study sites that are dominated by the large natural variability of pre-

cipitation (explains �70% of total uncertainty). Furthermore, we investigated in detail

specific hydrological components that are critical in the model chain. For example, snow-

melt and liquid precipitation exhibit robust change signals, which translates into high

STNR values for streamflow during warm seasons and at higher elevations, together

with a larger contribution of climate model uncertainty. In contrast, projections of

extreme high flows show low STNR values due to large internal climate variability across

all elevations, which limits the potential for narrowing their estimation uncertainty.
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1 | INTRODUCTION

One of the main challenges in climate change impact studies is to

quantify the large uncertainties associated with climate projections

(Hoegh Guldberg et al., 2018) arising from three main sources (Deser,

Knutti, et al., 2012; Deser, Phillips, et al., 2012): (i) anthropogenic

greenhouse gases emission forcing (scenario uncertainty from here

on), which reflects the unknowns regarding the policy and technologi-

cal developments in the future; (ii) numerical climate models (model

uncertainty), which are the result of imperfect understanding of cli-

mate dynamics, that leads to assumptions, simplification and parame-

terizations in the physics built into climate models; and (iii) natural

internal climate variability (stochastic uncertainty), which is a measure

of the inherent randomness of climate occurrences and is intrinsic to

climate processes (e.g., Deser, 2020). Unlike scenario and model

uncertainty, stochastic uncertainty is considered irreducible

(e.g., Fatichi et al., 2016), that is, it will persist despite advances in

scientific knowledge and prediction tools. In the case of hydrological

projections, there are additional sources of uncertainties beyond the

influence of climate variables. These include, for example, the

difference among hydrological models (e.g., Addor et al., 2014), their

parameterization (e.g., Feng & Beighley, 2020), or the hydrological

effects induced by changes to land use and landscape

(e.g., Chawla & Mujumdar, 2018) and other anthropogenic interven-

tions (e.g., Magilligan & Nislow, 2005).

The relative contribution of each factor depends on spatial and

temporal scales, the time horizon of the analysis, and the examined

variable. For example, at local scale while stochasticity dominates the

uncertainty in precipitation, temperature uncertainty is mostly driven

by climate model and scenario uncertainties (Fatichi et al., 2015,

2016). In general, stochastic uncertainty is relatively larger when look-

ing at the near future (a few decades), thus suggesting a limited poten-

tial for uncertainty reduction for shorter lead times (Hawkins &

Sutton, 2011). Whereas its contribution increases with finer temporal

and spatial resolution (Addor et al., 2014; Fatichi et al., 2014, 2016;

Hawkins & Sutton, 2011; Peleg et al., 2019). In contrast, scenario

uncertainty plays a dominant role in the projection of temperature

changes for long-term horizons because of the large influence of

greenhouse gas emissions on global temperatures (Hoegh Guldberg

et al., 2018).

These climate uncertainties propagate further down the model

chain and affect response of catchments in future climate scenarios,

as shown by numerous works that have studied the magnitude and

partitioning of hydrological uncertainties, including the uncertainty

introduced by the use of hydrological models (e.g., Chawla &

Mujumdar, 2018; Chen et al., 2017; Clark et al., 2016; Feng &

Beighley, 2020; Vetter et al., 2017). An important study of hydrologi-

cal uncertainty estimation in mountain areas was presented by Addor

et al. (2014), who used a simulation ensembles approach to quantify

and partition uncertainties of annual streamflow in six alpine catch-

ments while comparing the outputs of three different hydrological

models. They show that, as seen in larger-scale studies, most of the

uncertainty in future streamflow prediction arises from climate models

and natural climate variability, with only a small influence of scenario

uncertainty or the choice of hydrological model for long-term horizons

(end of the century).

Quantifying the contribution of each of these uncertainty

sources, known as uncertainty partitioning, is therefore fundamental

for understanding the potential for making more accurate hydrological

projections. A major challenge, however, is that large ensembles of

simulations are required to explore the range of natural climate vari-

ability. Climatic modelling is based on General Circulation Models

(GCMs), or Regional Climate Models (RCM), which solve physically-

based equations to simulate the climate of the past and future. An

important limitation is that, due to their large computational require-

ments, the product of GCMs or RCMs usually consists of a single or at

most few realizations of future climate variables, which means that an

assessment of natural (stochastic) climate variability is generally not

straightforward (Hawkins & Sutton, 2009, 2011). The few existing

exceptions (e.g., Deser, 2020; Deser, Knutti, et al., 2012; Lehner

et al., 2020; Thompson et al., 2015) have produced results of coarse

resolution, which are not suitable for hydrological modelling at a

broad range of catchment scales (Fatichi et al., 2015).

This deficiency can be overcome by simulating many possible

realizations of a future climate at the right scale for hydrological

modelling with stochastic weather generators (WG). By forcing a WG

to follow the climate conditions estimated by GCMs or RCMs, it is

possible not only to reproduce small-scale future climate variables but

also to obtain an ensemble of simulations for uncertainty quantifica-

tion. Using deterministic hydrological models forced by WG simula-

tions allows to estimate future hydrological statistics, assess their

variability, partition the different sources of uncertainties, and quan-

tify the potential for narrowing the uncertainty down. Some examples

in using WGs to quantify sources of uncertainty include, among

others, Minville et al. (2008), who combined a WG with a hydrological

model to partition the uncertainty of climate change impacts on a

catchment in northern Canada and found that the choice of climate

models has a larger effect on the assessed impacts than the selected

emission scenario. Fatichi et al. (2015) used multisite rainfall and tem-

perature generators to study the hydrological response of the Upper

Rhone basin, showing how the impact of uncertainty is reduced for

heavily regulated catchments and is highest for catchments fed pre-

dominantly by liquid precipitation. Likewise, Camici et al. (2017) used

a rainfall generator and hydrological model chain to examine hourly

discharge extremes in the upper Tiber basin, in Italy, and highlighted

the influence of catchment permeability on the response to climate

change; also showing that natural variability is a much larger driver of

uncertainty than climate models. In general, these and other studies

agree that stochastic and climate model uncertainties are the two

most relevant uncertainty sources for streamflow projections (see also

Chawla & Mujumdar, 2018; Gao & Booij, 2020; Giuntoli et al., 2018;

Shen et al., 2018). Accordingly, this work focuses on analysing those

two uncertainty sources, omitting the effects of emission scenario

and hydrological-model uncertainties.

While the scale dependency and spatial and elevation variability

of climate change impacts on hydrology have been previously studied,
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the uncertainty of those projections has not received the same level

of attention. This study aims to address this knowledge gap and to do

so at the seldom explored sub-catchment and hourly scales. Conse-

quently, we address here three specific research goals: (i) to quantify

the uncertainty of changes on distributed climatic and hydrological

variables at sub-catchment scales, and determine their relation with

elevation; (ii) to estimate the fraction of stochastic and climate model

uncertainty in the future projections, and thus show the importance

of natural variability when assessing climate impacts; and (iii) to assess

the potential for narrowing down the uncertainty of streamflow

extremes projections by estimating their signal-to-noise ratio and

quantifying the magnitude of the irreducible stochastic uncertainty.

To this effect, we present in the following sections an experimen-

tal framework based on the work presented in Moraga et al. (2021),

which consists of combining the use of a two-dimensional stochastic

weather generator, AWE-GEN-2d (Peleg et al., 2017, 2019), with a

distributed hydrological model, TOPKAPI-ETH (Fatichi et al., 2015) to

generate ensembles of climate and hydrological variables characteriz-

ing the present climate and, based on the outputs of nine GCM-RCM

modelling chains, their response to climate change throughout the

21st century. This framework allows us to go beyond previous studies

as we quantify the contribution of stochastic uncertainty on an array

of climate and hydrological variables—including extreme events—at

considerably high resolution in space. Thus, we provide a reference

for quantifying and partitioning uncertainty related to the effects of

climate change on catchment hydrology.

2 | METHODS AND DATA

2.1 | Study area

The numerical experiments are based on data from two Swiss moun-

tainous catchments: Kleine Emme and Thur. The Kleine Emme is

located in the northern Alpine region in central Switzerland and

extends over an area of 478 km2. Its mean elevation is 1047 m, and

highest elevation is 2330 m, and its outlet is at 438 m near the city of

Lucerne. It receives mean annual precipitation of 1650 mm year�1,

has an average temperature of 7�C and its outlet discharges on aver-

age 12.6 m3 s�1 (833 mm year�1). The Thur river catchment, while

part of the greater Alpine area, is mostly located in the Swiss plateau

physiographic division in northeast Switzerland. It has an area of

1730 km2, a highest point of 2434 m, a mean elevation of 773 m, and

a lowest point at 361 m in the town of Andelfingen. The mean annual

precipitation over the Thur catchment is 1350 mm year�1, an average

temperature of 8.4 �C and the average streamflow at the outlet is

46.7 m3 s�1 (851 mm year�1). A particular feature of these catch-

ments is that they do not have major stream regulations, water extrac-

tions, or large urbanized surfaces, and the prevalent land cover is

cropland and natural pasture. A summary of their location, elevation

map, and elevation distribution is presented in Figure S1.

The topography of the catchments was characterized using a regu-

lar grid with a cell size of 100 m � 100 m, based on topographic infor-

mation obtained from a digital elevation model (SwissTopo, 2002). Soil

properties, used to assign hydraulic soil parameters as well as soil

depth, were determined from the soil map of Switzerland

(Bodeneignungskarte, 2012). Likewise, the Corine dataset (CLC, 2012)

was used to derive land cover classifications to determine surface

roughness and evapotranspiration parameters.

2.2 | Models and data

The two-dimensional weather generator AWE-GEN-2d (Peleg

et al., 2017, 2019) was used to simulate gridded climate variable time

series at a high spatial (2 km for precipitation, 100 m for the other var-

iables) and temporal (5 min for precipitation, hourly for the other vari-

ables) resolutions. Among its features, AWE-GEN-2d is capable of

realistically modelling the arrival process of storms as well as their

spatiotemporal evolution based on ground stations and weather radar

observations. Satellite images are used to calibrate the cloud cover

module (cross-correlated with the precipitation fields), which in turn

controls the distributed incoming shortwave radiation. Furthermore,

the advection of cloud and precipitation fields was estimated based

on statistics of geostrophic wind velocities obtained from reanalysis

data, with the Cartesian components of convection modelled as a

bivariate autoregressive process at a 5 min resolution. Near-surface

air temperature is characterized as a stochastic process using mod-

elled incoming long-wave radiation and the previous hour air tempera-

ture as inputs, and is distributed in space via a stochastic lapse rate,

with the capability to reproduce thermal inversion events. AWE-GEN-

2d was calibrated using a large dataset of climate observations and

validated by analysing statistics not used in the calibration process, as

described in Peleg et al. (2017a), where a comprehensive description

of the model structure is provided.

The hydrological simulations were performed using TOPKAPI-

ETH (Fatichi et al., 2015), a distributed hydrological model, suitable for

characterizing surface and sub-surface processes at high resolutions

(sub-kilometre grids) and efficient enough to use for long simulations

in relatively large domains. As such, it has been employed successfully

to model the hydrological response of a number of mountainous catch-

ments (e.g., Battista, Molnar, & Burlando, 2020; Battista, Schlunegger,

et al., 2020; Fatichi et al., 2014; Moraga et al., 2021; Pappas

et al., 2015; Paschalis et al., 2014). With precipitation, temperature

and cloud transmissivity as input, the model simulates a broad range of

hydrological variables including streamflow, snowmelt, soil moisture,

groundwater flows, and evapotranspiration. It models surface and sub-

surface flows through two soil layers plus a groundwater compartment

by approximating lateral water transfer with the kinematic-wave equa-

tion following topographic gradients (Liu & Todini, 2005). Infiltration

capacity is explicitly computed at each grid cell and surface runoff may

occur due to either infiltration excess or saturation of the upper soil

layer. Additionally, potential evapotranspiration is calculated with the

Priestley–Taylor equation (Priestley & Taylor, 1972) as a function of

incoming shortwave radiation, albedo, and temperature.

Climate observations from an array of sources were used as a

model forcing and for calibration. As required by AWE-GEN-2d, point

temperature, precipitation and radiation observations at hourly
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resolution were obtained from ground stations operated by MeteoS-

wiss, who also provided the gridded daily datasets for temperature

and precipitation at 2-km resolution, (MeteoSwiss, 2016; Wüest

et al., 2009), as well as C-band weather radar information used to

characterize the spatial structure of rainfall (Germann et al., 2006).

Geostrophic wind velocity, used to model the advection of storm cells,

as well as cloud cover, were extracted from the MERRA-2 reanalysis

dataset (Rienecker et al., 2011). The temperature and precipitation

statistics from nine different GCM-RCM model chains, developed in

the context of the EURO-CORDEX initiative (Jacob et al., 2014;

Kotlarski et al., 2014), and later post-processed by MeteoSwiss

(CH2018, 2018), were used to re-calibrate AWE-GEN-2d parameters

for future climate following the procedure described in Peleg

et al. (2019).

The calibration of TOPKAPI-ETH was based on hourly observa-

tions of streamflow at the outlet of the catchments, which were pro-

vided by the Swiss Federal Office for the Environment (FOEN). The

model was manually calibrated by optimizing the Nash-Sutcliffe Effi-

ciency statistic (NSE) at the catchments' outlet at the hourly (NSE of

0.64 at the Kleine Emme and 0.60 at the Thur) and monthly (0.76 and

0.78) scales for the 2000–2009 period, as detailed in Moraga

et al. (2021).

2.3 | Design of the experiment

The experiment aimed to generate a large enough dataset of simu-

lated variables, representing different climate trajectories, to allow for

the quantification of uncertainty in the resulting climate and hydrolog-

ical variables. The numerical experiment consisted of three parts,

schematized in Figure 1 and detailed in the following sections: the

generation of present and future climate ensembles following multiple

climate trajectories, the simulation of high-resolution hydrological var-

iables, and the quantification of changes and associated uncertainties.

The procedure to obtain the statistics for extreme events is also

explained in Section 2.3.4.

2.3.1 | Ensembles of climate variables

AWE-GEN-2d was first used to simulate 15 realizations of 30-year-

long time series (equivalent to 450 years) of variables that character-

ize the period 1976–2005 (present climate). To simulate the future cli-

mate variables, the climate change signals were obtained from the

results of RCM transient simulations: nine different climate trajecto-

ries (Model chains) were used (Table S1), all of which follow the RCP

8.5 emission scenario.

The Factors of Change approach (FC, e.g., Fatichi et al., 2011)

was used to re-parameterize the temperature and precipitation

parameters until the end of the 21st century. Unlike direct forcing

methods, the factors of change (also called delta-change) approach

does not deal with the issue of biases in the RCM outputs, as it implic-

itly assumes that any bias affects similarly both the control and future

scenarios (Anandhi et al., 2011; Lenderink et al., 2007; Rasmussen

et al., 2012; Teutschbein & Seibert, 2012; van Roosmalen

et al., 2011). The procedure consists, in the case of temperature, in

F IGURE 1 Schematic representation of the numerical experiment used to quantify and partition uncertainty. Nine climate model outputs,
which follow an RCP 8.5 emission scenario, are stochastically downscaled to produce ensembles of climate variables, which in turn feed a
deterministic hydrological model. The large array of climate and hydrological results are post-processed to quantify the uncertainty in the climate
and hydrological projections and to compute the uncertainty partition
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obtaining the difference in monthly means between the control period

and future climate RCM outputs and subsequently applying the addi-

tive factor to the temperature simulated by the WG. In the case of

precipitation, the objective is to obtain the ratio between future and

present daily precipitation mean and other statistics, so as to follow

not only the change in average precipitation, but also in higher order

statistics (as in Fatichi et al., 2016; Peleg et al., 2019). To do this, the

control and future RCM outputs are compared at the monthly level to

extract the changes in mean, standard deviation, and kurtosis of daily

precipitation using a moving average with a 30-year window and a

10-year shift. These changes are then forced onto the present-climate

statistics so as to ensure that they are reflected in the estimation of

the new WG parameters and consequently on the future climate sim-

ulations. In total, ensembles consisting of ten realizations of 80 years

(2010–2089) for each of the nine climate trajectories were simulated,

for a total of 7200 years of time series representing the future.

2.3.2 | Hydrological simulations

The hydrological processes in the present and future for the Thur and

Kleine Emme catchments were modelled using TOPKAPI-ETH. The

climate inputs for the simulations were obtained from the previously

described outputs of the weather generator. Specifically, ensembles

of gridded time series of 2 km and hourly resolutions for precipitation,

air temperature, and cloud transmissivity were fed to the model to

perform multiple realizations of continuous hydrological simulations

for the present and future climates.

The hydrological outputs consisted of gridded datasets at 100 m

and hourly resolutions for variables that represent the main compo-

nents of the hydrological budget: streamflow, rainfall, snowmelt,

evapotranspiration, and change in soil water storage. Outputs were

stored not only for the catchment scale at the outlet of the river, but

also at the scale of small sub-catchments along the river networks:

97 virtual stations were selected in the Kleine Emme and 112 in the

Thur catchments for this purpose. The selected variables, the number

of sub-catchments, and the size of the simulation ensembles repre-

sent a compromise between obtaining large and comprehensive

enough datasets for the proposed uncertainty partition analysis and

manageable size of data storage.

2.3.3 | Quantifying uncertainty

The third part of the experiment refers to the processing of simulation

results to quantify the uncertainty source in the simulated variables.

Based on the concept of signal-to-noise ratio (STNR; Fatichi

et al., 2014; Hawkins & Sutton, 2009, 2011), we summarize the mag-

nitude of the uncertainty by means of a proposed STNR statistic,

which we define as the ratio between the change in the median values

of a given statistic for a given variable q (e.g., extreme streamflow,

mean rainfall) between future and present climate (the signal) and the

spread measured by the average interquartile range IQR (the noise)

around the median of the future and present simulation ensembles,

computed considering only the stochastic variability, that is:

STNR¼ Signal
Noise

¼ 2� qfut50�qpres50

� �

IQRfutþ IQRpres
ð1Þ

Absolute values of STNR larger than 1 indicate that the magnitude of

the signal lies outside of the average natural variability of 50% of the

sample (IQR is computed between the 25th and 75th percentiles) and

is assumed to represent a robust change in that statistic. Conversely,

absolute STNR values smaller than 1 imply that the change is compa-

rable or smaller than the natural variability represented by 50% of the

sample. The sign of STNR is given by the direction of the signal, thus

positive values indicate an increase of the analysed variable in the

future.

The resulting variable uncertainty can be partitioned into two

contributing factors (Hawkins & Sutton, 2011) namely, the internal cli-

mate variability and the climate model uncertainty. Internal climate

variability represents stochastic uncertainty and is calculated as the

mean of the interquartile ranges (IQR) from all climate trajectories

(models) in the ensemble:

UICV ¼
PN

1
IQRn

N
¼
PN

1
q75n�q25nð Þ

N
ð2Þ

where N is the total number of climate trajectories (equal to the num-

ber of climate model chains) in the ensemble. The climate model

uncertainty was computed as the interquartile range of the means

obtained for each climate trajectory, averaging the stochastic

replicates:

UCM ¼ IQR μ1, μ2,…, μn,…μNf gð Þ ð3Þ

where μn is the mean of the selected variable for trajectory n. As such,

the relative importance P of uncertainty attributed to each contribut-

ing factor is obtained as:

PICV ¼ UICV= UCMþUICVð Þ ;PCM ¼ UCM= UCMþUICVð Þ ð4Þ

2.3.4 | Estimation of hydrological extremes

The analysis of extreme event statistics presented in Section 3.3 was

performed by selecting the annual maximum streamflow (hourly or

daily) for each of the 30 years of continuous simulations representing

the present (1976–2005) and end-of-the-century (2060–2089) cli-

mate, and then fitting the annual maxima with a Generalized Extreme

Value distribution (GEV, Jenkinson, 1955).

Return periods ranging from 2 to 25 years were computed for

each of the 15 realizations simulated for the present climate and the

10 realizations simulated for each of the 9 future trajectories (see

Section 2.3.1). These 15 and 9 � 10 estimated return periods
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compose the data sample from which the STNR and uncertainty parti-

tion were quantified as described in Section 2.3.3.

3 | RESULTS

The proposed framework allows for the quantification of uncertainty

and its partition not only for several variables of interest in hydrologi-

cal practice, but also across spatial and temporal scales. First, the

STNR and partition of stochastic and climate model uncertainties for

distributed climate variables are presented in Section 3.1. Then,

Section 3.2 is dedicated to the hydrological variables, including

streamflow and the main components of the hydrological budget in

the various sub-catchments. Finally, Section 3.3 shows the computed

STNR and fraction of stochastic uncertainty for the changes in

extreme high flows.

3.1 | Uncertainty in climate projections

For both catchments, the expected values for each grid cell (ordered

by elevation) in total precipitation (including liquid and solid phases)

and near-surface air temperature are shown in Figure 2. Annual pre-

cipitation shows a non-trivial change pattern, as the higher parts of

the catchments are expected to experience a decrease in precipitation

in the Kleine Emme (Thur) of up to 11% (9%) whereas the drier, lower

parts of the catchments will see an increase in projected precipitation

by 10% (17%), for an overall change of �3.2% (+1.4%). Conversely,

the projected changes in temperature are more homogeneous, with

progressive catchment-average increases that reach 4.2�C at the

Kleine Emme and 4.0�C at the Thur catchments by the end of the

century.

In turn, the STNR and uncertainty partition of precipitation and

temperature, computed using the end-of-century decade (2080–

2089) and present climate simulations (1976–2005), show that, for

both the Kleine Emme (Figure 3a) and Thur (Figure 3e), the signal of

change in precipitation is weaker than the noise, as shown by the

magnitude of STNR values with ranges between �0.56 and 0.57 in

Kleine Emme, and between �0.51 and 0.89 in Thur. It is possible to

observe clear spatial patterns that follow those of the overall change

in precipitation predicted by the climate models (see Moraga

et al., 2021), with negative values of STNR at higher elevations, in the

southern part of the catchments, and positive values at lower eleva-

tions. Most of the uncertainty is explained by the stochastic uncer-

tainty, with its share of the total uncertainty ranging between 53%

and 79% for Kleine Emme (Figure 3b) and between 57% and 91% for

Thur (Figure 3f). Moreover, there is a strong negative correlation

between elevation and the share of uncertainty associated with sto-

chastic variability in precipitation in the Kleine Emme (linear regres-

sion with R2 = 0.65), but not in the Thur catchment (R2 = 0.02).

The large increase in average temperatures is reflected in the

STNR, with values ranging between 3.98 and 4.85 in the Kleine Emme

(Figure 3c) and between 2.81 and 6.05 in the Thur (Figure 3g), which

confirm a robust change signal. Unlike for precipitation, the uncer-

tainty is spatially uniform, with ranges narrower than 1% for both

catchments, and is mostly explained by climate model uncertainty:

73% of the total in the Kleine Emme (Figure 3d) and 65% in the Thur

(Figure 3h). This becomes clearer in Figure S2, as the stochastic

F IGURE 2 Temperature and precipitation values throughout the future climate simulations for each of the 160 grid cells in the Kleine Emme
(a, b) and 497 in the Thur (c, d) river catchments. Each row represents a grid cell ordered from highest to the lowest elevation and the colours
represent the decadal means
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uncertainty for each future climate trajectory is indeed very narrow,

and the overall uncertainty observed in the multi-model mean is small

compared to the expected temperature change in the order of 4�C.

3.2 | Uncertainty in hydrological projections

The total uncertainty attributed to natural climate variability (stochas-

ticity) and climate models was computed for the hydrological compo-

nents at the seasonal scale, following the procedure detailed in

Section 2.3.3. Most of the uncertainty in streamflow projections

(Figure 4a,c) is explained by stochastic uncertainty, although it can

vary considerably across seasons from 58% to 83% in the Kleine

Emme and from 68% to 74% in the Thur, with the largest difference

between the two catchments being spring flows, as 81% of the uncer-

tainty is explained by stochasticity in the Thur and only 64% in the

Kleine Emme. At the annual scale (not shown), stochasticity explains

56% of future streamflow uncertainty in Kleine Emme and 73% in

Thur, mostly due to the high uncertainty in liquid precipitation.

The uncertainty partition of specific components of the hydrolog-

ical cycle are shown in Figure 4b,d. Spring snowmelt, which is a pro-

cess largely driven by temperature, is the most sensitive component

to climate model uncertainty, which accounts for 50% of uncertainty

in the Kleine Emme and 40% in the Thur. However, its contribution to

the hydrological response is expected to decrease drastically by the

end of the century, to the point that its uncertainty range becomes

too small to influence streamflow considerably (on average, spring

snowmelt will represent only 15% and 22% of total spring streamflow,

respectively). In contrast, evapotranspiration plays an important role

in the hydrological response, especially during summer (JJA) at the

Thur catchment, with trimestral contributions of around 250 mm, but

its uncertainty range is relatively narrow compared to that of liquid

rainfall. Furthermore, its uncertainty partition indicates that it is also

mostly driven by stochasticity, which suggests a large influence of

summer precipitation rather than temperature on the total evapo-

transpiration fluxes.

The evolution of the STNR and the fraction of stochastic uncer-

tainty throughout the 21st century are shown in Figure 5. While the

absolute values in the STNR of streamflow for both catchments

remains relatively constant and low, the partition of the uncertainty

shows different progressions. In the Kleine Emme, the fraction

assigned to internal climate variability decreases from around 90% in

the early 21st century to under 60% by the end of it, whereas in the

Thur it remains constant at around 75%. The combination of low

STNR values for the end-of-century streamflow projections, combined

with a high contribution of stochastic uncertainty, clearly suggest that

high uncertainties in streamflow projections will persist even if perfect

climate models were available.

The driving climate variables, temperature and precipitation, show

similar behaviours in both catchments, with a clear decrease in the

uncertainty related to internal climate variability, which shows the

increasing importance of climate models with longer simulation times.

The distributed hydrological simulations allow extending the

uncertainty analysis to the sub-catchment scale by computing the

STNR at multiple points throughout the catchments for key hydrologi-

cal variables. Figure 6 shows the relation between sub-catchment

F IGURE 3 Signal-to-noise ratio (STNR) and uncertainty partition (share of stochastic uncertainty) of precipitation and temperature by the end
of the century (2080–2089) in the Kleine Emme (a–d) and Thur (e–h) catchments. The coordinates in UTM 32 N and 106 meters, and the river
network are superposed over the rasters
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elevation, the STNR of seasonal and annual hydrological statistics at

the end-of-the-century, as well as the uncertainty partition. As

reported by Moraga et al. (2021), the change in mean annual

streamflow in a future climate exhibits an inverse correlation with ele-

vation. However, the results here show that this change is not statisti-

cally strong, as the STNR is lower than one for virtually all sub-

F IGURE 4 Future stochastic and climate model uncertainty for streamflow (a, c) and the main hydrological components (b, d):
Evapotranspiration (ET, presented as a negative value), rainfall, and snowmelt at the seasonal scales in the Kleine Emme (a, b) and Thur (c, d) river
catchments. The vertical axis represents the amount of water in mm over the season attributed to each hydrological component with
corresponding uncertainty source, and the percentages indicate the fraction of uncertainty attributed to internal climate variability (stochastic
uncertainty)

F IGURE 5 Temporal evolution of the signal-to-noise ratio (solid lines) and partition of uncertainty attributed to stochasticity (shaded areas)
for streamflow at the outlet of the catchments (a, b), mean temperature (c, d), and mean precipitation (e, f) throughout the simulation period for
the Kleine Emme and the Thur river catchments
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F IGURE 6 Signal-to-noise ratio (STNR) of key hydrological variables in the Kleine Emme (a–h) and Thur (i–p) catchment. The subplots show
the scatter plot between STNR (comparing end-of-the-century multi-model mean and present climate simulations) of the mean three-month
season flows and the elevation of the sub-catchment's outlet. The outlined symbol is the outlet of the entire catchment. The colours in the
markers show the fraction of uncertainty attributed to the natural climate variability
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catchments, indicating a signal of change smaller than the noise

(Figure 6a,i), mostly due to stochastic uncertainty. Furthermore, both

study sites exhibit a clear and similar negative correlation between

sub-catchment elevation and the STNR value.

The change signals for individual hydrological components are

clearer than for the overall streamflow. The signal of rainfall, for exam-

ple, is larger than the noise (and positive in sign) for all the sub-

catchments in the Kleine Emme and for the highest ones in the Thur

(Figure 6b,j, respectively), also showing a clear positive correlation

with elevation. The partition of stochastic uncertainty for rainfall is

higher at the Thur (between 67% and 95%) than at the Kleine Emme

(45%–79%), and the model uncertainty becomes more relevant at

higher elevations. Likewise, the STNR for snowmelt reduction shows

high absolute values (Figure 6c,k). In Kleine Emme, values range

between �2.2 and �1.6, and the fraction of stochastic uncertainty

goes from 48% to 64%. In the Thur, STNR is negatively correlated

with elevation and ranges between �2.9 and � 1.1, and the stochastic

uncertainty is between 49% to 80%, with the lowest values corre-

sponding to the highest sub-catchments. For evapotranspiration, the

partition of stochastic uncertainty fluctuates around 70% for all eleva-

tions (between 63% and 78% in Kleine Emme, and between 60% and

87% in Thur) with an overall weak positive STNR (<1) for all the sub-

catchments in Kleine Emme and for 85% of sub-catchments in Thur.

Because of their different importance in the total response, the

influence of these hydrological components on the overall uncertainty

of streamflow needs to be weighted by their respective contribution

to the hydrological budget. As seen in Figure 4, rainfall plays the larg-

est role in the hydrological budget, thus suggesting that its large sto-

chastic uncertainty is responsible for most of the uncertainty in

streamflow, which explains the predominance of stochastic uncer-

tainty over climate model uncertainty for streamflow projections.

Snowmelt is, conversely, the hydrological component that is most sen-

sitive to temperature and, therefore, to climate model uncertainty.

Nonetheless, internal climate variability takes an equal or slightly

larger share of its uncertainty partition (Figure 4i,j). This means that

the amount of precipitation, driven mostly by stochastic uncertainty,

is as relevant to the uncertainty of snowmelt as temperature, which is

driven mostly by climate model uncertainty, likely due to the role

played by precipitation on snow accumulation.

In contrast with the weak STNR magnitudes of annual stream-

flow, the projections of seasonal flows show stronger signals, particu-

larly in the highest sub-catchments. Winter flows (Figure 6e,m) show

a positive STNR, which is positively correlated with elevation, as win-

ter rainfall will increase at higher altitudes. Spring (MAM) and Summer

(JJA) flows, which are influenced by snowmelt, show the opposite

behaviour, with negative STNR values which are negatively correlated

with elevation. The highest partition for stochastic uncertainty is

found in the lower reaches of the river networks.

3.3 | Uncertainty in future hydrological extremes

The large simulation ensembles allow investigating changes in the fre-

quency of occurrence of extreme hydrological events and analysing

the relative importance of climate model and stochastic uncertainties.

Figure 7 shows the uncertainty of the annual maximum discharge for

return periods between 2 and 25 years and for both hourly and daily

resolutions. From the plots, dissimilar trends for both catchments can

be observed at different return periods and resolutions. In general,

the magnitude of uncertainty is high, especially for hourly extreme

streamflow, and as expected, it increases with higher return periods:

for the hourly extremes, the uncertainty range changes from �16% to

�6% for the 2-year return period to �13% to 4% for the 25-year

return period in the Kleine Emme and from �8% to +4% for

T = 2 years to �14% to +19% for T = 25 years in the Thur. Although

it is apparent that climate model uncertainty is relevant, as evident

from the difference among the medians of the different climate trajec-

tories (shown with grey bars), most of the uncertainty is again

explained by the stochastic uncertainty. According to the multi-model

mean, both hourly and daily streamflow maxima in the Kleine Emme

will become slightly smaller, even though with a large uncertainty

range. The results for the Thur show, conversely, no clear change sig-

nal for hourly extremes, and a small decrease in daily extremes.

Extreme streamflow statistics were also computed for every sub-

catchments of both river basins. Figure 8 shows that the STNR for

maximum hourly and daily flows has absolute values well below one

for all sub-catchments, thus highlighting the large uncertainty in the

projection of hydrological extremes into the future with a slight

decrease of daily extreme streamflow at high elevations. As before,

stochasticity is the dominant source of uncertainty, with average

values in the Kleine Emme of 76% (81% in the Thur) for hourly maxi-

mum, and 72% (76% in the Thur) for daily maximum. The large relative

importance of stochasticity, combined with weak change signals,

points to a very limited potential for providing more accurate projec-

tions of hydrological extremes.

4 | DISCUSSION

We have presented a framework that, by combining the use of a

weather generator and a distributed hydrological model, allowed us to

project future climate and hydrological variables at high resolution,

estimate their STNR and the contribution of two major uncertainty

sources: stochastic (internal climate variability) and climate model

uncertainty. While we explored those two uncertainty sources due to

their higher relevance to hydrological projections, this framework can

easily be extended to quantify the partition of uncertainty due to

emission scenarios—to which the temperature-driven processes are

very sensitive—or to other uncertainty sources, such as hydrological

model uncertainty, which does not appear to contribute considerably

to the total uncertainty in the Alpine region (Addor et al., 2014), but

can be a major factor in other climate re (e.g., Giuntoli et al., 2018).

The projections for mean streamflow are characterized by low

STNR values and a large contribution of stochastic uncertainty

(Figures 4–6). This contrasts with studies on larger domains (as well as

regional scales), that conclude that GCMs have a larger influence on

future uncertainty than internal climate variability (e.g., Chawla and

Mujumdara, 2018.; Gao & Booij, 2020; Giuntoli et al., 2018), but is
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consistent with the expectation of an increment of the importance of

stochasticity for smaller spatial scales (Addor et al., 2014; Fatichi

et al., 2014, 2016; Hawkins & Sutton, 2011; Peleg et al., 2019). Fur-

thermore, the large magnitude of stochastic uncertainty suggests that

high uncertainties in streamflow projections at our study sites will per-

sist even if perfect climate models were available.

In contrast, the analysis at the level of hydrological components

reveals high absolute values of STNR for liquid precipitation (rainfall),

particularly in the Kleine Emme, as well as for snowmelt, indicating

robust change signals in the projections because of the influence of

rising temperature on precipitation form and on snowmelt. The signals

for a positive change in ET are also generally weaker than the noise,

although at low elevations in the Thur catchment the temperature rise

will drive a significant ET increase. Just as the relative contribution of

specific hydrological components can be large at the seasonal scale,

so is their influence on the magnitude and partition of uncertainty in

the resulting streamflow. For example, due to the high influence of

(temperature-dominated) snowmelt, summer and spring flows

(Figure 6) present a larger share of climate model uncertainties than

the annual average flow, especially for sub-catchments at high eleva-

tions, where the share of climate model uncertainty approaches 60%.

Consequently, an improvement in climate model predictions with

reduced spread among models implies a potential for narrowing the

uncertainty of snowmelt predictions and, thus, of total streamflow

F IGURE 7 Annual maximum streamflow for a given return period for present and future climate (2060–2089) at the hourly (a, b) and daily (c,
d) scales at the Kleine Emme (a, c) and Thur (b, d) catchment outlets. The values are normalized by the median of the present climate. P refers to
the present climate, numbers 1 to 9 refer to the nine different climate models, and M refers to the multi-model mean. Central lines in the box
plots represent the median of the values obtained from fitting the simulated ensembles of annual maxima to a GEV distribution, while the boxes

represent the interquartile range
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during warm seasons and at high elevations. Furthermore, this is a

clear indication that other catchments in the alpine region should pre-

sent a similar behaviour, i.e, that the climate model uncertainty is

more important where the influence of snowmelt in the total hydro-

logical budget is significant.

The projections for extreme high flows, summarized in Figures 7

and 8, reveal an uncertainty magnitude much larger than median cli-

mate change signal projected towards the end of the century. The

vast majority of this uncertainty is again attributed to stochasticity

rather than to climate model signals, in line with the findings of previ-

ous studies at different locations (Fatichi et al., 2014, 2016; Gao &

Booij, 2020), thus suggesting that the improvement of climate models

may have a rather limited potential (in the range of 10%–20%) for nar-

rowing the uncertainty of the future predictions of flood extremes.

Although these results do not allow us to make confident claims about

the trends in future extremes on these specific catchments, our find-

ings point at the need for awareness of the large uncertainty that

affects prediction of future extremes, highlighting the need for quanti-

fying the uncertainty of hydrological projections, and, at the very

least, acknowledge the large uncertainty surrounding the projections

of extremes when only deterministic results are presented. At the

same time, as pointed out by Fatichi et al. (2014), the lack of signifi-

cant trends in our projections implies that infrastructure correctly

designed with present-day variability in mind is likely to perform as

expected in the future.

It is worth noting that the temperature-dependent patterns of

high-intensity precipitation events may also change under warmer

conditions. This is not explicitly considered in the models used in this

study as rainfall and temperature generators are both dependent on

cloud cover generation, but no physical dependence mimicking the

Clausius–Clapeyron (C–C) relationship between precipitation intensity

and temperature increase is built into the current structure of the

AWE-GEN-2d model. This represents a limitation of the stochastically

downscaled climate scenarios, because theory (i.e., the C–C relation)

and confirmatory observations indicate that a warming climate is

expected to often cause a temperature-induced increase in extreme

rainfall (Berg et al., 2009; Trenberth et al., 2003; among others), as

well as modifying other spatial characteristics of storms (Fowler

et al., 2021; Lochbihler et al., 2017, 2019; Peleg et al., 2018; Peleg,

Skinner, et al., 2020; Wasko et al., 2016), which may have effects on

the hydrological response of catchments (Peleg et al., 2021; Peleg,

Sinclair, et al., 2020).

Given that our study sites are largely representative of the alpine

region, it is likely that the results apply to most catchments in the

European Alps. Catchments with high regulation of flow (for example,

with hydropower dams) or with a large variation in land cover

(e.g., large expanses covered with glaciers) may have different uncer-

tainty compositions (Fatichi et al., 2014, 2015; Schirmer et al., 2021).

Moreover, the proposed novel framework to partition hydrological

uncertainties at high space–time resolution is not tailored to a specific

case study and, thus, it is easily applicable to other regions, particu-

larly when the interest is in characterizing either small catchment

areas or complex topography in other climates beyond the European

Alps. As a result, this work contributes to expanding the applicability

of climate change uncertainty quantification studies.

5 | CONCLUSIONS

This article presents a novel framework for quantifying and partition-

ing the uncertainty of small-scale hydrological processes based on

combining regional climate model outputs, a high-resolution weather

generator, and a distributed hydrological model. Using two mountain-

ous catchments in Switzerland as study sites, ensembles of gridded

climate and hydrological variables were generated to represent the

present and future climate under an RCP 8.5 emission scenario and

multiple climate model chains and quantify the stochastic uncertainty

of the projections. Using a newly introduced STNR metric, it is shown

that, for the entire simulation period, the change signal for annual

streamflow is weak, mostly due to high values of stochastic

F IGURE 8 Signal-to-noise ratio (STNR) in the Kleine Emme (a–b) and Thur (c–d) catchment. The plots show the STNR (comparing end-of-the-
century multi-model mean and present climate simulations) of hourly (a, c) and daily (b, d) maximum flows compared to the elevation of the sub-
catchment's outlet. The outlined symbol is the outlet of the entire catchment. The colours in the markers show the fraction of uncertainty

attributed to the internal climate variability
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uncertainty. The STNR of specific hydrological components such as

liquid precipitation or snowmelt were, in contrast, higher and more

dependent on climate model uncertainty, which suggests that

improvements in climate models have the potential to narrow down

the uncertainty on these variables. As a consequence, the largest

potential for narrowing the uncertainty of mean streamflow was

found during warm seasons and at higher elevations, where hydrologi-

cal processes are more sensitive to temperature changes. As for

extreme high flows, the results show low absolute values of STNR for

all elevations explained by the dominant role of stochastic uncer-

tainty, thus suggesting a limited potential for projecting flood

extremes in the future with precision.
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