
RESEARCH ARTICLE

A partial genome assembly of the miniature

parasitoid wasp, Megaphragma amalphitanum

Fedor S. Sharko1,2☯, Artem V. NedoluzhkoID
2,3☯*, Brandon M. LêID

4, Svetlana

V. Tsygankova2, Eugenia S. Boulygina2, Sergey M. Rastorguev2, Alexey S. Sokolov1,

Fernando RodriguezID
4, Alexander M. Mazur1, Alexey A. Polilov5, Richard BentonID

6,

Michael B. Evgen’ev7, Irina R. Arkhipova4, Egor B. Prokhortchouk1,5*, Konstantin

G. Skryabin1,2,5†

1 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences,

Moscow, Russia, 2 National Research Center “Kurchatov Institute”, Moscow, Russia, 3 Nord University,

Faculty of Biosciences and Aquaculture, Bodø, Norway, 4 Josephine Bay Paul Center for Comparative

Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of

America, 5 Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia, 6 Center for

Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,

7 Institute of Molecular Biology RAS, Moscow, Russia

☯ These authors contributed equally to this work.

† Deceased.

* nedoluzhko@gmail.com (AN); prokhortchouk@gmail.com (EP)

Abstract

Body size reduction, also known as miniaturization, is an important evolutionary process that

affects a number of physiological and phenotypic traits and helps animals conquer new eco-

logical niches. However, this process is poorly understood at the molecular level. Here, we

report genomic and transcriptomic features of arguably the smallest known insect–the para-

sitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast

to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are

comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other

chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly,

we observed significant changes in M. amalphitanum transposable element dynamics over

time, in which an initial burst was followed by suppression of activity, possibly due to a recent

reinforcement of the genome defense machinery. Overall, while the M. amalphitanum geno-

mic data reveal certain features that may be linked to the unusual biological properties of this

organism, miniaturization is not associated with a large decrease in genome complexity.

Introduction

Miniaturization in animals is an evolutionary process that is frequently accompanied by structural

simplification and size reduction of organs, tissues and cells [1, 2]. The parasitoid waspMega-
phragma amalphitanum (Hymenoptera: Trichogrammatidae, subfamily Oligositinae) is one of

the smallest known insects, whose size (250 μm adult length) is comparable with unicellular

eukaryotes and even some bacteria (Fig 1). Parasitoids from the genusMegaphragma parasitize

greenhouse thripsHeliothrips haemorrhoidalis (Thysanoptera: Thripidae) developing on the

shrubs Viburnum tinus (Adoxaceae) andMyrtus communis (Myrtaceae) [3], and possibly
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Hercinothrips femoralis (Thysanoptera: Thripidae) [4]. The wasp spends most of its life cycle in

host eggs, while the imago stage is very short and lasts only a few days [3, 4].M. amalphitanum
belongs to chalcid wasps, which represent one of the largest insect superfamilies (~23,000

described species)[5]. The higher-level taxonomic relationships of Trichogrammatidae, Chalcidoi-

dea and Hymenoptera have been investigated in several recent studies [6–10] that helped to estab-

lish the placement of this unique taxon that related to Mymaridae and Pteromalidae.

Amongst notable anatomical features ofM. amalphitanum, this species has only ~4,600

neurons in its brain, which is substantially fewer than in the brains of other wasps, e.g., the par-

asitoid chalcid wasp Trichogramma pretiosum (Trichogrammatidae: Trichogrammatinae)

(~18,000 neurons), Hemiptarsenus sp. (Chalcidoidea: Eulophidae) (~35,000 neurons), and the

honey bee Apis mellifera (Apidae) (~850,000–1,200,000 neurons). Moreover, by the final stage

ofM. amalphitanum development, up to 95 percent of the neurons of the central nervous sys-

tem have lost their nuclei [12, 13]. Nevertheless, adult wasps, which have an average lifespan of

5 days, still preserve the basic functional traits of hymenopteran insects including flight, mat-

ing and oviposition in hosts [14].

In this study, we present aM. amalphitanum partial genome assembly and the adult tran-

scriptome, and compare these with several parasitoid wasp species of different body sizes from

the Chalcidoidea and Ichneumonoidea hymenopteran superfamilies. We performed general

gene ontology and pathway analyses as well as specific gene categories of interest, such as che-

mosensory receptors and venom components. Additionally, we investigated transposable ele-

ment (TE) content and dynamics acrossM. amalphitanum and other parasitoid wasp species

and analyzed the major components of the genome defense machinery. As body size reduction

and loss of physiological or phenotypic traits is often correlated with genome size diminution

[15, 16] and/or gene networks reduction [17], including chromatin diminution from the

somatic tissues during embryogenesis[18, 19], we initially anticipated that theM. amalphita-
num genome would be greatly simplified.

Material and methods

Detailed information is presented in Supplementary Information
Nucleic acid extraction and library construction. M. amalphitanum individuals were

reared in the laboratory conditions from eggs ofHeliothrips haemorrhoidalis (Thysanoptera:

Fig 1. Size comparison of the parasitoid wasp M. amalphitanum and bacterium Thiomargarita namibiensis. (A)

An adult stage of the parasitoid waspM. amalphitanum (image adapted from [5]), (B) T. namibiensis–the largest

known bacterium (modified from Schulz et al. 1999) [11].

https://doi.org/10.1371/journal.pone.0226485.g001
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Thripidae) collected in Santa Margherita, Northern Italy (44.32, 9.20). Unfortunately, we

could collect only a dozenM. amalphitanum individuals because their habitats are difficult to

detect (culture in the laboratory is currently impossible), the imago life span is short (5 days),

and the animal is extremely small. With several insects we could cleanly recover, we were

therefore able to obtain only around 1–5 ng of genomic DNA for the each paired-end DNA

and cDNA libraries. DNA was extracted from ten individuals (males and females) using

NucleoSpin Tissue XS kit (Macherey-Nagel, Germany) for each DNA-library. Three DNA

libraries (DNA-library1 –whole insects; DNA-library2 –thorax and abdomen; DNA-library3 –

head) were constructed using Ovation Ultralow Systems V2 kit (NuGEN, USA). Limited

amount of biological material and low quantity of starting material (1–3 ng) did not permit

construction of mate-paired libraries. Genome libraries were sequenced using Illumina HiSeq

1500 (Illumina, USA) with 150 bp paired-end reads. RNA was extracted from tenM. amalphi-
tanum individuals (males and females) using the Trizol reagent (Thermo Fisher Scientific,

USA) by a standard protocol, and cDNA libraries were constructed using Ovation RNA-Seq

System V2 kit (NuGEN, USA) with poly(A) enrichment.

Genome de novo assembly. The output from Illumina sequencing of the genomic DNA

library (source format �.fastq) was used for de novo genome assembly. To assemble the genome

ofM. amalphitanum, we used 102,188,833 paired-end reads. Genome assemblies were con-

structed using different assembly algorithms, and their performance was compared to each

other (S2 Fig). Then,M. amalphitanum reads were mapped to the final partial assembly with

92.3% conformity. Additionally, genomic DNA-libraries from thorax and abdomen (DNA-

library2) ofM. amalphitanum (SRR5982987) and from head (DNA-library3) ofM. amalphita-
num (SRR5982986) were prepared. In total, 79,317,970 (paired-end sequencing: 2×100 bp)

and 85,409,775 (single-end sequencing: 50 bp) DNA reads were sequenced and used forM.

amalphitanum coverage increase and as additional evidence during the search for potentially

missing genes (S1 Table). Then, these reads were used for de novo building of theM. amalphi-
tanum genome sequence by the SPAdes assembler (v.3.6.1) [20].

Transcriptome de novo assembly. Illumina RNA sequencing generated a total of

59,790,973 paired-end reads. Transcriptome de novo assembly was conducted using the default

k-mer size in the Trinity software package (v. 2.4.0) [21], which combines three assembly algo-

rithms: Inchworm, Chrysalis and Butterfly. Annotation of theM. amalphitanum transcrip-

tome assembly was performed using the Trinotate pipeline [22].

Transposable element (TE) de novo identification and analysis. For de novo TE library con-

struction, we used the REPET package [23] which combines three mutually complementing

repeat identification tools (RECON, GROUPER and PILER), yielding a combined repeat

library with the average consensus sequence length of 1.66 kb (ranging from 157–14,640 bp).

The outputs were subject to additional classification with the RepeatClassifier tool from the

RepeatMasker package (www.repeatmasker.org), which was also used to build the correspond-

ing TE landscape divergence plots.

Results and discussion

Genome and transcriptome sequencing and assembly of M. amalphitanum
To gain insight into the genomic signatures of miniaturization that would distinguishM.

amalphitanum from other Hymenoptera, we performed whole-genome shotgun sequencing of

DNA (DNA-library1) isolated from ten adult individuals (males and females), using the Illu-

mina platform (S1 Table). The resulting partial genome assembly (PRJNA344956) has a cumu-

lative length of 346 megabases (Mb), with a scaffold N50 of 10,296 bp. The total genome

coverage is 88.6-fold. Thus, the genome ofM. amalphitanum is comparable in size with other
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Chalcidoidea wasps, such as Copidosoma floridanum, T. pretiosum or Nasonia vitripennis [24,

25]. The best-performing combination of assembly software yielded contig N50 of 4,285 bp

and allowed us to assemble 94,687 scaffolds from the low amounts of starting DNA material

(Table 1; S2 Table; S1 Fig).

TheM. amalphitanum genome assemblies were evaluated with the BUSCO v3 (benchmark-

ing universal single-copy orthologs) Hymenoptera gene set [26], which uses 4,415 near-univer-

sal single-copy orthologs to assess the relative completeness of genome assemblies. Through

this analysis, 7.55% of the conserved genes were initially identified in theM. amalphitanum
assembly as putatively missing (S3 Table). More detailed information on our extensive search

for the missing genes inM. amalphitanum genome is presented below.

We also performed whole-body transcriptome analysis using RNA extracted from tenM.

amalphitanum individuals (males and females). Transcriptome de novo assembly (PRJNA34

4956) was performed using the Trinity software [21]. A total of 46,841 contigs were assembled

with a mean length of 586 bp and an N50 of 633 bp from the low amounts of starting RNA

material (S4 Table). The Illumina paired-end RNA-Seq data fromM. amalphitanum were

mapped to the previously assembled genome using Bowtie2 [27]. Inspection of the alignments

revealed that 79.95% of reads could be mapped to the genome. The BUSCO v3 statistics for the

transcriptome assembly is also presented in Table 1; S3 Table.

The BUSCO analysis shows the low completeness of the present partial genome and tran-

scriptome assemblies, with 28–29% of BUSCO genes listed as fragmented. This may be caused

by inability to use mate-paired DNA-libraries or single-molecule sequencing (because of low

amount of starting DNA material); possible high heterozygosity and/or significant structural

variation between different parasitoid wasp individuals that were used for genome and tran-

scriptome assemblies; BUSCO database incompleteness; and other factors. An additional fac-

tor in poor transcriptome completeness could be a high number of short and chimeric isotigs:

while nearly 80% of transcriptome reads map to the genome, only 24% of assembled contigs

are represented in the complete BUSCO set.

Table 1. Final statistics of the genome and transcriptome assemblies of parasitoid wasp Megaphragma
amalphitanum.

Genome assembly

Number of contigs 94,687

Median (n:N50) 7,843

Contig N50 size 10,296

Maximum contig length, bp 895,906

Cumulative assembly size, bp 3.46×108

BUSCO assembly completeness, %

Fragmented, %

80.4

9.8

Transcriptome assembly

Number of contigs 46,841

Median (n:N50) 13,109

Contig N50 size 633

Maximum contig length, bp 9,503

Cumulative assembly size, bp 3.74×107

BUSCO assembly completeness, %

Fragmented, %

24.65

28.12

Number of transcripts (BLASTX) 12,238

https://doi.org/10.1371/journal.pone.0226485.t001
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Gene ontology analysis

We used Gene Ontology (GO) analysis terms to describe characteristics ofM. amalphitanum
gene products in three independent categories: biological processes (S2 Fig), molecular func-

tion (S3 Fig), and cellular components (S4 Fig). BLASTX outputs were used to retrieve the

associated gene names and GO terms in all three categories (Table 2).

AllM. amalphitanum transcripts were matched to the Clusters of Orthologous Groups

(COG) database to predict and classify their functions. In total, 8,810 genes were assigned to

25 COG functional categories. One of the largest groups is represented by the cluster for post-

translational modification, protein turnover, and chaperones (988 counts; 10.7%), followed by

intracellular trafficking, secretion, and vesicular transport (659 counts; 7.2%), DNA replica-

tion, recombination and repair (606 counts; 6.6%), signal transduction mechanisms (599

counts, 6.5%) and transcription (587; 6.4%) (S5 Fig).

To better understand incorporation of genes into diverse pathways, all annotated transcripts

were mapped against the KEGG database for pathway-based analysis. As a result, 6,130 tran-

scripts out of a total of 46,841 were assigned to a KEGG pathway, and were present in 328 differ-

ent KEGG pathways. The KEGG pathway distribution is summarized in S6 Fig. The top

pathways are biosynthesis of secondary metabolites (150 counts; 2.4%), RNA transport (100

counts; 1.6%), biosynthesis of antibiotics (95 counts; 1.5%), and spliceosome (94 counts; 1.5%).

The annotation ofM. amalphitanum and the available transcriptome assemblies of other

parasitoid wasps from the families Trichogrammatidae (T. pretiosum, a lepidopteran egg para-

sitoid) and Braconidae including Cotesia vestalis (a diamondback moth parasitoid), Dia-
chasma alloeum (an apple maggot parasitoid) and Fopius arisanus (tephritid fruit fly

parasitoid) were used for comparative analysis of the most represented gene functions in para-

sitoids. We also used transcriptome assemblies from the Agaonidae fig wasp, Ceratosolen
solmsi. We found significant similarities betweenM. amalphitanum, T. pretiosum and C. vesta-
lismajor GO enrichment categories (S7–S9 Figs). At the same time, a significant number of

transcripts related to DNA integration relative to other parasitoid wasps was found in D.

alloeum andM. amalphitanum (S7 Fig) (see below). Complete information about reference

datasets used forM. amalphitanum genome and transcriptome data analysis is shown in S5

Table. The Trinotate statistics for annotation ofM. amalphitanum, C. solmsi, D. alloeum, F.

arisanus, C. vestalis and T. pretiosum transcriptome assemblies is presented in S6 Table.

Potentially missing genes and missing or rapidly evolving gene clusters in

the M. amalphitanum genome

Given the incomplete nature of theM. amalphitanum genome assembly (BUSCO coverage of

~80%, Table 1), we could perform only a preliminary assessment of potentially missing genes

Table 2. Basic Gene Ontology (GO) analysis terms for M. amalphitanum gene products.

GO assignments of the transcripts Transcript counts and percentage of total

Biological processes 8,812 counts, 49.72%

Transcription Regulation of transcription DNA integration

15% 10% 8%

Cellular components 4,802 counts, 27.10%

Nucleus and cytoplasm components Integral membrane components Plasma membrane components

18% 9% 7%

Molecular functions 4,108 counts, 23.18%

ATP binding Metal ion binding Zinc ion binding

17% 12% 10%

https://doi.org/10.1371/journal.pone.0226485.t002
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and/or rapidly evolving gene clusters compared to other species. We clustered gene orthologs

and identified gene clusters for each hymenopteran taxa (Chalcidoidea:M. amalphitanum, T.

pretiosum, C. solmsi, C. floridanum, and N. vitripennis; Ichneumonoidea: D. alloeum and F.

arisanus; Apoidea: A.mellifera) using OrthoMCL [28]. The core gene set of all the hymenop-

teran species was composed of 6,278 gene clusters, 122 gene clusters were unique to the chalcid

clade. 262 gene clusters were not detected in any of the chalcids analyzed (Supplementary

Dataset 2; NCBI BioProject: PRJNA344956), but found in all the other hymenopterans, consis-

tent with a similar recent analysis [29]. Our findings suggest that that the loss of these genes

apparently occurred in the last common ancestor of chalcids, or point to the possibility of par-

allel genome evolution across these species. Interestingly, the missing/rapidly evolving genes

include homologs of genes that have important roles in embryonic patterning and develop-

ment in other insects (e.g., krueppel-1, knirps or short gastrulation [29]).

To determine whether miniaturization inM. amalphitanum is associated with significant

gene loss that could be detected even in a partial genome assembly, we used genomic data of

six larger hymenopteran species (T. pretiosum, C. vestalis, C. floridanum, F. arisanus, N. vitri-
pennis, and N. giraulti), as well as the well-annotated genome of the honeybee (A.mellifera) as

reference (body sizes are presented in S5 Table). We mapped theM. amalphitanum (DNA-

library1), T. pretiosum, C. vestalis, C. floridanum, F. arisanus, N. vitripennis, N. giraultiDNA

reads on the A.mellifera genome sequence (PRJNA13343, PRJNA10625) (S10 Fig), and

detected 115 genes that were not represented byM. amalphitanum sequencing reads but were

present in other parasitoid wasps. We then increased the coverage of theM. amalphitanum
genome to 146.8-fold by adding the reads from additional libraries (DNA-library2 and DNA-

library3) (S1 Table) and observed the apparent absence of 114 of the 115 genes. An additional

TBLASTX search identified 36 of these genes as present, yielding a total of 78 putatively miss-

ing genes (S7 Table). However, querying theM. amalphitanum genome with the correspond-

ing amino acid sequences from the closest wasp ortholog (N. vitripennis or T. pretiosum) in

TBLASTN searches reduced the number of putatively missing genes to just five: centrosomin,

phosphoglycerate mutase 5, phosphoglycerate mutase 5–2, 26S proteasome complex subunit

DSS1, and mucin-1/nucleoporin NSP1-like. We detected shortM. amalphitanum genome

sequences encoding protein fragments (~8–23 amino acid residues) with some similarity to

four of them, suggesting that they may be in the process of degeneration in this species. Despite

a thorough search, we were unable to find any homologous sequence related to centrosomin
(cnn) gene either in the partially assembled genome or in our cDNA libraries. Although cnn is

regarded as rapidly evolving [30], sequence homology can be readily discerned and orthologs

are present in every other insect, including the parasitoid T. pretiosum, suggesting that this

gene is specifically absent inM. amalphitanum. In Drosophila melanogaster, Cnn has impor-

tant roles at the centrosome in mitotic spindle formation, cytoskeleton organization and neu-

ronal morphogenesis [31, 32], although these functions may not be indispensable because this

species (and possibly other insects) possesses centrosome-independent mechanisms for spin-

dle nucleation [33]. A fungal homolog of Cnn is involved in nuclear migration [34–36]. Since

the presented genome assembly has only partial BUSCO coverage, the absence of cnn remains

tentative. Globally, however, the analysis of the available genome assembly argues for relatively

little gene loss inM. amalphitanum. Confident identification of true gene losses in this species

will require additional DNA sequencing and improved genome assembly.

Chemosensory genes in the M. amalphitanum genome

Chemosensory receptors are encoded by some of the largest gene families in insect genomes,

reflecting their important and wide-ranging roles in detection of environmental odors and
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tastants. We asked how these gene families have evolved inM. amalphitanum, whose central

and peripheral nervous systems are highly reduced [2, 14]. The highly divergent sequences of

chemosensory receptors and relatively short genomic contig lengths available forM. amalphi-
tanum precluded accurate annotation of full-length sequences in this species for the majority

of loci. Nevertheless, comparison with chemosensory receptor repertoires of other insects

allowed us to define probable orthologous relationships with receptors of known function in

other species and obtain initial estimates of the size of each family.

The most deeply conserved family of chemosensory receptors in insects are the Ionotropic

Receptors (IRs), which are distantly related to ionotropic glutamate receptors [37, 38]. IRs

function in heteromeric protein complexes comprising more broadly-expressed co-receptors

with selectively expressed “tuning” IRs that determines sensory specificity. We identified

orthologs of each of the co-receptors (Ir8a, Ir25a (two paralogs), Ir93a and Ir76b), as well as

four genes encoding tuning IRs related to acid-sensing receptors in other species. We also

identified orthologs of IR68a, which functions in hygrosensation [39] and IR21a, which func-

tions in cool temperature-sensing [40, 41]. Overall, the repertoire of IRs inM. amalphitanum
is therefore very similar in size and content to that of N. vitripennis [38].

Insects possess a second superfamily of chemosensory ion channels–distinguished by a hep-

tahelical protein structure–comprising Odorant Receptor (OR) and Gustatory Receptor (GR)

subfamilies, which generally function in detection of volatile and non-volatile stimuli, respec-

tively [42–45]. Similar to IRs, ORs function in heteromeric complexes of a conserved co-recep-

tor (ORCO) and a tuning OR. We identified anM. amalphitanum ortholog of Orco and 83

additional Or-related sequences. We caution that many of these Or sequences are small frag-

ments (often located near the end of the assembled contigs), so it is currently difficult to deter-

mine whether these are intact genes or pseudogenes. Within the GR repertoire, we identified

genes encoding proteins related to GR43a, a sensor of both external and internal fructose [46],

two others similar to other insect sugar-sensing GRs [47], and 25 additional Gr gene frag-

ments. The sizes of these repertoires are smaller than in N. vitripennis (300 Ors (including 76

pseudogenes) and 58 Grs (including 11 pseudogenes) [48]), but similar to non-miniaturized

parasitoid waspsMeteorus pulchricornis andMacrocentrus cingulum [49, 50]. However, precise

comparison with the latter two species is difficult, as receptors in these wasps were identified

from antennal transcriptomes, thereby representing only one of these insects’ chemosensory

organs.

In sum, these analyses reveal that despite drastic nervous system reduction,M. amalphita-
num has retained the conserved chemosensory receptors of larger wasps (and other insects),

and appears to have numerous additional order- or species-specific receptors to allow detec-

tion of environmental chemical cues.

Venom components in the M. amalphitanum transcriptomic data

Parasitoid wasps often use venom to modify the metabolism of their hosts; toxins and their

known or presumed biological functions are described in various species [51]. We investigated

the presence of homologs of N. vitripennis toxin constituents inM. amalphitanum and other

parasitoid wasps (Megastigmus spermotrophus, N. vitripennis, C. solmsi, T. pretiosum), using

previously published venom data [52, 53] and the transcriptomes of chalcid wasps (S5 Table).

We identified 28 transcripts encoding putative venom proteins (Fig 2; S8 Table); homologs of

these are found in all investigated Chalcidoidea species (Table 3). Assuming that most of these

candidates are truly conserved venom proteins among Chalcidoids,M. amalphitanum venom

diversity does not seem to have been significantly affected by size reduction.
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M. amalphitanum transposable elements and genome defense

Transposable elements (TEs) constitute a measurable fraction of virtually all eukaryotic

genomes, and can play important roles in their function and evolution. In insects, TE activity

has been implicated in evolution of eusociality, based on comparison of ten bee genomes with

Fig 2. A Venn diagram showing Nasonia vitripennis venom components in other Chalcidoidea species: M. spermotrophus, C. solmsi, T. pretiosum and M.

amalphitanum.

https://doi.org/10.1371/journal.pone.0226485.g002
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increasing degrees of social complexity [56]. We performed de novo TE identification and

comparative analysis of TE dynamics inM. amalphitanum and in a representative set of larger

wasp genomes for which TE content has previously been reported: the parasitoid N. vitripennis
and two primitively eusocial aculeate wasps Polistes canadensis and Polistes dominula [12, 25,

57]. Additionally, we analyzed TEs in the genomes of parasitoid wasps T. pretiosum from the

family Trichogrammatidae and D. alloeum from the family Braconidae.

For uniformity of measurements, we applied the same workflow to all genomes, without

relying on pre-existing repeat libraries. We employed the REPET package for de novo TE iden-

tification (also used in [56]), and RepeatMasker for repeat classification and construction of

TE landscape divergence plots. Comparison of the overall repeat content across six wasp spe-

cies did not reveal substantial differences between four species (18.5% inM. amalphitanum vs.
18.1%, 17.7% and 14.2% in P. canadensis, P. dominula and T. pretiosum, respectively). The N.

vitripennis genome was 32.5% repetitive, in close agreement with the published estimate [25],

and D. alloeum was highly repetitive at 52.8% (pie charts in Fig 3; S11 Fig). TE dynamics over

time, which is shown on the corresponding TE landscape divergence plots, was found to differ

substantially forM. amalphitanum, which displayed a pronounced decline in recent TE activ-

ity after an initial increase, a pattern that is rarely observed in other hymenopterans [58, 59]

(Fig 3).

While TE dynamics may be affected by different factors, the observed drop in active TE

content inM. amalphitanummay be relevant to the unique biology of this highly miniaturized

insect. Its closest relative, T. pretiosum, is about 2-fold larger in body length.Wolbachia infec-

tion, which typically results in T. pretiosum parthenogenesis, can afterwards indirectly affect

TE mobility in the host as a consequence of asexual reproduction, resulting in proliferation of

specific TE families [58, 60, 61]. Other wasps do not display notable drops or spikes in current

TE activity; TE inactivation was reported in two asexual mites [58], however it appears to be

ancient and may have occurred prior to the abandonment of sex. Overall, the continued

decline inM. amalphitanum TE activity over the span of several million years–not observed in

T. pretiosum which shares the most recent common ancestor withM. amalphitanum–repre-

sents a rather unusual genomic feature compared to other hymenopteran we examined,

including ants (not shown). We note, however, a recent comprehensive study [59] described

two hymenopterans with a similar decline in recent TE activity (see below). No traces ofWol-
bachia infection or other representatives of the Rickettsiaceae family were found inM. amal-
phitanum individuals [62], while the sequenced T. pretiosum carries theWolbachia symbiont

[63]; the sequenced Nasonia strain was maintained on antibiotics to cure it of infection.

To gain insights into possible reasons for reduction in TE activity after the initial burst, we

investigated the major components of the genome defense machinery inM. amalphitanum,

including Dicer (Dcr)-like and Argonaute (Ago)/Piwi-like protein-coding genes. In insects,

Table 3. Number of homologs of N. vitripennis venom (N. vitripennis toxin constituents) in M. amalphitanum and other Chalcidoidea species based on Universal

Chalcidoidea Database [54].

Parasitoid wasp species Families of Chalcidoidea Number of N. vitripennis venom constituents Body size, mm Approximate number of hosts

M. amalphitanum Trichogrammatidae 37 0.25 2 insect species from one order

C. solmsi Agaonidae 38 2.7 2 plant species from one family

M. spermotrophus Torymidae 41 2.8 13 plant species from one family

T. pretiosum Trichogrammatidae 45 0.5 >140 insect species from 4 orders

N. vitripennis Pteromalidae 64 2.2 6� insect species from one order [55]

� Universal Chalcidoidea Database lists >110 insect species from 8 orders [54]

https://doi.org/10.1371/journal.pone.0226485.t003
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Ago-1 and Dcr-1 homologs represent the key components of the miRNA pathway; Ago-2 and

Dcr-2mediate antiviral RNA interference; and Piwi and Ago-3/Aub suppress TE activity in the

germline [64]. BothM. amalphitanum and T. pretiosum possess equal numbers of Dcr-1 and

Dcr-2 homologs, as well as Ago-2 and Ago-3 homologs (S12 Fig). However, inM. amalphita-
num, the Ago-1 and the Piwi/Aub homologs underwent a relatively recent duplication in com-

parison to T. pretiosum (Fig 4). This may indicate additional layers of enforcement in the

miRNA and piRNA pathways ofM. amalphitanum, both of which should result in suppression

of TE activity. Indeed, after inspecting the genomes of two other sequenced hymenopteran

species showing recent declines in TE activity (Leptopilina clavipes and Solenopsis invicta; [58,

59]), we found that they also display relatively recent duplications of Piwi-like proteins (Fig 4).

The drop in TE activity is also evident from the transcriptome analysis. The GO radar plot

(S7 Fig) shows a substantial number of short contigs related to DNA integration, most of

which upon inspection were found to represent separate fragments of gypsy-like and copia-

like LTR retrotransposons, and a few belong to Polinton, P and Ginger DNA TEs. Transcrip-

tionally active copies fall into two groups: first, those which apparently proliferated during the

burst of TE activity and have since accumulated debilitating mutations making them incapable

of transposition, but still retain a certain level of transcriptional activity; second, those that

originate from recent infections by retrovirus-like TEs and contain uninterrupted ORFs, but

are not actively proliferating and are present at very few genomic loci. Comparison of BLASTN

hits forM. amalphitanum integrase-related TE transcripts showed that high-copy hits repre-

sent MITEs (S13 Fig). We hypothesize that actively proliferating TE copies represent recent

arrivals, possibly brought about by viruses or host-parasite interactions [65].

Fig 3. Comparison of TE landscape divergence plots and TE genome fraction pie charts in four parasitoid wasp species: M. amalphitanum, T. pretiosum, N.

vitripennis and D. alloeum.

https://doi.org/10.1371/journal.pone.0226485.g003
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Concluding remarks

Our study provides a first view of the genomic content of one of the smallest insects currently

known, the parasitoid waspM. amalphitanum. In contrast to the expectation that the small

body size, in combination with the parasitic lifestyle, should lead to significant reduction in

the amount of genomic DNA and in gene content, we do not observe a drastic reduction in

the overall genome size or in the number of expressed genes in comparison with larger para-

sitic wasps. However, the multiple experimental constraints described above limit the quality

of genome and transcriptome assemblies. In the future, improved genomic studies in this spe-

cies (and other Hymenoptera) will be essential to confidently assess specific genetic adapta-

tions that may be linked with body miniaturization.

Interestingly, transposable element dynamics over time were found to differ substantially

between the analyzed wasp species, withM. amalphitanum displaying a relatively recent

decline in TE activity preceded by a burst, a pattern not observed in most other parasitoid

wasps. The decline in TE activity may have been associated with evolution of additional Ago
and Piwi copies, not present in T. pretiosum, which could have reinforced the genome defense

machinery to prevent uncontrolled TE expansion. This hypothesis is strengthened by identify-

ing duplications of Piwi-like proteins accompanied by a decline in TE activity over time in two

additional species of Hymenoptera; by contrast, most other hymenopterans show no such

decline.

Fig 4. Maximum likelihood analysis of phylogenetic relationships between Piwi/Argonaute coding sequences.

Colored dots denote sequences from T. pretiosum (blue), L. clavipes (gray), S. invicta (yellow) andM. amalphitanum
(red). Recent duplications in the latter three hymenopterans are indicated by curly brackets, and the corresponding TE

divergence plots from [58, 59] and Fig 3 are placed next to each curly bracket. Phylogeny analysis and notations are as

in S12 Fig.

https://doi.org/10.1371/journal.pone.0226485.g004
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The relationship between body size and genome size has been discussed for a long time. Sig-

nificant correlations of these values have been described for flatworms and copepods [16]; by

contrast, such correlations were not found in ants [66]. Our results show that body size reduc-

tion in hymenopterans is not accompanied by greatly decreased transcriptomic and genomic

complexity. This observation begs the question of how miniaturization is encoded genetically.

We hypothesize that changes in regulatory sequences, rather than gene content, were impor-

tant in the process of body size reduction, similar to mechanisms of morphological evolution

that have driven adaptive diversification in all animals, great or small [67].

Supporting information

S1 Fig. M. amalphitanum genome assembly statistics using ABySS, SPAdes, and Velvet

software. K-mer sizes were matched for ABySS, SPAdes and Velvet. Note: CLC Genomics

Workbench does not use k-mer size; CLC assembly was performed with default settings, and

the statistics are given in S2 Table.

(PNG)

S2 Fig. Gene ontology analysis of M. amalphitanum transcriptome for contigs with

assigned GO: Biological processes.

(TIF)

S3 Fig. Gene ontology analysis of M. amalphitanum transcriptome for contigs with

assigned GO: Molecular function.

(TIF)

S4 Fig. Gene ontology analysis of M. amalphitanum transcriptome for contigs with

assigned GO: Cellular components.

(TIF)

S5 Fig. The Clusters of Orthologous Groups (COG) for M. amalphitanum transcriptome

(top pathways).

(TIF)

S6 Fig. KEGG pathway analysis for the M. amalphitanum transcriptome.

(TIFF)

S7 Fig. Radar plot for the M. amalphitanum, C. solmsi, D. alloeum, F. arisanus, C. vestalis,
T. pretiosum transcriptome GO-category related to biological processes showing numbers

of transcripts in this GO-category for six Chalcidoid species.

(TIF)

S8 Fig. Radar plot for the M. amalphitanum, C. solmsi, D. alloeum, F. arisanus, C. vestalis,
T. pretiosum transcriptome GO-category related to cellular components showing numbers

of transcripts in this GO-category for six Chalcidoid species.

(TIF)

S9 Fig. Radar plot for the M. amalphitanum, C. solmsi, D. alloeum, F. arisanus, C. vestalis,
T. pretiosum transcriptome GO-category related to molecular processes showing numbers

of transcripts in this GO-category for six Chalcidoid species.

(TIF)

S10 Fig. Potentially missing genes in the M. amalphitanum partial genome assembly. Y-

axis: number of genes; X-axis: number of hymenopteran genomes analysed.

(TIF)
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S11 Fig. Effects of re-classification of “unknown” repeats in the de novo library for M.
amalphitanum and P. dominula (Supplementary Notes B6). v2, re-classified.

(TIF)

S12 Fig. Maximum likelihood analysis of phylogenetic relationships among eukaryotic

Dicer homologs from animals, plants, and fungi. M. amalphitanum and T. pretiosum Dcr-

1 and Dcr-2 homologs are denoted by red dots. Multiple alignments of CDS sequences were

performed using Muscle v3.8 with default settings. Phylogenetic trees were generated under

the maximum likelihood criterion using PhyML 3.0 (GTR model, NNI topological moves and

likelihood branch supports). All manipulations of phylogenetic trees were performed using

FigTree. Scale bar, nucleotide substitutions per site.

(PNG)

S13 Fig. Box plot of percent identity between BLASTN hits for M. amalphitanum inte-

grase-related TE transcripts, binned by copy count. High-copy hits represent MITEs.

(PNG)

S14 Fig. An overview of the missing gene analysis pipeline and its results.

(TIF)
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