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Abstract—This paper introduces BRAINFUSENET, a novel
lightweight seizure detection network based on the sensor fusion
of electroencephalography (EEG) with photoplethysmography
(PPG) and accelerometer (ACC) signals, tailored for low-channel
count wearable systems. BRAINFUSENET utilizes the Sensitivity-
Specificity Weighted Cross-Entropy (SSWCE), an innovative loss
function incorporating sensitivity and specificity, to address the
challenge of heavily unbalanced datasets. The BRAINFUSENET-
SSWCE approach successfully detects 93.5% seizure events
on the CHB-MIT dataset (76.34% sample-based sensitivity),
for EEG-based classification with only four channels. On the
PEDESITE dataset, we demonstrate a sample-based sensitivity
and false positive rate of 60.66% and 1.18 FP/h, respectively,
when considering EEG data alone. Additionally, we demonstrate
that integrating PPG signals increases the sensitivity to 61.22%
(successfully detecting 92% seizure events) while decreasing the
number of false positives to 1.0 FP/h. Finally, when ACC data are
also considered, the sensitivity increases to 64.28% (successfully
detecting 95% seizure events) and the number of false positives
drops to only 0.21 FP/h for sample-based estimations, with
less than one false alarm per day when considering event-based
estimations. BRAINFUSENET is resource-friendly and well-suited
for implementation on low-power embedded platforms, and we
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evaluate its performance on GAP9, a state-of-the-art parallel
ultra-low power (PULP) microcontroller for tiny Machine Learn-
ing applications on wearables. The implementation on GAP9
achieves an energy efficiency of 21.43 GMAC/s/W, with an
energy consumption per inference of only 0.11 mJ at high
performance (412.54 MMAC/s). The BRAINFUSENET-SSWCE
method demonstrates effective and accurate seizure detection
on heavily imbalanced datasets while achieving state-of-the-art
performance in the false positive rate and being well-suited for
deployment on energy-constrained edge devices.

Index Terms—Epilepsy, seizure detection, embedded deploy-
ment, sensor fusion, wearable devices.

I. INTRODUCTION

EPILEPSY is a widespread neurological disorder that af-
fects over 50 million individuals globally and is char-

acterized by recurrent seizures that disrupt cerebral function
[1]. While traditional treatments primarily revolve around phar-
macological interventions, instances of pharmacoresistance
necessitate alternative approaches like surgical interventions or
neurostimulation [2]. This underscores the imperative for
personalized treatments and comprehensive brain activity mon-
itoring [3]. The common monitoring approach requires hospi-
talization in an epilepsy monitoring unit (EMU), where video
surveillance and noninvasive Electroencephalography (EEG)
caps (typically with 32 or 64 channels) are used to classify vari-
ous seizure types, given that generalized convulsive seizures are
relatively rare [4], [5], [6]. However, a critical need remains for
advanced, long-term, ambulatory monitoring solutions to assess
seizure frequency and enable seizure-triggered alert systems.

The evolution of EEG-based seizure detection in wearable
technologies is pivotal in overcoming the limitations of conven-
tional EEG systems, which are often perceived as burdensome
and stigmatizing. The transition to wearable devices is driven
by the need for discreet, long-duration, user-friendly monitoring
systems for patients and caregivers. These devices, incorporat-
ing machine learning algorithms, facilitate prompt intervention
and provide clinicians with valuable data to refine antiepileptic
treatments. Nonetheless, developing effective wearable seizure
detection systems faces significant challenges [7].

First of all, resources are limited in wearable settings, and
it is crucial to balance accuracy with miniaturization and
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energy efficiency for extended battery life. Recent develop-
ments in smart edge computing, particularly with low-power
microcontrollers, offer viable solutions to these challenges [8].
Such advancements enable extended device operation and effi-
cient AI model execution [9]. However, aligning AI algorithms
with the limited computational capacities of wearable devices
remains a significant hurdle, requiring careful model selec-
tion and optimization for effective deployment on these low-
power platforms.

Secondly, optimizing performance in terms of sensitivity is
not sufficient: minimizing false alarms is paramount in long-
term monitoring, as their prevalence can erode users’ trust and
hinder the adoption of the technology [10]. Therefore, priori-
tizing specificity, even when missing some seizures, is vital for
user confidence and device adherence.

Another significant challenge lies in adapting AI models,
traditionally reliant on large-count electrode arrays, to maintain
accuracy in wearables with a small number of channels. While
recent systems demonstrate high sensitivity and specificity [11],
translating them to wearable form factors requires innovative
approaches to maintain performance.

Furthermore, there are considerable differences in the EEG
seizure patterns based on type, etiology, and individual brain
characteristics [12], [13]. Such patient variability underscores
the need for personalized models. Tailoring models to indi-
vidual patients can significantly enhance detection accuracy
and device efficiency, thereby improving therapeutic outcomes
[14], [15].

Finally, compared to other biosignals, EEG presents a low
signal-to-noise ratio and, especially in the context of wear-
ables, is especially prone to artifacts [16]. On top of that,
some seizure types are elusive to EEG alone [17]. As such,
successful and reliable seizure detection should aim for multi-
modal approaches, exploiting information from heterogeneous
sensors. Such multi-modal approach can be envisioned to rely
on multiple, heterogeneous devices, synchronized to each other
in a body area network for concurrent data acquisitions. In this
context, integrating plethysmography (PPG) sensors with EEG
has enhanced biosignal analysis accuracy and broadened its
scope [18], [19], especially for enhancing seizure detection
sensitivity in ambulatory settings [20]. However, more explo-
ration is needed to assess the influence of wrist-based signals
in detecting seizures and reducing false alarms when combined
to EEG.

This paper1 addresses all the above challenges by introduc-
ing BRAINFUSENET, a novel network for seizure detection via
sensor fusion of EEG with PPG and Accelerometer (ACC)
signals, aimed at minimizing false positives while retaining
high sensitivity to seizure events, tailored for low-channel count
wearable systems, trained with a subject-specific approach on a
recent heterogeneous seizure dataset, and featuring low memory
requirements and power consumption for optimal deployment
on edge devices.

1This work is an extension of our previous conference paper [21], where we
introduced the EPIDENET architecture and the Sensitivity-Specificity Weighted
Cross Entropy (SSWCE) loss function.

II. RELATED WORKS

A. Wearable Technologies in Epilepsy Management

The advent of wearable technologies marks the beginning
of a transformative era in epilepsy management. Initially, EEG
systems were confined to clinical settings due to their size and
complexity. However, the past decade has seen a paradigm shift
toward the development of compact, user-friendly wearable
devices designed for continuous monitoring.

These wearable technologies integrate advanced biosensors,
including EEG and PPG, facilitating long-term, ambulatory
seizure monitoring without significant intrusion into daily life
[22]. The ongoing incorporation of machine learning algorithms
into these devices is significantly improving their ability to
detect seizures accurately and in real-time, greatly benefiting
users [23].

Furthermore, wearable technologies have improved patient
autonomy and quality of life. By providing discreet monitor-
ing, these devices reduce the stigma and psychological burden
associated with traditional EEG systems [24]. Moreover, they
enable proactive management of epilepsy, allowing for timely
intervention and potentially reducing seizure-related risks.

To develop systems that can be worn without stigma in ev-
eryday activities, system design for seizure monitoring focuses
on devices like wristbands, headbands, earbuds, and eyeglasses.
For instance, Empatica E4 and Embrace2 [25], FDA-approved
wristbands, stand out for their ability to monitor EDA and
motion, as well as heart rate and temperature, offering real-time
seizure detection by virtue of a data link with cloud servers
which execute the parameter monitoring and alert users and
their caregivers in case of seizure onsets [26]. Another note-
worthy example is the Neurovigil iBrain [27], a headband that
captures high-resolution EEG data to facilitate sleep studies and
potentially detect seizures during sleep. On the research front,
projects like Seer Medical’s wearable EEG system [28] are
pushing the boundaries by offering a portable, head-mounted
device that provides continuous EEG monitoring outside clin-
ical settings.

Innovative strides have also been made with the development
of smart eyeglasses. These devices embody the cutting edge
of discreet, real-time seizure monitoring. Smart glasses, which
integrate EEG electrodes into their frame for continuous EEG
monitoring, provide a non-invasive and inconspicuous platform
for wearable seizure detection systems. Although still in the
experimental or conceptual stages, such eyewear aims to utilize
visual cues and physiological data to alert users of impending
seizures, ensuring both functionality and fashion. This inte-
gration of technology into everyday objects underscores the
commitment to creating wearables that advance medical care
and cater to the lifestyle of individuals with epilepsy [8], [29].

Another potentially groundbreaking solution is represented
by earbuds with EEG sensors. Several works, like [30], have
demonstrated the feasibility of integrating EEG sensors into
earbuds or earpieces. These studies aim to validate the accuracy
of EEG data collected from the ear canal, which is relatively
close to the brain and could offer a less intrusive alternative to
traditional scalp-based EEG systems. These devices are mostly
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at the research stage [31], even though there are some attempts
to bring them into commercial products [32].

In summary, multiple heterogeneous technologies are cur-
rently under development for wearable epilepsy monitoring,
and they are typically based on a reduced number of sen-
sor channels. All these alternative sensing solutions are ul-
timately envisioned to be integrated in body area networks
featuring multiple sensing nodes connected to each other wire-
lessly at low power [33], [34]. In this context, this work
also focuses on reduced channel count applications, with het-
erogeneous sensor data from the head (EEG) and the wrist
(PPG, ACC).

B. The Need for Artifacts and False Alarms Reduction

Despite the significant advancements in wearable technolo-
gies for epilepsy management, several challenges and limita-
tions remain. One major issue is the accuracy and specificity
of seizure detection algorithms. False positives and negatives
continue to pose a significant challenge, impacting patient trust
and the clinical utility of these devices [35]. In this context,
artifacts appear as the main source of false positive detection,
and recent studies have dedicated efforts to address these chal-
lenges. The work in [36] demonstrates how implementing arti-
fact detection before doing seizure detection can significantly
reduce false alarm rates in seizure detection models. Frolich
et al. [37] also explored linear decomposition methods to mit-
igate the impact of muscle movement artifacts in EEG record-
ings. In the realm of PPG, Al-Sheikh [38] investigated adaptive
algorithms capable of compensating for motion-induced noise,
illustrating a marked improvement in signal fidelity. Addition-
ally, sensor fusion between heterogeneous signal sources also
demonstrated remarkable potential for reducing false positive
detections [39]. In addition, the integration of EEG with other
biosignals, such as Electrocardiogram (ECG), Electrodermal
Activity (EDA), and PPG, has shown great promise in detecting
subtle seizure types that may not be easily identifiable through
EEG alone [40].

In this work, we also focus on the minimization of
false positive detections by exploiting EEG-PPG-ACC sensor
fusion approaches.

C. Algorithms for Wearables

Striking a balance between accuracy and usability in wear-
able devices requires the development of algorithms for seizure
detection in systems with a low channel count. These algo-
rithms, tailored for sparse EEG data, employ advanced ma-
chine learning and deep learning techniques to overcome the
challenges presented by limited inputs. Moreover, the contin-
uous and fast evolution of such algorithms and use cases, as
well as the opportunity to adapt models on a subject-specific
basis, requires the wearable platform to be highly adaptable
and flexible in computation. In this regard, general-purpose
yet low-power MCUs provide the best tradeoff [41]. Applica-
tion specific integrated circuits (ASICs) [42], [43], [44], [45]
can achieve much lower power consumption, but they lack

flexibility, which is essential in the current research context, as
the challenge of artifact removal and false positive reduction be-
low the patient acceptability threshold is still open and requires
further algorithmic research and development. Techniques such
as support vector machines (SVM) [46], K-Nearest Neighbour
(KNN) [47], AdaBoost [48], and Energy-based algorithms [49]
have been successful in extracting relevant features from EEG
signals—ranging from frequency and time-domain characteris-
tics to statistical insights—essential for distinguishing seizures
from normal brain activity despite the reduced spatial data from
fewer channels. Nevertheless, many of these papers show a
significant decline in accuracy and sensitivity/specificity per-
formance, creating the need for refining algorithms to perform
efficiently with minimal channel count.

Recent works based on low channel-count seizure detection
demonstrated significant reductions in the false positive rates.
One relevant example is offered by Vandecasteele et al. [50],
who achieved less than 1 FP/h with 63.4% sensitivity on a
dataset with 54 subjects, when using only 4 EEG channels and
an SVM classifier.

Another example is given by Busia et al. [51], [52], who pro-
posed a transformer-based architecture (EEGFormer), detecting
73% of seizure events with less than 1 FP/h on the CHB-MIT
dataset. However, the reported performance was obtained only
on a selected subset of the patients available in the dataset.
When applied on the PEDESITE dataset, 88% of seizure events
have been detected with less than 0.5 FP/h. Despite the signif-
icant improvements, further work is needed to bring the false
alarms to less than one per day.

In exploring wearable technologies for epilepsy monitoring,
Mohammadpour et al. [53] conducted a seminal study assess-
ing the feasibility of using photoplethysmography (PPG) for
seizure detection. This research, involving 174 patients from
the epilepsy monitoring unit at Boston Children’s Hospital,
focused on analyzing PPG signals during baseline, pre-seizure,
and post-seizure periods. Key observations included an increase
in PPG frequency and changes in slope and smoothness, under-
scoring the potential of PPG as a non-invasive biomarker for
seizure detection systems.

Zambrana et al. [20] further advanced the field with a
novel seizure predictive model combining Ear EEG, ECG, and
PPG signals. Their model, versatile for use in both static and
outpatient settings, showed promising results with an accu-
racy of 91.5% and sensitivity of 85.4%. However, the study
lacked detailed analysis on false positives per hour (FP/h)
and latency.

Vandecasteele et al. [54] compared wearable ECG and PPG
devices against hospital ECG for seizure detection in TLE
patients. The wearable ECG showed higher sensitivity (70%)
compared to hospital ECG (57%) and wrist-worn PPG device
(32%), suggesting the potential of wearable ECG for long-term
seizure monitoring.

In this work, we tackle the challenge of lightweight multi-
sensor models, demonstrating for the first time EEG+PPG+
ACC seizure detection on edge-computing devices with state-
of-the-art performance (quantitative comparisons are provided
in the Results section).
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D. Imbalanced Datasets and Loss Functions

When developing algorithms for seizure detection, Cross-
Entropy (CE) loss is a widely used loss function. However, its
effectiveness is often compromised in imbalanced datasets, a
common scenario in epilepsy research, where the disparity in
class distributions can lead to biased predictions by the model.

Several alternative loss functions and techniques have been
explored to address the challenges posed by imbalanced
datasets. As introduced by Lin et al. in 2017 [55], Focal Loss
modifies the CE loss to apply a focusing parameter to down-
weight easy examples and thus focus training on hard negatives.
This approach proves beneficial in scenarios with an imbal-
ance between foreground and background classes, as it prevents
the overwhelming number of easy negatives from dominating
the gradient.

Weighted Cross-Entropy (WCE) Loss, described by Wang
et al. in 2016 [56], assigns different weights to classes in the
loss function. This strategy is particularly effective in datasets
where some classes are underrepresented, as it amplifies the
error signal from the minority class, thereby pushing the model
to pay more attention to these classes.

Oversampling and undersampling techniques, such as those
discussed by Chawla et al. in 2002 [57] and Drummond et al.
in 2003 [58], aim to balance the class distribution either by
increasing the number of instances in the minority class (over-
sampling) or reducing the instances in the majority class (under-
sampling). These techniques alter the dataset to create a more
balanced class distribution, facilitating more effective learning.

Ingolfsson et al. [21] proposed incorporating domain-specific
knowledge into the loss function to overcome the limitations of
CE loss. The proposed Sensitivity-Specificity Weighted Cross-
Entropy (SSWCE) loss incorporates both sensitivity and speci-
ficity into the CE loss, allowing for the adjustment of the
loss function to prioritize either specificity or sensitivity and
effectively balancing the two metrics in the training process,
addressing the bias towards the majority class commonly seen
in imbalanced datasets.

This work also makes use of the SSWCE loss.

III. METHODS

A. Datasets

This work leverages the CHB-MIT public dataset and the
dataset collected in the PEDESITE study. Table I summarizes
their structure.

The CHB-MIT dataset [59] comprises EEG data from 23
pediatric and young adult patients (aged 1.5–22 years) with
intractable seizures, collected at 256 samples per second and a
16-bit resolution with a 10/20 system. We process this dataset
considering 4 second windows, which equates to TE = 1024
EEG time samples.

Recognizing the CHB-MIT dataset’s limitations in real-
world scenarios (pediatric patients, gaps in the EEG traces,
nearly zero artifacts), we also evaluate our approach using the
PEDESITE dataset. The PEDESITE study took place during
routine clinical evaluations at several in-hospital epilepsy mon-
itoring units in Switzerland and Denmark, where patients are

TABLE I
SUMMARY OF THE EMPLOYED DATASETS

Patient
No.
Seizures†

Recording Duration
Avg. Seiz.
Length (s)

CHB-MIT

chb01 7 1d 17h 33min 63.14
chb02 3 1d 11h 16min 57.33
chb03 7 1d 14h 2min 57.43
chb04 4 6d 7h 6min 94.50
chb05 5 2d 15h 12min 111.60
chb06 10 2d 18h 45min 153.60
chb07 3 2d 19h 5min 108.30
chb08 5 1d 2h 19min 183.80
chb09 4 2d 19h 52min 69.00
chb10 7 2d 2h 2min 63.86
chb11 3 1d 9h 45min 268.70
chb12 27∗ (40) 21h 41min 36.63
chb13 12 11h 0min 44.00
chb14 8 1d 2h 0min 211.12
chb15 20 1d 15h 1min 99.60
chb16 10 17h 1min 8.62
chb17 3 20h 1min 97.67
chb18 6 1d 10h 43min 52.83
chb19 3 1d 4h 53min 78.67
chb20 8 1d 3h 40min 36.75
chb21 4 1d 8h 23min 49.75
chb22 3 1d 8h 0min 64.00
chb23 7 1d 2h 36min 60.57
chb24 16 22h 17min 31.94
Total 185 43d 0h 16min -

PEDESITE

P1 3 (3)
(EEG) 4d 10h 59min

488
(PPG)∗∗ 3d 6h 58min

P2 7 (5)
(EEG) 3d 20h 32min

64.86
(PPG+ACC) 3d 7h 57min

P3 5 (5)
(EEG) 2d 21h 58min

117.20
(PPG+ACC) 2d 21h 7min

P4 3 (3)
(EEG) 3d 20h 13min

117.98
(PPG+ACC) 3d 15h 57min

P5 4 (4)
(EEG) 3d 18h 23min

35.25
(PPG+ACC) 3d 20h 7min

P6 3 (3)
(EEG) 5d 19h 23min

118.67
(PPG+ACC) 7d 6h 10min

Total 25 (23)
(EEG) 23d 1h 28min -
(PPG+ACC) 24d 6h 16min

† For PEDESITE: not all seizures are captured by wrist data; the number of
seizures recorded both by EEG and wrist data is between brackets.
∗Only 27 seizures of 40 are considered for chb12 since channels change in
subsequent recordings (hence, as total number of seizures we considered 185
instead of 198)
∗∗Patient P1 does not have ACC data.

hosted to record and characterize their epileptic seizures. Be-
fore the start of the monitoring, 24 Compumedics disposable
Ag/AgCl sintered electrodes are fixed to the patient’s scalp.
Afterwards, these electrodes are connected to an amplifier and
then converted from analog to digital signals (SD LTM PLUS
642). Healthcare professionals monitor brain activity in real-
time, coupled with the video, electrocardiogram, and pulse
oximetry signals. Patient monitoring ranges from a minimum
of two consecutive days to a maximum of two weeks. Scalp-
EEG signals are collected at 1024 samples per second and a
16-bit resolution with a 10/20 system. Monitoring durations

2https://micromedgroup.com/products/brainquick/brainquick-ltm/

https://micromedgroup.com/products/brainquick/brainquick-ltm/
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range from 2 days to two weeks. We further decimate the
signal to 256 samples per second, to be comparable to the
sampling rate of CHB-MIT, and look at 8 second windows,
which correspond to TE = 2048 EEG time samples. The selec-
tion of the optimal window size is dataset-dependent, and the
choice is based on our previous analysis [36], where we have
determined these specific windows to be optimal for minimizing
false positives while maintaining a balance between sensitivity
and specificity.

In addition to EEG monitoring, in the PEDESITE study,
patients were also equipped with the E4 wristband by Em-
patica, which incorporates a PPG sensor for heart rate mon-
itoring and an integrated ACC. The PPG data is sampled at
64 samples per second and we look at 8 second windows,
which equates to TP = 512 PPG time samples. The ACC data
is instead sampled at 32 samples per second. Unless otherwise
stated, in the following, we will use the terminology “wrist
data” for referring to PPG and ACC together. When PPG and
ACC data are considered together, PPG data are downsampled
(see Sect. III-E), and 8 second windows of wrist data equate to
TW = 256 samples.

The PEDESITE study obtained approval for retrospective
data analysis with a waiver of informed consent (due to the
retrospective nature of the study) from the local Ethical Com-
mittee of the University of Lausanne (study nr 2021-01419).
The study report conforms to the STROBE statement for the
report of observational cohort studies. All the methods are in
accordance with institutional guidelines and regulations.

B. Subject-Specific Training and Cross-Validation Approach

We follow a subject-specific training approach, in alignment
with the findings of previous research [21], [60]. This subject-
specific paradigm entails that each model is trained using data
exclusively derived from the respective subject. This ensures
that the model is finely tuned to each individual’s unique char-
acteristics and seizure patterns, potentially leading to enhanced
performance in seizure detection.

To augment the robustness of the performance metrics ob-
tained for each model, we also follow a Leave-One-Out Cross-
Validation (LOOCV) strategy at record-level, i.e., we train the
model on all records (of one subject) that contain seizure events
except for one, utilizing the excluded record for validation pur-
poses. We iteratively repeat this process, each time excluding
a different record, to ensure a comprehensive coverage and
evaluation of the model’s performance across the entire dataset.
Importantly, at the start of each iteration, a new instance of the
neural network is initialized with random weights, eliminating
any potential for validation data leakage across iterations and
ensuring no single network iteration is exposed to the entirety
of the data.

Moreover, to account for variability of the training pro-
cess and reinforce the reliability of our findings, each metric
is reported as the average of five repeated runs, each con-
ducted with a distinct random seed. Averaging over multiple
runs mitigates anomalies or biases that might arise from a

single iteration, yielding a more representative measure of the
model’s performance.

C. Sensitivity-Specificity Weighted Loss Function and
Smoothing

To address the challenge of imbalanced datasets (see
Sect. II-D), in our previous publication [21] we proposed incor-
porating domain-specific knowledge into the loss function, as
defined in Equation (1), by introducing the SSWCE loss, which
incorporates both sensitivity (SN) and specificity (SP) into the
CE loss:

SSWCE(y, p) = CE(y, p) + α(1− SP ) + β(1− SN) (1)

In this equation, y represents the true class label (0 or 1),
and p is the predicted probability of the positive class (1).
The hyperparameters α and β are user-defined, allowing for the
adjustment of the loss function to prioritize either specificity or
sensitivity. This approach effectively balances sensitivity and
specificity in the training process, addressing the bias towards
the majority class commonly seen in imbalanced datasets.

In [21], we utilized the SSWCE loss function to modu-
late either sensitivity or specificity independently. This was
achieved through a comprehensive grid search to ascertain the
most effective combination of the hyperparameters α and β
for individual patients within the PEDESITE dataset. Building
up from the results of [21], in this paper we further extend
the analysis by also considering the CHB-MIT dataset, which
features a larger patient population. By including this dataset in
our grid search for the optimal α and β parameter combination,
we aim to validate and potentially refine our previous findings,
enhancing the generalizability and applicability of the SSWCE
loss function across a wider patient demographic, thereby con-
tributing to the robustness and precision of our model in diverse
clinical settings.

In addition, we also considered three-window majority vot-
ing for smoothing classification outputs (hereby referred to
as “smooth”) [60]. Smoothing reduces false positives by con-
sidering the predictions of adjacent windows (N-1 and N+1)
alongside the current window (N). Window N is marked as
having a seizure event only if at least two out of these three
windows suggest a seizure. This approach enhances specificity
by filtering out isolated false positives [21], which are unlikely
to be actual seizures due to their short duration.

D. Seizure Detection Utilizing EEG Data Only

The model architecture to process EEG data is EPIDENET,
introduced in our previous work of [60] and shown in Fig. 1 (the
EEG block, followed by the FCN of size 2). The architecture is
engineered to learn and extract salient features from the input
dataset sequentially. In its preliminary layers, the network is
primed to discern frequency filters, for delineating the spectral
attributes of the dataset. Progressing to the intermediary layers,
the focus shifts to deriving spatial filters specific to particular
frequency bands, enabling the model to identify spatial patterns
influenced by distinct frequency ranges. Finally, a dense layer
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Fig. 1. Representation of the BRAINFUSENET framework for combined EEG and PPG/ACC classification. EEG data (4 channels, 2048 samples) are fed to
an EPIDENET model (green box), which generates 16 EEG features yEEG

i . Similarly, PPG+ACC data (1 channel PPG, 3 channels ACC, 256 samples) are
fed to an EPIDENET model (blue box), which generates 16 wrist features ywrist

i . The outputs of the EEG and PPG+ACC blocks are summed (with weights
Φ and Θ, respectively) into a comprehensive feature vector, which then serves as the input for the FCN. The FCN classifies normal vs seizure activity. If
ACC data are not used, the PPG+ACC block is replaced by a PPG-only block (purple box), and PPG data do not need to be downsampled (i.e., the input
from wrist data becomes of 1 channel with 512 samples). Symbols definition: CE = EEG channels, TE = EEG time samples, CW = wrist channels, TW =
wrist time samples, CP = PPG channels, TP = PPG time samples.

combines the feature maps generated by the upstream layers.
This approach enhances the model’s ability to classify and
predict results in complex scenarios.

This paper uses EPIDENET for the analyses based on EEG
data alone, on the CHB-MIT and PEDESITE datasets. We limit
the number of channels to 4 (in the temporal region) in align-
ment with the reduced number of channels available in wear-
able devices. Furthermore, we use and adapt EPIDENET also
for other biosignals and for sensor fusion (see the follow-
ing sections).

E. Seizure Detection Utilizing Wrist Data Only

To evaluate the seizure detection performance when relying
exclusively on data acquired from a wrist-worn device (PPG
and ACC), we explored three approaches (all limited to the
PEDESITE dataset).

1) Employment of Solely PPG Data: The PPG signal,
acquired at a sampling rate of 64Hz from the wristband device,
serves as the sole input to a modified version of the EPIDENET

architecture, which is adapted to accommodate a single-channel
input as opposed to the original four-channel configuration (we
use the PPG block of Fig. 1, followed by the FCN of size 2).
This adaptation facilitates the analysis of 8-second segments of
PPG data (we use 8 second windows to match the window size
used for EEG data), equivalent to 512 data points, to evaluate
the feasibility of seizure detection using PPG data in isolation.

2) Integration of PPG and ACC Data at the Data Level:
Given the different sampling rates of PPG (64Hz) and ACC

(32Hz) data streams obtained from the wristband, to per-
form a data-level fusion, we decimate the PPG data to align
with the ACC data’s lower sampling frequency. Subsequently,
the synchronized data is input into an EPIDENET network
(the PPG+ACC block of Fig. 1, followed by the FCN of
size 2), mirroring the methodology employed for processing
four-channel EEG data (using one channel for the PPG data
and three channels for the 3-axes of ACC). This strategy
aims to investigate the potential enhancement in seizure de-
tection accuracy through the combined analysis of PPG and
ACC data.

3) Reconstructed PPG Data: We use acceleration data
along three axes (3-axes ACC data) to differentiate between
uncontaminated and corrupted signal segments. Initially, the
mean value is subtracted from the data corresponding to each
accelerometer axis to mitigate baseline drift. Subsequently, we
compare this adjusted data to a predetermined threshold (em-
pirically evaluated). Should the magnitude of the data from any
axis surpass this threshold, it is inferred that significant move-
ment occurred within the corresponding timeframe, potentially
compromising the PPG signal integrity, and the PPG signal
undergoes a reconstruction process (as delineated below). If the
magnitude of the data is below the threshold for all axes, the
original PPG signal is maintained. The threshold parameter is
subject to individual variability, necessitating adjustment on a
per-patient basis. Specifically, a threshold of 0.02 is applied for
patients exhibiting a high frequency of corrupted signal seg-
ments, whereas a more lenient threshold of 0.1 is adopted for the
remainder. Following this preliminary filtration, the corrupted
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signal segments are reconstructed via a wavelet-based approach
as follows:

• The signal is disassembled into a hierarchy of approxi-
mation and detail coefficients through the application of
Stationary Wavelet Transforms [61]. We explore 9, 10,
and 11 decomposition levels, corresponding to temporal
segments of 8, 16, and 32 seconds, respectively.

• While the approximation coefficients are preserved in their
original state to maintain the signal’s overarching struc-
ture, the detail coefficients are cleaned by applying a
parameter (denoted as δ) that removes the coefficients
belonging to the motion artifacts. The δ value is set at 0.01
based on empirical tests, mirroring the protocol delineated
in [62].

• These cleaned detailed coefficients are then used along
with the original approximate coefficients to reconstruct
the time domain PPG signal using the Inverse Stationary
Wavelet transform.

This approach acknowledges the intrinsic variability of PPG
signals across individuals, underscoring the necessity for
patient-specific adjustment of reconstruction hyperparameters.

As for the PPG-only analyses, the network used to classify
reconstructed PPG is again the PPG-only block of Fig. 1 plus
the FCN of size 2 at the end.

F. Sensor Fusion of EEG With Wrist Data

A major distinction between Early Fusion and Late Fusion
pertains to the juncture at which the model-derived features
are amalgamated—either at the feature level (Early Fusion)
or at the logits level (Late Fusion). This section elucidates
the various fusion methodologies employed in our study to
combine EEG with wrist data. These analyses are limited to
the PEDESITE dataset, which comprises EEG and PPG/ACC
data modalities.

1) Early Fusion: Early-fusion can be performed at data-
level or feature-level. An example of data-level fusion be-
tween EEG and ECG is represented by [63], where Gabor
functions are used for the fusion task on biosignals acquired
with the same sampling frequency. Considering the difference
in sampling frequency between EEG and wrist data in the
PEDESITE dataset, we focus on feature-level early fusion to
avoid excessive downsampling of EEG. Let us consider yEEG

i

and ywrist
i to represent the feature sets extracted via convo-

lutional neural network (CNN) models tailored for EEG and
wrist data, respectively. In the context of early fusion, these
features are amalgamated into a unified feature block denoted
as yfi = f(yEEG

i , ywrist
i ). We tested two approaches for feature

combination:
• Weighted Summation (Sum): feature sets from EEG and

wrist data are summed as yfi = φyEEG
i + θywrist

i , where
φ and θ are parameters optimized concurrently through
the network’s training, facilitating a dynamic weighting of
features based on their relative importance.

• Concatenation (Concat): the unified feature block cor-
responds to yfi = [yEEG

i , ywrist
i ], with feature vectors

from each distinct CNN model being concatenated.

The concatenated array is subsequently input into a fully
connected layer.

2) Late Fusion: Late Fusion is also known in the literature
as Decision-Level, Logits-Level, or Probability-Level fusion.
In decision or late-level fusion, CNNs are constructed to ensure
that their terminal layers are fully connected layers, thereby
outputting logits. These logits are subsequently integrated em-
ploying a fusion function denoted as zfi = f(zEEG

i , zwrist
i ),

following two alternative methodologies:
• Weighted Summation: Similarly to the weighted summa-

tion technique employed in Early Fusion, for Late Fu-
sion we consider zfi = φzEEG

i + θzwrist
i , where φ and

θ represent parameters refined through the network’s
training process.

• Rule Based Fusion: this alternative strategy for amal-
gamating predictive insights from dual sensors involves
leveraging the probabilities level. We consider a ‘Rule-
Based Integration’ approach, where the ultimate predic-
tion probability is exclusively derived from the EEG or
wrist modalities. Despite making use of only one signal
source at a time, it is still referred to as a Late Fusion
approach in light of the need to compute and compare the
prediction probabilities from both sensing modalities [64].
We evaluate the predictive outcomes produced by EEG
and wrist independently on the validation dataset, utilizing
these insights to establish a criterion for selecting the prob-
ability from either EEG or wrist as the definitive predic-
tion probability. This ‘Rule-Based Integration’ modality
inherently accords priority to one modality over another,
predicated on the reliability of their predictive outcomes,
and mitigates discrepancies or incongruities arising from
disparate data sources.

G. BRAINFUSENET Model Architecture

Fig. 1 shows our proposed architecture for the EEG-PPG-
ACC combined model, which incorporates dual network blocks
based on EPIDENET. EEG data (4 channels, 2048 samples) are
fused with wrist data (1 PPG channel and 3 ACC channels,
256 samples3) by summing the feature outputs of the EEG and
PPG+ACC blocks into a comprehensive feature vector. This
vector then serves as the input for a fully connected layer (FCN),
producing the predictive outcome. Such an integrative approach
significantly enhances the model’s proficiency in classifying
and predicting outcomes in multifaceted situations. This net-
work is referred to as BRAINFUSENET.

In the following, we also explore sensor fusion based on
EEG+PPG only (hence, without ACC data). In these cases, PPG
data do not require any downsampling and the PPG+ACC block
is replaced by a PPG-only block (see Fig. 1)4.

3PPG data are sampled at a double sampling frequency compared to ACC.
Hence, PPG is downsampled before data-level integration with ACC (PPG-
only inputs would correspond to 1 channel, 512 samples)

4with the 4× 256 input for the PPG+ACC block being replaced by a 1×
512 input of raw PPG data
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Fig. 2. Heatmaps of sensitivity and specificity for patient 01 of the CHB-MIT dataset, for varying alpha and beta parameters of the SSCWE applied to
EPIDENET.

H. Embedded Implementation

We target the GAP9 platform for the model deployment.
GAP9 represents the latest commercial evolution in the PULP
processor series, distinguished by its enhanced energy effi-
ciency [65]. We select GAP9 in light of its energy efficiency
and computational capabilities within the desired power range
of milliwatts, which demonstrated state-of-the-art performance
for tiny Machine Learning applications [66]. Notably, the GAP9
demonstrates a performance improvement of at least an order
of magnitude over traditional single-core low-power processors
like the ARM CORTEX M4, all within a comparable power
budget [21].

The GAP9 platform offers low-power, parallel computation
capabilities with ten cores, based on the RISC-V RV32IMF
Instruction Set Architecture, augmented with custom Xpulp
extensions for enhanced digital signal processing [65]. The ar-
chitecture of GAP9 divides these cores into a Fabric Controller
(1 core) and Cluster Cores (9 cores). Additionally, the proces-
sor is equipped with 128 kB of L1 memory and 1.5 MB of
RAM, facilitating the implementation of relatively large mod-
els. The cluster cores can operate at speeds up to 370 MHz and
collectively utilize 4 Floating-Point Units. These units support
a range of numerical formats, including bfloat, FP16, FP32, and
selected instructions in FP64, thus offering a versatile environ-
ment for computational tasks.

We leverage GAP9 for the deployment of BRAINFUSENET.
The BRAINFUSENET computation is divided into distinct se-
quential phases, focusing on the EEG and PPG/ACC sub-
networks, respectively (see Fig. 1). For each phase, we use eight
cores for parallel computation and one core for Direct Memory
Access. The outcomes from these networks are then summed
into a feature vector, which is then forwarded to a fully con-
nected neural layer tasked with generating the final predictive
decision. This sequential approach provides flexibility, allow-
ing for adjustments and improvements to individual EPIDENET

modules (the EEG one or the PPG+ACC one) without adversely
affecting the performance or computational efficacy of the
other component.

To deploy BRAINFUSENET on GAP9, we employ Quantlab
[67] for converting to an INT-8 format and use DORY [68]
for deployment. DORY is designed to automatically produce
C code that handles the two-level memory architecture (L1 and
L2 memory) on PULP-based platforms.

I. Energy Measurements

The energy measurements are performed using the GAP9
Evaluation Kit, interfaced with a Power Profiler Kit II (PPK2)
that supplies 1.8V, while an on-chip DC-DC converter generates
the required 0.65V for the processor. Power consumption is
assessed via the PPK2, which provides power to the Evalua-
tion Kit and records current consumption. To ensure consistent
measurements across trials, digital pins from the PPK2 are
connected to the evaluation board’s GPIO pin with a common
ground. The reported performance metrics are derived from the
mean of ten measurements.

IV. RESULTS

A. EEG-Based Seizure Detection via SSCWE

Our previous publication [60] demonstrated the efficacy of
the SSWCE in enhancing result accuracy on the PEDESITE
dataset. Here we further expand the analysis, by optimizing the
parameters α and β also on the CHB-MIT dataset. We per-
form a LOOCV subject-specific training, adjusting the α and
β parameters within the range of 0 to 1. Fig. 2 shows an
example heatmap delineating the variations in sensitivity and
specificity for patient 01 of the CHB-MIT dataset. After per-
forming a similar analysis across all patients (see Table II), the
optimal combination of α and β parameters was determined on
a subject-specific basis. This optimization (compared to using
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TABLE II
RESULTS OF EEG-BASED SEIZURE DETECTION ON THE

CHB-MIT AND PEDESITE DATASETS EMPLOYING SSWCE

Patient α β Sens [%] Spec [%] FP/h

chb01 0.6 0.9 94.75 99.98 0.14
chb02 0.8 0.8 91.92 100.00 0.00

chb03∗ 0.0 0.0 86.86 99.89 1.01
chb04 0.3 0.2 68.21 99.78 2.82
chb05 1.0 0.8 95.67 100.00 0.00
chb06 0.6 0.2 30.51 100.00 0.00
chb07 1.0 0.2 79.76 100.00 0.00
chb08 0.1 0.9 89.19 99.50 4.46
chb09 1.0 0.9 92.99 99.74 2.34

chb10∗ 0.0 0.0 97.95 100.00 0.00
chb11 0.9 1.0 99.11 100.00 0.00
chb12 0.1 0.7 75.28 99.87 1.19
chb13 0.3 0.2 47.43 99.94 0.58
chb14 0.0 1.0 50.24 100.00 0.00
chb15 0.6 0.4 94.15 99.84 1.45
chb16 0.1 0.5 20.00 100.00 0.00
chb17 0.7 1.0 52.22 100.00 0.00
chb18 0.5 0.2 76.20 99.59 3.65
chb19 1.0 0.3 82.72 99.40 5.42
chb20 0.7 1.0 87.33 99.33 6.05
chb21 1.0 0.4 95.00 99.87 1.17
chb22 0.2 0.7 90.74 100.00 0.00
chb23 0.1 0.7 74.25 99.72 2.53
chb24 0.5 0.1 59.72 99.93 0.59

Average 0.50 0.55 76.34 99.85 1.39

P1 0.3 0.7 25.20 99.62 1.71
P2 0.7 0.1 59.44 100.00 0.00
P3 1.0 0.2 65.45 99.67 1.48
P4 0.1 0.5 77.86 99.78 0.99
P5 0.5 0.4 92.50 100.00 0.00
P6 0.3 0.5 43.49 99.36 2.88

Average 0.48 0.4 60.66 99.74 1.18

∗when α= β = 0, the loss function corresponds to the normal
CE Loss

the default values of [60]) yields a significant performance
enhancement: the average sensitivity increases to 76.34% (cor-
responding to an increase of 7.61%), the number of detected
seizures increases from 169/185 to 173/185, the specificity
increases by 0.10%, the false positive per hour (FP/h) rate
decreases to 1.39 FP/h (corresponding to a decrease of 62%).
The remaining false positives are primarily attributed to arti-
facts. To further reduce the incidence of false positives, we
recommend integrating an artifact detector similar to the one
proposed in [36], [69].

B. Wrist-Based Seizure Detection

Table III shows the outcomes of the three distinct approaches
for seizure detection utilizing wristband data, namely: PPG,
PPG fused with ACC, and reconstructed PPG. Patient 1 does
not have ACC data; hence, only results for the PPG case are re-
ported. A relatively low sensitivity can be observed for all meth-
ods, with a maximum of approximately 20− 32% for Patient
3, revealing a potential advantage in integrating ACC data with
PPG data at the data level. The average sensitivity values are
below 10%, with FP/h reaching a minimum of 5.3 FP/h for the
PPG-ACC fused case. These findings suggest that wrist-worn

TABLE III
RESULTS OF WRIST-BASED SEIZURE DETECTION ON THE PEDESITE

DATASET ACROSS DIFFERENT PATIENTS (P1-P6)

P1* P2 P3 P4 P5 P6 Avg

PPG
Sens [%] 3.3 0 3.8 23.1 8.1 2.5 6.8
Spec [%] 98.4 99.4 97.4 99.4 95 98.4 98.0

FP/h 7.2 2.6 11.7 2.7 22.5 7.1 9.0

Fused
PPG
ACC

Sens [%] - 0 4.1 32 2.1 2.6 8.2
Spec [%] - 99.4 98.5 99.9 97.9 98.4 98.8

FP/h - 2.7 6.8 0.5 9.5 7.2 5.3

PPG
Recon

Sens [%] - 0 6.1 20 2.7 3.6 8.1
Spec [%] - 99.5 98.0 99.4 96.6 98.3 98.1

FP/h - 2.3 9.0 2.6 15.2 7.7 8.6

(* Patient P1 does not have ACC data)

TABLE IV
SENSOR FUSION OF EEG+WRIST DATA ON THE PEDESITE DATASET

Data Fusion Type Sens [%] Spec [%] FP/h

EEG+PPG Early
Sum 57.05 99.71 1.31

Concat. 59.22 99.51 2.21

EEG+PPG Late
Sum 54.42 99.52 2.16
Rule 49.70 99.70 1.35

EEG+wrist Early
Sum 61.21 99.82 0.81

Concat. 61.23 99.63 1.67

EEG+wrist Late
Sum 55.32 99.61 1.76
Rule 50.12 99.72 1.26

sensors may be mostly suitable for subjects exhibiting cardiac
variations concomitant with seizure episodes, as demonstrated
in the case of Patient 3, whose results are consistent with the
performance of alternative PPG-based seizure detection results
reported in the literature [54] (32% average sensitivity). Despite
the poor performance when wrist data are used in isolation
(for this specific dataset), the capability of PPG to detect a
minimum number of seizure events shows potential to boost the
performance of EEG-based classifications (via sensor fusion –
next section).

C. Sensor Fusion

Table IV presents the results of the different sensor fusion
methodologies when considering EEG and wrist data.

In Early Fusion scenarios, the concatenation fusion type
shows enhanced sensitivity, whereas Weighted Summation per-
forms better in specificity (99.51% vs. 99.71%). For Late
Fusion techniques, Rule-Based Fusion outperforms Weighted
Summation in specificity (99.70% vs. 99.52%), albeit with
lower sensitivity (49.70% vs 54.42%). Overall, Early Fu-
sion approaches yield superior results, both for EEG+PPG
and for EEG+PPG+ACC, achieving a balance of sensitivity
(59.22%) and specificity (99.71%) and a minimum in the false
positives per hour (1.31 FP/h for EEG+PPG, 0.81 FP/h for
EEG+PPG+ACC).

Starting from these results, Table V shows a performance
comparison across different data processing pipelines, all based
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TABLE V
SEIZURE DETECTION RESULTS FOR EEG-ONLY AND (EARLY, SUMMATION-BASED) SENSOR FUSION (EEG+PPG AND

EEG+PPG+ACC) ON THE PEDESITE DATASET, FOR DIFFERENT LOSS FUNCTIONS (CE OR SSWCE) AND

CONSIDERING SMOOTHED CLASSIFICATION OUTPUTS

EEG EEG (Smooth) EEG+PPG (Smooth) EEG+PPG+ACC (Smooth)
CE SSWCE SSWCE SSWCE

Patient Sens Spec FP/h Sens Spec FP/h Sens Spec FP/h Sens Spec FP/h
[%] [%] [%] [%] [%] [%] [%] [%]

P1 9.70 99.52 2.16 25.20 99.62 1.71 22.90 99.76 1.08 - - -
P2 57.00 100 0 59.44 100 0 59.10 100 0 46.31 99.98 0.11
P3 68.20 99.48 2.34 65.45 99.67 1.48 69.95 99.56 1.98 60.07 99.95 0.24
P4 73.40 99.72 1.26 77.86 99.78 0.99 82.29 99.82 0.81 77.95 99.85 0.68
P5 91.10 99.82 0.81 92.50 100 0 91.24 100 0 91.06 100 0
P6 48.70 96.90 14.0 43.49 99.36 2.88 41.81 99.50 2.15 46.03 100 0

Average 58.02 99.24 3.43 60.66 99.74 1.18 61.22 99.77 1.00 64.28 99.96 0.21

TABLE VI
SUMMARY OF SCALP EEG-BASED SEIZURE DETECTION PROCESSING STATE-OF-THE-ART FOR LOW (<8) CHANNEL COUNT

Work Dataset Length Window Subjects Channels Algorithm
Sample Metrics Event Metrics

Sens. Spec. FP/h Sens.† FP/day

[8] CHB-MIT 944h 4s 23 2 RF 96.6% 92.2% - - -
[50] UZ Leuven 5284h 2s 54 4 SVM 63.4% - 0.9 - -
[51] CHB-MIT 464h 8s 8 4 Transformer 65.5% 99.9% 0.8 73% -
[52] PEDESITE 944h 8s 6 4 Transformer 50.2% 99.7% - 88% 10.8
[71] EPILEPSIAE 4603h 3s 29 3 CNN 87.0% 95.7% 52.0 - -
[47] CHB-MIT 944h 1s 23 5 RF 99.8% 99.8% 4.3 - -

This Work CHB-MIT 944h 4s 24 4 EPIDENET 76.34% 99.85% 1.39 93.5% 5.80∗

This Work PEDESITE 591h 8s 6
4 + 4

BRAINFUSENET 64.28% 99.96% 0.21 95% 0.58∗
(EEG+PPG/ACC)

†detected seizure events, ∗event-based FP/day are calculated as in [70].

on the early fusion (summation) approach. Specifically, we
evaluate:

• EEG alone (EPIDENET) with standard cross-entropy
(CE) loss;

• EEG alone (EPIDENET) with the SSWCE and a three-
window majority smoothing;

• Sensor fusion (BRAINFUSENET) between EEG and PPG,
with SSWCE and a three-window majority smoothing;

• Sensor fusion (BRAINFUSENET) between EEG and
PPG+ACC, with SSWCE and a three-window majority
smoothing.

According to Table V, the integration of wrist data improves
both specificity and sensitivity. Specifically, starting from the
EEG-only results of EPIDENET, integrating PPG data increases
the sensitivity from 60.66% to 61.22% and the false positive
rate drops from 1.18 FP/h to 1.00 FP/h. The integration of both
PPG and ACC data yields further improvements, with the sen-
sitivity reaching 64.28% and the false positive rate being as low
as only 0.21 FP/h. These results demonstrate the importance of
performing measurements via heterogeneous sensors.

D. Comparison to State-of-the-Art

Table VI compares the performance of EPIDENET and
BRAINFUSENET to state-of-the-art seizure detection based on
low (< 8) channel count. Considering the CHB-MIT dataset,
EPIDENET achieves a lower false positive rate, while retaining

an ability to detect a number of seizure events as high as 93.5%
(Sensitivity column in the event metrics). While Busia et al.
[51] achieves an even lower FP/h rate (0.8 FP/h, compared to
1.39 FP/h for EPIDENET), this number was obtained only from a
subset (8 subjects) of the total number of patients of the dataset.

Considering the PEDESITE dataset, BRAINFUSENET also
outperforms state-of-the-art, currently represented by the EEG-
former model of Busia et al. [52]. In fact, BRAINFUSENET

achieves a lower false positive rate (0.21 FP/h, compared to 1.35
FP/h) and an increased number of detected seizure events (92%,
compared to 88%).

Finally, Table VI (last column) also reports event-based cal-
culation of false positives (following the methodology of [70],
where adjacent windows flagged as false positive are marked
as a single common false alarm event), and showcases that
BRAINFUSENET achieves less than one false alarm per day.

E. Embedded Implementation

We deploy BRAINFUSENET on the GAP9 platform utilizing
an 8-second input window. The power consumption trace for
this duration is illustrated in Fig. 3, and a comparative analysis
of the deployed network against existing studies is presented
in Table VII. The inference procedure is executed within a
timeframe of 5.56 milliseconds for the EEG+PPG+ACC config-
uration and 6.29 milliseconds for the EEG+PPG configuration.
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TABLE VII
IMPLEMENTATION OF BRAINFUSENET ON GAP9 AND COMPARISON TO RELATED WORKS

Network BRAINFUSENET* BRAINFUSENET* [52] [51] [41]
Data EEG+PPG EEG+PPG+ACC EEG EEG EEG

Platform GAP9 GAP9 GAP9 Apollo 4 nRF52840

MCU 1+9×RISCY 1+9×RISCY 1+9×RISCY 1×Cortex M4F 1×Cortex M4F
@240 MHz @240 MHz @240 MHz @96 MHz @64 MHz

Deployment framework Quantlab/DORY Quantlab/DORY Quantlab/DORY Quantlab/CMSIS-NN TFLite

Dataset PEDESITE PEDESITE PEDESITE CHB-MIT CHB-MIT

Input size 4× 2048 4× 2048
4× 2048 4× 2048 9× 256

1× 512 4× 256

MACs 2 265 616 2 293 696 7 350 000 6 250 000 2 400 000

Time/inference [ms] 6.29 5.56 13.7 405.00 100
Throughput [MMAC/s] 360.19 412.54 536.49 15.43 24
MACs/cycle 1.50 1.72 2.24 0.16 0.38
Power [mW] 18.69 19.25 22.9 4.40 1.5
Energy/inference [mJ] 0.12 0.11 0.31 1.79 0.15
En. eff. [GMAC/s/W] 19.27 21.43 23.42 3.51 16.00

*See Fig. 1 for the architectural differences when using only PPG or both PPG and ACC for wrist data

Fig. 3. Power trace of BRAINFUSENET implemented on GAP9.

The EEG component of BRAINFUSENET requires a longer exe-
cution time, and we attribute this to the increased data volume
processed within this network segment (2048 samples per EEG
channel vs. 256 samples per wrist channel). Specifically, within
the EEG+PPG+ACC configuration of BRAINFUSENET, the EEG
portion requires approximately 4.69 milliseconds, whereas the
PPG+ACC components are executed in less than 0.85 millisec-
onds (the remaining time corresponds to the FCN layer at the
end of the network). The peak power consumption is 27 mW:
it is observed when processing the final convolutional layer in
the PPG+ACC network. The mean power consumption is 19.25
mW, and it corresponds to a total energy consumption of only
0.11 mJ per inference.

Integrating the GAP9 implementation with a state-of-the-art
commercial analog front end for biosignal acquisition, such as
the widely used Texas Instruments ADS1298 (as used in [72]),
which requires 0.75 milliwatts per channel, and considering
a battery capacity of 300 mAh, our approach is projected to
enable approximately 300 hours of continuous online data ac-
quisition and classification at 8-second intervals. This configu-
ration offers the potential for multi-day continuous monitoring
without recharging or battery replacement.

V. CONCLUSION

We presented BRAINFUSENET, a lightweight seizure de-
tection network tailored for wearable devices with a limited

number of sensor channels and exploiting heterogeneous sig-
nal sources. BRAINFUSENET is based on the sensor fusion
of EEG and wrist-based signals (PPG and accelerometers)
and achieves high sensitivity and specificity rates, with 93.5%
and 95% event-based seizures correctly detected on the CHB-
MIT and PEDESITE datasets, respectively. At the same time,
BRAINFUSENET offers state-of-the-art performance in terms of
false positive rate, which is as low as 0.21 FP/h. When sub-
sequent sample windows classified as false positives detection
are considered as a single event (as in [70]), BRAINFUSENET

results in less than one false alarm per day, thereby making it
well suited for user’s acceptance [35].

These results have been achieved starting from the EPIDENET

network, as originally conceived for EEG signals, thanks to
a novel Sensitivity-Specificity Weighted Cross Entropy (SS-
WCE) loss, which demonstrated its effectiveness in tackling the
prevalent issue of class imbalance within seizure datasets, and
thanks to sensor fusion across heterogeneous signal sources.

The deployment of BRAINFUSENET on the GAP9 platform
demonstrated its suitability for real-world applications, thanks
to an energy efficiency of 21.43 GMAC/s/W, a per-inference
energy consumption of just 0.11 mJ, and a total average power
consumption as low as 19.25 mW.

In summary, this paper highlights the crucial role of sensor
fusion in enhancing the robustness and reliability of seizure
detection systems. By effectively combining EEG and wrist
data, BRAINFUSENET not only improves seizure detection rates
and reduces false positives, but also paves the way for more
personalized, robust, and adaptable monitoring solutions.
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