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Abstract
Aim: Correlative species distribution models (SDMs) are among the most fre-
quently used tools for conservation planning under climate and land use changes. 
Conservation-focused climate change studies are often conducted on a national or 
local level and can use different sources of occurrence records (e.g., local databases, 
national biodiversity monitoring) collated at different geographic extents. However, 
little is known about how these restrictions in geographic space (i.e., Wallacean short-
fall) can lead to restrictions in environmental space (i.e., Hutchinsonian shortfall) and 
accordingly affect conclusions about a species’ vulnerability to climate change.
Location: Americas with a focus on Mexico.
Methods: We present an example study constructing SDMs for three Mexican tree 
species (Alnus acuminata, Liquidambar styraciflua and Quercus xalapensis) using data-
sets collated at a global (Americas), national (Mexico) and local (cloud forests of east-
ern Mexico) level to demonstrate the potential effects of a Wallacean shortfall on the 
estimation of the environmental niche—and thus on a Hutchinsonian shortfall—its 
projection in space and time and, consequently, on species’ potential vulnerability to 
climate change.
Results: The consequence of using the three datasets was species-specific and 
strongly depended on the extent to which the Wallacean shortfall affected estima-
tions of environmental niches (i.e., Hutchinsonian shortfall). Where restrictions in ge-
ographic space lead to an underestimation of the environmental niche, vulnerability 
to climate change was estimated to be substantially higher. Additionally, the restric-
tions in geographic space may increase the likelihood of issues with non-analogue 
climates, increasing model uncertainty.
Main conclusion: We recommend assessing the extent to which a species’ entire 
realized environmental niche is captured within the target conservation area, and 
increasing the geographic extent, if needed, to account for environments and occur-
rences reflecting potential future conditions. This way, the risk of underestimating 
the climatic potential of the species (i.e., Hutchinsonian shortfall), as well as the er-
rors induced by extrapolation into “locally novel” climates, can be minimized.
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1  | INTRODUC TION

Over the last decade, species distribution models (SDMs; also called 
ecological niche, habitat suitability and (bio)climatic envelope mod-
elling, as well as various other names, hereafter all included under 
the acronym “SDM”; see Franklin, 2010; Guisan et al., 2017; Guisan 
et  al.,  2013) have become an important tool to estimate the im-
pact of climate and land use changes on species’ potential distri-
butions (Franklin, 2010; Guisan et al., 2017; Peterson et al., 2011). 
The first SDM package (BIOCLIM) became available in 1984 (Booth 
et  al.,  2014). SDM statistically relate environmental variables to 
presence–absence data (or presence–background data) to quan-
tify the species–environment relationship and accordingly approx-
imate the realized environmental niche (Austin et al., 1990; Guisan 
et  al.,  2017). From early approaches based on simple envelopes 
and bioclimatic interpolations, more advanced ways to quantify 
the realized environmental niches and model species distributions 
have emerged (Booth et al., 2014; Elith et al., 2006). The quantified 
realized niche (i.e., the statistical model) can then be projected in 
geographic space and/or time to map the potential distribution of a 
species and predict change affecting it. The ability of SDMs to pro-
duce spatial and temporal models based on readily available climate/
environmental and species occurrence data makes them important 
tools for conservation planning (Guisan et al., 2013). Importantly, by 
being based on field (in situ) observations and correlative statistics, 
SDMs are empirical in nature and—unless fitted with more mecha-
nistic data and approaches (Catullo et al., 2015; Fordham et al., 2018) 
as, for example, in ex situ conditions (Booth & McMurtrie,  1988; 
Vetaas,  2002)—do not allow estimating the fundamental niche 
(Araujo & Guisan, 2006; Austin et al., 1990). Accordingly, and what-
ever the scale of the observation data used, most SDMs are assumed 
to be projecting various estimates of the realized niche in time and 
space (Guisan et al., 2017), as considered in the present study.

Given the popularity of SDMs in conservation planning and 
climate change impact assessments, it is paramount that their pre-
dictions are reliable and include an assessment of model uncer-
tainty (Barry & Elith, 2006; Beale & Lennon, 2012). As such, recent 
work has attempted to standardize the usage of, and approach to, 
SDMs (Araújo et al., 2019; Feng, Park, Walker, et al., 2019; Merow 
et al., 2019; Zurell et  al., 2020), and a large body of literature has 
emerged assessing the influence of diverse modelling assump-
tions (e.g., species–environment equilibrium assumption; see the 
discussion of Busby,  1988; Guisan et  al.,  2017) and factors on 
model performance, including sample size (Fernandes et al., 2018; 
Kadmon et al., 2003; Wisz et al., 2008), grain size (Guisan, Graham, 
et al., 2007), modelling algorithms (Beaumont et al., 2016; Guisan, 
Zimmermann, et  al.,  2007; Thibaud et  al.,  2014), sampling bias 
(Fielding & Bell,  1997; Jenkins et  al.,  2003; Kadmon et  al.,  2004), 

predictor selection (Hageer et  al.,  2017; Mod et  al.,  2016), obser-
vation errors (Fernandes et  al.,  2019; Graham et  al.,  2008), niche 
truncation (Hannemann et  al.,  2015; Thuiller et  al.,  2004) or sev-
eral factors together (Fernandes et al., 2018; Guisan, Zimmermann, 
et  al.,  2007; Kadmon et  al.,  2003; Thibaud et  al.,  2014). However, 
most of these studies predominantly investigate the influence of the 
given factor(s) on model performance/evaluation metrics (e.g., AUC, 
TSS, kappa) and model transferability (e.g., Petitpierre et al., 2017; 
Qiao et al., 2019; Werkowska et al., 2017; Yates et al., 2018) rather 
than the impact on spatial patterns of projected distributions and ex-
trapolation into the future (but see Barbet-Massin et al., 2010; Diniz 
et al., 2009; Dormann et al., 2008; Hannemann et al., 2015; Thuiller 
et al., 2004).

One crucial issue when fitting realized niches and modelling 
species distributions is the selection of the in situ field species 
occurrence data (thus not considering ex situ observations; see 
Booth, 2017; Booth & McMurtrie, 1988; Vetaas, 2002) used to con-
struct the models (Anderson et  al.,  2020; Rondinini et  al.,  2006). 
Preparing occurrence data for modelling can include a large num-
ber of essential processes encompassing partitioning (Fielding & 
Bell, 1997; Muscarella et al., 2014), thinning of occurrences (Aiello-
Lammens et  al.,  2015; Varela et  al.,  2014), integrating historic re-
cords (Lima-Ribeiro et  al.,  2017; Nogués-Bravo et  al.,  2016) and 
selecting absences and background data (Senay et  al.,  2013; Wisz 
& Guisan,  2009). Two approaches are commonly found in the lit-
erature: (1) using databases that typically combine occurrences 
from disparate sources, such as natural history collections, citizen 
science programmes or formal monitoring programmes (Anderson 
et al., 2020; e.g., Global Biodiversity Information Facility, GBIF); or 
(2) using local datasets often collected in surveys by the study au-
thors themselves (Gu & Swihart, 2004; Randin et al., 2010; Scherrer 
et al., 2017).

While self-collected data typically follow some sampling design 
and therefore have a lower and constant bias (e.g., misidentification, 
omission errors, location errors), heterogeneous biodiversity data-
bases (e.g., GBIF) usually have substantially more occurrence records 
from a broader geographic area but suffer problems of unknown/
spatially varying data bias and errors (Anderson et al., 2016; Haque 
et al., 2017, 2020). The choice of a certain dataset is rarely justified 
or discussed in the literature, and very few studies have compared 
the conclusions drawn from models based on different sources of 
data (but see Hannemann et  al.,  2015). It therefore remains the 
question of when to use which data source and spatial extent for 
SDMs aimed at national conservation planning and assessments of 
species vulnerability to environmental change.

While in theory data spanning, the species’ entire realized distri-
bution is favourable (Booth & McMurtrie, 1988; Booth et al., 2014), 
in practice, this can be complicated by several factors. Occurrences 

K E Y W O R D S

GBIF, Hutchinsonian shortfall, MAXENT, niche truncation, non-analogue climate, species 
distribution models, Wallacean shortfall
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from databases, such as GBIF, may span the species’ known distribu-
tion, but biases in these data (i.e., different sources, collection meth-
ods, collection years) can add significant noise to the model (Anderson 
et al., 2020; Graham et al., 2004). Additionally, environmental data 
(e.g., climate, land use, soil) for global or continental scales are often 
sparse or at a lower spatial resolution than desired. Conversely, reli-
ance on data from a localized survey may result in truncation of the 
species’ environmental niche (Chevalier et al., 2021; Mateo, Gastón, 
et al., 2019) or niche unfilling (Petitpierre et al., 2012) as only a part 
of its distribution has been sampled (Wallacean shortfall; Whittaker 
et al., 2005). As such, data from a localized survey may not reflect 
the entire set of physical (or abiotic) characteristics that a given spe-
cies can tolerate (Hutchinsonian shortfall; Booth, 2017; Hortal et al., 
2015). This may result in large errors when inter- and extrapolating 
models (i.e., projections; Booth,  2017; Booth & McMurtrie,  1988; 
Owens et al., 2013). Nevertheless, conservation studies are focused 
on a national or even local scale for a number of reasons: (a) while 
species do not care about political borders, funding for conservation 
projects and priority species often does; and (b) the desired spatial 
resolution and required input data to create conservation maps (e.g., 
land use, climate, soil) are often not available in comparable quality/
resolution across countries/regions (Cayuela et al., 2009; CONABIO, 
2007).

It is therefore important to differentiate between the geo-
graphic and environmental space that a species can occupy (Colwell 
& Rangel, 2009; Hutchinson, 1957; MacArthur, 1972). While a local 
dataset might only span part of the species’ geographic distribution 
(Wallacean shortfall), it may still cover the breadth of the species 
realized environmental niche (e.g., in a mountain area with wide 
environmental gradients). Conversely, even records from a large 
part of a species’ geographic range might not span its full realized 
environmental niche (Hutchinsonian shortfall). There are indeed at 
least three distinct patterns when considering how sampling in geo-
graphic space captures the environmental niche: (a) the subsample 
in geographic space is also a subsample of the niche in environmen-
tal space; (b) the subsample in geographic space covers the total 
environmental space; and (c) the subsample in geographic space 
represents a distinct subset (e.g., ecotype or subspecies) of the en-
vironmental niche. Depending on these patterns, the outcomes of 
SDMs and their projections onto future scenarios might differ sub-
stantially. However, these patterns remain largely understudied, 
raising questions as to what portion of niches are typically sampled 
in species’ geographic surveys. The limited availability about the 
geographic distribution (Wallacean shortfall) and environmental 
tolerances (Hutchinsonian shortfall) might be especially relevant for 
rare/under-sampled species, habitat specialists, or narrow-ranged 
and non-charismatic species (Albert et al., 2010; Guisan et al., 2006), 
and strongly dependent on the spatial extent and source of the spe-
cies occurrence data.

Here, we illustrate how both Wallacean and Hutchinsonian 
shortfalls might affect national conservation planning by developing 
niche-based SDMs for three Mexican tree species associated with 
mountain cloud forests, based on calibration datasets with varying 

spatial extents (i.e., explicit creation of a Wallacean shortfall) and 
sampling designs. These datasets reflect, for each species, differ-
ent geographic scales (i.e., spatial extent) based on their: (a) global 
distribution captured by records in GBIF; (b) national distribution 
(Mexico, a subset of global), thus representing the trend to model/
plan conservation measures on national scales and thereby ignoring 
occurrences in other regions; and (c) “local” distribution, based on 
targeted sampling around cloud forests of eastern Mexico. We use 
this study to demonstrate (a) how subsampling in geographic space 
(Wallacean shortfall) affects estimations of the environmental niche 
of these species (Hutchinsonian shortfall), (b) these shortfalls alter 
the area predicted suitable in Mexico under both current and fu-
ture climatic conditions and (c) whether our conclusions about the 
vulnerability of a species differ based on the spatial extent used for 
model calibration.

2  | MATERIAL S AND METHODS

2.1 | Species data and study area

In this study, we selected three tree species, with contrasting natu-
ral distributions, that build dominant stands at different elevations 
in the Trans-Mexican Volcanic Belt: Alnus acuminata Kunth, Quercus 
xalapensis Bonpl. and Liquidambar styraciflua L. (Table  S1). Alnus 
acuminata grows between 500 and 2,800  m a.  s.  l. in the moun-
tain ranges in tropical Central and South America, from Mexico 
to northern Argentina (CATIE,  1995). Liquidambar styraciflua has a 
lower altitudinal range between 400 and 1,800 m a. s. l. and is na-
tive to warm temperate areas of eastern North America and tropical 
montane regions of Mexico and Central America (Rzedowski, 2006). 
Quercus xalapensis is distributed between 400 and 2,700 m a.s.l., is 
native to Central America and Mexico and is threatened by habitat 
loss in parts of its native range (Jerome, 2018). These species are 
characteristic trees of cloud forests, growing at middle elevations 
in various mountainous areas where the climate is humid and tem-
perate (Rzedowski,  1996, 2006). Cloud forests are considered the 
most threatened terrestrial ecosystem at a national level because of 
changes in land use, the effects of global climate change, and local 
and regional environmental changes (CONABIO, 2010, 2014). These 
species are vulnerable to climate change, particularly to changes in 
precipitation, with L. styraciflua being drought-sensitive (Esperón-
Rodríguez & Barradas,  2015a, 2015b). Additionally, these species 
show very different patterns of Hutchinsonian shortfall or niche un-
filling (sensu Guisan et al., 2014; Petitpierre et al., 2012) based on 
occurrence datasets with different geographic extents.

For each species, we collected three datasets with different ex-
tents in geographic space: (a) the entire geographic range (“global,” 
i.e., the Americas); (b) the national distribution (“national,” i.e., 
Mexico); and (c) the local distribution based on sampling associ-
ated with cloud forest ecosystems of eastern Mexico (“local,” i.e., 
cloud forests of eastern Mexico). The global dataset was created 
by downloading all occurrence records of the target species from 
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GBIF (GBIF.org 14 January 2020, GBIF Occurrence Download 
https://doi.org/10.15468/​dl.g2yss3) and then cleaning the data by 
removing those with no geographic coordinates, coordinate uncer-
tainty greater than 1,000 m, or incorrect or duplicate coordinates; 
or with the observation dated before 1950. We therefore only kept 
records with no known coordinate issues and for which the basis 
of observation in GBIF was reported as “human observation,” “ob-
servation,” “specimen,” “living specimen,” “literature occurrence” and 
“material sample.” All records outside of the Americas were removed 
as these represent non-native locations often associated with (bo-
tanical) gardens and parks (e.g., Vetaas, 2002) or other urban areas 
(Booth,  2017). These highly human-modified environments (e.g., 
watering or shelter from extreme climate) rather represent the fun-
damental niche and are often not well reflected by global climate 
data, and would therefore introduce other niche dimensions or bias 
to the model.

The national dataset was identical to the global but with occur-
rence records restricted to Mexico. The local dataset was compiled 
by more intensive resource collection, based on previous stud-
ies developed in the Laboratory of Plant–Atmosphere Interaction 
from the Institute of Ecology, National Autonomous University of 
Mexico (UNAM), the National Commission for the Knowledge and 
Use of Biodiversity (CONABIO), the National Forestry Commission 
(CONAFOR) and the United States Forest Service (USDA Forest 
Service). This local dataset is focused on the cloud forests of eastern 
Mexico (Figure S1).

To limit the effects of spatial autocorrelation and sampling bias, 
we disaggregated the occurrence records in all datasets by removing 
occurrences closer than 5 km from each other using the R-package 
spThin (Aiello-Lammens et  al.,  2015). The final numbers of occur-
rences per species and dataset are given in Table 1.

2.2 | Climate data

For both baseline and future climate data, we downloaded 19 bio-
climatic variables at a spatial resolution of 30 arc-second (≈1 km at 
the equator) from CHELSA (Climatologies at high resolution for the 
earth's land surface areas; Karger et al., 2017). Baseline data include 
monthly mean temperature and precipitation patterns for the period 

1979–2013. For future climate data, we downloaded CMIP5 clima-
tologies for 2050 (average for 2041–2060) and 2070 (average for 
2061–2080). These data were produced using climatological aided 
interpolation based on the 1979–2013 reference climatologies 
from CHELSA’s baseline. We downloaded projections of the Global 
Climate Model (GCM) CSIRO-Mk3-6-0 (Australia), HadGEM2-AO 
(Korea) and MIROC-ESM-CHEM (Japan) with two Representative 
Concentration Pathway (RCP) 4.5 and 8.5. Emissions in RCP 4.5 
peak around 2040, then decline, whereas RCP 8.5 projects emis-
sions to continue to rise throughout the 21st century (Meinshausen 
et  al.,  2011). For our region of interest, Mexico, CSIRO-Mk3-6-0, 
HadGEM2-AO and MIROC-ESM-CHEM represent a future increase 
in annual mean temperature of +2.46°C, +2.40°C and +2.42°C, 
respectively, and annual precipitation of +13.0  mm, −9.3  mm and 
+65.9 mm, respectively, under RCP 4.5, and +3.54°C, +3.30°C and 
+3.62°C and −86.3  mm, −69.2  mm and +14.5  mm, respectively, 
under RCP 8.5 by the year 2070.

To limit the effect of multicollinearity among the environmental 
predictors, we identified pairs of variables with a Pearson correlation 
of ≥0.7 (Dormann et al., 2013). Out of the highly correlated pairs, we 
selected one of the covariates based on biological relevance (expert 
knowledge) for the three species, resulting in a subset of six biocli-
matic variables to perform all analyses: (a) temperature seasonality 
(BIO4); (b) maximum temperature of the warmest month (BIO5); (c) 
annual precipitation (BIO12); (d) precipitation seasonality (BIO15); 
(e) precipitation of driest quarter (BIO17); and (f) precipitation of 
warmest quarter (BIO18). While there are more sophisticated meth-
ods to account for multicollinearity (De Marco & Nóbrega,  2018; 
Feng, Park, Liang, et  al.,  2019), we chose to go with the simpler 
criteria of Pearson's correlation as it is still by far the most used in 
conservation-focused SDM studies. Furthermore, it has been shown 
that state-of-the-art selection of ecologically meaningful predictors 
with limited pairwise correlations is one of the best methods to build 
transferable models (Petitpierre et al., 2017).

To assess whether our results were mostly related to the effects 
of the estimation of the climatic niche (i.e., Hutchinsonian shortfall) 
rather than problems with extrapolation into non-analogue climates 
(Fitzpatrick & Hargrove, 2009), we also conducted a MESS analysis 
(multivariate environmental similarity surfaces; Di Cola et al., 2017; 
Elith et al., 2010) for all datasets, climate change scenarios and time 
steps. The MESS analysis enables a comparison of the geographic 
extent of non-analogue climate (i.e., areas where the models need 
to extrapolate into new climates) across the different datasets (Elith 
et al., 2010).

2.3 | Niche comparison

The climatic niches of the three species were estimated based on the 
six aforementioned bioclimatic variables. To compare the climatic 
niches across the different datasets, we calculated Schoener's D 
(Barbosa, 2015; Schoener, 1968), which expresses the proportion of 
niche overlap based on the first two PCA axes, using the <ecospat.

TA B L E  1   Number of occurrence records for the three species at 
different spatial extents used for model calibration

Dataset
Alnus 
acuminata

Liquidambar 
styraciflua

Quercus 
xalapensis

Global 701 1,080 290

National 403 242 269

Local 63 94 81

Note: The global dataset included all records from each species’ native 
range obtained from GBIF (Global Biodiversity Information Facility), the 
national dataset represents a subset of the global dataset restricted to 
Mexico, and the local dataset was solely based on surveys conducted 
around the cloud forests of eastern Mexico.
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niche.overlap> function from the ecospat R package (Broenniman 
et al., 2017; Di Cola et al., 2017) in R (v3.5.2; R Core Team, 2020). 
This index ranges from 0 (no overlap) to 1 (complete overlap). To 
test whether the estimates of the climatic niches significantly dif-
fer among datasets (i.e., niche divergence), we used the function 
<ecospat.niche.equivalency> (Broenniman et  al.,  2017). This test 
compares the observed niche overlap with the expectation based 
on null models (i.e., random permutations; Broennimann et al., 2012; 
see also Warren et al., 2008).

2.4 | Niche-based species distribution models

For our SDMs, we used the same six bioclimatic predictors described 
above. For each species and calibration dataset, we ran SDMs 
with the biomod2 R package (Thuiller,  2003; Thuiller et  al.,  2019) 
using generalized linear models (GLM; McCullagh & Nelder, 1989), 
boosted regression trees (BRT; Friedman et al., 2000), random for-
est (RF; Breiman,  2001) and maximum entropy models (MAXENT; 
Phillips et  al.,  2006) with five different sets of pseudo-absences–
background points (10,000 points, weighted to equal the number of 
occurrences) and five repetitions (i.e., 100 models, 25 per modelling 
technique). Background data were selected randomly either within 
the “local” area (cloud forests of eastern Mexico, “local model”), 
Mexico (“national” model) or the extent of global occurrence records 
+a 5° (WSG84) buffer zone (“global” model). The pseudo-absences 
therefore were affected by the same Wallacean shortfall as the oc-
currences (i.e., presences). All modelling techniques (i.e., GLM, BRT, 
RF, MAXENT) were run with the standard settings of the biomod2 
vignette (Thuiller et al., 2019) and evaluated based on split sampling 
(80% calibration, 20% evaluation) with the area under the receiver 
operating characteristic (AUC; Hanley & McNeil,  1982) and the 
maximization of the true skill statistic (TSS; Guisan et al., 2017). In 
addition to this internal split sampling evaluation, we also assessed 
model transferability across different datasets (i.e., how well a 
model calibrated with the local dataset predicts the occurrences of 
the national and global datasets; see Petitpierre et al., 2017; Yates 
et al., 2018) by AUC. Both current and future projections, derived 
from all three calibration approaches (i.e., global, national and local), 
were applied at the national level (Mexico). This allowed us to com-
pare the output of models calibrated on a larger extent (global), iden-
tical extent (national) and smaller extent (local) than projected and 
its effect on national conservation planning.

2.5 | Comparisons of predictions

We avoided the creation of binary maps by thresholding our habi-
tat suitability predictions, as this process always leads to the loss of 
information and introduces a bias (Guisan et al., 2017), especially in 
cases where no reliable absence data are available (Liu et al., 2013). 
However, to be able to (statistically) compare the area predicted 
suitable among projections, we defined an area as “suitable” if the 

predicted suitability was ≥0.5 (which in our case was almost identi-
cal to choosing a threshold based on AUC or maximizing TSS). This 
very simple definition allowed a statistical comparison of predictions 
across time (current, 2050, 2070) by analysing the areas that re-
mained “suitable” (stable), became unsuitable (loss) or became newly 
suitable for the species (gain). Additionally, to the simple threshold 
of 0.5, we tested two additional thresholding approaches based on 
the predicted suitability either including 95% of the training occur-
rences (“wide niche”) or only including the 20% of training occur-
rences with the highest predicted suitability (“core niche”).

3  | RESULTS

3.1 | Species distributions and climatic niches

The effects of the different calibration datasets (global, national, 
local) on the estimation of the climatic niche differed strongly 
among species (Figure 1). For A. acuminata, the subsamples in geo-
graphic space (Wallacean shortfall) also reflected subsamples in 
environmental space (i.e., resulting in a Hutchinsonian shortfall). 
Alnus acuminata is found not only in the study region (local) but also 
in other regions of Mexico and large parts of the South American 
Andes (Figure 1). This nesting in geographic space was mirrored in 
the climatic niche estimates where the local was a subset of the na-
tional, which in turn was a subset of the species’ global climatic niche 
(Figure 1). Therefore, the global niche breadth of A. acuminata was 
significantly (p  <  .05) underestimated when only local or national 
occurrences were considered (D = 0.17–0.56).

This was not the case for Q. xalapensis, where the subsample 
(national and local) in geographic space spanned much of the spe-
cies’ global environmental space. While there are occurrences of 
this species outside Mexico, niche overlap was high (D > 0.69), with 
no significant differences between any pairwise combination of the 
datasets (i.e., p > .05; Figure 1).

In contrast to the other two species, the geographic distribu-
tion of L. styraciflua was split into a North American and a Central 
American range, resulting in a likewise split in its climatic niche 
(Figure 1). Therefore, while the local and national occurrences un-
derestimated the actual (total) niche, we found that the omitted pro-
portion (i.e., the North American occurrences) covered conditions 
not found in Mexico under current and future climate (Figure 1).

3.2 | SDM predictions

Our SDMs performed well when evaluated based on cross-
validation, with most values of AUC >0.9 (Figure  S2) and maxTSS 
>0.7 (Figure S3). There was no consistent difference in model per-
formance among the three spatial datasets (global, national and 
local). Conversely, the relative importance of the six climatic predic-
tors varied strongly across the three spatial datasets and species 
with no clear trends (Figure S4).
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1372  |     SCHERRER et al.

The global SDMs usually predicted the largest amount of suitable 
climate within Mexico (Figure 2). However, the difference in suitable 
habitat between global, national and local models varied substan-
tially across species (Figure  2), although all models for all species 
predicted a higher loss than gain in suitable habitat under the fu-
ture climate scenarios (Figure 2). It is important to keep in mind that 
we restricted our projections to Mexico and differences in the area 
projected as suitable might be much more varying across models in 
areas outside of Mexico.

In the case of A. acuminata (Figure 3 for RCP 8.5; see Appendix S2 
for specific GCM and other RCP and years), there was a significant 
difference in suitable habitat between the global, national and 
local model (suitability threshold = 0.5; p <  .05, pairwise Wilcoxon; 
Figure 2), with the global model predicting 15 times more suitable 
habitat under current and future conditions. With climate change, 

all datasets generally predicted a significant reduction in suitable 
habitat (Figure 2 for RCP 8.5 in 2070; see Appendix S1 for specific 
GCMs and other RCP and years). Independently of the spatial ex-
tent, GCM or RCP, all models predicted a considerable loss of suit-
able habitat (>50%). Both the global and national models predicted 
only marginal gains in suitable habitat (usually <5%), while the 
local model predicted a significantly larger gain in suitable habitat 
(Figure 2; Appendix  S1). As a result, the local model predicted the 
least stable areas and the most turnover (loss and gain) of suitable 
habitat (Figure 2; Appendix S1). Using a suitability threshold for the 
“wide niche” (i.e., encompassing 95% of the training occurrences) 
showed identical patterns across datasets (global, national and local) 
and future climate change but showed overall more suitable habitat 
probably due to the much lower suitability threshold (Appendix S1). 
Choosing a suitability threshold focusing on the “core niche” (i.e., 

F I G U R E  1   Distribution of recorded occurrences of Alnus acuminata, Liquidambar styraciflua and Quercus xalapensis in geographic space 
(top row) and environmental space (bottom row). Green points/areas are based on the global occurrence dataset (Americas), blue on the 
national dataset (Mexico) and red on the local dataset (eastern Mexico). The environmental space is represented by the two main PCA 
axes based on six climatic variables used for SDM. The total available climate of Mexico (national) and the Americas (global) is represented 
by a green and pink contour plot (100th and 90th percentiles), respectively. The numbers in the top-right corner represent Schoener's 
overlap (D) for G-N = global and national, G-L = global and local, and N-L = national and local. The asterisk indicates significant differences 
(p < .05 in D). PCA axis 1 and PCA axis 2 explain 47% and 25% of the variation, respectively. BIO4 = temperature seasonality; BIO5 = max 
temperature of warmest month; BIO12 = annual precipitation; BIO15 = precipitation seasonality; BIO17 = precipitation of driest quarter; 
and BIO18 = precipitation of warmest quarter (for details, see Figure S6) 
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     |  1373SCHERRER et al.

threshold based on the 20% of training occurrences with the highest 
predicted suitability) resulted in lower differences among different 
models (global, national and local) compared with using the other 
thresholds, and showed that almost all highly suitable habitat will be 
lost by 2070 (Appendix S1).

In the case of L. styraciflua (Figure 4; Appendix S2), the predic-
tion of the current suitable habitat was unaffected by the spatial ex-
tent used for model calibration (i.e., Wallacean shortfall; suitability 
threshold = 0.5; p > .05; Figure 2). In general, all models predicted 
a slight loss of suitable habitat under future conditions (significance 
varies among climate change scenarios; Figure  2; Appendix  S1). 
Similar to A. acuminata, the local model predicted a higher turnover 
of suitable habitat with less stable and more gain/loss (Figure  2; 
Appendix  S1). Selecting different suitability threshold focusing ei-
ther on the “core niche” or on the “wide niche” revealed very similar 
patterns except for the local model, which created a model artefact 
predicting almost all of Mexico as suitable habitat as the “wide niche” 
threshold was close to 0 (Appendix S1).

Similar to L. styraciflua, the estimation of the currently suitable 
habitat for Q. xalapensis (Figure 5; Appendix S2) was unaffected by 
the spatial extent of the calibration data (Figure 2). Quercus xalapensis 
showed the largest amount of stable suitable habitat under climate 
warming and the predicted changes were usually very consistent 

among the three spatial extents and independent of the suitability 
threshold (suitability threshold = 0.5; Figure 2; see other suitability 
thresholds in Appendix S1).

Model transferability among different datasets (global, national 
and local) was strongly linked to the Hutchinsonian shortfalls (i.e., es-
timation of realized climatic niche). In the case of A. acuminata, models 
showed a weaker performance when evaluated with a dataset from 
larger geographic extents (i.e., local to national/global and nation to 
global; Figure S5). This is directly linked to the Hutchinsonian short-
falls at the local and national scales leading to high omission errors 
at the global scale. The global model showed high transferability to 
national and local scales but tended to overpredict the occurrences. 
For L. styraciflua, both the local and national models had poor predic-
tive power at the global scale (Figure S5) as these models were unable 
to predict the occurrences found in North America occupying a com-
pletely disjunct niche/climate space (Figure 1). Most importantly, for Q. 
xalapensis showing no Hutchinsonian shortfall across different data-
sets model transferability in all directions was very high (Figure S5).

The MESS analysis revealed minimal projections of non-analogue 
climates in Mexico for both the global and national dataset (Figure 6; 
see Appendix S3 for analysis for individual GCM and RCPs). In con-
trast, the local dataset showed a large amount of non-analogue climate 
for both the current and future conditions (Figure 6; Appendix S3).

F I G U R E  2   Current (first column) and future predicted suitable area (second column) under climate change (average of three GCMs for 
RCP 8.5) for the year 2070 based on a suitability threshold of 0.5 for three tree species. Columns 3 to 5 show the relative change in the 
suitable area divided into stable, gain and loss, respectively. Black letters above the boxplots indicate significant differences (p < .05, paired 
Wilcoxon rank sum test) among the three spatial extent datasets (global, national and local). Red letters indicate significant differences 
(p < .05) between the current and future suitable area for each dataset
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4  | DISCUSSION

Our study demonstrates that occurrence datasets from alternate 
sources covering different geographic extents (i.e., varying Wallacean 
shortfalls) can result in different estimations of species’ environ-
mental niches (i.e., Hutchinsonian shortfalls). Consequently, models 
calibrated with different datasets—in our case global, national and 
local—can lead to divergent spatial predictions under current and fu-
ture climatic conditions. Inconsistencies among models calibrated on 
varying spatial extents, however, were species-specific and driven by a 
Hutchinsonian rather than Wallacean shortfall. While our three study 
species show similar levels of Wallacean shortfalls across the global, 
national and local datasets, the magnitude of the Hutchinsonian short-
fall differed significantly across species. Unsurprisingly, the larger the 
Hutchinsonian shortfall (i.e., niche truncation: the underestimation 
of the species’ realized environmental niche), the more divergent the 
SDM predictions (as these are based on the Hutchinsonian niche) and 

the lower the model transferability. Furthermore, models with differ-
ent degrees of Wallacean shortfalls showed similar predictive perfor-
mance as evaluated by the most commonly used metrics (AUC and 
TSS), making it challenging to determine which predictions are the 
most accurate and reliable for a national assessment of species’ vulner-
ability. This means that models based on truncated niches can still have 
as good, or even better, fit than models based on entire niches.

4.1 | Geographic and environmental space

Our study design was centred on the nesting of datasets in geographic 
space (i.e., global, national and local), thus creating different levels of 
Wallacean shortfalls. We then demonstrated how these shortfalls can 
translate into very different configurations in environmental (Figure 1) 
and geographic space under baseline and future climates. Alnus acumi-
nata showed a strong nesting both in geographic and in environmental 

F I G U R E  3   Influence of climate change (average of three GCMs for RCP 8.5) on habitat suitability for Alnus acuminata depending on the 
spatial extent of the calibration datasets (global, national and local). Habitat suitability represents average values across all background 
datasets and modelling techniques (i.e., GLM, RF, BRT and MAXENT) 
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     |  1375SCHERRER et al.

space, indicating that, for this species, the Wallacean shortfall directly 
translated into a Hutchinsonian shortfall: the environmental niche 
quantified by the local dataset was almost entirely contained within 
that quantified by the national dataset, the latter being within that of 
the global dataset. As a result, predictions based on the local or na-
tional dataset underestimated the global realized climatic niche and, 
consequently, predicted substantially smaller areas of suitable habitat 
in Mexico. This is an example of niche truncation, and our observed 
effects are comparable to previous studies on this phenomenon in 
European trees (Hannemann et al., 2015; Thuiller et al., 2004). In addi-
tion, the local model for A. acuminata predicted some gains in suitable 
areas under future conditions, while the national and global models 
mostly predicted a loss of suitable areas. Hence, national conserva-
tion decisions/actions regarding the vulnerability of this species to cli-
mate change might be highly affected by the choice of initial data for 
model calibration. However, it is important to highlight that the gain in 
suitable areas under the local model only represents a subset of the 

suitable climate of the national and global models, which overall pre-
dicted broader suitable areas under current and future conditions. The 
large difference in habitat predicted as suitable by different datasets 
might also hint at the specialization of ecotypes across the distribution 
of A. acuminata. A large proportion of the area predicted as suitable by 
the global model may require the migration/introduction of ecotypes 
from North and South America, as these habitats seem currently un-
occupied by the “Mexican” ecotype, which is adapted to warmer and 
drier conditions (CATIE, 1995).

Results for L. styraciflua and Q. xalapensis differ from those for 
A. acuminata. For these two species, predictions of suitable climate 
under current and future conditions were largely unaffected by the 
introduced Wallacean shortfalls. The restriction of the calibration 
data in geographic space (global, national and local) did not lead to 
an underestimation of the environmental niche (i.e., Hutchinsonian 
shortfall). For Q. xalapensis, niche estimations were very similar 
across the three occurrence datasets; consequently, predictions for 

F I G U R E  4   Influence of climate change (average of three GCMs for RCP 8.5) on habitat suitability for Liquidambar styraciflua depending 
on the spatial extent of the calibration datasets (global, national and local). Habitat suitability represents average values across all 
background datasets and modelling techniques (i.e., GLM, RF, BRT and MAXENT) 
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Mexico were consistent across the scales used to fit the models. 
Conversely, the climatic niche of L. styraciflua populations in the USA 
was disjunct from the remainder of this species’ niche from Mexico 
to South America, and the niche of populations in the USA occurs in 
climates that are absent from Mexico (both current and future). As 
a result, the national assessments of vulnerability for these species 
are similar across datasets and in our case not significantly affected 
by Wallacean shortfalls.

4.2 | What data source to use?

Here, we have demonstrated how different datasets (i.e., geographic 
extent, sources) can lead to substantially different predictions of 
suitable areas and estimations of species vulnerability in national as-
sessments. It therefore poses the question of what dataset to use to 
develop climate change projections?

Our study indicates that a Wallacean shortfall alone might not 
directly affect national assessments but can potentially lead to a 
Hutchinsonian shortfall. Therefore, if a local or national dataset cov-
ers the species’ entire realized climatic niche, it may be preferable 
for internal consistency to use these data (e.g., all data collected in a 
similar manner or by the same source, as such data may be of higher 
quality). Additionally, at the national or even local level, environ-
mental data (e.g., climate, land use, soil) are often available at both 
finer spatial resolution and more consistent quality than at global 
or continental scales. However, if making predictions into different 
areas (here using our local model to predict to the whole of Mexico) 
or into different environmental conditions (here future climate 
change) issues of model transferability arise (Petitpierre et al., 2017; 
Randin et al., 2006; Yates et al., 2018) and models calibrated with 
data representing only a part of the species’ range may have lim-
itations (Barbet-Massin et al., 2010; Chevalier et al., 2021; Thuiller 
et al., 2004).

F I G U R E  5   Influence of climate change (average of three GCMs for RCP 8.5) on habitat suitability for Quercus xalapensis depending on 
the spatial extent of the calibration datasets (global, national and local). Habitat suitability represents average values across all background 
datasets and modelling techniques (i.e., GLM, RF, BRT and MAXENT) 
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Different geographic regions/time periods often contain new 
combinations of environmental conditions not observed in the cali-
bration data (i.e., non-analogue climate; Williams & Jackson, 2007), 
and predictions to these data may be unreliable due to extrapo-
lation errors (i.e., problems with response curves; Fitzpatrick & 
Hargrove,  2009; Owens et  al.,  2013) and related transferability 
problems (Petitpierre et al., 2017). The amount of error and uncer-
tainty introduced by extrapolation is dependent on the amount of 
new conditions and the modelling algorithms used (Qiao et al., 2019). 
This is illustrated in our study by using the local model to predict 
(i.e., extrapolate) to the national level (Mexico). The MESS analysis 
highlights a large amount of non-analogue climate making the model 
inappropriate for these parts of Mexico. Issues with non-analogue 
climate are sometimes unavoidable at global scales (i.e., globally new 
climates due to climate change). However, at local or national scales, 
non-analogue conditions rarely reflect new conditions, as corre-
sponding conditions could be found elsewhere on Earth. In such 
cases, extrapolation uncertainty could be avoided by expanding the 
dataset to include conditions reflecting the non-analogue climate 
of the extrapolation area (Broennimann & Guisan, 2008). We stress 
this is true even if such conditions are outside of the species’ cli-
matic niche, as these records still contain valuable information about 

the available climate space (i.e., background data) and potential ab-
sences. In our study, the problems with the non-analogue climate 
could be avoided by selecting background data across the whole 
territory of Mexico (i.e., the planned prediction area/environment), 
rather than restricting the sampling to the local area.

Given potential problems with niche truncation and non-
analogue conditions in spatially restricted datasets, then why not 
always use the global distribution of a species, even when modelling 
at national or local scales? First, there may be problems of data het-
erogeneity and quality, as the entries in global databases often stem 
from disparate sources and temporal periods (e.g., data from GBIF). 
Second, when working with widespread species, the global distri-
bution might include multiple ecotypes, provenances or subspecies 
not present in the target area (i.e., local or national area desired for 
projection; Randin et  al.,  2006; Wright et  al.,  2006). Including dif-
ferent ecotypes (or all populations at a larger spatial scale; Trivedi 
et  al.,  2008) into the estimation of the climatic niche and SDMs 
(Peterson et al., 2019) might lead to an overestimation of the po-
tential distribution of the species, as ecotypes/subspecies may have 
diverging niches and be locally adapted (e.g., due to dispersal limita-
tions; Hu et al., 2017; Trivedi et al., 2008). This might be the case of 
L. styraciflua, which has disjunct populations in geographic (North 

F I G U R E  6   MESS analysis for non-analogue climate (red colour) under climate change (average of three GCMs and RCP 8.5) based on the 
spatial extent (global, national and local) used for SDM calibration data (occurrences + background data) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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America vs. Central America) and environmental space. The use of 
global data for L. styraciflua might therefore overestimate this spe-
cies’ ability to tolerate climate change by not considering dispersal 
restrictions and spatial segregation of the two distinct ecotypes. 
Also, in the case of A. acuminata, the potential species distribution in 
Mexico under current and future conditions might be overestimated 
based on the global dataset, as these data are based on the assump-
tion of unlimited dispersal of all ecotypes throughout the species' 
entire range. The limited pool of available ecotypes within a region 
might therefore increase local extinction risk, especially in species 
with very wide geographic distributions, and poses the question of 
whether assisted migration of certain provenances might be a solu-
tion to mitigate some climate change effects (Thiel et al., 2012).

Furthermore, biotic interactions among species might be altered 
under future climate change, and consequently, the estimations of the 
current realized environmental niche (i.e., under current biotic inter-
actions) are no longer valid (i.e., changes in the species–environment 
equilibrium). In such cases, it might be useful to approximate the funda-
mental rather than the realized environmental niche by including occur-
rences from non-native ranges (i.e., different biotic interactions) or even 
ecophysiological data from controlled experiments. Unfortunately, such 
data are often hard to integrate into SDMs as ecophysiological experi-
ments are difficult to translate into global climate data (e.g., soil matric 
potential vs. 30-year average of evapotranspiration at km resolution) 
and non-native occurrences often stem from strongly human-modified 
environments (e.g., watering), such as gardens and parks.

Global data and models, however, can still be used in combi-
nation with local, regional or national models in a hierarchical way 
to account for the complete species climatic niche (Mateo, Aroca-
Fernández, et al., 2019; Mateo, Gastón, et al., 2019). This approach 
may pose technical challenges for studies modelling local species 
distributions at very high spatial resolutions. At such resolutions, the 
data needed for model calibration (i.e., climate or land cover layers) 
may not be available and the use of (sometimes complex) hierarchi-
cal modelling approaches to account for varying spatial resolutions 
in the calibration data (e.g., Mateo, Gastón, et  al.,  2019) can pose 
computation limitations (Chevalier et al., 2021).

5  | CONCLUSION

Conservation planning and associated assessments of species vul-
nerability to climate change can be conducted at a national level 
and based on corresponding data sources (e.g., national biodiver-
sity monitoring programmes, meteorological data, habitat mapping). 
Depending on the Wallacean and Hutchinsonian shortfalls of these 
national datasets compared with the complete distribution of a tar-
get species, the resulting suitability maps and estimations of vulner-
ability to climate change might be misleading. Artefacts of niche 
truncation (as a result of Hutchinsonian shortfall) and problems of 
non-analogue climates might lead to an underestimation of species 
climatic tolerances and adaptability and consequently overestima-
tion of spatial turnover and extinction risk.

Our study cannot give a definite answer to which dataset pro-
vides the most accurate future predictions for Mexico or any chosen 
geographic extent (only time will tell), partly because each country 
or region has its own geographic and environmental specificities; 
nevertheless, here we provide insights to resolve this conundrum. 
Given that species and environmental data from varied sources 
are becoming increasingly accessible, we suggest that local or na-
tional assessments are assessed for potential problems posed by 
the Hutchinsonian shortfall and non-analogue climate, and how it 
relates to the Wallacean shortfall, via niche equivalency tests and 
MESS, among others. This assessment can minimize the effects of 
niche truncation and extrapolation uncertainties due to “locally 
novel” non-analogue climate conditions, thereby minimizing or at 
least assessing the uncertainty in estimations of a species’ vulnera-
bility to environmental/climate change. Finally, in cases where local 
or national datasets cover the species’ entire realized environmen-
tal niche (i.e., no Hutchinsonian shortfall), it is recommended to use 
these datasets over a global one to increase data quality. We also 
suggest exploring model calibration with local or national datasets to 
evaluate species with broad distributions and different ecotypes, as 
a previous step for model calibration with a global dataset.
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