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Abstract 14 

Programmed cell death is key mechanism involved in several biological processes 15 

ranging from development and homeostasis to immunity, where it promotes the 16 

removal of stressed, damaged, malignant or infected cells. Abnormalities in the 17 

pathways leading to the initiation of cell death or the removal of dead cells, are 18 

consequently associated with a range of human diseases including, infection, 19 

autoinflammatory disease, neurodegenerative disease and cancer. Apoptosis, 20 

pyroptosis and NETosis are three well-studied modes of cell death that were 21 

traditionally believed to be independent of one another, however emerging studies 22 

indicate that there is extensive cross talk between these pathways, and that all three 23 

pathways can converge onto the activation of the same cell death effector – the pore-24 

forming protein Gasdermin D (GSDMD). In this review, we highlight recent advances 25 

in gasdermin research, with a particular focus on the role of gasdermins in pyroptosis, 26 

NETosis and apoptosis, as well as cell-type specific consequences of gasdermin 27 

activation. In addition, we discuss controversies surrounding a related gasdermin 28 

family protein, Gasdermin E (GSDME) in mediating pyroptosis and secondary 29 

necrosis following apoptosis, chemotherapy and inflammasome activation. 30 

 31 

  32 



Introduction  33 

Pyroptosis is a form of necrotic cell death that has emerged as an important innate 34 

immune mechanism against intracellular pathogens. The existence of pyroptosis was 35 

first observed in the early 1990s when several laboratories documented that infection 36 

with Shigella flexneri or Salmonella enterica serovar Typhimurium (S. Typhimurium) 37 

triggered rapid cytotoxicity in murine macrophages (Monack et al., 1996, Zychlinsky 38 

et al., 1992). This peculiar form of pathogen-induced cell death features several 39 

characteristics of apoptosis such as DNA fragmentation and exposure of 40 

phosphotidylserine, in addition to hallmarks of necrosis such as rapid plasma 41 

membrane permeability (Brennan & Cookson, 2000). Subsequent studies revealed 42 

that these features of pathogen-infected cells were driven by inflammasomes, a large 43 

cytoplasmic, multiprotein complex that enables the activation of the proinflammatory 44 

protease, caspase-1 (Martinon et al., 2002). Thus in 2001 Cookson and Brennan 45 

coined the term ‘pyroptosis’ to distinguish this form of cell death from apoptosis and 46 

accidental necrosis (Cookson & Brennan, 2001). While an increasing number of 47 

pathogens were documented to induce macrophage pyroptosis, the mechanisms by 48 

which pyroptosis drives host defence in vivo was unclear, although it was assumed 49 

that killing the infected cell was important. This mechanism was confirmed in vivo from 50 

elegant studies by Miao and colleagues, where they demonstrate that macrophage 51 

pyroptosis attenuates intracellular pathogens and present them for neutrophil-52 

mediated killing (Jorgensen et al., 2016, Miao et al., 2010). 53 

 54 

Early studies by Fink and colleagues indicated that pyroptosis was a form of regulated 55 

necrosis that were driven by membrane pores of a 1.1-2.4 nm (Fink & Cookson, 2006). 56 

However, the molecular mechanisms of plasma membrane pore formation were 57 

unclear until 2015, when two landmark studies from the laboratories of Vishva Dixit 58 

and Feng Shao, and subsequently by Jiahua Han, identified Gasdermin D (GSDMD) 59 

as the essential pyroptosis mediator (He et al., 2015, Kayagaki et al., 2015, Shi et al., 60 

2015). GSDMD consist of an N-terminal pyroptosis inducing domain (GSDMDNT or 61 

p30) connected by a linker to a C-terminal regulatory domain (GSDMDCT), which binds 62 

the N-terminus. Inflammasome-activated inflammatory caspases-1, -4 and -11 cleave 63 

GSDMD at a conserved site within the linker domain, thereby releasing the GSDMDNT 64 

from an intramolecular inhibition by GSDMDCT. This cleavage event allows GSDMDNT 65 

to oligomerise in cellular membranes, assembling large pores with a diameter of 66 



around 18 nm, and to cause pyroptosis (Aglietti et al., 2016, Ding et al., 2016, Liu et 67 

al., 2016, Mulvihill et al., 2018, Ruan et al., 2018, Sborgi et al., 2016).  68 

 69 

Emerging evidence suggest that GSDMD pores not only cause pyroptotic cell death, 70 

but that they are also essential for other consequences of inflammasome or caspase-71 

1 activation, e.g. the release of mature IL-1 family cytokines, such as IL-1 and IL-18.  72 

Unlike other cytokines, IL-1 and IL-18 lack a signal sequence and are therefore 73 

secreted in an endoplasmic reticulum/Golgi-independent manner (Rubartelli et al., 74 

1990). Since inflammasome activation usually elicits near-concurrent secretion of 75 

mature IL-1β and pyroptosis in macrophages, it is often proposed that IL-1 and IL-18 76 

are passively released during cell lysis. In line with this model, Gsdmd-deficiency 77 

severely abrogates IL-1 secretion upon canonical inflammasome activation 78 

(Kayagaki et al., 2015, Shi et al., 2015); and single cell analysis of macrophages 79 

revealed that IL-1 release coincides with the uptake of membrane-impermeable 80 

nucleic acid dyes (e.g. SYTOX, propidium iodide), a widely used assay to measure 81 

the loss of plasma membrane integrity (Liu et al., 2014, Polykratis et al., 2019). By 82 

contrast, a number of studies reported that mature IL-1 can be secreted in the 83 

absence of intracellular lactate dehydrogenase release, a commonly used assay to 84 

quantify cell lysis in a bulk cell population (Chen et al., 2014, Gaidt et al., 2016, Kang 85 

et al., 2013, Wolf et al., 2016, Zanoni et al., 2016). Since the standard lactate 86 

dehydrogenase release assay may lack single-cell resolution, it remains plausible that 87 

mature IL-1 are indeed released by a small fraction of lysed cells upon inflammasome 88 

activation. However, several lines of evidence support the notion that that cell lysis is 89 

not an absolute requirement for IL-1 secretion. For example, ectopic expression of 90 

mature IL-1 in primary macrophages is sufficient to induce its secretion in the 91 

absence of inflammasome activation (Monteleone et al., 2018); and single cell 92 

analysis of live, viable murine embryonic fibroblast revealed considerable IL-1 93 

secretion after caspase-1 or -8 activation (Conos et al., 2016). Consistent with these 94 

observations, a number of recent studies demonstrated that sublytic GSDMD pores 95 

(18 nm) are indeed large enough for the release of mature IL-1 (Evavold et al., 2018, 96 

Heilig et al., 2018) or entry of nucleic acid dyes (DiPeso et al., 2017, Russo et al., 97 

2016), indicating that GSDMD can act as a conduit for IL-1 release in the absence of 98 

cell lysis. Studies carried out by us on ESCRT-III-dependent membrane repair have 99 



further strengthened the notion that cells can tolerate a certain number of GSDMD 100 

membrane pores (Ruhl et al., 2018). The model that emerges from these studies 101 

implies that caspase activation proceeds from a sub-lytic phase in which cells feature 102 

transient assembly of GSDMD pores to a lytic phase where GSDMD pores cause a 103 

complete breakdown of membrane integrity. Whether cells transit from the sub-lytic to 104 

the lytic phase depends on the strength of the activating signal, level of GSDMD 105 

expression and activation, cell type and the activity of membrane repair mechanism. 106 

Furthermore, recent findings indicate that while GSDMDNT is sufficient to assemble 107 

pores in vitro or when overexpressed, its activity might be regulated by additional 108 

mechanisms under physiological conditions. For example, it has been proposed that 109 

complete GSDMD-dependent cell lysis requires SARM1-dependent depolarization of 110 

mitochondria in macrophages (Carty et al., 2019), indicating that mitochondrial 111 

damage is critical for the transition into the lytic-phase of GSDMD activation in this cell 112 

type. 113 

  114 

Altogether these new findings highlight that more research is necessary to understand 115 

how GSDMD expression and activity is regulated on a translational and post-116 

translational level, and which cellular membranes/organelles need to be targeted by 117 

GSDMDNT to induce pyroptotic cell death or to exert its lysis-independent functions. In 118 

the following we however focus on an emerging host of studies that have begun to 119 

uncover cell-type-specific and/or inflammasome-independent functions of GSDMD, 120 

and on the enigmatic role of GSDME, another member of the gasdermin family, in cell 121 

death. 122 

 123 

GSDMD function in neutrophils 124 

 125 

Neutrophils resist pyroptosis upon canonical inflammasome activation 126 

Neutrophils express a repertoire of pattern recognition receptors (PRR) and are 127 

recruited in large quantity to a site of infection or inflammation, therefore are excellent 128 

candidates to drive inflammasome-dependent responses in vivo (Thomas & Schroder, 129 

2013). However, earlier studies overlooked possible functions for neutrophil 130 

inflammasomes, after observing that neutrophils contributed to IL-1β processing 131 

through caspase-1-independent mechanisms in a mouse model of acute arthritis 132 

(K/BxN serum transfer) or upon FAS (CD95) ligation (Guma et al., 2009, Joosten et 133 



al., 2009, Miwa et al., 1998). In addition, two earlier studies proposed that neutrophils 134 

are unlikely to signal via inflammasomes during Salmonella Typhimurium or 135 

Burkholderia pseudomallei infection because these cells do not express NLRC4, an 136 

inflammasome-forming PRR that senses bacterial virulence factors (Ceballos-Olvera 137 

et al., 2011, Miao et al., 2010). Subsequent studies have now challenged these 138 

findings, as multiple groups readily detect expression of inflammasome-forming PRRs 139 

including NLRC4, NLRP3 and AIM2, and other components of the inflammasome 140 

signalling complex including the adaptor protein ASC, and the protease zymogen, 141 

caspase-1 in murine and human neutrophils (Bakele et al., 2014, Chen et al., 2016, 142 

Chen et al., 2014, Karmakar et al., 2015, Karmakar et al., 2016, Mankan et al., 2012). 143 

In agreement with this, exposure of neutrophils to the NLRC4 agonist Salmonella 144 

Typhimurium or the AIM2 agonist cytosolic double-stranded DNA triggered caspase-145 

1 activation and caspase-1-dependent IL-1β processing (Chen et al., 2014). Although 146 

Nlrp3 mRNA is basally expressed at much higher levels in neutrophils than 147 

macrophages (Chen et al., 2014), only soluble NLRP3 agonists such as ATP or the 148 

bacterial toxin nigericin, but not particulate or crystalline NLRP3 agonists (e.g. silica 149 

or monosodium urate crystals) are able to activate the neutrophil NLRP3 150 

inflammasome (Chen et al., 2016). This highlights that inflammasome signalling is 151 

specialised even between the two closely related myeloid cell lineage. In agreement 152 

with this, while caspase-1 activation triggers rapid macrophage pyroptosis (Kayagaki 153 

et al., 2015, Shi et al., 2015), canonical inflammasome (e.g. NLRC4, NLRP3, AIM2) 154 

activation in neutrophils selectively triggers caspase-1-dependent IL-1β processing 155 

without concomitant pyroptotic cell death (Chen et al., 2014, Chen et al., 2018b, 156 

Karmakar et al., 2015, Karmakar et al., 2016). Although neutrophils are relatively 157 

short-lived cells and murine neutrophils have a half-life of 18 h in circulation (5.4 days 158 

in humans) (Pillay et al., 2010), exposure of neutrophils to cytokines (e.g. GM-CSF, 159 

IL-1, IFN-) and pathogen-derived products (e.g. LPS) can significantly increase their 160 

lifespan up to 96 h, indicating that neutrophils can significantly prolong their lifespan 161 

during infection (Colotta et al., 1992). This unique ability of neutrophils to resist 162 

pyroptosis enables the recruited neutrophils to maintain their lifespan to clear the 163 

microbial insult or cellular debris; and sustain IL-1β release to recruit, activate and 164 

prolong the lifespan of neutrophils at a site of infection (Chen et al., 2014, Karmakar 165 

et al., 2015, Karmakar et al., 2016). While inflammasomes are important for host 166 



defence, gain-of-function mutations in inflammasomes can also drive a variety of 167 

hereditary inflammatory disease (e.g. Muckle-Wells Syndrome, macrophage 168 

activating syndrome) (Agostini et al., 2004, Canna et al., 2014, Romberg et al., 2014). 169 

These diseases are currently attributed to inflammasome dysfunction in monocytes 170 

and macrophages, in which IL-1β/18 production is rapidly curtailed by pyroptotic cell 171 

death. Intriguingly, IL-1β production and inflammation are not self-limiting in these 172 

diseases, suggesting that the cellular source of IL-1β in these diseases may indeed 173 

be derived from other cell types. Since neutrophils express majority of the 174 

inflammasome signalling components, and that neutrophil IL-1β production proceeds 175 

in the absence of pyroptosis, it would be of interest to examine the contribution of 176 

neutrophil-derived IL-1β in human inflammatory disease in future studies. 177 

 178 

The mechanisms by which neutrophils resist caspase-1-dependent pyroptosis is likely 179 

to be controlled by careful fine tuning of the expression of specific pyroptotic 180 

machineries in these cells. Although GSDMD is expressed at comparable levels 181 

between neutrophils and macrophages (Chen et al., 2018b, Heilig et al., 2018), 182 

neutrophils express relatively low level of ASC and caspase-1, therefore, neutrophil 183 

inflammasomes assemble with a smaller ASC ‘speck’ with reduced caspase-1 activity 184 

(Boucher et al., 2018, Chen et al., 2018a, Chen et al., 2018b). Since caspase-1 185 

cleaves pro-IL-1β better than it cleaves GSDMD (Chen et al., 2018b), this specific fine-186 

tuning of caspase-1 activity in neutrophils ensures that caspase-1 only generates 187 

sublytic GSDMD pores to enable IL-1β secretion without concomitant cell lysis (Chen 188 

et al., 2018b) (Figure 1). However, it is possible that additional mechanisms exist to 189 

restrict caspase-1-driven pyroptosis in neutrophils. For example, neutrophils may 190 

repair plasma membrane GSDMD pores via ESCRT-III repair mechanisms as 191 

reported for macrophages and HeLa cells (Ruhl et al., 2018). However, this hypothesis 192 

would be ambitious to demonstrate since it is technically challenging to manipulate 193 

primary neutrophils. SARM1 is a TIR-containing protein that is involved in TLR 194 

signalling. A recent study revealed a surprising role for SARM in driving optimal 195 

macrophage pyroptosis (Carty et al., 2019). Interestingly, Sarm1-deficient 196 

macrophages appears to be phenotypically similar to neutrophils, as both cell types 197 

release IL-1β in the absence of pyroptosis upon canonical inflammasome activation 198 

(Carty et al., 2019, Chen et al., 2014). Neutrophils were already documented to 199 

suppress TLR4-TRIF signalling to repress RIPK3-dependent cell death (Chen et al., 200 



2018a), therefore, it is conceivable that neutrophils likewise suppress SARM1 201 

expression to subvert caspase-1-dependent pyroptosis. Further studies should 202 

characterise the expression of SARM1 in neutrophils, and whether overexpression of 203 

SARM1 triggers neutrophil caspase-1-dependent pyroptosis.  204 

 205 

Caspase-11 and neutrophil elastase cleave GSDMD to elicit NETosis 206 

Although caspase-1 activation does not trigger pyroptosis in neutrophils, activation of 207 

the caspase-11 (non-canonical) inflammasome by cytosolic LPS or cytosolic Gram-208 

negative bacteria triggered robust GSDMD cleavage and cell lysis in neutrophils, 209 

indicating that these cells are not intrinsically resistant to GSDMD pores (Chen et al., 210 

2018b). Surprisingly, pyroptotic neutrophils appeared morphologically distinct from 211 

caspase-1 or -11-activated macrophages. Instead, caspase-11 and GSDMD 212 

activation triggered classical hallmarks of NETosis, including nuclear delobulation, 213 

histone citrullination, DNA extrusion, and rupture of nuclear, granule and plasma 214 

membrane (Figure 1). Strikingly, neutrophil elastase, myeloperoxidase and PAD4, 215 

three key enzymes involved in classical NETosis are dispensable for caspase-11-216 

dependent NET extrusion, indicating that caspase-11 and GSDMD may directly 217 

induce these hallmarks of NETosis (Chen et al., 2018b). In support of this, the 218 

combination of recombinant GSDMD and caspase-11 is sufficient to trigger neutrophil 219 

nuclear membrane rupture, chromatin relaxation and histone H3 degradation in a cell-220 

free system. Further, application of exogenous Dnase I to neutralise caspase-11 and 221 

GSDMD-driven NETs impairs in vivo host defence against a cytosolic mutant of 222 

Salmonella (sifA), revealing a previously undescribed host protective function of 223 

NETs against cytoplasmic infection (Chen et al., 2018b). Given that cell type-specific 224 

signalling has such a profound impact on the phenotypical outcome of GSDMD-225 

induced cell death, it will be very interesting to investigate the consequences of 226 

GSDMD activation in other granulocytes, as well as non-immune cells. 227 

 228 

Neutrophil elastase cleaves GSDMD to trigger neutrophil cell death and NETs 229 

Although GSDMD was initially identified as a substrate of inflammatory caspases, two 230 

recent studies documented that GSDMD is also processed the serine proteases, 231 

neutrophil elastase in neutrophils (Figure 2) (Kambara et al., 2018, Sollberger et al., 232 

2018). Although neutrophil elastase and cleave GSDMD several amino acids 233 



upstream of the canonical caspase cleavage site, this did not affect the ability of 234 

GSDMD N-terminal fragment to oligomerise and induce lytic cell death upon 235 

overexpression in HEK 293T cells, in line with the observation that the membrane 236 

insertion and lytic properties of GSDMD N-terminal fragment lies within the first 243 237 

amino acid (Shi et al., 2015). However, despite these observations, conclusion from 238 

the both studies were vastly different. In one study, neutrophil elastase-dependent 239 

GSDMD cleavage was proposed to trigger cell death in aging neutrophils. 240 

Consequently, when challenged intraperitoneally with E. coli K12, Gsdmd-deficient 241 

mice accumulated more neutrophils at a site of infection and were more resistant to 242 

infection than wild type animals (Kambara et al., 2018). However, whether GSDMD 243 

promotes spontaneous neutrophil cell death is controversial, as other studies 244 

documented similar rate of spontaneous neutrophil death in wild type versus Gsdmd-245 

deficient neutrophils (Burgener et al., 2019, Chen et al., 2018b). In agreement with 246 

macrophage studies that the GSDMDNT fragment triggers proinflammatory cell death, 247 

a second study reported that activation of GSDMD by neutrophil elastase drive 248 

neutrophil cell lysis and NET extrusion, a well-appreciated antimicrobial defence 249 

mechanism (Sollberger et al., 2018). Therefore, it appears that GSDMD activity in 250 

neutrophils can either promote or dampen host defence. The signalling mechanisms 251 

that dictate these differences have not been investigated in detail, however, it is 252 

tempting to speculate that the signal strength and cellular location of neutrophil 253 

elastase is a key regulator. It is well documented that a high concentration of neutrophil 254 

elastase translocates from azurophilic granules to the nucleus at the early stages of 255 

NETosis, and that nuclear membrane damage precedes cellular rupture (Metzler et 256 

al., 2014, Papayannopoulos et al., 2010, Sollberger et al., 2018). In this scenario, it is 257 

likely that the close proximity of cleaved GSDMD preferentially disrupts the nuclear 258 

membrane to initiate the hallmarks of NETosis. In contrast, it is conceivable that a 259 

much lower intensity of neutrophil elastase ‘escapes’ from azurophilic granules into 260 

the cytosol in aged neutrophils, which cleaves a low but steady amount of GSDMD to 261 

trigger neutrophil death without accompanying NETosis. Since GSDMD drives a 262 

variety of inflammatory disease and is thus an attractive pharmacological target, 263 

additional studies are clearly required to further characterise the function of GSDMD 264 

in neutrophils during inflammatory disease and infection. 265 

 266 

GSDMD function during apoptosis 267 



 268 

Emerging evidences of apoptosis-induced inflammation 269 

Apoptosis is a form of programmed cell death that is important for embryonic 270 

development, removal of auto-reactive lymphocytes and clearance of damaged or 271 

superfluous cells. In contrast to pyroptosis, apoptotic cell death is generally regarded 272 

as an immunologically silent process. This is achieved by several mechanisms, 273 

including sequential breakdown of the dying cell into small membrane-bound apoptotic 274 

bodies, the release of ‘find-me’ and ‘eat-me’ signals to promote efferocytosis of dying 275 

cells and caspase-mediated cleavage of innate immune sensors and proinflammatory 276 

cytokines (Luthi et al., 2009, Ning et al., 2019, Poon et al., 2014). However, despite 277 

these observations, in vitro studies revealed that genetic or pharmacological inhibition 278 

of endogenous apoptosis inhibitors such as the mammalian inhibitor of apoptosis 279 

proteins (IAPs) cIAP1, 2 and XIAP, or kinases such as transforming growth factor beta-280 

activated kinase 1 (TAK1) and IκB kinase  (IKK), sensitise myeloid cells including 281 

macrophages, dendritic cells and neutrophils to caspase-8 activation, cell lysis and 282 

NLRP3 inflammasome activation (Chen et al., 2018a, Dondelinger et al., 2015, Lawlor 283 

et al., 2017, Lawlor et al., 2015, Vince et al., 2012, Wicki et al., 2016, Yabal et al., 284 

2014). In agreement with these in vitro studies, global loss of Map3k7 (TAK1), IKK, 285 

or Birc2 (cIAP1) in combination with Birc3 (cIAP2) or Birc4 (XIAP) similarly drives 286 

excessive inflammation that results in embryonic lethality (Moulin et al., 2012, Sato et 287 

al., 2005, Shim et al., 2005, Tanaka et al., 1999). 288 

 289 

Direct cleavage of GSDMD by caspase-8 promotes cell lysis and inflammation  290 

While the studies above clearly implicate an important function for caspase-8 in driving 291 

inflammation and even embryonic lethality, the molecular mechanisms by which 292 

caspase-8 promotes cell lysis and NLRP3 activation remains unsolved. By using 293 

pharmacological inhibitors of TAK1 or IAPs (e.g. SMAC-mimetics), we and others 294 

recently demonstrate that the pyroptotic effector GSDMD plays a major role in this 295 

process (Chen et al., 2019b, Orning et al., 2018, Sanjo et al., 2019, Sarhan et al., 296 

2018). Unexpectedly, under these conditions, GSDMD is processed into the lytic p30 297 

fragment via two pathways. The first pathway involves direct cleavage of GSDMD by 298 

caspase-8 at position D276, similar to canonical caspase cleavage site described for 299 

caspase-1 and -11. However, caspase-8 is 30-fold less efficient than caspase-1 in 300 



processing GSDMD, and caspase-8-dependent GSDMD cleavage is only observed 301 

under conditions of strong caspase-8 activation (Chen et al., 2019b). This likely 302 

explains why early studies failed to observe GSDMD processing into the active p30 303 

fragment by recombinant caspase-8 (Shi et al., 2015). The second pathway leading to 304 

GSDMD activation occurs via potassium efflux and activation of the NLRP3 305 

inflammasome (Conos et al., 2017), however, the mechanisms by which caspase-8 306 

drives NLRP3 activation is still a matter of debate and is discussed in greater details 307 

in the subsequent paragraphs. 308 

 309 

The finding that caspase-8 triggers direct GSDMD activation is exciting and raises 310 

several important questions. For example, what is the physiological function of 311 

caspase-8-dependent GSDMD activation? Numerous pathogens are equipped with 312 

virulence factors that inhibit host NF-B signalling pathways. This could in turn 313 

promote caspase-8 activation and induce GSDMD cleavage and pyroptosis, as 314 

recently reported for Yersinia infection (Orning et al., 2018, Sarhan et al., 2018). 315 

However, as pyroptosis is best known as an innate immune mechanism to restrict 316 

intracellular pathogen infection, how GSDMD activation can promote host defence 317 

against Yersinia, a predominantly extracellular pathogen is unclear, and has not been 318 

formally demonstrated. RIPK1/caspase-8-dependent apoptosis can promote the 319 

release of alarmins and activate neighbouring immune cells for cytokine production 320 

and anti-Yersinia defence (Peterson et al., 2017), yet whether GSDMD is also required 321 

in this scenario is unclear and warrants further investigation. Likewise, it would be of 322 

interest to investigate whether the caspase-8-GSDMD axis induces NET extrusion to 323 

combat extracellular pathogens, or whether this signalling axis is exploited by Yersinia 324 

to promote pathogen dissemination in vivo.  325 

 326 

Another important question that arises from the discovery that caspase-8 cleaves 327 

GSDMD is the molecular mechanisms by which apoptosis remains immunologically 328 

silent during tissue homeostasis. Several lines of evidence suggest that executioner 329 

caspases play a key role in regulating the level of GSDMD activity in apoptotic cells, 330 

as previous studies documented that caspase-3, and a lesser extent caspase-7, 331 

cleave GSDMD at position D88 (D87 in humans) to disrupt its pore-forming ability 332 

(Rogers et al., 2017, Taabazuing et al., 2017). In keeping with this, GsdmdD88A/D88A 333 



knock-in macrophages harbouring a caspase-3/7-uncleavable mutation accumulated 334 

GSDMDNT pores, resulting in enhanced pyroptosis compared to wild type 335 

macrophages (Chen et al., 2019b). However, naïve GsdmdD88A/D88A mice appear 336 

phenotypically similar to wild type littermates (Chen et al., 2019b); thus whether 337 

GSDMD inactivation is required to suppress pyroptosis during physiological conditions 338 

in vivo has not been formally demonstrated. 339 

 340 

Aberrant caspase-8 activity has been implicated in a variety of inflammatory diseases, 341 

and in some cases can even drive lethality. For example, caspase-8 drives lethal 342 

dermatitis in the absence of linear ubiquitin chain assembly complex (LUBAC) 343 

(Taraborrelli et al., 2018), and caspase-8 activity triggers embryonic lethality observed 344 

in Birc2−/− Birc3−/− mice (Zhang et al., 2019). Furthermore, caspase-8-dependent 345 

intestinal damage is a key driver for septic shock in mice (Mandal et al., 2018). Since 346 

the caspase-8 is emerging a key mediator of cell death and inflammation, it would be 347 

of great interest to investigate whether caspase-8-dependent GSDMD activation is 348 

sufficient to drive pathogenesis of these diseases in the near future. 349 

 350 

GSDMD and pannexin-1 control NLRP3 activation in apoptotic cells 351 

Although apoptosis was traditionally considered an immunologically silent form of cell 352 

death, an increasing number of studies documented that apoptotic caspase-8 353 

promotes assembly of the NLRP3 inflammasome (Chen et al., 2019a, Chen et al., 354 

2019b, Lawlor et al., 2017, Lawlor et al., 2015, Vince et al., 2012, Wicki et al., 2016). 355 

The existence of this signalling axis was first demonstrated by Vince and colleagues, 356 

who reported that loss of IAPs sensitized macrophages and dendritic cells to caspase-357 

8-dependent cell death and NLRP3 activation upon TNF or TLR ligation (Vince et al., 358 

2012). Although this signalling axis is implicated in a variety of physiological 359 

conditions, including the pathogenesis of X-linked lymphoproliferative syndrome type 360 

2 in humans (Lawlor et al., 2017, Yabal et al., 2014), and during influenza or Yersinia 361 

infection (Kuriakose et al., 2016, Orning et al., 2018), the exact mechanism by which 362 

apoptotic caspases activate NLRP3 is still a matter of debate and might involve several 363 

pathways. Orning et al. recently proposed that caspase-8-driven GSDMD pores 364 

triggers NLRP3 assembly (Orning et al., 2018), analogous to the noncanonical 365 

inflammasome pathway, where caspase-11-driven GSDMD pores promote 366 



membrane damage, potassium efflux and NLRP3 inflammasome activation (Figure 367 

3) (Kayagaki et al., 2015, Ruhl & Broz, 2015, Shi et al., 2015). In contrast, our study 368 

revealed that GSDMD is dispensable for caspase-1 activation during TNF-induced 369 

caspase-8 activation. Instead, we demonstrate that caspase-8-dependent NLRP3 370 

activation requires the channel-forming transmembrane glycoprotein, pannexin-1. For 371 

this, caspase-8 promotes downstream executor caspase-3/7 activation, which cleave 372 

and activate pannexin-1 channel activity, membrane permeability and NLRP3 373 

inflammasome activation (Figure 3) (Chen et al., 2019a, Chen et al., 2019b). Further 374 

support for the importance of pannexin-1 in driving NLRP3 activation during apoptosis 375 

comes from the fact that caspase-3/7 and pannexin-1 is also required also for NLRP3 376 

activation upon caspase-9-dependent intrinsic apoptosis, which unlike caspase-8, 377 

does not have the ability to cleave GSDMD (Chen et al., 2019a, Chen et al., 2019b, 378 

Vince et al., 2018). 379 

 380 

The reasons for this discrepancy are unclear, however, it is tempting to speculate that 381 

the cellular activity of executor caspase-3/7 critically controls the amount of GSDMD 382 

pores and pannexin-1 activation in a given cell, and that dictates which pathway is 383 

preferentially activated. For example, a given cell with high caspase-3/7 activity would 384 

inactivate GSDMD pores and favour NLRP3 activation via pannexin-1 channels. On 385 

the other hand, cells with low caspase-3/7 activity would favour NLRP3 activation via 386 

GSDMD pores but not pannexin-1 channels. Given that executor caspase-3/7 activity 387 

is often suppressed in transformed cells and that many cancer chemotherapies induce 388 

tumour cell death through caspase-8, future studies should further characterize this 389 

pathway in the context of cancer chemotherapy, and whether modulating this 390 

signalling axis can promote tumour clearance.  391 

 392 

GSDME activation by caspase-3 promotes pyroptosis in some but not all cells 393 

The discovery that cleavage of GSDMD at the linker region by inflammatory caspases 394 

unleashes the pore-forming function of GSDMDNT has significantly enhanced the 395 

field’s understanding of gasdermin family proteins. Indeed, recent studies found that 396 

GSDME features a caspase-3 cleavage motif in its linker region. Similar to GSDMD, 397 

cleavage of GSDME by caspases-3/-7 liberates the N-terminal pyroptosis-inducing 398 

domain (GSDMENT) from its autoinhibitory C-terminal regulatory domain to trigger 399 

membrane pores and pyroptosis (Rogers et al., 2017, Wang et al., 2017). Interestingly, 400 



cleavage of GSDME by caspase-3 does not necessarily destine the cell to undergo 401 

pyroptosis. In this regard, immune cells appear to be the most resistant to GSDME 402 

pores. Indeed, despite evidence of GSDME processing into the active GSDMENT 403 

fragment, a number of studies documented that GSDME is dispensable for pyroptosis 404 

or secondary necrosis upon extrinsic or intrinsic apoptosis in primary and immortalised 405 

murine macrophages, THP-1 monocytes and Jurkat T cells (Chen et al., 2019b, Lee 406 

et al., 2018, Tixeira et al., 2018, Vince et al., 2018). A simple explanation for this 407 

phenomenon is that GSDME pores need to surpass a critical threshold to initiate 408 

pyroptosis. In support of this, cancer cell lines that express high levels of GSDME are 409 

extremely susceptible to pyroptosis after exposure of apoptosis-inducing therapies 410 

such as cisplatin, doxorubicin and etoposide, while the same treatment triggers 411 

apoptosis in GSDME-deficient or low expressing cells (Wang et al., 2017). Although 412 

emerging studies demonstrate that MLKL-driven necrotic cell death promotes anti-413 

tumour immunity (Brumatti et al., 2016, Snyder et al., 2019), whether GSDME-driven 414 

pyroptosis restricts tumour growth in vivo is still unclear and remains an open question. 415 

For example, a study reported that GSDME expression suppresses melanoma cell 416 

growth a murine xenograft model, whereas other studies documented that Gsdme 417 

deficiency had no impact on tumour formation during intestinal cancer (Croes et al., 418 

2019, Zhou et al., 2018). Further studies are required to clarify the importance of 419 

GSDME during tumorigenesis.  420 

 421 

Conclusion and outlook 422 

Since the discovery of the GSDMD as executor of pyroptosis in 2015, it has taken 423 

centre stage in other cell death pathways as well, highlighting that inflammasomes are 424 

only one possible signalling pathway that can activate the protein. It is thus 425 

conceivable that other proteases, be it from the host or from pathogenic 426 

microorganisms, could also activate GSDMD or the other family members, as shown 427 

for caspase-3/-7 and GSDME. However, proteolysis may not be the only mechanism 428 

of gasdermin activation, as point mutations in the GSDMCT, result in activation without 429 

the removal of the C-terminal domain (Shi et al., 2015). It is thus clear that additional 430 

work will be necessary to better understand the activation and regulation mechanism 431 

that control this new family of cell death executors. Furthermore, given the importance 432 

of gasdermin-induced death in causing tissue damage and inflammation, additional 433 



efforts should be made to develop specific gasdermin inhibitors and to explore the 434 

possibility of therapeutical targeting of the gasdermin family. 435 
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Figure 1. Canonical and non-canonical inflammasome activation in neutrophils. 746 

Neutrophils express several inflammasome-forming PRR including NLRC4, NLRP3, 747 

AIM2 and caspase-11. Activation of canonical inflammasome selectively triggers IL-748 

1 maturation without accompanying cell lysis. IL-1 secretion in living neutrophils 749 

require the pore-forming protein GSDMD. Upon cytoplasmic Gram-negative bacterial 750 

infection, caspase-11 triggers robust GSDMD cleavage. GSDMDNT targets plasma 751 

membrane and nuclear membrane to elicit neutrophil extracellular traps (NETs). 752 

Caspase-11-driven GSDMD pores promotes potassium efflux and activation of the 753 

NLRP3 inflammasome. 754 

 755 

Figure 2. GSDMD promotes spontaneous neutrophil cell death and NET 756 

extrusion. In aging neutrophils, release of neutrophil elastase (NE) from specific 757 

neutrophil granules cleave and activate GSDMD, resulting in neutrophil cell death. 758 

Upon treatment with classical NETosis activators (e.g. PMA), reactive oxygen species 759 

(ROS) promote the release of NE from the granules to cytosol in an ill-defined manner. 760 

NE cleaves and activate GSDMD, leading to nuclear and plasma membrane rupture 761 

and neutrophil cell lysis by NETosis. 762 

 763 

 Figure 3. GSDMD is a novel effector protein in the extrinsic apoptosis pathway. 764 

In TNF-stimulated cells, loss or inhibition of IAP and TAK1 function promotes assembly 765 

of a caspase-8-activating platform called TNF Complex IIb (also commonly referred 766 

as the ripoptosome). Active caspase-8 cleaves GSDMD at D276, leading to 767 

pyroptosis. Caspase-8-driven GSDMD activation, or caspase-3/7-dependent 768 

pannexin-1 activation promotes potassium efflux and NLRP3 assembly. NLRP3-769 

dependent caspase-1 activation cleaves GSDMD to further drive pyroptosis. 770 

Probenecid, spironolactone and trovafloxacin are pannexin-1 channel inhibitors. 771 

 772 

Fig. 1 773 

 774 



 775 

 776 

 777 

Fig. 2 778 

 779 

 780 

Fig. 3 781 



 782 

 783 

 784 


