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The good genes hypothesis of sexual selection postulates that ornamentation signals superior genetic
quality to potential mates. Support for this hypothesis comes from studies on male ornamentation only,
while it remains to be shown that female ornamentation may signal genetic quality as well. Female
barn owls (Tyto alba) display more black spots on their plumage than males. The expression of this
plumage trait has a genetic basis and it has been suggested that males prefer to mate with females
displaying more black spots. Given the role of parasites in the evolution of sexually selected traits and
of the immune system in parasite resistance, we hypothesize that the extent of female plumage s̀pottiness’
re£ects immunological defence. We assessed the genetic variation in speci¢c antibody production
against a non-pathogenic antigen among cross-fostered nestlings and studied its covariation with the
plumage spottiness of genetic parents. The magnitude of the antibody response was positively corre-
lated with the plumage spottiness of the genetic mother but not of the genetic father. Our study
thereby provides the ¢rst experimental support, to our knowledge, for the hypothesis that female
ornamentation signals genetic quality.
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1. INTRODUCTION

The evolution of sexually selected traits usually proceeds
through male^male competition or female choice of the
most ornamented males (Andersson 1994). This choice
will allow females to select males of high genetic quality
as suggested by the good genes theory of sexual selection
(Andersson 1994). Although males are expected to be
choosy as well (Trivers 1972; Owens & Thompson 1994;
Johnstone et al. 1996), no trait is known to signal the
genetic quality of females. To date, experimental tests of
the good genes theory have been con¢ned to species in
which males are more heavily ornamented than females.
These studies have shown that, by displaying such a trait,
males signal viability (Norris 1993) or their ability to
resist parasites (MÖller 1990), and that the same trait
expressed in a reduced form in females has apparently no
signalling function (Hill 1993; Cuervo et al. 1996). This
may suggest that female expression of a male trait in a
reduced state is a genetic by-product (Lande 1980). In
this scenario, only males are selected to develop the trait
in an extravagant state. Males transmit the underlying
genes of the trait into both daughters and sons, but sisters
and brothers will express them di¡erently due to the
e¡ect of sex-speci¢c genes (Lande 1980). Because the idea
that females may signal their quality to potential mates
via an ornament comes from non-experimental studies
(MÖller 1993; Singh 1993; MÖller et al. 1995; Potti &
Merino 1996; Amundsen et al. 1997) and from experi-
ments conducted in species in which females are less
ornamented than males (Hill 1993; MÖller 1993; Cuervo
et al. 1996; Potti & Merino 1996; Amundsen et al. 1997), it

remains unclear whether female attributes serve to signal
genetic quality. Consideration of model organisms in
which the female is the more ornamented sex would facil-
itate testing this purpose.

The barn owl is distributed worldwide and females
generally display more and larger black spots on the
plumage of their ventral body side than males in both
adults and nestlings (Roulin 1999a). The expression of
plumage s̀pottiness’ is under genetic control and appears
to be neither environmentally mediated nor condition
dependent (Roulin et al. 1998). In Switzerland, successive
females of the same males were similarly spotted. Mates
of father and sons also displayed plumage spottiness to
the same extent and mating was assortative with respect
to this trait (Roulin 1999b). These observations suggest
that male mate choice occurs and that a preference for
heavily spotted females may be transmitted from father to
sons. Thus, the barn owl does not match the general
pattern observed in birds in which females are the choosy
sex. This makes the barn owl a suitable model organism
for investigating whether female traits may re£ect genetic
quality. Given the role of parasites in the evolution of
sexually selected traits (Hamilton & Zuk 1982), we
hypothesize that the extent of female plumage spottiness
covaries with the level of antibody responses. Consider-
ation of immunological mechanisms is justi¢ed since
parasite resistance relies in part on the level of speci¢c
antibodies (Brossard & Girardin 1979; Gross et al. 1980).

We tested this hypothesis in a wild population of barn
owls using a cross-fostering design, which is a useful tool
for separating genetic from environmental e¡ects on the
development of a phenotypic trait by nestling birds.
O¡spring were randomly assigned to foster nests and
their immune system challenged with sheep red blood
cells (SRBCs), a non-pathogenic antigen which mimics
invasion by a novel pathogen. We then correlated the
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magnitude of the speci¢c antibody response towards
SRBCs by cross-fostered nestlings to the plumage
characteristics of the genetic mother and father.

2. MATERIAL AND METHODS

(a) General method
The study was conducted in 1998 in western Switzerland

(468 49’ N, 06856’ E) in an area covering 190 km2. We checked
nest-boxes regularly to record the breeding parameters and
capture adults. Females were di¡erentiated from males by the
presence of a brood patch. At the third week of incubation, all
females were weighed to the nearest gram and their tarsus
length measured to the nearest millimetre. A body condition
index was calculated as the residuals of the regression of body
mass on tarsus length. One of the authors (A.R.) assessed the
surface area of the black spots on the plumages of parents and
nestlings. The number of spots was counted within a
60 mm£ 40 mm frame placed on the breast, belly, £anks and
underside of the wing and the diameter of three to 20 spots
measured with a caliper to the nearest 0.1mm. The proportion
of the plumage surface covered by spots was calculated with the
formula 100£ º £ number of spots£ (mean spot diameter/2)2/
2400. We averaged the values of the two £anks and the same
procedure was applied to the two wings. The values found for
the four body regions were then averaged. This last value was
square-root transformed to normalize the data distributions and
referred to as `plumage spottiness’. The repeatability of this
method is high (92%) (Roulin 1999b). To determine the sex of
the nestlings a 20 ml blood sample was taken from the brachial
vein at 30 days of age. DNA analyses were performed following
Roulin et al. (1999).

(b) Cross-fostering
Barn owl parents do not discriminate between their own and

unrelated nestlings (Roulin et al. 1999) and, thus, cross-fostering
experiments are appropriate for assessing whether the antibody
responsiveness of nestlings raised in foster nests towards SRBCs is
related to the plumage spottiness of the genetic parents. Between
pairs of nests, half of the zero- to ¢ve-day-old nestlings were
exchanged without altering the brood size.Two to three hatchlings
from nest A were brought to nest B and vice versa. Nests A and B
are referred to as a `pair of cross-fostered’ nests. We marked the
nestlings with non-toxic paint in order to record their identity
before they were ringed.We determined the age of the nestlings by
measuring their wing lengths (SchÎnfeld & Girbig1975).

Our experimental procedure ensured that the analyses of the
relationship between nestling immunocompetence and female
plumage spottiness were unbiased by brood size, hatching date,
size and age when the nestlings were challenged with SRBCs.
Indeed, no signi¢cant correlation was found between female
plumage spottiness and brood size where half of her cross-
fostered o¡spring were raised (Spearman correlation, rs ˆ 0.04,
n ˆ 38 and p ˆ 0.81), the mean place of these o¡spring in the
within-brood age hierarchy (rs ˆ 7 0.20, n ˆ 38 and p ˆ 0.23),
their mean age at the time of SRBC injection (Pearson correla-
tion, r ˆ 70.03, n ˆ 38 and p ˆ 0.88) and their hatching date
(r ˆ 70.02, n ˆ 38 and p ˆ 0.91). Di¡erently spotted females also
produced o¡spring which did not di¡er in their mean condition
index which was given by the residuals from the regression of
body mass on wing length at the time of injection (r ˆ 0.09,
n ˆ 38 and p ˆ 0.58). Finally, there was no resemblance in
plumage spottiness between genetic and foster mothers

(r ˆ 70.03, n ˆ 38 and p ˆ 0.88) and between female and male
mates (r ˆ 7 0.11, n ˆ 36 and p ˆ 0.51).

(c) Measurement of antibody response towards
SRBCs

The immune system of nestling birds takes several weeks to
mature (Apanius 1998). We therefore injected the nestlings with
SRBCs at the latest possible age, i.e. when the oldest nestling of
each brood was 40 days, which is two weeks before the ¢rst
£ight. Thus, all nest-mates were injected with SRBCs on the
same day and, since nestlings hatch every two to three days, age
at injection di¡ered. The nestlings were injected subcutaneously
in the neck with 0.1ml of a suspension of SRBCs (10% v/v in
phosphate-bu¡ered saline (PBS), with 10 mM phosphate,
pH 7.4). We then took ¢ve 100 ml blood samples of each nestling
from the brachial vein on day 0 (i.e. before immunization) and
days 3, 8, 13 and 18 after immunization. The blood samples were
centrifuged to remove the serum. We froze the serum until later
analysis. We assessed antibody titres using an indirect haemag-
glutination assay. The samples were randomized in 96-well,
round-bottomed, microtitre plates. Four microlitres of serum
were diluted in 16 ml PBS and then 10 ml was serially diluted
twofold with PBS (dilutions of 1:5, 1:10, 1:20, 1:40, 1:80, 1:160,
1:320 and 1:640). After 30 min of incubation at 37 8C and
30 min at 48C, the plates were washed twice with PBS followed
by resuspension in 100 ml of PBS. Fifty microlitres were then
transferred to a new plate and 50 ml of 300-fold diluted rabbit
anti-barn owl antibodies were added to these wells. The plates
were incubated for 2 h at 378 C. The agglutination titres were
expressed as (log2 + 1) of the reciprocal of the highest dilution
showing agglutination. The rabbit anti-barn owl antibodies were
prepared by immunizing a rabbit three times with 150 mg of
ammonium sulphate- (40%) precipitated barn owl serum. The
injections were given three weeks apart. The ¢rst injection was
prepared in Freund’s complete adjuvant and the following two
in Freund’s incomplete adjuvant. The serum of the rabbit was
collected 19 days after the last injection.

(d) Statistics
The data were analysed with the JMP statistical package

(Sall & Lehman 1996). The statistical tests were two-tailed and
p-values4 0.05 were considered as signi¢cant. Because the
nestlings were not all immunized at the same age, we controlled
for this factor in the statistical analyses. The heritability (h2) of
the plumage spottiness was estimated from twice the slope of the
regression of the mean plumage trait of o¡spring raised in a
foster nest on the plumage trait of each genetic parent in turn
(Falconer 1989).

3. RESULTS

(a) Variation in antibody response towards SRBCs
Most of the nestlings mounted a speci¢c antibody

response towards the SRBCs (170 out of 175 nestlings).
The amounts of speci¢c antibodies progressively
increased from prior to immunization (day 0) to 13 days
later and then dropped slightly on day 18 (¢gure 1).
Female and male nestlings produced a similar quantity of
antibodies (mean antibody levels of same-sex nest-mates
at days 0, 3, 8, 13 and 18 after immunization as repeated-
measure ANOVA with sex as factor, F1,73 ˆ 0.29 and
p ˆ 0.59). Therefore, we did not control for the gender of
the nestlings in subsequent analyses.
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(b) Covariation between plumage spottiness and
antibody response

The hypothesis that the female plumage spottiness
signals the antibody responsiveness of o¡spring towards
an arti¢cial antigenic challenge assumes that both the
expression of plumage spottiness and the amounts of
speci¢c antibodies produced by nestlings are heritable.
These two assumptions were veri¢ed. First, the mean
plumage spottiness of o¡spring raised in foster nests was
correlated with the plumage spottiness of their genetic
parents (mother h2 ˆ 0.66 § 0.28, F1,36 ˆ 5.79 and p ˆ 0.02
and father h2 ˆ 0.98 § 0.26, F1,34 ˆ 14.22 and p 5 0.001).
Second, siblings raised in di¡erent nests mounted a
similar antibody response to the SRBCs (see the nested
ANOVA analysis shown in table 1). We did not detect an
e¡ect of the nest of origin on the time-course of the
immunological response (origin£ time interaction from
the same previous nested ANOVA, Wilk’s l, F76,451 ˆ1.04
and p ˆ 0.40). Therefore, we considered only the mean
peak response at days 8 and 13 post-immunization
(¢gure 1) when investigating the origin-related covaria-
tion between the magnitude of the antibody response
towards the SRBCs by cross-fostered o¡spring and the
plumage spottiness of parents.

We statistically removed the variance in antibody
response due to the pair of cross-foster nests, the rearing
environment and the age of the nestlings at the time of
immunization from the nested ANOVA (see table 1). The
residuals obtained re£ect the origin-related e¡ects on
mounting an immunological response towards SRBCs.
The mean residual antibody response of siblings raised in
foster nests was positively correlated to the plumage spot-
tiness of their genetic mother (r ˆ 0.36, n ˆ 38 and
p ˆ 0.028), but not to that of their genetic father
(r ˆ 7 0.15, n ˆ 36 and p ˆ 0.39). Thus, more heavily
spotted females had o¡spring which produced a higher

quantity of speci¢c antibodies against SRBCs (¢gure 2).
We also assessed whether within nests more spotted nest-
lings produced more antibodies against the SRBCs. We
statistically removed the variance due to the pair of cross-
foster nests, the plumage spottiness of the genetic mother
and the age of the nestlings at the time of injection from
the nested ANOVA. Within nests more spotted nestlings
produced non-signi¢cantly higher amounts of anti-SRBC
antibodies (ANOVA, nestling spottiness F1,37 ˆ 2.78 and
p ˆ 0.10). Since the female body condition measured
during incubation was not signi¢cantly correlated to their
plumage spottiness (r ˆ 0.19, n ˆ 38 and p ˆ 0.25),
maternal e¡ects may not have in£ated the relationship
between the immunocompetence of the o¡spring and
plumage characteristics of the genetic mother.
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Figure 1. Time-course of the speci¢c antibody response
towards SRBCs. The sample size is 175 nestlings. When
applying paired t-tests the mean level of antibodies di¡ered
signi¢cantly between two successive measurements except
between days 8 and 13 after immunization.

Table 1. Mixed-model nested ANOVA on the level of anti-
SRBC antibodies

(In this model, the term pair of cross-foster nests was the main
e¡ect, while the nests of rearing and nests of origin were
nested in the main e¡ect as indicated by the parentheses and
the age of the nestlings at the time of injection was the
covariate. For every individual the ¢ve measurements of
antibody levels were used in the model as repeated measures.)

source d.f. F-ratio p-value

pairs of nests 18 117 2.53 0.0020
nest of rearing (pair of nests) 19 117 1.19 0.0060
nest of origin (pair of nests) 19 117 2.43 0.0020
age at the time of injection 1 117 11.99 0.0007
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Figure 2. Relationship between the mean residual levels of
anti-SRBC antibodies produced by o¡spring raised in foster
nests and the plumage spottiness of their genetic mother. The
residuals were obtained after controlling for the pair of
cross-foster nests, the rearing environment and the age of the
nestlings at the time of immunization.



4. DISCUSSION

(a) Genetics of parasite resistance
Theoretical models of the evolution of parasite viru-

lence and of host^parasite coevolution generally assume
that variation in parasite resistance has a genetic basis
but few ¢eld studies exist to support this assumption
(Sorci et al. 1997). Cross-fostering experiments in the barn
swallow (Hirundo rustica) have shown that the intensity of
ectoparasite infection of nestlings is partly determined by
their origin, suggesting a heritable basis for parasite resis-
tance (MÖller 1990). However, the mechanism of parasite
resistance remains unclear. The immune system may play
an important role because the capacity to resist endo-
(Gross et al. 1980) and ectoparasites (Brossard & Girardin
1979) is often immunologically mediated. Recent ¢eld
studies using a cross-fostering design in the barn swallow
(Saino et al. 1997) and the great tit (Parus major) (Brinkhof
et al. 1999) found that the in£ammatory response of
nestlings to an injection of phytohaemagglutinin was
partly explained by their nest-related origin. This suggests
that genetic variance in cell-mediated immunity is main-
tained in avian populations. In the present study we
focused on humoral immunity, i.e. the production of
speci¢c antibodies. Antibody responses play an important
role in conferring parasite resistance (Brossard &
Girardin 1979). For instance, chickens selected for high
antibody responsiveness towards SRBCs were better able
to resist Newcastle disease and various bacteria including
Escherichia coli and Staphylococcus aureus (Gross et al. 1980).
Thus, SRBCs can be used to partition the variation in
parasite resistance into environmental and genetic
components. Genetic variance for antibody production
directed against SRBCs has already been demonstrated
using selection experiments with domestic fowls (e.g.
Gross et al. 1980) but, to the best of our knowledge, not in
a free-living organism. Our ¢nding that sibling barn owls
raised in di¡erent nests mounted a similar antibody
response against SRBCs therefore provides, to the
authors’ knowledge, the ¢rst experimental support for an
origin-related basis in antibody responsiveness towards a
speci¢c antigen in a wild animal population.

(b) Signal of female quality
In the barn owl, females are more spotted than males

(Roulin 1999a,b) and the observation that more heavily
spotted females produced o¡spring which mounted a
higher antibody response towards SRBCs strongly
suggests that variation in a female attribute re£ects
variation in the genetic quality of their o¡spring. It also
con¢rms the results of an earlier study which concluded
that additive genetic variance for plumage spottiness is
maintained (Roulin et al. 1998). The absence of a signi¢-
cant correlation between the antibody responsiveness of
their cross-fostered o¡spring and the plumage spottiness
of the genetic father is di¤cult to discuss without
knowledge of the frequency of extra-pair paternity. In
contrast, the ¢nding that female plumage spottiness
covaried with antibody responsiveness towards SRBCs is
not surprising for three reasons. First, a previous study
documented that males may prefer to mate with heavily
spotted females and an experiment showed that female
plumage spottiness is a stimulus for males (Roulin 1999b).

Therefore, male barn owls may assess and choose heavily
spotted females in order to produce more immuno-
competent o¡spring. Second, an observational study
showed that the nests of heavily spotted females were less
infested by the blood-sucking £y Carnus hemapterus and
that those £ies were also less fecund (Roulin et al. 2000).
Third, an experiment also demonstrated that £ies had
reduced fecundity when feeding on cross-fostered
nestlings whose genetic mother was heavily spotted
(Roulin et al. 2000). Therefore, female plumage spottiness
may not only be a heritable signal of immunocompetence,
as measured by SRBC antibody responsiveness in the
present study, but also a heritable signal of parasite
resistance. Since we cannot entirely exclude the possibility
that heavily spotted females produced high-quality eggs
which improved their antibody response against SRBCs,
complementary studies are required in order to assess the
exact role of potential maternal e¡ects. Such e¡ects may
nevertheless be weak since the female body condition was
not correlated with their plumage spottiness. In this
context, the barn owl appears to be particularly
promising for future studies on signals of parasite
resistance displayed by females.

We thank M. Epars and H. Etter for their help with the ¢eld-
work and Guido Meeuwissen for the determination of the sex of
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